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Abstract. This paper investigates the global routing problem for integrated circuits. We
introduce a formulation on the basis of integer programming which minimizes the routing area
among a limited set of Steiner trees for each net. Indeed, the involved cost function depends on the
channel density of the routing which has a direct influence on the routing area.

Our methods for solving the global routing problem employ local search heuristics, sequential
routing, genetic routing, and randomized procedures. Our methods for computing lower bounds are
based on linear and Lagrange relaxation. An analysis on the tightness of the bounds indicates that
the difference between the cost of the optimal integer solutions and the cost of the optimal fractional
solutions is only a small number of tracks in practice. Moreover, the analysis leads to the concept of
linear preprocessing by which we exclude a large number of high-cost solutions.

We introduce several versions of preprocessing, one of which preserves the opportunity of obtain-
ing a globally optimal solution in general; all of them do so in practice. Linear preprocessing enables
us to solve problem instances with several thousand nets provably optimal or at least provably close
to optimal.

All methods have been implemented in the software package Eridanus. We present computa-
tional results.

The global routing problem assumes the placement of the chip components to be fixed. An
extension of the problem, which we call global layout of integrated circuits, allows the placement
to be variable and searches for a placement that minimizes the routing area among a limited set of
alternatives. We show that the results concerning the global routing problem can be easily extended
to global layout.
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1. Problem definition. Global routing is an essential part of the physical de-
sign of integrated circuits. The global routing phase usually follows the placement or
floorplanning phase. During the global routing phase, the approximate course of all
wires is determined. A detailed introduction to the global routing problem and its
role in circuit layout can be found in [26].

Combinatorially, an instance of the global routing problem has the following
three elements.

A routing graph. This undirected graph is denoted by G = (V,E), |V | = k, |E| =
m. The routing graph is the representation of the routing regions on the
chip that result from the preceding placement phase. In many applications,
G is planar. We do not require this to be the case, however. Intuitively, the
vertices of the routing graph represent possible positions of wire terminals,
and the edges represent channels along or regions through which wiring can
be performed. In order to support this intuition, each edge e in the routing
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Routing in channelsChannelless routing

Fig. 1. Two different wiring models.

graph has two labels, its length l(e) ≥ 0 and its capacity c(e) ≥ 0. We assume
capacities to be integer. Depending on the wiring model, the interpretation of
G can take on different forms. Figure 1 depicts two different wiring models.
In channelless routing the vertices are located at centers of the cells of the
floorplan. The edges represent adjacencies between the cells. In this model,
a reasonable choice of the labels for an edge e = {v, w} is to choose l(e) to
be the actual length of e in the planar embedding shown in the figure—e.g.,
according to the Manhattan distance or the Euclidean distance—and c(e) to
be the length of the dual edge e′ of e in the floorplan, in an appropriate unit.
In this way, the capacity c(e) measures the number of wires that can cross
e′ when moving from cell v to cell w. In the model of routing in channels,
G represents the channel structure of the floorplan. In this case, the length
of an edge should again be its actual length in the embedding. Its capacity
should be an estimate of the width of the corresponding channel.

A set of nets. This multiset is denoted by N ⊆ 2V with |N | = n. Each net is
specified by the set of its terminals, and each terminal is a vertex in V . Thus,
in channelless routing, all terminals for a cell are clustered in the center
of this cell. Using routing in channels, vertices can be added as desired
to represent specific terminal positions. Of course, the same net can occur
multiply, with each instance of the net being routed differently. Therefore,
N is a multiset, in general. We denote a net by ν and different copies of ν
by (ν, i), i = 1, . . . , kν . (kν is the multiplicity of net ν.) Furthermore, each
net (ν, i) ∈ N has an integer weight w(ν, i) > 0 that represents the cost of a
unit-length wire for (ν, i). Often, all weights will be unity. Different weights
can, for instance, model the different bit-width of buses that are represented
by a single net each.

A set of admissible routes for each net. In principle, all Steiner trees between the
vertices of (ν, i) may be admissible. In practice, however, the Steiner trees
are restricted for technical reasons to having special features, e.g., a limited
length or a limited number of bends. The admissible routes for net (ν, i) will

be denoted by T 1
ν,i, . . . , T

Iν,i
ν,i . (Iν,i is the number of admissible routes for

(ν, i).) The set of all admissible routes is denoted by

T = (T jν,i)1≤j≤Iν,i,(ν,i)∈N
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with |T | =: ξ. Usually, the number Iν,i of admissible routes for (ν, i) is
large (exponential in the number of terminals of (ν, i)). But often, the set of
admissible routes can be defined concisely in small space.

There are a multitude of variants of the global routing problem. In general, they
fall into two classes, constrained global routing and unconstrained global routing.
In the constrained global routing problem, the edge capacities in G are strictly ad-
hered to; violations lead to illegal routings. In the unconstrained version, routings
exceeding the edge capacities are allowed but punished in the cost function. The total
wire length enters the cost measure with low priority in both versions of the global
routing problem.

We now formally define the solutions of these two versions of the global routing
problem. For this purpose, let I = (G,N, T ) be the given problem instance.

Routing. A routing R = (Tν,i)(ν,i)∈N ′ is a set of admissible routes Tν,i for a subset
N ′ of the nets in N . The nets in N \N ′ have no routes in R. If N \N ′ �= ∅,
the routing R is said to be incomplete.

Traffic. The traffic U(R, e) across an edge e ∈ E in a routing R is the total
weighted cost of all nets that are wired across e in R, i.e.,

U(R, e) :=
∑

(ν,i)∈N ′
e∈Tν,i

w(ν, i).

Load. The load Λ(R, e) of an edge e ∈ E in a routing R is defined to be

Λ(R, e) := U(R, e)− c(e).

If Λ(R, e) < 0, then the edge e is said to be unsaturated, if Λ(R, e) = 0, then
e is saturated, and if Λ(R, e) > 0, then e is oversaturated. In the following we
measure both traffic and load of edges in tracks. (In [26], the load is defined
as Λ(R, e) := U(R, e)/c(e). The difference between these two definitions is
technical, but the definition given here is more attractive in many practical
settings, because channels with many free tracks are avoided.)

Constrained global routing. A legal routing with respect to the constrained
global routing problem is a routing R such that no edge e ∈ E is over-
saturated. The cost of a routing R is the pair

 ∑
(ν,i)∈N\N ′

w(ν, i),W (R)

 ,

where

W (R) :=
∑
e∈E

U(R, e) · l(e)

f is the total weighted wire length of the routing. Costs of different routings
are compared using the lexicographic ordering. The number of routed nets
is maximized with first priority. Among all routings that provide routes for
a maximum number of nets, the one with the smallest total weighted wire
length is chosen.

Unconstrained global routing. With respect to the unconstrained global routing
problem, each complete routing is legal. The cost of a routing R is the pair

(max
e∈E

Λ(R, e),W (R)).
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Costs of different routings are again compared using the lexicographic order-
ing. Thus, an optimal routing is one with minimum maximal edge load and,
among those, one with minimum total weighted wire length.

Both versions of the global routing problem are strongly NP-hard. In fact, this
holds even for severely restricted cases of these problems.

• If |N | = 1, we obtain the minimum Steiner tree problem, which is strongly
NP-hard [21].
• Kramer and van Leeuwen [25] have shown the restriction to be strongly NP-
hard, in which all nets have exactly two terminals, all edge capacities are
unity, all edge lengths are zero, all net weights are unity, and the routing
graph is a square grid graph. (The restriction of the constrained global routing
problem, in which all edge capacities are unity, all edge lengths are zero, and
all net weights are unity, is also called Steiner tree packing.)
• Korte, Prömel, and Steger [24] have proved the Steiner tree packing problem
to be strongly NP-hard even when |N | = 2 and G is planar.
• Karp et al. [22] have shown the restriction to be strongly NP-hard, in which
only one-bend routes (of two-terminal nets) are admissible.

Three special cases of global routing problems come up particularly often in prac-
tice:

• w(ν, i) = 1 for all (ν, i) ∈ N . This case occurs if we do not route buses, but
rather just single strand wires.
• l(e) = 0 for all e ∈ E. In this case we are not concerned with total weighted
wire length.
• The routing graph is a partial or a complete grid graph.

By the results of Kramer and van Leeuwen [25], all these special cases are strongly
NP-hard, even if only two-terminal nets are involved.

In the past, both versions of the global routing problem have received a great deal
of attention within the CAD community. In the following we summarize concepts for
solving the global routing problem.

2. Survey of solution methods.

2.1. Representation of routes. One critical point in the investigation of the
global routing problem is the representation of routes. There are two approaches, in
general. In the explicit approach to global routing, a special binary variable is chosen
to represent each route. The corresponding integer program has a large number of
variables and comparatively few constraints. The advantage of explicit global routing
is that we can take technical restraints on the admissibility of routes into account. In
the implicit approach to global routing, the legality of routes is implicitly secured by
appropriate constraints involving variables that represent only nets and edges. More
specifically, we generate a constraint for each cut in the routing graph that ensures
that each net with terminals on either side of the cut is connected across the cut. The
resulting integer program has few variables but a large number of constraints. Since
routes are not represented by special variables, no complex technical restraints on the
routes can be formulated in the implicit approach.

The explicit approach to global routing is rendered practical by preselecting a
feasible number of routes to choose from. The selection of these routes turns out to
be quite difficult. One idea is to compute minimum Steiner trees on the nets before
global routing. But there is no clear indication that the consideration of minimum
Steiner trees leads to low-density solutions; in fact, it can be shown that often the
best global routing does not use minimum Steiner trees. A more advanced idea is to
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use flow arguments in order to generate candidate routes. In this paper, we use the
following scheme to produce routes. We construct a complete graph on the terminals
of a net and compute a spanning tree on this graph. For every edge in this spanning
tree we compute a path between the respective wire terminals which has at most one
bend. There are at most two possibilities. A candidate route is the union of such
paths. We call such routes one-bend routes. The number of one-bend routes for a
net with r terminals is at most rr−2 · 2r−1. (Thus, the numbers of candidate routes
for nets with between two and five terminals are limited by 2, 12, 128, and 2000,
respectively.) Indeed, a complete enumeration of all one-bend routes is often possible
in small space. Moreover, one-bend routes seem to be attractive in many practical
settings. Note that by the result of Karp et al. [22] even this special case of the global
routing problem is strongly NP-hard.

2.2. Sequential global routing. A whole host of algorithms for solving global
routing are based on the idea of sequential global routing of the nets. In such an
approach, the nets are first ordered according to a suitable notion of “difficulty to
route.” Then a Steiner tree is generated for each net in the prescribed order. The
Steiner tree tries to avoid congested areas. For this purpose, edge load costs that
direct the Steiner tree generation are maintained dynamically. Ting and Tien [36]
presented an early version of this approach. More recent work is given by Chiang,
Sarrafzadeh, and Wong [5], Chiang [6], and Chiang, Wong, and Sarrafzadeh [7]. Rely-
ing on sequential routing alone discriminates against the nets routed late. Therefore,
rip-up-and-reroute (RR) strategies have been developed that iterate the sequential
routing process; see [26].

2.3. Genetic global routing. Esbensen solves both the minimum Steiner tree
problem [10] and the (unconstrained) global routing problem [9] using genetic algo-
rithms. For global routing, the genotype of a specific solution consists of one entry for
each net (ν, i) ∈ N which holds the index j of the route T jν,i which is realized in that
solution. In order to generate routes, Esbensen uses his own genetic algorithm for
the minimum Steiner tree problem. Thus, his intention is to provide low-cost Steiner
trees as candidate routes for the nets.

2.4. Hierarchical global routing. The method of hierarchical global rout-
ing solves the constrained global routing problem. This method was introduced by
Burstein and Pelavin [2] in the context of gate array layout and was subsequently ex-
tended to general floorplans by Luk et al. [29]. A further improvement of this method
is given by Heistermann and Lengauer [16]. Burstein and Hong [1] extend this ap-
proach to include placement in the context of gate array layout, and Lengauer and
Müller [28] extended the approach for general floorplans. Hierarchical global routing
methods use a cut tree for the floorplan. Such trees are computed by floorplanning
methods based on circuit partitioning. A small global routing problem is associated
with each node in the cut tree and solved exactly using integer programming methods.
The partial solutions thus obtained are assembled to a solution of the whole problem
instance. Whereas the solutions of the small global routing problems pertaining to
the nodes in the cut tree are optimal, no statement about the quality of the resulting
overall solutions can be made. However, experience indicates that the solutions are
quite good in practice.

2.5. Routing by linear relaxation. The method of routing by linear relax-
ation considers the explicit approach to the unconstrained global routing problem.
The first algorithm of this kind was introduced by Hu and Shing [19]. They solve
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the linear relaxation of the integer programming formulation of the problem in order
to obtain an initial (fractional) solution, and then they proceed to deduce an integer
solution by selecting, for each net, the Steiner tree with the highest fractional value.
In order to provide potential routes, Hu uses column generating techniques [18] which
are based on flow arguments. Instead of solving the linear relaxation of global routing,
Shragowitz and Keel [35] extend the algorithm of Hu and Shing [19] by formulating the
linear relaxation of the routing problem as a multicommodity network flow problem.
Vannelli [37] applies Karmarkar’s linear programming algorithm [20], which is based
on Khachian’s ellipsoid method [23], to Hu and Shing’s linear programming formula-
tion. Karp et al. [22] suggest the idea of doing global routing by linear programming
followed by randomized rounding, a technique discussed in detail by Ng, Raghavan,
and Thompson [30], Raghavan [31], and Raghavan and Thompson [32, 33]. They use
the fractional outcomes of the linear programming phase as biases for appropriate
coin tosses that generate a solution in a randomized fashion. Repeating this random
experiment an appropriate number of times generates a provably good solution with
high probability. A worst case analysis of this method has been given in [32]. A
deterministic version of the method has been presented in [31].

2.6. Multicommodity network flow. An extension of the idea of Karp,
Raghavan, and others has been presented by Carden and Cheng [3] and Carden,
Li, and Cheng [4]. In order to pursue the idea of representing the linear relaxation of
global routing as a multicommodity network flow problem, they utilize Shahrokhi and
Matula’s algorithm [34] to derive a fractional flow solution. They extend this method
to handle multiterminal Steiner trees instead of just shortest paths. Furthermore,
they exhibit, at any stage, the error bound of the current result from an optimal so-
lution of the linear programming formulation. Then they use a randomized rounding
technique to derive a discrete net connection with an error bound on the derivation
from the optimal fractional value.

2.7. Polyhedral algorithms. Grötschel, Martin, and Weismantel [11, 12, 13,
14, 15] studied the Steiner tree packing problem from a polyhedral point of view.
They identify several classes of facet-defining inequalities and use them in order to
perform branch-and-cut on the problem.

Lengauer and Lügering [27] discuss possibilities for defining both global routing
and global layout as integer programs. Moreover, they discuss the related polyhedral
theory. In contrast to the work of Grötschel et al. they observe that polyhedral algo-
rithms for the unconstrained formulation are not really applicable because often the
identification of a facet requires the knowledge of the optimal value of xL. Moreover,
sometimes an inequality of the form xL ≥ β (where β is the optimal value of xL)
becomes facet defining.

3. Outline of the paper. Constrained global routing is the harder problem
insofar as it is not sufficient to come up with just any routing; it has to be a legal
one. Ensuring legality of the routings is quite a difficult issue, in general. So far,
this problem has stood in the way of the use of randomized algorithms based on
the linear relaxation of constrained global routing integer programs, for instance. In
general, if we are looking for heuristic methods for finding good routings, it is very
helpful not to have to deal with legality issues. Furthermore, most often the capacities
that are attached to the edges of a routing graph are only rough estimates of routing
cost. Even if the edge costs are precise, the solution of an unconstrained version of the
global routing problem affords us with helpful information if no complete routing with
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respect to the constrained version exists, e.g., the location of overcongested regions
in a low-cost routing. The constrained global routing problem cannot produce such
information. Thus, in our opinion, the unconstrained global routing problem is the
more attractive version of the global routing problem.

In this paper we present a set of methods for solving large instances of the (un-
constrained) global routing problem optimally or provably near optimally. Section 4
formulates global routing as an integer program and section 5 proposes methods for
solving global routing. In section 6 we investigate lower bounds on the optimum cost
of the underlying integer program. Section 6.4 gives an analysis on the tightness
of the bounds. The results of this section suggest applying a linear preprocessing,
which is discussed in section 7. In section 8 we combine the results from the previous
sections in order to present overall strategies for solving the global routing problem.
Section 9 extends the results to the global layout problem, and, finally, section 10
gives conclusions.

4. The integer program. We follow the explicit approach and provide for each
candidate route T jν,i for net (ν, i) ∈ N its own variable xν,i,j with the intention that

xν,i,j :=

{
1 if net (ν, i) takes route T jν,i,

0 otherwise.

In addition, we provide a lid variable xL that measures the maximum load over
all edges. Then, a solution of the integer program for global routing has the form

x :=
(
(xν,i,j)(ν,i)∈N,T j

ν,i
, xL

)
.

For the remainder of the paper we disregard total weighted wire length. Thus,
we set l(e) = 0 for all e ∈ E. Furthermore, we do not consider different net weights,
i.e., we set w(ν, i) = 1 for all (ν, i) ∈ N . The traffic of an edge e ∈ E is computed
as follows:

U(x, e) :=
∑

(ν,i)∈N

∑
j|e∈T j

ν,i

xν,i,j .

The integer program for the global routing problem has completeness constraints
that ensure that every net is routed by exactly one route and load constraints that
ensure that the variable xL represents the maximum edge load. In addition, the
variables of the form xν,i,j have to take on binary values. The resulting integer
program is the following.

Definition 1 (the integer program for global routing).

(IPe) : min
x

xL

such that (s.t.)

Iν,i∑
j=1

xν,i,j = 1 for all (ν, i) ∈ N(1)

(completeness constraints),

U(x, e)− xL ≤ c(e) for all e ∈ E(2)

(load constraints),
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xν,i,j ∈ {0, 1} for all (ν, i) ∈ N, 1 ≤ j ≤ Iν,i(3)

(integrality constraints).

The cost ϑ(x̌) of an optimal solution x̌ of IPe is denoted by ϑ(IPe).
In the following we often do not distinguish between a problem instance and the

related integer program.

5. Upper bounds. All proposed methods have been implemented in the soft-
ware package Eridanus using the C programming language under Solaris 2.5.1
on a Sparc Ultra-Enterprise. In our experiments we used several of the benchmarks
from the Microelectronics Center of North Carolina (MCNC) and benchmarks from
other authors. All of these examples are small enough to be solved exactly by our
methods. Therefore the quality of the resulting routing depends only on the choice
of routing variants, which we regard as being outside the scope of this paper. This is
also one of the reasons why we do not present comparisons of chip area on the MCNC
benchmarks with other authors. A second reason is that we solve only part of the
physical design problem, excluding placement and detailed routing.

For a thorough assessment of Eridanus, we have generated a large number of
gate arrays of our own, covering a large range of problem sizes. In this way, we are
able to rate how the suggested methods scale up with problem size, especially with an
increasing number of nets. We observed that the quality of the results does not depend
on the origin of the examples. Therefore, in this paper, we focus our attention on two
of the examples we constructed. While both examples are constructed on the same
grid size, namely 15 rows and 20 columns, they differ in the number of nets by a factor
of 16. The first example is named Mozart-M05 and has 1600 nets while the second,
denoted as Mozart-M09, has 25600 nets. For both examples, all edge capacities are
set to zero. Furthermore, the number of terminals lies between two and five for each
net. In order to generate routes, we applied a one-bend route computation on each
net which comes up with an average of 21.5 routes per net for Mozart-M05 and 22.2
routes per net for Mozart-M09.

We define the problem size Z(IPe) of an instance of global routing as the number
of nonzero entries in the coefficient matrix of IPe. Thus, we have

Z(IPe) = O(ξ · q +m),

where q is the average number of edges taken by an arbitrary route.

5.1. Local search. In order to apply local search to the global routing problem
we introduce the following neighborhood relationship on the set of routings.

Definition 2 (SNE-neighborhood). Let x′ and x′′ be two arbitrary solutions of
the same instance of the global routing problem.

x′ ∼1 x′′ :⇐⇒ x′ and x′′ differ in the route of exactly one net

∼1 is called single-net-exchange(SNE)-neighborhood.
In [27] we proved that ∼1 is a subset of the convex neighborhood of the underly-

ing polytope.
For the purposes of local search we refine the cost function, which in the integer

program consists solely of the variable xL. Here, we count the number of edges with
maximum load with second priority. Thus, of two solutions x′ and x′′ with x′

L = x′′
L,
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the solution with fewer maximum-loaded edges has lower cost. This improves the
performance of local search significantly.

The conventional local search (LS) method, which iterates to better solutions in
the neighborhood, has runtime (in the worst case as well as in practice)

t(LS) = O(α · ξ · q +m),

where α is the maximum number of times every net is rerouted. In the following
we assume that α is bounded by a (small) constant. We observe that, while this
condition is not true in general, our experience shows that it appropriately reflects
the performance of the algorithm in practice. Thus, we assume that the method has
a runtime which grows linear in the problem size.

In addition to the conventional method we introduce a more refined procedure
which we call swinging search (SS), and which is similar to the well-known simulated
annealing method. The swinging search heuristic randomly adds a number, the so-
called vibration, to the capacity of an edge. Vibrations differ from edge to edge and
lie between zero and the maximum vibration which decreases with increasing runtime,
until the algorithm behaves like conventional local search. The starting value of the
maximum vibration is set to n and decreases exponentially down to zero (integer
arithmetic). Thus, assuming α to be constant for every involved local search, we
obtain a runtime of

t(SS) = O(log n · ξ · q +m).

In our computational experiments we apply the conventional local search 100
times and the swinging method 10 times. Moreover, we generate 100 random solutions
(TR). The results are shown in Table 1. For every method, the runtime is given in
the form hh:mm:ss and the number of tracks of the best solution found is presented.

5.2. Sequential routing. A straightforward implementation of the classical se-
quential routing (SR) procedure does not yield satisfactory results. Indeed, the cost
of the solutions lies somewhere midway between the cost of locally optimal solutions
(according to ∼1) and random solutions. This is because sequential routing does
not provide locally optimal solutions according to the SNE-neighborhood, in general.
The runtime of this method (in the worst case as well as in practice) is linear in the
problem size

t(SR) = O(ξ · q +m).

In order to improve the method, we added an RR strategy which is tantamount
to applying a conventional local search after each iteration of sequential routing that
increases the value of xL. The runtime of the RR heuristic (assuming α to be constant
for every involved local search) is

t(RR) = O(κ · ξ · q +m),

where κ is the maximum load achieved by an edge. (κ does not grow as fast as n
in practice.) In our computational experiments we apply the RR method once. The
results are shown in Table 1.
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Table 1
The upper bound results.

Mozart-M05 Mozart-M09
TR t 0:00:01 0:00:13

UB 112 1871
LS t 0:00:10 0:06:14

UB 65 1065
SS t 0:00:15 0:18:34

UB 62 1013
RR t 0:00:08 0:40:37

UB 60 989
MD t 0:01:07 0:20:15

UB 62 1033
RD t 0:03:09 5:23:57

UB 59 971

5.3. Genetic routing. The application of genetic algorithms [17] to global rout-
ing is taken from Esbensen [9]. It provides genotypes which consist of one entry for
each net which holds the index of the route which is realized for that net in the respec-
tive solution. We have found that conventional genetic routing (GR) produces results
that are only slightly better than random solutions. The runtime of this method (in
the worst case as well as in practice) is

t(GR) = O(g · p · n · q + g · p ·m+ g · p · log p),

where g is the number of generations and p the size of the population. (The term
g · p · log p results from the required sorting of the individuals in each generation.)

In order to improve the method, we added a mutation-driven (MD) strategy which
applies conventional local search to every newly generated solution. The runtime of
the MD heuristic (assuming α to be constant for every involved local search) is

t(MD) = O(g · p · ξ · q + g · p ·m+ g · p · log p).

In our experiments we apply the MD method once with g = 10 and p = 128. The
results are shown in Table 1.

5.4. Randomized rounding. The idea of randomized rounding (RD) is taken
from Ng, Raghavan, and Thompson [30], Raghavan [31], and Raghavan and Thomp-
son [32, 33]. It solves the linear relaxation LPe of the underlying integer program IPe

and sets the fractional outcomes to integer values, in a randomized fashion. Here, the
probability that a specific route is realized is exactly its fractional value. The runtime
of this method is dominated by the solution of the linear program LPe:

t(RD) = t(LPe) +O(ξ + n · q +m).

In our computational experiments we apply the algorithm with 100 trials of round-
ing. The results are shown in Table 1.

The quality of the solutions of the RD procedure is superior to the quality of the
solutions of all other methods. The reason for this will be discussed later.
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6. Lower bounds.

6.1. Linear relaxation. As mentioned already, we denote the linear relaxation
of the integer program IPe with LPe. The cost ϑ(x̄) of an optimal solution x̄ of LPe

is denoted with ϑ(LPe).
Computational experience shows that the solution of the linear relaxation domi-

nates the runtime for large problem instances. In our experiments we use the commer-
cial package Cplex in order to solve linear programs by the simplex algorithm as well
as integer linear programs by branch-and-bound. Table 2 shows the computational
results for the solution of the linear relaxation in terms of the circuits Mozart-M05
and Mozart-M09. In order to apply branch-and-bound to large routing problems
we first have to reduce the size of their integer programs. In section 7 we will show
how to do this.

Table 2
The lower bound results.

Mozart-M05 Mozart-M09
LP t 0:03:08 5:23:43

LB 57.5174 969.326
SO t 0:00:51 0:32:35

LB 57.5101 969.303

6.2. Duality. The dual of the linear relaxation, or, for short, the linear dual
DPe of the global routing integer program has the following shape.

Definition 3 (the linear dual for global routing).

(DPe) : max
π

∑
(ν,i)∈N

πν,i −
∑
e∈E

c(e) · πe

s.t.

πν,i ≤
∑
e∈T j

ν,i

πe for all (ν, i) ∈ N, 1 ≤ j ≤ Iν,i,(4)

∑
e∈E

πe = 1,(5)

πe ≥ 0 for all e ∈ E.(6)

The cost ϑ(π) of an optimal solution π of DPe is denoted by ϑ(DPe).
For some combinatorial optimization problems it is easier to solve the dual than

the original (primal) program. This does not hold for global routing, however. The
reason we introduce duality is that it affords structural insight into the global routing
problem. Applied to global routing the complementary slackness conditions take on
the following form.

Lemma 4 (the complementary slackness conditions for global routing). Let x̄ be
a solution of LPe and π be a solution of DPe. x̄ and π are both optimal if and only if

πe · (x̄L − U(x̄, e) + c(e)) = 0 for all e ∈ E,(7)


 ∑
e∈T j

ν,i

πe − πν,i


 · x̄ν,i,j = 0 for all (ν, i) ∈ N, 1 ≤ j ≤ Iν,i.(8)
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6.3. Lagrange relaxation. In order to apply Lagrange relaxation to global
routing, we relax the load constraints. The remaining coefficient matrix turns out to
be totally unimodular. We obtain the following Lagrange dual LDe.

Definition 5 (the Lagrange dual for global routing).

(LDe) : max
λ≥0

min
x

xL +
∑
e∈E

(U(x, e)− c(e)− xL) · λe

s.t.

Iν,i∑
j=1

xν,i,j = 1 for all (ν, i) ∈ N,(9)

xν,i,j ∈ {0, 1} for all (ν, i) ∈ N, 1 ≤ j ≤ Iν,i.(10)

The cost ϑ(λ) of an optimal solution λ of LDe is denoted by ϑ(LDe). The Lagrange
program LDe(λ) is the Lagrange dual for a fixed λ.

Since the linear relaxation for global routing has a finite optimum and the poly-
tope related to the Lagrange dual is integral we obtain the following.

Theorem 6.

ϑ(LPe) = ϑ(DPe) = ϑ(LDe).

The following result relates the linear dual and the Lagrange dual.
Theorem 7.
(a) For every optimal solution π of DPe there is an optimal solution λ of LDe

s.t.

λe = πe for all e ∈ E.

(b) For every optimal solution λ of LDe there is an optimal solution π of DPe

s.t.

πe = λe for all e ∈ E

and

πν,i = min
1≤j≤Iν,i

∑
e∈T j

ν,i

λe for all (ν, i) ∈ N.

Proof. Consider the cost function of the Lagrange dual LDe

max
λ≥0

min
x

xL +
∑
e∈E

(U(x, e)− c(e)− xL) · λe.

After a trivial transformation we obtain

max
λ≥0

min
x

(
1−

∑
e∈E

λe

)
· xL +

∑
e∈E

(U(x, e)− c(e)) · λe.

Since xL is not restricted, in an optimal assignment to λ we must have∑
e∈E

λe = 1.(11)

This simplifies the cost function to

max
λ≥0

min
x

∑
e∈E

(U(x, e)− c(e)) · λe.
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After another trivial transformation we obtain

max
λ≥0

min
x

∑
e∈E

U(x, e) · λe −
∑
e∈E

c(e) · λe.

After expanding the terms U(x, e) · λe, we obtain the expression

max
λ≥0

min
x

∑
(ν,i)∈N

∑
1≤j≤Iν,i

( ∑
e∈T j

ν,i

λe

)
· xν,i,j −

∑
e∈E

c(e) · λe.

For every net (ν, i) ∈ N and every route T jν,i of (ν, i) we define λν,i,j to be

λν,i,j :=
∑
e∈T j

ν,i

λe

and call this quantity the Lagrange multiplier sum (LMS) of T jν,i. Thus, we get

max
λ≥0

min
x

∑
(ν,i)∈N

∑
1≤j≤Iν,i

λν,i,j · xν,i,j −
∑
e∈E

c(e) · λe.

Now, for every net (ν, i) ∈ N we choose the route that is associated with the
smallest LMS. This, in effect, fulfills the completeness constraints of LDe, which can
therefore be left out in the following. Formally, for every net (ν, i) ∈ N we define
λν,i as

λν,i := min
1≤j≤Iν,i

λν,i,j(12)

and call this quantity the minimum Lagrange multiplier sum (minimum LMS) for net
(ν, i). Thus, we end up with the following cost function:

max
(3)λ≥0

∑
(ν,i)∈N

λν,i −
∑
e∈E

c(e) · λe.

Furthermore, the integrality constraints of LDe can be eliminated since the related
coefficient matrix is totally unimodular. According to the labeled inequalities (4), (5),
and (6) above we obtain the following form of the Lagrange dual.

(LDe) : max
λ

∑
(ν,i)∈N

λν,i −
∑
e∈E

c(e) · λe

s.t.

λν,i ≤ λν,i,j for all (ν, i) ∈ N, 1 ≤ j ≤ Iν,i,(13)

∑
e∈E

λe = 1,(14)

λe ≥ 0 for all e ∈ E.(15)

Thus, LDe has taken on the form of DPe which proves the theorem.
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The equivalence of LDe and DPe plays an important role in the following sec-
tions. An immediate consequence is that we are able to solve the linear dual by
Lagrange relaxation in principle. In practice, Lagrange duals are solved with sub-
gradient optimization (SO). This procedure is much faster than the solution of the
linear relaxation or its dual. On the other hand, using SO we do not obtain the exact
values of the optimal Lagrange multipliers λ. But experimental experience indicates
that SO performs satisfactorily, in practice. Table 2 shows the computational results
for the solution of the Lagrange dual by SO in terms of the circuits Mozart-M05
and Mozart-M09.

In the following, we use the notation from Lagrange relaxation. Thus, we prefer
to write λ instead of π. The approximated Lagrange multipliers, computed by SO,
will be denoted by λ′.

6.4. Tightness of the bounds. We now investigate the difference ∆(x) be-
tween the cost ϑ(x) of an arbitrary solution x and the cost ϑ(x̄) of an optimal solution
x̄ of the linear relaxation

∆(x) := ϑ(x)− ϑ(x̄).

If x is a global optimum of IPe then we denote ∆(x) by ∆(IPe). We first show
that ∆(IPe) can be very large in bad cases.

Definition 8 (bottleneck networks). Let n, t ∈ N, n, t ≥ 2. The instance I
consists of n nets. Every net has two terminals with t edge-disjoint routes. The sets
of terminals for different nets are disjoint. The routing graph G = (V,E) contains tn

special edges which we call bottleneck edges. For an arbitrary solution x we define a
string Sx which consists of the numbers of routes taken by x, i.e.,

Sx := (j)(ν,i)∈N |xν,i,j=1.

A bijective function assigns to every string a bottleneck edge which has the respective
string as a label. The routes for the nets are chosen in such a way that for each (ν, i)
every T jν,i takes exactly the bottleneck edge whose label at the position for (ν, i) is j.
The routing graph contains additional edges such that a meaningful problem instance
of the described form is created. This can always be done, even in such a way that
the resulting routing graph is planar. The edge capacities are zero for all edges. The
resulting problem instance I is called bottleneck network for n nets and t routes per net
and is abbreviated by BNn,t. Figure 2 sketches a planar realization of the bottleneck
network BN4,2 on a grid.

For n, t ∈ N, n, t ≥ 2, let us consider a realization of the bottleneck network
BNn,t. This network is constructed in such a way that, for every solution x, we have
an edge e ∈ E with load n, i.e.,

ϑ(IPe(BNn,t)) = n.

An optimal solution x̄ of the linear relaxation is

x̄ν,i,j =
1

t
for all (ν, i) ∈ N and all T jν,i.

Further we have

ϑ(LPe(BNn,t)) =
n

t
.
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Fig. 2. A planar realization of BN4,2 on a grid.

Finally, we obtain

∆(IPe(BNn,t)) = n

(
t− 1

t

)
.

For t = 2 we have

∆(IPe(BNn,t)) =
n

2
.

For t = n we have

∆(IPe(BNn,t)) = n− 1.

Bottleneck networks show that ∆(IPe) cannot be bounded by a constant. On the
other hand, such networks never seem to turn up in real life. Rather, ∆(IPe) is quite
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small in practice. Indeed, we have not come across a real circuit for which ∆(IPe) is
greater than 1.5 tracks. On the other hand, we observe that ∆(IPe) slightly increases
with an increasing number of edges of the routing graph.

We now introduce a helpful decomposition of ∆(x) into two terms. For this
analysis we extend the notion of LMSs to complete solutions x:

λx :=
∑

(ν,i)∈N

∑
1≤j≤Iν,i

λν,i,j · xν,i,j .

λx can also be expressed as

λx =
∑
e∈E

U(x, e) · λe.

Moreover, we denote the minimum LMS over all solutions by

λa :=
∑

(ν,i)∈N
λν,i.

The cost of an arbitrary solution x is

ϑ(x) = xL.

The cost of an optimal solution x̄ of LPe is

ϑ(x̄) = λa −
∑
e∈E

c(e) · λe.

And therefore

∆(x) = xL − λa +
∑
e∈E

c(e) · λe.

A simple transformation of this equation yields the following.
Theorem 9. Let x be an arbitrary solution of an instance of the global routing

problem, and let λ be an optimal solution of the Lagrange dual of that instance.

∆(x) = ∆1(x, λ) + ∆2(x, λ)

with

∆1(x, λ) =
∑
e∈E

(xL − U(x, e) + c(e)) · λe,

∆2(x, λ) = λx − λa.

∆1(x, λ) is the difference between xL and λx plus the sum of the edge capacities
(weighted by the optimal Lagrange multipliers). If x is an optimal solution of LDe(λ),
∆(x) equals ∆1(x, λ). Otherwise, ∆(x) is increased by the difference between λx and
λa. This difference is represented by ∆2(x, λ).

On the other hand, ∆1(x, λ) is the sum over the free tracks in the routing channels,
weighted by the optimal Lagrange multipliers. Computational experience indicates
that the positive Lagrange multipliers distribute in a natural way across those edges
of the routing graph which are bottlenecks. Note that the sum of the Lagrange mul-
tipliers equals one. Thus, ∆1(x, λ) can be supposed to be small. Indeed, experiments
indicate that ∆2(x, λ) dominates ∆1(x, λ). Thus, in section 7, we adopt the strategy
of avoiding solutions x with a large value of ∆2(x, λ).
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6.5. Load tuning. Since the edge capacities are restricted to integer values,
lower bounds can be rounded up to the next integer. This action, which we call load
tuning, has several advantages. First, it renders lower bounds obtained by linear
relaxation and SO identical in most cases. In the other cases we observed, the lower
bound obtained by linear relaxation stays one above the lower bound obtained by SO.
Second, load tuning increases the chance of proving a high-quality solution globally
optimal. Recall that we did not come across a circuit where ∆(IPe) is greater than
1.5 tracks. Thus, high-quality solutions can often be proved to be at most one track
away from the optimum.

7. Linear preprocessing. Our general approach in this section is to provide a
preprocessing step that solves a linear program. Based on this program we eliminate
a (hopefully large) set of solutions, thus substantially reducing the solution space. We
hope that the resulting subspace still contains the global optimum and we will analyze
if it does. The small integer program pertaining to the subspace is then solved in the
second step. Based on the kind of linear program that we use in the first step, we
obtain several kinds of preprocessing which we now discuss in detail.

7.1. Dual preprocessing. In this variant, we first solve the Lagrange dual
LDe obtaining an optimal solution λ. Then we eliminate all solutions x for which
∆2(x, λ) > 0. We call this procedure dual preprocessing.

Definition 10 (dual preprocessing (DPP)). Let λ be an optimal solution of LDe.
(a) A solution x of IPe is called dual-reduced (according to λ) if

λν,i,j > λν,i =⇒ xν,i,j = 0 for all (ν, i) ∈ N,T jν,i.

(b) Let IPeλ be the integer program obtained from IPe by the exclusion of all routes
with

λν,i,j > λν,i.

IPeλ is called dual-reduced integer program of IPe (according to λ). The linear
relaxation LPeλ of IPeλ is called dual-reduced linear relaxation of IPe (according
to λ).

DPP reduces the problem size Z(IPe) of IPe. We quantify the amount of reduction
via the quantity

R(λ) := 1− ξ(IPeλ)

ξ(IPe)
.

Experiments show that R(λ) correlates with the number of edges e ∈ E with
λe > 0, i.e., the number of positive Lagrange multipliers. A large value yields a
large reduction, sometimes of more than 90%. A small value usually leads to small
reductions, sometimes below 10%.

Furthermore, we have observed that DPP substantially reduces ∆(x). Table 3
summarizes the results of DPP on the circuits Mozart-M05 and Mozart-M09.

The following theorem shows that, by DPP, we do not lose the global optimum
of IPe and the related linear relaxation LPe.

Theorem 11. Let λ be an optimal solution of LDe.
(a) ϑ(LPeλ) = ϑ(LPe).
(b) ϑ(IPeλ) = ϑ(IPe).
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Table 3
The linear preprocessing results.

Mozart-M05 Mozart-M09
DPP t 0:03:09 5:24:02

R 66.8 % 56.5 %
TR 112 ❀ 71 1871 ❀ 1110
LS 65 ❀ 59 1065 ❀ 973
SS 62 ❀ 58 1013 ❀ 971
RR 60 ❀ 59 989 ❀ 971
MD 62 ❀ 59 1033 ❀ 971
RD 59 ❀ 60 971 ❀ 971
LP 57.5174 969.326

QDPP t 0:00:52 0:33:02
R 64.1 % 52.4%

TR 112 ❀ 71 1871 ❀ 1189
LS 65 ❀ 59 1065 ❀ 981
SS 62 ❀ 59 1013 ❀ 972
RR 60 ❀ 59 989 ❀ 972
MD 62 ❀ 59 1033 ❀ 973
RD 59 ❀ 59 971 ❀ 971
LP 57.5101 969.303

PPP t 0:03:08 5:23:47
R 95.0 % 95.5 %

TR 112 ❀ 60 1871 ❀ 972
LS 65 ❀ 59 1065 ❀ 970
SS 62 ❀ 58 1013 ❀ 970
RR 60 ❀ 59 989 ❀ 971
MD 62 ❀ 58 1033 ❀ 970
RD 59 ❀ 59 971 ❀ 971
LP 57.5174 969.326

QPPP t 0:01:02 0:39:08
R 95.0 % 95.5 %

TR 112 ❀ 60 1871 ❀ 972
LS 65 ❀ 59 1065 ❀ 970
SS 62 ❀ 58 1013 ❀ 970
RR 60 ❀ 59 989 ❀ 971
MD 62 ❀ 58 1033 ❀ 970
RD 59 ❀ 59 971 ❀ 971
LP 57.5174 969.326

Proof. (a) The proof is obvious, since

ϑ(LPeλ) = ϑ(LPe) =
∑

(ν,i)∈N
λν,i −

∑
e∈E

c(e) · λe.

(b) Let x′ be an optimal solution of IPe and x′′ be an optimal solution of IPeλ.
Obviously

ϑ(x′) ≤ ϑ(x′′).

It remains to show that

ϑ(x′) ≥ ϑ(x′′).

In order to do this, we iteratively replace the routes of x′′ by routes of x′ and
show that no such step improves the cost.

Possibly, x′ contains routes with a minimum LMS. We replace these routes im-
mediately. This does not improve the cost because x′′ remains dual-reduced.
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We now explain how to replace a route that has no minimum LMS. Let xa be x′′

before the replacement step and xb after it. Assume that

ϑ(xa) > ϑ(xb).

Since xa and xb differ in the route of just one net, we have

ϑ(xa) = ϑ(xb) + 1.

As a consequence of (a) we have

∆1(xa) + ∆2(xa) = ∆1(xb) + ∆2(xb) + 1.

Since xa and xb differ in the route of just one net and, moreover,
∑
e∈E λe = 1,

we obtain

−1 ≤ ∆1(xa)−∆1(xb) ≤ 1.

Since the replacement step turns a route with minimum LMS into a route which
does not have this property, we observe

∆2(xa) < ∆2(xb).

In summary we obtain

∆1(xa) + ∆2(xa) = ∆1(xb) + ∆2(xb) + 1

> ∆1(xb) + ∆2(xa) + 1 ≥ ∆1(xa) + ∆2(xa),

which is a contradiction.
The following observation follows directly from Theorem 15 and Theorem 16

below.
Theorem 12. Every solution x obtained by RD is dual-reduced (according to

some optimal solution λ of LDe).
DPP is quite powerful but, unfortunately, we need an optimal solution of the

Lagrange dual which requires large runtime on large problem instances. In order to
avoid the exact solution of LDe we perform SO and use the approximate solution λ′

of LDe as a basis for a linear preprocessing. For the decision whether to exclude a
specific route T jν,i we introduce an additional value, the so-called accuracy ε ≥ 1. We
call this procedure quasidual preprocessing.

Definition 13 (quasidual preprocessing (QDPP)). Let λ′ be an approximated
solution of LDe and ε ≥ 1.

(a) A solution x of IPe is called quasidual-reduced (according to λ′ and ε) if

λ′
ν,i,j > λ′

ν,i · ε =⇒ xν,i,j = 0 for all (ν, i) ∈ N,T jν,i.

(b) Let IPeλ′,ε be the integer program obtained from IPe by the exclusion of all
routes with

λ′
ν,i,j > λ′

ν,i · ε.
IPeλ′,ε is called a quasidual-reduced integer program of IPe (according to λ and
ε). The linear relaxation LPeλ′,ε of IPeλ′,ε is called quasidual-reduced linear
relaxation of IPe (according to λ and ε).
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The accuracy ε should be chosen small enough such that

ϑ(LPeλ′,ε) = ϑ(LPe).

In this case we call the quasidual preprocessing proper. Unfortunately, we cannot
test the above condition efficiently. Thus, we use SO and hope that the condition will
be fulfilled. If we come up with matching bounds later on, this will have been the case.
Our computational experience shows that ε = 1.002 is an appropriate choice. Table 3
summarizes the results in terms of the circuits Mozart-M05 and Mozart-M09.

7.2. Primal preprocessing. This variant of preprocessing begins with the lin-
ear relaxation LPe.

Definition 14 (primal preprocessing (PPP)). Let x̄ be an optimal solution
of LPe.

(a) A solution x of IPe is called primal-reduced (according to x̄) if

x̄ν,i,j = 0 =⇒ xν,i,j = 0 for all (ν, i) ∈ N,T jν,i.

(b) Let IPex̄ be the integer program obtained from IPe by the exclusion of all
routes with

x̄ν,i,j = 0.

IPex̄ is called a primal-reduced integer program of IPe (according to x̄). The
linear relaxation LPex̄ of IPex̄ is called a primal-reduced linear relaxation of
IPe (according to x̄).

Theorem 15. Let x be an arbitrary solution of IPe, x̄ an optimal solution of
LPe, and λ an optimal solution of LDe.

If x is primal-reduced (according to x̄) then x is dual-reduced (according to λ).
Proof. The proof follows directly from the complementary slackness conditions

for global routing.
The following result is obvious.
Theorem 16. Every solution x obtained by RD is primal-reduced (according to

some optimal solution x̄ of LPe).
Primal preprocessing strengthens the advantages of DPP substantially. Indeed,

the reduction R(x̄) (for every optimal solution x̄ of LPe) is above 90% for every in-
stance of global routing we investigated. Furthermore, primal preprocessing improves
∆(x) to values which are close to zero. As a result, branch-and-bound can often be
done efficiently, i.e., in a few minutes, on primal-reduced instances even if the origi-
nal instance was very large. Table 3 shows the computational results on the circuits
Mozart-M05 and Mozart-M09.

Primal preprocessing is enormously powerful but it has two disadvantages. First,
primal preprocessing may lose the global optimum of the integer program IPe. To
illustrate this we introduce the following class of examples which are derived from the
bottleneck networks by a slight modification.

Definition 17 (shortcut networks). Let BNn,t be a bottleneck network for n nets
and t routes per net with t = n. We do not change the circuit of this problem instance,
but modify the routes in the following way. We add another column of nodes to the
routing grid on its left side and displace all terminals to the left by 1. (The old locations
of the terminals are depicted with squares, the new ones with dark dots.) Then we
extend all routes of the bottleneck network in the natural way to the new terminals
locations across the so-called bridge edges (see Figure 3). Finally, we add a new route
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for each net going across the relevant two bridge edges and the corresponding shortcut
edge (see figure). These new routes are called shortcut routes. Thus, the number of
routes per net is n + 1. The resulting problem instance I is called shortcut network
for n nets and n+ 1 routes per net and is abbreviated with SNn. Figure 3 sketches a
planar realization of the shortcut network SN2 on a grid.

bottleneck edges

11

12

21

22

T
1
(2) T

2
(2)

bridge edges

net (1)

net (2)

shortcut edge

Fig. 3. A planar realization of SN2 on a grid.

For n ∈ N, n ≥ 2, let us consider a realization of the shortcut network SNn. The
construction ensures that

ϑ(LPe(SNn)) = 1.

This can be realized using all shortcut routes. We denote the shortcut routes by

T j
∗
ν,i for every (ν, i) ∈ N and all the other routes with T j

′
ν,i.

The solutions x̄1 and x̄2 with

x̄1
ν,i,j′ :=

1

n
for all (ν, i) ∈ N and all T j

′
ν,i,

x̄1
ν,i,j∗ := 0 for all (ν, i) ∈ N,

x̄2
ν,i,j′ := 0 for all (ν, i) ∈ N and all T j

′
ν,i,

x̄2
ν,i,j∗ := 1 for all (ν, i) ∈ N

are both optimal for LPe(SNn). Thus, primal preprocessing (based on x̄1) excludes
all shortcut routes. We obtain

ϑ(IPex̄1(SNn)) = n.
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On the other hand we have

ϑ(IPex̄2(SNn)) = ϑ(IPe(SNn)) = 1

which shows that linear preprocessing may lose the global optimum on these networks.
However, we never encountered such a situation in practice.

The second disadvantage of primal preprocessing appears more serious; we need
an optimal solution of the linear relaxation which requires large runtime on large
problem instances. In order to avoid the need of solving LPe exactly we can use one
of two strategies. The first is to represent the linear relaxation as a multicommodity
network flow problem, as proposed by Carden and Cheng [3] and Carden, Li, and
Cheng [4]. In this paper we follow the second strategy. DPP (based on a specific
optimal solution λ of LDe) reduces the problem size and improves ∆(x) in such a
way that a subsequent solution of LPeλ is possible in reasonable time, even for large
circuits. Moreover, Theorem 15 shows that this procedure yields the same result as
conventional primal preprocessing. Unfortunately, LDe is not easier to solve than LPe.
But we can use SO in order to approximate the desired result. In total, we perform
a sequence of reductions, beginning with QDPP and executing primal preprocessing
afterwards. We call this procedure quasiprimal preprocessing (QPPP).

QPPP is efficient even on very large circuits. Table 3 summarizes the results in
terms of the circuits Mozart-M05 and Mozart-M09. As a whole, QPPP is the
most effective of all preprocessing strategies we considered.

8. Putting it all together. In this section we present results on provably good
global routing that combines the results from the previous sections. In section 6 we
introduced several methods for obtaining upper bound solutions and observed that
the RD procedure produces the best results. By now we know that the reason is that
RD implicitly performs a primal preprocessing. Indeed, after primal preprocessing,
all other upper bound methods mostly produce better results than RD.

In our opinion, the SS procedure is the most advantageous upper bound method.
A main reason for this is the speed of this method. A combination with various
versions of linear preprocessing yields the following variants for a provably good global
routing of integrated circuits:

• Dual swinging search (DSS);
• Quasidual swinging search (QDSS);
• Primal swinging search (PSS);
• Quasiprimal swinging search (QPSS).

Table 4 summarizes the results on the circuits Mozart-M05 and Mozart-M09.
The table also gives a comparison with RD. QPSS performs best and routes both
circuits optimally.

9. Extension to global layout. The placement process precedes global rout-
ing. The goal of placement is to distribute the circuit components over the chip in
such a way that wiring is possible in small space. The placement process is ham-
pered severely by the fact that it is very difficult to come up with easy-to-compute
and accurate estimates of wiring area. Thus, recently, research has been directed
toward integrating placement with global routing, i.e., the router itself is used to
provide wiring estimates. Heuristic versions of this approach have been presented in
[1, 8, 28, 38, 39].

In this section we describe results on extensions of our provably good global
routing methods to include placement. We call the respective problem global layout.
We will first define the relevant integer program and then discuss heuristic algorithms.
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Table 4
Results of provably good global routing methods.

Mozart-M05 Mozart-M09
DSS t 0:03:13 5:26:12

LB 57.5174 969.326
UB 58 971

QDSS t 0:00:58 0:36:50
LB 57.5101 969.303
UB 59 972

PSS t 0:03:12 5:25:00
LB 57.5174 969.326
UB 58 970

QPSS t 0:01:05 0:40:21
LB 57.5174 969.326
UB 58 970

RD t 0:03:09 5:23:57
LB 57.5174 969.326
UB 59 971

We again distinguish between a constrained and an unconstrained version of the
problem and concentrate on the unconstrained case, for the same reasons as outlined
before. Clearly, both versions of global layout are strongly NP-hard.

In order to tailor the global routing integer program to the global layout problem,
we investigate two approaches. In the explicit-explicit approach to global layout, a
special binary variable is chosen to represent each placement. Moreover, we provide
explicitly generated routes for each placement alternative. The advantage of explicit-
explicit global layout is that we can take technical restraints on the admissibility
of placements into account. In the implicit-explicit approach to global layout, the
legality of placements is implicitly secured by appropriate constraints which ensure
that the circuit components, the so-called gates, are placed in a respectable fashion
into so-called slots on the chip surface. Since placements are not represented by special
variables, no complex restraints on the placements can be formulated in the implicit-
explicit approach. Lengauer and Lügering [27] have investigated the implicit-explicit
approach in more detail. In this paper we follow the explicit-explicit approach to
global layout. The main problem with this approach is that we have to preselect a
number of candidate placements. We will use placement heuristics [26] in order to do
this. In this sense, our approach is heuristic and not exhaustive in terms of placement.

For each candidate placement ρ ∈ P in the placement set P we provide a variable
xρ with the intention that

xρ :=

{
1 if placement ρ is realized,

0 otherwise.

For each candidate route T jρ,ν,i for placement ρ ∈ P and net (ν, i) ∈ N we provide
a variable xρ,ν,i,j with the intention that

xρ,ν,i,j :=

{
1 if net (ν, i) takes route T jρ,ν,i,

0 otherwise.

We denote the number of admissible routes for a placement ρ ∈ P and a net
(ν, i) ∈ N by Iρ,ν,i.
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Again, we need a variable xL to measure the maximum load over all edges. Thus,
a solution of the integer program for global layout has the form

x :=
(
(xρ)ρ∈P , (xρ,ν,i,j)ρ∈P,(ν,i)∈N,T j

ρ,ν,i
, (xL)

)
.

The traffic of an edge e ∈ E is computed as follows:

U(x, e) :=
∑
ρ∈P

∑
(ν,i)∈N

∑
j|e∈T j

ρ,ν,i

xρ,ν,i,j .

The integer program for global layout consists of a placement completion con-
straint which ensures that exactly one placement is realized, the routing completion
constraints which ensure that every net is routed by exactly one route of the realized
placement, and the load constraints which force xL to be the maximum edge load.
In addition, the variables xρ and xρ,ν,i,j have to take on binary values. The resulting
integer program is the following.

Definition 18 (the integer program for global layout).

(IPee) : min
x

xL

s.t. ∑
ρ∈P

xρ = 1(16)

(placement completion constraint),

Iρ,ν,i∑
j=1

xρ,ν,i,j − xρ = 0 for all ρ ∈ P and all (ν, i) ∈ N(17)

(routing completion constraints),

U(x, e)− xL ≤ c(e) for all e ∈ E(18)

(load constraints),

xρ ∈ {0, 1} for all ρ ∈ P(19)

(placement integrality constraints),

xρ,ν,i,j ∈ {0, 1} for all ρ ∈ P, (ν, i) ∈ N, 1 ≤ j ≤ Iρ,ν,i(20)

(routing integrality constraints).

The cost ϑ(x̌) of an optimal solution x̌ of IPee is denoted by ϑ(IPee).
We denote the linear relaxation of the integer program IPee by LPee and the cost

ϑ(x̄) of an optimal solution x̄ of LPee by ϑ(LPee).
The linear dual DPee of the global layout integer program has the following shape.
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Definition 19 (the linear dual for global layout).

(DPee) : max
π

π0 −
∑
e∈E

c(e) · πe

s.t.

π0 ≤
∑

(ν,i)∈N
πρ,ν,i for all ρ ∈ P,(21)

πρ,ν,i ≤
∑

e∈T j
ρ,ν,i

πe for all ρ ∈ P, (ν, i) ∈ N, 1 ≤ j ≤ Iρ,ν,i,(22)

∑
e∈E

πe = 1,(23)

πe ≥ 0 for all e ∈ E.(24)

The cost ϑ(π) of an optimal solution π of DPee is denoted by ϑ(DPee).
The complementary slackness conditions take on the following form.
Lemma 20 (the complementary slackness conditions for global layout). Let x̄ be

a solution of LPee and π be a solution of DPee. x̄ and π are both optimal if and only
if

πe · (x̄L − U(x̄, e) + c(e)) = 0 for all e ∈ E,(25)

(
∑

e∈T j
ρ,ν,i

πe − πρ,ν,i) · x̄ρ,ν,i,j = 0 for all ρ, (ν, i), T jν,i,(26)

(
∑

(ν,i)∈N
πρ,ν,i − π0) · x̄ρ = 0 for all ρ ∈ P.(27)

In order to apply Lagrange relaxation to the global layout problem, we again relax
the load constraints. The remaining coefficient matrix is totally unimodular, again.
The construction of the Lagrange dual LDee is straightforward. The cost ϑ(λ) of an
optimal solution λ of LDee is denoted by ϑ(LDee).

Since the linear relaxation for the global layout problem has a finite optimum and
the polytope pertaining to the Lagrange dual is integral we obtain the following result.

Theorem 21.

ϑ(LPee) = ϑ(DPee) = ϑ(LDee).

The following result extends Theorem 7 to the global layout problem.
Theorem 22.
(a) For every optimal solution π of DPee there is an optimal solution λ of LDee

s.t.

λe = πe for all e ∈ E.
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(b) For every optimal solution λ of LDee there is an optimal solution π of DPee

s.t.

πe = λe for all e ∈ E

and

πρ,ν,i = min
1≤j≤Iρ,ν,i

∑
e∈T j

ρ,ν,i

λe for all ρ ∈ P, (ν, i) ∈ N

and

π0 = min
ρ∈P

∑
(ν,i)∈N

πρ,ν,i.

In the following, we again use the notation from Lagrange relaxation. Thus, we
prefer to write λ instead of π and denote the approximated Lagrange multipliers by
λ′. Moreover, for every placement ρ ∈ P , every net (ν, i) ∈ N , and every route T jρ,ν,i,
we define λρ,ν,i,j to be

λρ,ν,i,j :=
∑

e∈T j
ρ,ν,i

λe

and call this quantity the LMS of Tρ,ν,i. For every placement ρ ∈ P and every net
(ν, i) ∈ N we define λρ,ν,i as

λρ,ν,i := min
1≤j≤Iρ,ν,i

λρ,ν,i,j

and call this quantity the minimum LMS for placement ρ ∈ P and net (ν, i) ∈ N .
Finally, we define λ0 as

λ0 := min
ρ∈P

∑
(ν,i)∈N

λρ,ν,i

and call this quantity the minimum overall Lagrange multiplier sum (minimum overall
LMS).

Extending the discussion from section 6.4 we again denote the difference between
the cost ϑ(x) of an arbitrary solution x and the cost of an optimal solution x̄ of the
linear relaxation by

∆(x) := ϑ(x)− ϑ(x̄).

If x is a global optimum of IPee then we again denote ∆(x) by ∆(IPe). We can
easily modify the bottleneck networks in order to show that the difference ∆(IPee)
may be large, even for global layout. Nevertheless, as experiments indicate, ∆(IPee)
is quite small in practice. Indeed, we have found no circuit for which ∆(IPee) exceeds
1.5 tracks, even in the case of global layout.

We now introduce a helpful decomposition of ∆(x) into three terms. In order
to do so, we extend the notion of LMSs of complete solutions x to the global layout
problem.

λx :=
∑
ρ∈P

∑
(ν,i)∈N

∑
1≤j≤Iρ,ν,i

λρ,ν,i,j · xρ,ν,i,j .
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Recall that we can also express λx as

λx =
∑
e∈E

U(x, e) · λe.

Moreover, we denote the minimum LMS over all solutions x which realize a fixed
placement ρ by

λρ :=
∑

(ν,i)∈N
λρ,ν,i.

Recall that λ0 is the minimum overall LMS, i.e., the minimum LMS over all
solutions x for all placements ρ ∈ P .

The cost of an arbitrary solution x is

ϑ(x) = xL.

The cost of an optimal solution x̄ of the linear relaxation is

ϑ(x̄) = λ0 −
∑
e∈E

c(e) · λe.

And therefore

∆(x) = xL − λ0 +
∑
e∈E

c(e) · λe.

Equivalently, we can arrange this figure as follows.
Theorem 23. Let x be an arbitrary solution of an instance of the global layout

problem, and let λ be an optimal solution of the Lagrange dual of that instance.

∆(x) = ∆1(x, λ) + ∆2(x, λ) + ∆3(x, λ)

with

∆1(x, λ) =
∑
e∈E

(xL − U(x, e) + c(e)) · λe,

∆2(x, λ) = λx −
∑
ρ∈P

λρ · xρ,

∆3(x, λ) =
∑
ρ∈P

λρ · xρ − λ0.

The term ∆2(x, λ) from the global routing problem is now split into two terms.
Analogous to global routing, ∆1(x, λ) can be supposed to be quite small. With an
application of the preprocessing methods for global routing, ∆2(x, λ) can be forced
to be close to zero. In order to tightly bound ∆(x), ∆3(x, λ) should be small, as well.

An extension of the idea of linear preprocessing to the global layout problem
solves LPee or LDee and first excludes all placements ρ ∈ P with x̄ρ = 0 or λρ >

λ0, respectively. Subsequently, linear preprocessing excludes all routes T jρ,ν,i for all
remaining placements ρ with x̄ρ,ν,i,j = 0 or λρ,ν,i,j > λρ,ν,i, respectively. By extending
Theorem 15 to the global layout problem we can show that every primal-reduced
solution created in this way is also dual-reduced in the above sense.

From a practical point of view the intention of linear preprocessing is not strong
enough. Indeed, it is sufficient to concentrate on just one arbitrary placement ρ′ with
xρ′ > 0 or λρ′ = λ0, respectively. We will now discuss the reasons for this.
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Let IPeρ be the integer program obtained from IPee by adding the restriction

xρ = 1.

Obviously, IPeρ is a global routing integer program. Furthermore, let LPeρ be
the linear relaxation of IPeρ, DPeρ the related linear dual, and LDeρ the Lagrange
dual of IPeρ. We obtain the following theorem which can be easily derived from
previous results.

Theorem 24. Let x̄ be an optimal solution of LPee and λ be an optimal solution
of LDee.

(a) For every placement ρ′ ∈ P with x̄ρ′ > 0 we have

ϑ(LPee) = ϑ(LPeρ′).

(b) For every placement ρ′ ∈ P with λρ′ = λ0 we have

ϑ(LDee) = ϑ(LDeρ′).

Furthermore, λ is an optimal solution of LDeρ′ .
Proof. (b) Since all involved coefficient matrices are totally unimodular we have

ϑ(LDee) = min
ρ∈P

ϑ(LDeρ).

Obviously, every placement ρ′ ∈ P with λρ′ = λ0 achieves this minimum and λ is an
optimal solution of LDeρ′ .

(a) As a result of Theorem 6 and Theorem 21 we have

ϑ(LPee) = min
ρ∈P

ϑ(LPeρ).

According to the extension of Theorem 15 to the global layout problem, for every
placement ρ′ ∈ P with x̄ρ′ > 0 and every optimal solution λ of LDee we have

λρ′ = λ0.

Thus, the rest follows from (b).
With respect to Theorem 24 and the results concerning the global routing prob-

lem, we propose to restrict the solution space of global layout to those solutions which
realize an arbitrary but fixed placement ρ′ such that xρ′ > 0 or λρ′ = λ0. We call
this procedure linear preselection and obtain a primal and a dual version. We observe
that there is no advantage of primal preselection over dual preselection. Furthermore,
there is no guarantee that linear preselection preserves optimal integer solutions. In-
deed, it is easy to find a placement for a bottleneck network which increases the lower
bound and decreases the upper bound of the original placement. Nevertheless, such
a situation never occurred in our experiments.

In order to do linear preselection, we need an optimal solution of LPee or LDee.
In order to avoid the large runtimes for linear preselection on large problem instances,
we use SO to solve LDee approximately. We call this procedure quasidual preselec-
tion. The selected placement ρ′ does not ensure that ∆3(x, λ

′) is exactly zero for
all x realizing ρ′, in general. Nevertheless, experimental results show that quasidual
preselection approximates dual preselection with sufficient accuracy. A subsequent
application of load tuning to the global routing instance defined by ρ′ in most cases
eliminates errors made previously.
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As a whole, an effective method of solving the integer program for global layout is
to start with quasidual preselection and then perform QPSS on the resulting instance
of the global routing problem. Experimental experience shows the effectiveness of
this procedure. On the other hand, if we should ever come up with an unsatisfactory
result we could restart the whole procedure and, what is more, disregard the placement
selected to that point.

10. Conclusions. We have formulated the global routing problem as an integer
program. In order to provide upper bounds we introduced several heuristics. More-
over, we suggested methods for finding lower bounds. An analysis on the tightness of
the bounds shows that the cost of the optimal integer solutions and the cost of the
optimal fractional solutions are only a small number of tracks apart in practice. We
introduce several versions of preprocessing that substantially reduce the size of the
integer program and some of which can be shown to preserve the global optimum of
the integer program. In fact, all of them do so in practice. Preprocessing establishes
the basis for an efficient and provably good global routing. We extended these results
to the global layout problem.

We implemented all the discussed methods in the software package Eridanus.
With this software, we are able to solve circuits with more than 10000 nets to opti-
mality or at least close to optimality, in acceptable time.
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1. Introduction. Let gi : R
n → R = (−∞,+∞) (i ∈ I) be a family of convex

functions, where I is an arbitrary (but nonempty) index set, and let us consider the
system of “convex inequalities”

gi(x) ≤ 0 (i ∈ I).(1)

Throughout this paper we shall consider only the above framework, which is sufficient
for many applications. However, let us mention that some of our results and proofs
can be extended to arbitrary (finite or infinite dimensional) normed linear spaces X
and to inequality systems (1) with convex functions gi : X → R = [−∞,+∞] (i ∈ I).

In what follows we shall assume, without any special mention, that the solution
set S of the system (1) is nonempty, i.e.,

S := {x ∈ R
n| gi(x) ≤ 0 (i ∈ I)} 	= ∅.(2)

We shall often consider the important particular case when each gi is affine, say,

gi(x) = 〈ai, x〉 − bi (i ∈ I),(3)

where ai ∈ R
n, bi ∈ R, and 〈ai, x〉 denotes the dot product of vectors in R

n. In this
case, (1) becomes a system of linear inequalities,

〈ai, x〉 ≤ bi (i ∈ I),(4)
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and (2) becomes

S := {x ∈ R
n| 〈ai, x〉 ≤ bi (i ∈ I)} 	= ∅.(5)

Note that one can formally convert (1) to one convex inequality,

G(x) ≤ 0,(6)

where G(·) is the sup-function [7] of (1), defined as

G(x) := sup
i∈I

gi(x) (x ∈ R
n).(7)

The system (1) is said to be a system with finite-valued sup-function, if

G(x) < +∞ (x ∈ R
n).(8)

In this paper, we always assume that (8) holds.
For the inequality system (1) and for any x in R

n, we shall denote by I(x) the
set of “active indices” at x, i.e.,

I(x) := {i ∈ I| gi(x) = G(x)}.(9)

Note that if G(x) = 0 (in particular, if x ∈ bd S), then I(x) = {i ∈ I| gi(x) = 0} is
the classical definition of active indices.

One of the reasons for the difficulty of extending the results from finite inequality
systems to semi-infinite inequality systems is that in the semi-infinite case for x ∈ bd S
the set I(x) may be empty or may be infinite. As we shall see in what follows, some
other reasons, which explain why many results cannot be extended at all, or can be
extended only under some additional assumptions (and sometimes only with different
proofs), include the following: while in the finite case the index set I is compact, in
our main results on the general semi-infinite case we shall assume no topology on I;
also, while in the finite case for each x ∈ R

n the set Ax := {gi(x)| i ∈ I} is closed
in R, and the sup-function G(x) := supi∈I gi(x) is always finite-valued on R

n, in the
general semi-infinite case these are no longer true. Furthermore, it is well known that
for a linear inequality system (4) with a finite index set I we have

NS(x) = cone{ai}i∈I(x) (x ∈ bd S),(10)

where NS(x) and bd S denote the normal cone of S at x and the boundary of S,
respectively. In general, (10) does not hold for a linear inequality system (4) if I is
infinite. Given a convex system (1), another important well-known property for a
finite I is (with the convention ∪i∈∅Ai = ∅)

∂G(x) = co



⋃

i∈I(x)
∂gi(x)


 (x ∈ R

n),(11)

where co(A) denotes the convex hull of a set A and ∂g(x) denotes the subdifferential
of a convex function g at x:

∂g(x) := {y ∈ R
n| 〈y, z − x〉 ≤ g(z)− g(x) (z ∈ R

n)}.(12)

In general, (11) does not hold if I is infinite.
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In the present paper we shall give a detailed discussion of constraint qualifi-
cations for semi-infinite systems of convex inequalities and linear inequalities and
the relations among them. We shall introduce and study the Abadie constraint
qualification, the weak Pshenichnyi–Levin–Valadier (PLV) property, and related con-
straint qualifications. Our main results are new characterizations of various constraint
qualifications in terms of upper semicontinuity of certain multifunctions. Also, we
shall give some applications of constraint qualifications to linear representations of
convex inequality systems, convex Farkas–Minkowski (FM) systems, and formulas
for the distance to the solution set. Moreover, some of our concepts and results
on semi-infinite convex inequality systems will yield new contributions even when
applied to the particular case of finite inequality systems (such as Corollary 3.4).

Let us describe now, briefly, the sections of our paper.
It is well known (see, e.g., [7, pp. 307–309]) that in the theory of convex mini-

mization over the solution set of a finite system of convex inequalities the so-called
basic constraint qualification (BCQ), which requires that the normal cone at each
point of the boundary of the solution set should coincide with “the cone of the ac-
tive constraints” at that point, plays an important role; for example, it is satisfied if
and only if the Karush–Kuhn–Tucker (KKT) sufficient optimality conditions are also
necessary for optimality (see, e.g., [7, Proposition 2.2.1, p. 308]). Recently, the BCQ
has been extended to semi-infinite linear inequality systems by Puente and Vera de
Serio [14], who have used the term “locally Farkas–Minkowski systems,” or briefly,
LFM systems, and further extended to semi-infinite systems of convex inequalities by
Goberna and López [5, p. 162], who have used the term “convex locally FM systems”
(CLFM systems). In section 2 we shall introduce a weaker constraint qualification
than the BCQ, which is different from the BCQ even in the particular case of finite
convex inequality systems and which we shall call the Abadie CQ, requiring only that
the normal cone at each point of the boundary of the solution set should coincide
with the closure of the cone of the active constraints at that point. We shall give new
characterizations of the Abadie CQ and the BCQ in terms of upper semicontinuity of
certain associated convex cone-valued multifunctions.

In section 3 we shall introduce and study the PLV property and the weak PLV
property of a semi-infinite convex inequality system at a point x, requiring that the
subdifferential of the sup-function G(·) at x should coincide with (respectively, with
the closure of) the convex hull of the subdifferentials of constraints corresponding to
the active indices at that point; when this property holds for all points in the bound-
ary of the solution set, we shall simply use the terms PLV property or weak PLV
property, respectively. In the particular case of finite linear inequality systems the
BCQ (and hence the Abadie CQ) is always satisfied, and for finite convex inequality
systems so is the PLV property (whence also the weak PLV property) at all points of
R
n, but for semi-infinite inequality systems the situation is different. We shall give

new characterizations of the PLV and weak PLV properties in terms of upper semi-
continuity of certain associated multifunctions. We shall also show some connections
among the PLV, weak PLV properties, the BCQ, and Abadie CQ.

In section 4 we shall be concerned with Slater conditions. In contrast with the
case of finite systems of convex inequalities, in the semi-infinite case two different
Slater conditions appear in a natural way: the usual one, requiring the existence of a
point in the solution set, at which all inequalities of the system are satisfied as strict
inequalities, and the so-called strong Slater condition (following the terminology of [5,
p. 128]), in which the inequalities of the system are required to be satisfied uniformly
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strictly, that is, in which the sup-function of the system is required to satisfy the usual
Slater condition. We shall study the connections between the Slater conditions and
the constraint qualifications discussed in sections 2 and 3; it will turn out that the
situation concerning these connections is different from that occurring in the case of
finite inequality systems. Also, we shall see that in the general semi-infinite case the
usual Slater condition is too weak.

The final section is devoted to some applications of constraint qualifications.
Given a system of convex inequalities, we recall that any equivalent system of

linear inequalities (i.e., a system of linear inequalities with the same solution set)
is called a linear representation of the given convex system. It is well known that
linear representations, and especially a certain simple one, which we shall call the
“standard” linear representation, are useful tools in the study of convex inequality
systems (see, e.g., [5] and the references therein). In subsection 5.1 we shall give a new
linear representation of (finite or semi-infinite) convex inequality systems satisfying
the Abadie CQ, which uses a much smaller subset of inequalities of the standard linear
representation. Also, we shall show the connections between some properties of the
initial convex inequality system and its representation.

In subsection 5.2 we shall extend from semi-infinite linear inequality systems
to semi-infinite convex inequality systems the concepts of consequence relations and
FM systems and, using the standard linear representation, we shall extend a known
relation between linear FM systems and the BCQ, given in [14] and [5], to the case of
convex FM systems. We shall also give a direct proof of this result, which, in contrast
with the known proof for the linear case, does not use any subset of R

n+1.
The exact formulas for the distance of a point to the solution set of a convex

inequality system are important, among other reasons, for their connection with
“asymptotic constraint qualifications” and for obtaining results on error bounds for
such a system (see [11]). The well-known general formulas for the distance of a point
to a closed convex set are not sufficiently useful for this purpose, since they do not
exploit the special structure of the constraints of the inequality system. Up to the
present, only a formula for the distance to the solution set of a semi-infinite linear
inequality system has been known (for a dual version, see [4] and [19], and for the
finite case, see [2]). In subsection 5.3, assuming the Abadie CQ or the BCQ, we shall
give the first formulas for the distance of a point to the solution set of a semi-infinite
system of convex inequalities, which are new even in the finite case. Also, using this
result, we shall show that the distance of a point to the solution set of a convex in-
equality system (1) satisfying the BCQ is equal to the distance of that point to some
finite subsystem of (1).

We conclude this section by introducing some notation which we shall use in this
paper.

We shall consider R
n endowed with the usual scalar product 〈·, ·〉, the Euclidean

norm ‖·‖, and the topology induced by this norm. For an index set J , |J | denotes
the cardinality of J . Let A be a subset of R

n. Then Ā, int(A), and bd(A) denote the
closure, the interior, and the boundary of A, respectively; co(A) and co (A) are the
convex hull and the closed convex hull of A, respectively; cone(A) and cone (A) are
the convex cone and the closed convex cone, generated by vectors in A, respectively;
A0 is the polar of A, i.e.,

A0 := {y ∈ R
n| 〈x, y〉 ≤ 1 (x ∈ A)},(13)

and A00 = (A0)0 is the bipolar of A; in the particular case when A is a cone, A0
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coincides with the “negative polar of A,” i.e., we have

A0 = {y ∈ R
n| 〈x, y〉 ≤ 0 (x ∈ A)}.(14)

The results of the present paper and of [11] were presented at the Workshop
on Error Bounds and Applications in Mathematical Programming in Hong Kong,
December 8–14, 1998. Auslender and Rubinov provided the references [13] and [8]
in connection with Theorem 3.1. We received López [3] after the present paper had
been completed. In order to compare our results with those of [3], we have inserted
Remarks 2, 3(a), and 5(a).

2. Abadie CQ and BCQ. For characterizations of constraint qualifications
for (1) we consider the convex cone generated by the subdifferentials of the active
members of G(·) at x:

N ′(x) := cone


 ⋃
i∈I(x)

∂gi(x)


 (x ∈ R

n).(15)

We use N ′(x) to denote the closure of N ′(x).
If every gi is an affine function as defined in (3), then

N ′(x) = cone{ai}i∈I(x)(16)

is the cone generated by the “active constraints” at x. Thus, in [5], N ′(x) is called
“the cone of active constraints at x.”

Let TS(x) be the tangent cone of S at x, i.e., TS(x) = cone(S − x). The normal
cone of S at x ∈ S is defined as

NS(x) := {y ∈ R
n| 〈y, z − x〉 ≤ 0 for all z ∈ S}.(17)

It is well known that NS(x) = TS(x)
◦ (see, e.g., [7, Proposition 5.2.4, p. 137]).

Definition 2.1. We shall say that the convex inequality system (1) satisfies
(a) the Abadie CQ at a point x ∈ bd S, if

TS(x) = N ′(x)◦ or equivalently NS(x) = N ′(x);(18)

(b) the BCQ, at a point x ∈ bd S, if

NS(x) = N ′(x);(19)

(c) the Abadie CQ (respectively, the BCQ), if it satisfies the Abadie CQ (respec-
tively, the BCQ) at all points x ∈ bd S.

Remark 1. (a) The equivalence of the two formulas in (18) follows from the
bipolar theorem. In fact, if NS(x) = N ′(x), then, since TS(x) is a closed convex cone,
by the bipolar theorem and by NS(x) = TS(x)

0 (see, e.g., [7, Proposition 5.2.4, p.
137]) we have

TS(x) = TS(x)
00 = NS(x)

0 = N ′(x)
0
= N ′(x)0.

On the other hand, if TS(x) = N ′(x)0, then, by NS(x) = TS(x)
0 and the bipolar

theorem, and since N ′(x) is a cone, we obtain

NS(x) = TS(x)
0 = N ′(x)00 = N ′(x).
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(b) Since we always have (see, e.g., [7, Lemma 4.4.1, p. 267] and [7, Lemma 2.1.3,
p. 305])

N ′(x) ⊆ cone(∂G(x)) ⊆ NS(x) for x ∈ bd S,(20)

N ′(x) ⊆ cone(∂G(x)) ⊆ NS(x) for x ∈ bd S,(21)

the system (1) satisfies the Abadie CQ at x ∈ bd S if and only if

NS(x) ⊆ N ′(x)(22)

and it satisfies the BCQ at x ∈ bd S if and only if

NS(x) ⊆ N ′(x).(23)

Moreover, for x ∈ bd S, by (20), (1) satisfies the Abadie CQ at x if and only if
N ′(x) = cone(∂G(x)) and (6) satisfies the Abadie CQ at x. Similarly, by (21), (1)
satisfies the BCQ at x if and only if N ′(x) = cone(∂G(x)) and (6) satisfies the BCQ
at x. Clearly, (1) satisfies the BCQ at x if and only if it satisfies the Abadie CQ at x
and N ′(x) is closed. Thus, (1) satisfies the BCQ at x if and only if TS(x) = N ′(x)◦

and N ′(x) is closed. The points x ∈ bd S with the latter property have been called
“Lagrangian regular points” in [12, Definition 3.3].

(c) When I is finite, Definition 2.1 is the classical definition of the Abadie CQ
introduced by Abadie (see [1], also [10]) and, respectively, of the BCQ (see [7, p. 207]).
If I is finite and each gi is a differentiable convex function, then ∂gi(x) = {∇gi(x)}
(where ∇gi(x) is the gradient of gi at x) and the cone N ′(x) of (15) is closed (see,
e.g., [7, Lemma 4.3.3, p. 130]). In this case, the Abadie CQ and the BCQ coincide.

(d) The BCQ, in an equivalent form, has been introduced for semi-infinite linear
inequality systems (4) in [14] (called LFM systems) and extended to convex inequality
systems (1) in [5, pp. 162–163] (called convex LFM constraint systems).

When I is finite and each gi is an affine function, the BCQ, and hence also the
Abadie CQ, are satisfied (see, e.g., [7, Example 5.2.6(b), p. 138]). When each gi is
affine, for semi-infinite systems of linear inequalities, the Abadie CQ may not hold
and the Abadie CQ is not the same as the BCQ, as shown by the following example.

Example 1. Let n = 2.
(a) Semi-infinite linear systems without the Abadie CQ.

Let I = {0, 1, 2, . . . } and

gi(x) :=




x2 − 1 if i = 0,
−x1 if i = 1,
x1 − 1 if i = 2,
−x2 − 1

i if i = 3, 4, . . .

(x = (x1, x2) ∈ R
2).(24)

Then S = {(x1, x2)| 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, 0 ∈ bd S, and NS(0) =
{(t1, t2)| t1 ≤ 0, t2 ≤ 0}. Also, I(0) = {i ∈ I| gi(0) = 0} = {1}, whence
N ′(0) = cone{(−1, 0)} = {(−t, 0)| t ≥ 0}. Thus the family (24) does not
satisfy the Abadie CQ.

(b) Semi-infinite linear systems with the Abadie CQ but without BCQ.
Let I = {1, 2, . . . } and

gi(x) = x1 +
1

i
x2 (x = (x1, x2) ∈ R).(25)



CONSTRAINT QUALIFICATIONS FOR SEMI-INFINITE SYSTEMS 37

Then S = {x ∈ R
2|x1 ≤ 0, x1 + x2 ≤ 0}, 0 ∈ bd S, and NS(0) = {(t1, t2)| 0 ≤

t2 ≤ t1}.Also, I(0) = {i ∈ I| gi(0) = 0} = I, whenceN ′(0) = cone
{(

1, 1
i

) |i ∈ I}
= {(t1, t2)| 0 < t2 ≤ t1} ∪ {(0, 0)}. Thus the family (25) satisfies the Abadie
CQ, but not the BCQ.

Next we give new characterizations of the Abadie CQ and the BCQ for (1), in
terms of the upper semicontinuity of the multifunctions N ′(·), cone(∂G(·)), N ′(·),
and cone(∂G(·)). We recall (see, e.g., [16, p. 55]) that a multifunction (i.e., a set-
valued function) Q : R

n → 2R
n

(the collection of subsets of R
n) is said to be upper

semicontinuous in the sense of Kuratowski, or briefly, upper semicontinuous, at x ∈
R
n, if the relations limk→+∞ xk = x, limk→+∞ yk = y ∈ R

n, yk ∈ Q(xk) (k = 1, 2, . . . )
imply y ∈ Q(x). Clearly, the graph of Q (i.e., the set {(x, y)|x ∈ R

n, y ∈ Q(x)}) is
closed if and only if Q is upper semicontinuous at all x ∈ R

n.
We shall first prove a lemma, in which we shall use the convex hull of the sub-

differentials of the active members of G(x), that is, the set

D′(x) := co


 ⋃
i∈I(x)

∂gi(x)


 (x ∈ R

n).(26)

Lemma 2.2. Let x ∈ R
n and let Q : R

n → 2R
n

be a multifunction such that, for
all z in a neighborhood of x, Q(z) is a convex set, I(z) 	= ∅, and D′(z) ⊂ Q(z). If Q
is upper semicontinuous at x, then ∂G(x) ⊂ Q(x).

Proof. Assume on the contrary that there exists y ∈ ∂G(x) \Q(x). Since Q is
upper semicontinuous at x and Q(x) is a convex set, Q(x) is a closed convex set. Then,
by the strict separation theorem [7, Theorem 4.1.1, p. 121], there exists u ∈ R

n\{0}
such that

〈y, u〉 > sup
y∈Q(x)

〈y, u〉.

Let G′(x;u) be the directional derivative of G at x in the direction u. By y ∈ ∂G(x)
and a well-known formula for G′(x;u) (see, e.g., [7, p. 240]), we get

G′(x;u) = sup
y∈∂G(x)

〈y, u〉 ≥ 〈y, u〉 > sup
y∈Q(x)

〈y, u〉.(27)

Let tk = 1
k (k = 1, 2, . . . ). Since I(z) 	= ∅ for z in a neighborhood of x, without

loss of generality we can assume I(x + tku) 	= ∅. Let ik ∈ I(x + tku) and yk ∈
∂gik(x+ tku) ⊆ ∂G(x+ tku) (k = 1, 2, . . . ). Then

−tk〈yk, u〉 = 〈yk, x− (x+ tku)〉 ≤ G(x)−G(x+ tku),

whence, by tk > 0 (k = 1, 2, . . . ),

〈yk, u〉 ≥ G(x+ tku)−G(x)

tk
(k = 1, 2, . . . ).(28)

Since yk ∈ ∂G(x+ tku) (k = 1, 2, . . . ) and since {x+ tku| k ≥ 1} is bounded, the
set {yk : k ≥ 1} is bounded as well (see, e.g., [7, Proposition 6.2.2, p. 282]). Hence,
we may assume, without loss of generality, that yk → ŷ. Then, letting k → +∞ in
(28) and using (27), we obtain

〈ŷ, u〉 ≥ G′(x;u) > sup
y∈Q(x)

〈y, u〉.(29)
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But, since

limk→+∞(x+ tku) = x, limk→+∞ yk = ŷ,

yk ∈ ∂gik(x+ tku) ⊆ D′(x+ tku) ⊆ Q(x+ tku) (k = 1, 2, . . . ),

and since Q is upper semicontinuous at x, we have ŷ ∈ Q(x), which contradicts
(29).

Theorem 2.3. Let x ∈ bd S and I(z) 	= ∅ for z in a neighborhood of x. Then
the following two statements are equivalent.

(a) (1) satisfies the Abadie CQ at x.
(b) Both cone(∂G(·)) and N ′(·) are upper semicontinuous at x.
Proof. (a)⇒(b): Let xk → x, yk ∈ N ′(xk) (or yk ∈ cone[∂G(xk)]) and yk → y.

We claim that y ∈ NS(x). To prove the claim, let

Sk := {z ∈ R
n | G(z) ≤ G(xk)}.(30)

Since yk ∈ N ′(xk) ⊆ cone(∂G(xk)) ⊆ NSk
(xk) (see (20)), we have

〈yk, z − xk〉 ≤ 0 for z ∈ Sk.(31)

We consider two cases.
Case 1. (6) does not satisfy the Slater condition, that is, G(z) ≥ 0 for all z ∈ R

n.
Then G(xk) ≥ 0 and S ⊆ Sk. Thus, (31) implies

〈yk, z − xk〉 ≤ 0 for z ∈ S.

Letting k → +∞ in the above inequality we obtain

〈y, z − x〉 ≤ 0 for z ∈ S.

That is, y ∈ NS(x).
Case 2. (6) satisfies the Slater condition, that is, G(x̂) < 0 for some x̂ ∈ R

n.
Then int S = {z ∈ R

n : G(z) < 0} and int S = S. Let z ∈ int S. Then there is k0 > 0
such that z ∈ Sk for k ≥ k0 (since G(xk)→ G(x) = 0). By (31), we have

〈y, z − x〉 = lim
k→+∞

〈yk, z − xk〉 ≤ 0.(32)

Since (32) holds for any z ∈ int S, it also holds for z ∈ int S = S. Thus, y ∈ NS(x).
If (1) satisfies the Abadie CQ at x, we get y ∈ NS(x) = cone(∂G(x)) = N ′(x)

(see (20)). Therefore, both N ′(·) and cone(∂G(·)) are upper semicontinuous at x.
(b)⇒(a): Let y ∈ NS(x)\{0}. Let x0 := x+y. Then x0 	∈ S (since x0 = x+y ∈ S

and y ∈ NS(x) \ {0} would imply 〈y, x〉 ≥ 〈y, x0〉 = 〈y, x〉 + 〈y, y〉 > 〈y, x〉 , which is
impossible) and hence G(x0) > 0. Let

Sk :=

{
z ∈ R

n| G(z) ≤ 1

k

}
(33)

and assume k large enough so that 1
k < G(x0), that is, x0 /∈ Sk. Let x∗k ∈ Sk be such

that dist(x0, Sk) = ‖x0 − x∗k‖. Then, since x ∈ Sk, we have

‖x0 − x∗k‖ ≤ ‖x0 − x‖.(34)
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Thus, {x∗k} is a bounded sequence. Without loss of generality we may assume that
x∗k → x̂. Since G(x̂) = limk→+∞G(x∗k) ≤ limk→+∞ 1

k = 0, we have x̂ ∈ S. Letting
k → +∞ in (34) we obtain

‖x0 − x̂‖ ≤ ‖x0 − x‖.(35)

On the other hand, since x0 − x = y ∈ NS(x) and x ∈ bd S, x is the projection of
x0 onto S. Hence, (35) and x̂ ∈ S imply that x̂ = x. Consequently, x∗k → x and
x0 − x∗k → x0 − x = y.

We claim that x0 − x∗k ∈ cone(∂G(x∗k)). Indeed, by dist(x0, Sk) = ‖x0 − x∗k‖ we
have x∗k ∈ bd Sk and x0−x∗k ∈ NSk

(x∗k). Since G(z) ≤ 1
k satisfies the Slater condition

and x∗k ∈ bd Sk, we have NSk
(x∗k) = cone(∂G(x∗k)) (see, e.g., [7, Theorem 1.3.5, p.

245]). Thus, x0 − x∗k ∈ cone(∂G(x∗k)), which proves the claim.
Since x∗k → x, x0 − x∗k ∈ cone(∂G(x∗k)), and x0 − x∗k → y, by the upper semi-

continuity of cone(∂G(·)) at x we get y ∈ cone(∂G(x)). Hence, since y was an arbi-
trary nonzero element in NS(x), NS(x) ⊆ cone(∂G(x)). On the other hand, by the
upper semicontinuity of N ′(·) at x and Lemma 2.2 (applied to Q = N ′), we have
∂G(x) ⊆ N ′(x), which implies cone(∂G(x)) ⊆ N ′(x). Therefore, we have (22), and
thus (1) satisfies the Abadie CQ at x.

Theorem 2.4. Let x ∈ bd S and I(z) 	= ∅ for z in a neighborhood of x. Then
the following two statements are equivalent.

(a) (1) satisfies the BCQ at x.
(b) Both cone(∂G(·)) and N ′(·) are upper semicontinuous at x.
Proof. (a)⇒(b): By Theorem 2.3, both cone(∂G(·)) and N ′(·) are upper semi-

continuous at x. Since N ′(x) = cone(∂G(x)) = NS(x) and NS(x) is closed, we know
that N ′(x) and cone(∂G(x)) must be closed. Thus, both cone(∂G(·)) and N ′(·) are
upper semicontinuous at x.

(b)⇒(a): By Theorem 2.3, (1) satisfies the Abadie CQ at x. But (b) also
implies that N ′(x) is a closed set. So N ′(x) = N ′(x) = NS(x) and (1) satisfies
the BCQ.

From Theorems 2.3 and 2.4 we obtain the following characterizations of the
Abadie CQ and the BCQ.

Corollary 2.5. Suppose that I(z) 	= ∅ for z in a neighborhood of bd S. Then
the following two statements are true.

(a) (1) satisfies the Abadie CQ if and only if both cone(∂G(·)) and N ′(·) are upper
semicontinuous at every x in bd S.

(b) (1) satisfies the BCQ if and only if both cone(∂G(·)) and N ′(·) are upper
semicontinuous at every x in bd S.

Remark 2. Fajardo and López [3, Theorem 3.1(i)] proved that if (1) satisfies the
BCQ, then the multifunction A(x) := {y ∈ N ′(x)| ‖y‖ ≤ 1} (x ∈ R

n) is (B)-upper
semicontinuous on S (which is equivalent to the upper semicontinuity of N ′(·) on S)
and that if (6) satisfies the Slater condition, then the converse is also true [3, Theorem
3.1(iib)].

Here a mapping Q : R
n → 2R

n

is said to be (B)-upper semicontinuous at x ∈ R
n,

if for every open set W in R
n containing Q(x) there exists a neighborhood V (x) of

x such that Q(z) ⊂ W for each z ∈ V (x); furthermore, Q is said to be (B)-upper
semicontinuous on a set M ⊂ R

n if it is (B)-upper semicontinuous at each x ∈M. It
is well known (see, e.g., [5, p. 128]) that if Q is (B)-upper semicontinuous (at x), then
it is upper semicontinuous (at x), but the converse is not true. One can show that if
the set {z| z ∈ Q(y) for y in some neighborhood of x} is bounded, then the (B)-upper
semicontinuity of Q(·) at x is equivalent to the upper semicontinuity of Q(·) at x.
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3. Subdifferentials of the sup-function and its active members. In this
section, we study the relations between the subdifferential of the sup-function G and
the subdifferentials of its active member functions {gi| i ∈ I(x)}.

We shall use the set D′(x) defined by (26). Note that

N ′(x) = cone(D′(x)) (x ∈ R
n).(36)

We shall denote by D′(x) the closure of the set D′(x).
One important property of (1) when I is finite is the equality (11) (see, e.g., [13,

Theorem 1.4]), which can be rewritten as

∂G(x) = D′(x) (x ∈ R
n).(37)

The above equality means that the subdifferential of the sup-function G(·) is the
convex hull of subdifferentials of its active members.

In general, (37) does not hold if I is infinite. The following sufficient (but not
necessary) condition that guarantees ∂G(x) = D′(x) for all x ∈ R

n, and is satisfied
when I is finite, has been given by Levin [8, Theorem 2] (and, at the same time,
Valadier [18, Theorem 2] has obtained, in an arbitrary topological linear space instead
of R

n, the weaker conclusion in which D′ is replaced by D′).
Theorem 3.1 (PLV theorem [13, 8, 18]). If I is a compact set (in some metric

space), and gi : R
n → R (i ∈ I) is a family of convex functions such that for each

fixed x ∈ R
n the function i→ gi(x) is upper semicontinuous on I, then (37) holds at

all x ∈ R
n.

Here a real-valued function f(t) is said to be upper semicontinuous at t = t0 if

lim
t→t0

f(t) ≤ f(t0),(38)

i.e.,

lim
ε→0+

sup
|t−t0|≤ε

f(t) ≤ f(t0).(39)

Note that (39) is equivalent to the upper semicontinuity of the multifunction F (t) =
{y ∈ R| y ≤ f(t)} at t0.

For convenience, we shall introduce the following definition related to (37).
Definition 3.2. Let (1) be a convex inequality system with a finite-valued sup-

function. We shall say that the family {gi| i ∈ I}, or the system (1), has
(a) the weak PLV property at a point x ∈ R

n, if

∂G(x) = D′(x);(40)

(b) the PLV property at a point x ∈ R
n, if

∂G(x) = D′(x);(41)

(c) the weak PLV property (respectively, the PLV property), if it has the weak
PLV property (respectively, the PLV property) at all x ∈ bd S.

One major problem with an infinite I is the possibility of I(x) = ∅ at x ∈
bd S (which cannot happen when I is finite). For example, given a family of convex
functions gi : R

n → R, let gi,k(x) := gi(x) − 1
k for i ∈ I and k = 1, 2, . . . . Then (1)

holds if and only if

gi,k(x) ≤ 0 for k = 1, 2, . . . , i ∈ I.(42)
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However, the active index set for (42) is empty at every x ∈ bd S and so there is no
(weak) PLV property for (42).

One can avoid the inconvenience of having I(x) = ∅ by requiring the closedness
of {gi(x)| i ∈ I}.

Proposition 3.3. Let x ∈ bd S. If the set Ax := {gi(x)| i ∈ I} is closed in R,
then I(x) 	= ∅.

Proof. Since x ∈ bd S, we have G(x) = 0 (by the continuity of G). Taking any
sequence {ik} ⊆ I such that gik(x) → supi∈I gi(x) = G(x) = 0 as k → +∞, by the
closedness of Ax we obtain 0 ∈ Ax, so I(x) 	= ∅.

However, even if I(x) 	= ∅, (4) (and hence, in general, (1)) might not have the
weak PLV property. Also, in general, the weak PLV property is not the same as the
PLV property.

Example 2. Let n = 1.
(a) A semi-infinite linear system without weak PLV property.

Let I = {0; (1, k); (2, k)| k = 1, 2, . . . } and
(43)

g0(x) = 3x, g1,k(x) = 2x− 1

k
, g2,k(x) = 4x− 1

k
(x ∈ R, k = 1, 2, . . . ).

Then

G(x) = sup
k≥1
{g0(x), g1,k(x), g2,k(x)} =

{
2x if x < 0,
4x if x ≥ 0.

Thus, S = (−∞, 0], bd S = {0}, I(0) = {i ∈ I| gi(0) = G(0) = 0} = {0}, and
∂G(0) = [2, 4], D′(0) = {3}. Therefore, the system does not have the weak
PLV property at x = 0.

(b) A semi-infinite linear system with weak PLV property, but without PLV prop-
erty.
Let I = {(1, k); (2, k)| k = 1, 2, . . . } and

g1,k(x) =

(
1 +

1

k

)
x, g2,k(x) =

(
5− 1

k

)
x (x ∈ R, k = 1, 2, . . . ).(44)

Then

G(x) = sup
k≥1
{g1,k(x), g2,k(x)} =

{
x if x < 0,
5x if x ≥ 0.

Thus, S = (−∞, 0], bd S = {0}, I(0) = {i ∈ I| gi(0) = G(0) = 0} = I,
and ∂G(0) = [1, 5], D′(0) = (1, 5). Therefore, the system has the weak PLV
property at x = 0 but not the PLV property.

There is no relation of implication between the CQs and the PLV properties.
Indeed, in Example 2(a), the system actually satisfies the BCQ at x = 0, but the PLV
property does not hold at x = 0; while for any I with one index the PLV property
is trivially true, but (1) may not satisfy the Abadie CQ. However, when (1) satisfies
the PLV property (in particular, when I is finite), N ′(x) ≡ cone(∂G(x)) and the
characterizations for the Abadie CQ and the BCQ can be simplified.

Corollary 3.4. Suppose that (1) satisfies the PLV property and I(x) 	= ∅ for x
in a neighborhood of bd S (e.g., this happens when I is finite). Let x ∈ bd S. Then
the following two statements are true.
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(a) (1) satisfies the Abadie CQ at x if and only if N ′(·) is upper semicontinuous
at x.

(b) (1) satisfies the BCQ at x if and only if N ′(·) is upper semicontinuous at x.
Proof. By the assumption, D′(x) = ∂G(x) for all x, which implies N ′(x) = cone

(D′(x)) = cone(∂G(x)) 	= ∅ for all x. Thus Corollary 3.4 follows from Corollary
2.5.

The following proposition shows that if (1) satisfies the (weak) PLV property,
then (1) and (6) are “equivalent” in terms of CQs.

Proposition 3.5. Let x ∈ bd S.

(a) Suppose that (1) satisfies the weak PLV property at x. Then (1) satisfies the
Abadie CQ at x if and only if (6) satisfies the Abadie CQ at x.

(b) Suppose that (1) satisfies the PLV property at x. Then (1) satisfies the BCQ
at x if and only if (6) satisfies the BCQ at x.

Proof. (a) If (1) satisfies the weak PLV property at x, then, by (40) and (36),
cone(∂G(x)) = cone(D′(x)) = N ′(x). Thus, NS(x) = N ′(x) if and only if NS(x) =
cone(∂G(x)).

(b) If (1) satisfies the PLV property at x, then, by equations (41) and (36),
cone(∂G(x)) = cone(D′(x)) = N ′(x). Thus, NS(x) = N ′(x) if and only if NS(x)
= cone(∂G(x)).

It turns out the the weak PLV property or the PLV property at a point x ∈ R
n

can be characterized by the upper semicontinuity at x of the multifunction D′(·) or
D′(·), respectively.

Theorem 3.6. Let x ∈ R
n and I(z) 	= ∅ for z in a neighborhood of x. Then

∂G(x) = D′(x) if and only if D′(·) is upper semicontinuous at x.
Proof. If D′(·) is upper semicontinuous at x, then, by Lemma 2.2, ∂G(x) ⊆ D′(x).

Since ∂G(x) ⊇ D′(x) always holds, we have ∂G(x) = D′(x).
Next we assume that ∂G(x) = D′(x) and prove the upper semicontinuity of D′(·)

at x.

Let limk→+∞ xk = x, limk→+∞ yk = y ∈ R
n, yk ∈ D′(xk) (k = 1, 2, . . . ). By

D′(xk) ⊆ ∂G(xk), we have yk ∈ ∂G(xk). Since G is a finite convex function, ∂G(z) 	= ∅
for all z ∈ R

n and ∂G is upper semicontinuous (see, e.g., [7, Proposition 6.2.1, p. 282]).
Thus, y ∈ ∂G(x). Since ∂G(x) = D′(x), we have y ∈ D′(x) and so D′(·) is upper
semicontinuous at x.

Theorem 3.7. Let x ∈ R
n and I(z) 	= ∅ for z in a neighborhood of x. Then

∂G(x) = D′(x) if and only if D′(·) is upper semicontinuous at x.
Proof. Note that D′(·) is upper semicontinuous at x if and only if D′(·) is upper

semicontinuous at x and D′(x) is a closed set.

If D′(·) is upper semicontinuous at x, then, by Theorem 3.6, ∂G(x) = D′(x) =
D′(x). On the other hand, if ∂G(x) = D′(x), then by the upper semicontinuity of
∂G(·), D′(x) is a closed set and ∂G(x) = D′(x). Hence, by Theorem 3.6, D′(·) is
upper semicontinuous at x. Therefore, D′(·) is upper semicontinuous at x.

Using Theorems 3.6 and 3.7 we obtain the following characterizations of the weak
PLV and PLV properties at all x ∈ R

n.

Theorem 3.8. The following statements are true.

(a) ∂G(x) = D′(x) for all x ∈ R
n if and only if D′(x) 	= ∅ for all x ∈ R

n and
D′(·) is upper semicontinuous on R

n.
(b) ∂G(x) = D′(x) for all x ∈ R

n if and only if D′(x) 	= ∅ for all x ∈ R
n and

D′(·) is upper semicontinuous on R
n.

Proof. Since G(·) is a finite convex function, ∂G(x) 	= ∅ for any x. Therefore,
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every condition in the above theorem implies I(x) 	= ∅ for all x ∈ R
n. Consequently,

Theorem 3.8 follows from Theorems 3.6 and 3.7.
Remark 3. (a) Fajardo and López [3, Theorem 4.1(i)] proved that if D′(x) 	= ∅

for all x ∈ R
n and D′(·) is (B)-upper semicontinuous on R

n (see Remark 2 above),
then ∂G(x) = D′(x) for all x ∈ R

n.
Since the (B)-upper semicontinuity of D′(·) is equivalent to the upper semicon-

tinuity of D′(·) (see Remark 2), the “if” part of Theorem 3.8(a) is equivalent to [3,
Theorem 4.1(i)].

(b) Using Theorem 3.8, we can give a new proof of Theorem 3.1, which seems
simpler and more natural than the proofs known in the literature (see, e.g., the proof
of Theorem 4.4.2 [7, p. 267]. To this end, let us first prove the following fact.

Lemma 3.9. If I is a compact metric space and if gi : R
n → R (i ∈ I) is a

family of convex functions such that for each x ∈ R
n the function i→ gi(x) is upper

semicontinuous on I, then the set-valued mapping x→ I(x) is upper semicontinuous
on R

n and the set-valued mapping (x, i) → ∂gi(x) is upper semicontinuous on W,
where W := {(x, i)| i ∈ I(x)}. That is, if limk→+∞ xk = x̂, limk→+∞ ik = î, and
limk→+∞ yk = ŷ with ik ∈ I(xk) and yk ∈ ∂gik(xk) (k = 1, 2, . . . ), then î ∈ I(x̂) and
ŷ ∈ ∂gî(x̂).

Proof. First we prove î ∈ I(x̂) by contradiction. In fact, if gî(x̂) < G(x̂), by the
upper semicontinuity of gi(x̂) with respect to i, there exist a positive constant δ and
a neighborhood O(̂i) of î in I such that

gi(x̂) ≤ G(x̂)− δ for i ∈ O(̂i).(45)

Let Ĝ(x) := supi∈O(̂i) gi(x). By the assumptions, Ĝ(x) ≤ G(x) < +∞ so G(x) and

Ĝ(x) are continuous convex functions. Thus,

G(x̂) = lim
k→+∞

G(xk) = lim
k→+∞

gik(xk) = lim
k→+∞,ik∈O(̂i)

gik(xk) ≤ lim
k→+∞

Ĝ(xk) = Ĝ(x̂).

(46)

But (45) implies that Ĝ(x̂) ≤ G(x̂) − δ, a contradiction to (46). This proves that
î ∈ I(x̂). Now, for any z ∈ R

n, we have

〈yk, z − xk〉 ≤ gik(z)− gik(xk) (k = 1, 2, . . . ).(47)

Since ik ∈ I(xk) (k = 1, 2, . . . ) and î ∈ I(x̂), we have

gik(xk) = G(xk)→ G(x̂) = gî(x̂).(48)

Thus, letting k → +∞ in (47) and using limk→+∞gik(z) ≤ gî(z) (by the assumption
of upper semicontinuity of the mapping i→ gi(z)), we obtain

〈y, z − x̂〉 ≤ gî(z)− gî(x̂).(49)

Since (49) holds for any z, we have ŷ ∈ ∂gî(x̂).
Finally, in order to prove Theorem 3.1 it will be sufficient, by Theorem 3.7,

to prove that under the assumptions of Theorem 3.1 the mapping D′(·) has closed
graph and I(x) 	= ∅ for all x ∈ R

n. Let limk→+∞ xk = x and limk→+∞ yk = y with
yk ∈ D′(xk) (k = 1, 2, . . . ). By the definition of D′(xk), there exist i1,k, i2,k, . . . , imk,k

in I(xk), λ1,k, . . . , λmk,k, and yj,k ∈ ∂gij,k(xk) such that λj,k ≥ 0,
∑mk

j=1 λj,k = 1, and
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yk =
∑mk

j=1 λj,kyj,k. Since yk ∈ R
n, by Carathéodory’s theorem (see, e.g., [7, Theorem

1.3.6, p. 98]) we may assume, without loss of generality, that mk ≤ n+ 1. Since G(·)
is finite-valued and xk → x̂, the set {y ∈ ∂G(xk)| k = 1, 2, . . . } is bounded (see,
e.g., [7, Proposition 6.2.2, p. 282]). By yj,k ∈ ∂gij (xk) ⊂ ∂G(xk), we know that
{yj,k| 1 ≤ j ≤ mk, k = 1, 2, . . . } is a bounded set. Since I is compact and {mk},
{yj,k}, {λj,k} are all bounded with respect to k, by repeatedly selecting subsequences
we may assume, without loss of generality, thatmk = m for all k , ij,k → ij , yj,k → yj ,
and λj,k → λj as k → +∞. By the fact proved above, we know that ij ∈ I(x) and
yj ∈ ∂gij (x). Thus, y =

∑m
j=1 λjyj ∈ D′(x), which proves that D′(·) has a closed

graph. Finally, since I is compact and i → gi(x) is upper semicontinuous, we have
I(x) 	= ∅ for all x ∈ R

n. This provides an alternative proof of Theorem 3.1.

4. Slater conditions. If there exists x̄ ∈ R
n such that

gi(x̄) < 0 (i ∈ I),(50)

then (1) is said to satisfy the Slater condition. Let us recall the following well-known
result, which gives a sufficient condition for the BCQ of (1) or (6).

Proposition 4.1 (see [7, Theorem 1.3.5, p. 245] and [7, Remark 1.3.6, p. 246]).
If I is finite and (1) satisfies the Slater condition, then (1) satisfies the BCQ. In
particular, if (6) satisfies the Slater condition, then (6) satisfies the BCQ.

Remark 4. (a) If (6) satisfies the Slater condition, then (1) also satisfies the Slater
condition. But the converse is not true. The Slater condition for (6) is sometimes
called the strong Slater condition for the convex system (1) (see, e.g., [5, p.128]).
However, the term “strong Slater condition” is also used in the literature in other
senses (see, e.g., Lewis and Pang [9], where “strong Slater condition” means that 0
does not belong to the closure of the set ∂G(G−1(0)), and, for a different sense, see
[7, Definition 2.3.1, p. 311]).

(b) When I is finite, (1) satisfies the Slater condition if and only if (6) satisfies
the Slater condition.

Proposition 4.2. Suppose that (6) satisfies the Slater condition.
(a) If (1) has the weak PLV property, then (1) satisfies the Abadie CQ.
(b) If (1) has the PLV property, then (1) satisfies the BCQ.
Proof. (a) By Proposition 4.1, the Slater condition for (6) implies the BCQ for

(6). Hence, by Proposition 3.5(a), we have the Abadie CQ at all x ∈ bd S.
(b) The proof is similar, using Proposition 3.5(b).
Remark 5. (a) Fajardo and López [3, Theorem 4.1(ii)] proved that if (6) satisfies

the Slater condition, D′(·) is (B)-upper semicontinuous (see Remark 2), D′(x) 	= ∅
for x ∈ R

n, and N ′(x) is closed for each x in S, then (1) satisfies the BCQ. But
the (B)-upper continuity of D′(·) is equivalent to the upper continuity of D′(·) (see
Remark 2), so this result also follows from Theorem 3.8(a) and Proposition 4.2(a).

(b) The assumptions in (a) and (b) of Proposition 4.2 cannot be omitted, as
shown by Example 1(a), in which the Slater condition for (1) or (6) is satisfied (in
fact, for x̄ = (1

2 ,
1
2 ), gi(x̄) ≤ − 1

2 for all i), but the Abadie CQ is not satisfied. When
I is a finite set, the PLV property always holds. In this case, the Slater condition, the
BCQ, and the Abadie CQ are all different.

We recall that for a convex system (1) a solution x̄ ∈ S is called a Slater point if
we have (50).

Proposition 4.3. If for each x ∈ S the active index set I(x) 	= ∅, then every
Slater point of (1) is a Slater point of (6) (and hence, in this case, the Slater condition
for (1) and the Slater condition for (6) are equivalent).
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Proof. Let x̄ be a Slater point of (1), i.e., let x̄ be a point such that (50) holds. If
x̄ were not a Slater point of (6), i.e., if we had supi∈I gi(x̄) = 0, then, since I(x̄) 	= ∅,
there would exist i0 ∈ I such that gi0(x̄) = supi∈I gi(x̄) = 0, a contradiction to the
assumption (50).

Using Theorem 3.1, one can give a stronger condition which ensures the BCQ.
Indeed, combining Theorem 3.1 and Proposition 4.2, we obtain the following result,
which has been proved with a more complicated method by López and Vercher [12,
Theorem 3.8].

Corollary 4.4. If I is a compact set (in some metric space), gi : R
n → R (i ∈ I)

is a family of convex functions such that for each fixed x ∈ R
n the function i→ gi(x)

is upper semicontinuous on I, and (1) satisfies the Slater condition, then the BCQ
holds for (1).

Proof. Since I is compact and i → gi(x) is upper semicontinuous, I(x) 	= ∅ for
any x. By Proposition 4.3, (6) satisfies the Slater condition. By Theorem 3.1, the
PLV property holds. Thus, the corollary follows from Proposition 4.2.

Even though we stated Corollary 4.4 in terms of the Slater condition of (1),
obviously the Slater condition of (6) is also satisfied. In general, the Slater condition
for (1) is not very meaningful if (6) does not satisfy the Slater condition. One might
wonder whether we should use the following stronger version of (50):

gi(x̄) ≤ −δ < 0 (i ∈ I),(51)

where δ is a positive constant. In the case that G(x) < +∞ for x ∈ R
n, (51) is nothing

more than the Slater condition for (6). If one allowsG(x) to be +∞, then (51) does not
provide any useful information about the system as shown in the following example.

Example 3. (a) For {gi| i ∈ I} and x̄ ∈ R
n satisfying (50), let

ḡi(x) := − 1

gi(x̄)
gi(x) (i ∈ I).(52)

Then (51) holds with gi and δ being replaced by ḡi and 1, respectively. Note that
x ∈ S if and only if ḡi(x) ≤ 0 (i ∈ I). Also the sets I(x) and N ′(x) remain unchanged
for x ∈ bd S. Thus, (1) satisfies the Abadie CQ (respectively, the BCQ) if and only
if so does the system ḡi(x) ≤ 0 (i ∈ I). This example shows that replacing (50) by
(51) without requiring a finite-valued G does not give any new information about the
underlying system.

(b) Or we could make the situation worse. For example, let ĝi,k(x) := kgi(x)− 1
for i ∈ I, k ≥ 1. Then we always have

ĝi,k(x) ≤ −1 < 0 for x ∈ S.(53)

It is easy to see that x ∈ S if and only if ĝi,k(x) ≤ 0 for i ∈ I, k ≥ 1. In this case, the
active index set is always empty for any x ∈ bd S. Thus, it is not possible to study S
by using N ′(x). This example shows that (51) without requiring a finite-valued G(x)
could be a meaningless condition, while (51) with a finite-valued G(x) means that (6)
satisfies the Slater condition, which is useful for constraint qualification properties of
(1) (see Proposition 4.2).
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5. Applications.

5.1. Linear representation of convex systems. Given a semi-infinite convex
inequality system (1), we recall that a semi-infinite linear inequality system,

〈âk, x〉 ≤ b̂k (k ∈ K),(54)

where âk ∈ R
n and b̂k ∈ R, is said to be a linear representation of the system (1),

provided that x∗ is a solution of (1) if and only if x∗ is a solution of (54) (i.e.,
provided that the systems of inequalities (1) and (54) are equivalent). Each linear
representation (54) of (1) is also called a linear system associated to the convex system
(1).

It is well known (see, e.g., the proof of Theorem 5.2 in [6]) that the system

〈a, x〉 ≤ 〈a, z〉 − gi(z) (z ∈ R
n, i ∈ I, a ∈ ∂gi(z)),(55)

is a linear representation of the convex system (1), which we shall call the standard
linear representation of (1). For the sake of completeness, we include the proof here.

Proof. If x∗ ∈ S, then

gi(z) + 〈a, x∗ − z〉 ≤ gi(x
∗) ≤ 0 (z ∈ R

n, i ∈ I, a ∈ ∂gi(z)),

so x∗ satisfies (55). Conversely, if x∗ satisfies (55), then

gi(z) + 〈a, x∗ − z〉 ≤ 0 (z ∈ R
n, i ∈ I, a ∈ ∂gi(z)).

Taking here z = x∗, we obtain gi(x
∗) ≤ 0 (i ∈ I), that is, x∗ ∈ S, which completes

the proof.
A natural question is whether we can use a smaller subsystem of (55) to get a

linear representation of (1). In particular, we study when the semi-infinite linear
system

〈yi, x〉 ≤ 〈yi, z〉 (z ∈ bd S, i ∈ I(z), yi ∈ ∂gi(z))(56)

is a linear representation of (1). Note that (56) is indeed a subsystem of (55), since
for z ∈ bd S, i ∈ I(z), and y ∈ ∂gi(z), we have gi(z) = 0.

Theorem 5.1.
(a) If the convex system (1) satisfies the Abadie CQ, then the system (56) is a

linear representation of (1).
(b) If the convex system (1) satisfies the Slater condition (50) and I(x) 	= ∅ for

all x ∈ S, then the system (56) is a linear representation of (1).
Proof. Obviously, if x ∈ S, then, since ∂gi(z) ⊂ NS(z) for i ∈ I(z) and z ∈ bd S,

(56) follows from yi ∈ NS(z). Thus, every solution of (1) is a solution of (56). In
order to prove that (56) is a linear representation of (1), it is sufficient to show that
if x 	∈ S, then (56) does not hold.

(a) First we prove the following more general result:
Suppose that for any x ∈ bd S and y ∈ NS(x) \ {0}, there is a vector
ŷ ∈ N ′(x) such that 〈y, ŷ〉 > 0. Then (56) is a linear representation
of (1).

Let x 	∈ S and let z be the projection of x onto S. Then z ∈ bd S, x − z 	= 0,
and x− z ∈ NS(z) [7, Theorem 3.1.1, p. 117]. If 〈yi, x〉 ≤ 〈yi, z〉 for all i ∈ I(z) and
yi ∈ ∂gi(z), then 〈y, x − z〉 ≤ 0 for all y ∈ N ′(z), a contradiction to the assumption
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there is ŷ ∈ N ′(x) such that 〈ŷ, x − z〉 > 0. Hence, x does not satisfy (56). This
proves that x ∈ S if and only if x satisfies (56), i.e., (56) is a linear representation of
(1).

Now, if the convex system (1) satisfies the Abadie CQ, i.e., NS(x) = N ′(x) for
all x ∈ bd S, then it is trivially true that for any x ∈ bd S and y ∈ NS(x) \ {0}, there
is a vector ŷ ∈ N ′(x) such that 〈y, ŷ〉 > 0 (indeed, it is enough to take ŷ ∈ N ′(x)
sufficiently close to y). So (56) is a linear representation of (1).

(b) By Proposition 4.3, (6) satisfies the Slater condition. Let x 	∈ S, and let x̄ ∈ S
be such that G(x̄) < 0. Then co{x, x̄}∩bd S contains exactly one point, say z. Thus,
there is a positive constant θ such that

x− z = θ(z − x̄).(57)

Since I(z) 	= ∅, choose i ∈ I(z) and yi ∈ ∂gi(z) ⊂ ∂G(z). Then, by the definition of
∂G(z), we have

G(x̄)−G(z) ≥ 〈yi, x̄− z〉 or 〈yi, z − x̄〉 ≥ G(z)−G(x̄) = −G(x̄) > 0.(58)

Since θ > 0, it follows from (57) and (58) that 1
θ 〈yi, x− z〉 = 〈yi, z− x̄〉 ≥ −G(x̄) > 0,

whence 〈yi, x〉 > 〈yi, z〉. Thus, for any x 	∈ S, (56) does not hold. So (56) is a linear
representation of (1).

Remark 6. (a) In [12, the proof of Theorem 4.5], it has been observed that if (1)
satisfies the assumptions of Corollary 4.4, then the linear inequality system

〈u, x〉 ≤ 〈u, y〉 for y ∈ bd S, u ∈ ∂G(y)(59)

is a linear representation of (1). Let us observe that this follows also from Corollary
4.4 and Theorem 5.1(a) above, since ∂G(x) = co{∂gi(x) : i ∈ I(x)} for x ∈ bd S
under the assumption of Corollary 4.4, hence (59) is equivalent to (56).

(b) In the particular case when all gi (i ∈ I) are convex and differentiable,
Theorem 5.1(b) (even with a smaller subsystem of (56), obtained by choosing for
each x ∈ bd S, with the aid of the axiom of choice, an index i(x) ∈ I(x) and an
yi(x) ∈ ∂gi(x)) has been shown, essentially, in the proof of Theorem 5.4 in [6].

Some connections between the inequality systems (1) and (56) are given in the
following proposition.

Proposition 5.2. Let (56) be a linear representation of the convex inequality
system (1). Then

(a) (1) satisfies the Abadie CQ (respectively, the BCQ) if and only if so does (56).
(b) Denoting by G and G0 the sup-functions of (1) and (56) respectively, we have

G0(x) ≤ G(x) for x ∈ R
n.(60)

Proof. (a) Let (56) be a linear representation of (1) and let x ∈ bd S. Since (1)
and (56) have the same solution set S, and hence the same normal cone NS(x) at x,
it will be enough to show that

N ′(x) for (56) = N ′(x) for (1).(61)

Since the linear system (56) is a subset of the linear system (55), we have

N ′(x) for (56) ⊆ N ′(x) for (55).(62)
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Furthermore, by [5, proof of Theorem 10.7], there holds

N ′(x) for (55) = N ′(x) for (1).(63)

Finally, from the definitions it is obvious that

N ′(x) for (1) ⊆ N ′(x) for (56),(64)

which, together with (62) and (63), yields (61).
(b) By the definitions of the sup-function and of ∂gi(z) and I(z), we have, for

any x ∈ R
n,

G0(x) = sup
z∈bdS, i∈I(z),yi∈∂gi(z)

(
〈yi, x〉 − 〈yi, z〉

)
≤ sup

i∈I
gi(x) = G(x).

Remark 7. (a) The inequality in Proposition 5.2(b) may be strict.
(b) From Proposition 5.2(b) above it follows that if (1) satisfies the Slater condi-

tion, then so does (56); also, if (6) satisfies the Slater condition, then G0(x) < 0 for
some x ∈ R

n. However, the converse statements are not true.

5.2. Convex FM systems. Related to the BCQ are the convex FM systems,
defined as follows.

Definition 5.3.
(a) A linear inequality

〈a0, x〉 ≤ b0,(65)

where a0 ∈ R
n \ {0} and b0 ∈ R, will be called a consequence relation of the

convex inequality system (1), if every x ∈ S satisfies (65).
(b) The system (1) will be called a convex FM system if every linear consequence

relation of system (1) is also a consequence relation of some finite subsystem
of (1).

Remark 8. In the particular case of a linear inequality system (4), the above
definition reduces to the usual definition of consequence relations and FM systems
[5].

One can extend some results on linear FM systems to convex FM systems. For
example, the fact that a linear inequality system (4) satisfying the BCQ and with
bounded solution set S is an FM system (see [5, Exercise 5.7]) admits the following
extension.

Proposition 5.4. A convex inequality system (1) satisfying the BCQ and with
bounded solution set S is a convex FM system.

Proof. By the above proof of Proposition 5.2(a), (1) satisfies the BCQ (if and)
only if so does its standard linear representation (55). Furthermore, since (55) is a
linear inequality system having the same bounded solution set S, it is an FM system
(see, e.g., [5, Exercise 5.6]). Finally, let us show that if (55) is an FM system, then so
is (1). Indeed, let

S ⊆ {x ∈ R
n| 〈a0, x〉 ≤ b0},(66)

where a0 ∈ R
n \ {0} and b0 ∈ R. Then, since (55) is an FM system and has the same

solution set S, there exists a finite subsystem of (55), say

〈aj , x〉 ≤ 〈aj , zj〉 − gj(zj) (zj ∈ R
n, j ∈ J, aj ∈ ∂gj(zj)),(67)
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where |J | < +∞, such that (65) is a consequence relation of (67). Let SJ be the
solution set of the finite subsystem

gj(x) ≤ 0 (j ∈ J)(68)

of (1) and let x ∈ SJ . Then for any zj ∈ R
n, j ∈ J, and aj ∈ ∂gj(zj), we have

〈aj , x〉 − 〈aj , zj〉 ≤ gj(x)− gj(zj) ≤ −gj(zj),(69)

so x is a solution of (67). Hence, since (65) is a consequence relation of (67), we
obtain 〈a0, x〉 ≤ b0, which, since x ∈ SJ was arbitrary, proves that (1) is an FM
system.

Remark 9. The proofs of some results on linear systems, given in [5], use certain
cones of R

n+1 associated to (4). However, let us observe that one can give, directly for
the extensions of those results to convex systems, proofs which are new even for the
case of linear inequality systems and which do not use any subsets of R

n+1. Indeed,
let us give such a proof of Proposition 5.4. Assume that S is bounded and (1) satisfies
the BCQ, and let (65) be a consequence relation of (1). Let c be the smallest number
such that 〈a0, x〉 ≤ c is still a consequence relation of (1) (such a number exists, since
otherwise S ⊆ {x ∈ R

n| 〈a0, x〉 = −∞} = ∅, a contradiction to the general assumption
made in this paper).

We claim that there exists z ∈ S such that 〈a0, z〉 = c. Indeed, by the definition
of c, we have S ⊆ {x ∈ R

n|〈a0, x〉 ≤ c} and for each k = 1, 2, . . . there exists xk ∈ S
such that 〈a0, xk〉 > c− 1

k . Then, since S is bounded and closed, hence compact, {xk}
has a subsequence converging to some z ∈ S. Clearly, 〈a0, z〉 = c, which proves our
claim.

By the above, we have S ⊆ {x ∈ R
n| 〈a0, x〉 ≤ 〈a0, z〉}, that is, a0 ∈ NS(z).

Hence, by the BCQ, there exists a finite subset J of I(z), such that

a0 ∈ co (∪i∈J∂gi(z)) .(70)

Let

SJ := {x ∈ R
n|gi(x) ≤ 0 (i ∈ J)}.(71)

Then, by (70) and J ⊆ I(z), we have a0 ∈ co(∪i∈J∂gi(z)) ⊆ NSJ
(z), that is, 〈a0, x〉 ≤

〈a0, z〉 = c for all x ∈ SJ . Thus, the inequality 〈a0, x〉 ≤ c, whence also (65), is a
consequence relation of the finite subsystem gi(x) ≤ 0 (i ∈ J) of (1), which completes
the proof.

Combining Proposition 5.4 and Corollary 4.4, there results the following corollary,
which has been proved with more complicated methods in [12, Theorem 4.5].

Corollary 5.5. If I is a compact set, gi : R
n → R (i ∈ I) is a family of convex

functions such that for each fixed x ∈ R
n the function i→ gi(x) is upper semicontin-

uous on I, (1) satisfies the Slater condition, and the solution set S is bounded, then
(1) is an FM system.

Remark 10. The definition of a convex FM system given in [12] refers to its stan-
dard linear representation being a FM system. Under the assumptions of Corollary
5.5, both definitions are equivalent.

5.3. The distance to the solution set of a convex inequality system.
Theorem 5.6. Let x ∈ R

n\S and x̂ be the projection of x onto S.
(a) If (1) satisfies the Abadie CQ, then
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dist(x, S) = sup
I0⊂I(x̂)

|I0|<+∞

sup
yj∈∂gj(x̂) (j∈I0)

max
λj≥0 (j∈I0)∥∥∥∑

j∈I0
λjyj

∥∥∥=1

∑
i∈I0

λi〈yi, x− x̂〉.(72)

(b) If (1) satisfies the BCQ, then

dist(x, S) = max
I0⊂I(x̂)

|I0|<+∞

sup
yj∈∂gj(x̂) (j∈I0)

max
λj≥0 (j∈I0)∥∥∥∑

j∈I0
λjyj

∥∥∥=1

∑
i∈I0

λi〈yi, x− x̂〉.(73)

Proof. By [17, Remark 8(b)], we have

dist(x, S) = ‖x− x̂‖ = max
y∈NS(x̂),‖y‖=1

〈y, x− x̂〉.(74)

(a) By the Abadie CQ at x̂, we have y ∈ NS(x̂) with ‖y‖ = 1 if and only if there
exist Ik0 ⊂ I(x̂), |Ik0 | < +∞, ykj ∈ ∂gj(x̂) (j ∈ Ik0 ), λkj ≥ 0 (j ∈ Ik0 ),

∥∥∑
j∈Ik0 λ

k
j y
k
j

∥∥ = 1

such that
∑
j∈Ik0 λ

k
j y
k
j → y. Thus, (72) is equivalent to (74).

(b) By the BCQ at x̂, we have y ∈ NS(x̂) with ‖y‖ = 1 if and only if there exist
I0 ⊂ I(x̂), |I0| < +∞, yj ∈ ∂gj(x̂) (j ∈ I0), λj ≥ 0 (j ∈ I0),

∥∥∑
j∈I0 λjyj

∥∥ = 1 such
that

∑
j∈I0 λjyj = y. Thus, (73) is equivalent to (74).

Remark 11. The assumption of Abadie CQ may be too strong, but at least the
assumption I(x̂) 	= ∅ (which is implied by the Abadie CQ) is necessary in order to
have (72). Indeed, if I(x̂) = ∅, then the right-hand side of (72) is meaningless.

When applied to the semi-infinite linear system (4), ∂gj(x̂) = {aj} and j ∈ I(x̂)
means that 〈aj , x̂〉 = bj , and thus Theorem 5.6 reduces to the following form.

Corollary 5.7. Let x ∈ R
n\S and x̂ be the projection of x onto S.

(a) If (4) satisfies the Abadie CQ, then

dist(x, S) = sup
I0⊂I(x̂)

|I0|<+∞

max
λj≥0 (j∈I0)∥∥∥∑

j∈I0
λjaj

∥∥∥=1

∑
i∈I0

λi[〈ai, x〉 − bi].(75)

(b) If (4) satisfies the BCQ, then

dist(x, S) = max
I0⊂I(x̂)

|I0|<+∞

max
λj≥0 (j∈I0)∥∥∥∑

j∈I0
λjaj

∥∥∥=1

∑
i∈I0

λi[〈ai, x〉 − bi].(76)

Remark 12. (a) By a well-known theorem of Carathéodory (see, e.g., [15, Corol-
lary 7.1(i), p. 94]), in each positive combination

∑
i∈I0 λiyi we may assume that

{yj |j ∈ I0} is linearly independent. That is,

N ′(x) =

{∑
i∈I0

λiyi

∣∣∣ I0 ⊂ I(x), yi ∈ ∂gi(x) (i ∈ I0),

{yj | j ∈ I0} is linearly independent, λi ≥ 0 (i ∈ I0)
}
.

(77)
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Since yi ∈ R
n (i ∈ I0), we have

|I0| ≤ n whenever {yj |j ∈ I0} is linearly independent,(78)

and hence we also have the following representation of N ′(x):

N ′(x) =

{∑
i∈I0

λiyi

∣∣∣ I0 ⊂ I(x), |I0| ≤ n, yi ∈ ∂gi(x) (i ∈ I0), λi ≥ 0 (i ∈ I0)
}
.(79)

One could rewrite the distance formulas (72), (73), (75), and (76), based on either
(77) or (79).

(b) In the particular case when I is finite, (4) satisfies the BCQ (see the observa-
tion before Example 1), and hence Corollary 5.7(b) reduces to [17, Remark 8(a)].

The following theorem shows that if the BCQ holds, then the distance of a point
to the solution set S of an arbitrary convex inequality system (1) is equal to the
distance of that point to the solution set of some finite subsystem of (1).

Theorem 5.8. If (1) satisfies the BCQ and x̂ is the projection of x onto S, then
there exists J̄ ⊆ I(x̂) with |J̄ | < +∞, such that

dist(x, S) = dist(x, SJ̄),(80)

where

SJ̄ = {z ∈ R
n| gi(z) ≤ 0 (i ∈ J̄)}.(81)

Proof. Choose any J̄ ⊆ I(x̂) for which the first max in (73) is attained. Then,
applying Theorem 5.6 to the inequality system

gj(z) ≤ 0 (j ∈ J̄)(82)

and to its solution set SJ̄ (of (81)), we obtain

dist(x, S) = sup
yj∈∂gj(x̂) (j∈J̄)

max
λj≥0 (j∈J̄)∥∥∑

j∈J̄
λjyj

∥∥=1

∑
i∈J̄

λi〈yi, x− x̂〉

≤ max
J⊆{j∈J̄|gj(x̂)=0}

max
λj≥0 (j∈J)∥∥∑
j∈J

λjyj

∥∥=1

∑
i∈J

λi〈yi, x− x̂〉 = dist(x, SJ̄),
(83)

which, since S ⊆ SJ̄ (by (2) and (81)), yields (80).
Remark 13. In the particular case when I is finite and each gi is an affine function,

(1) satisfies the BCQ, and hence Theorem 5.8 yields [2, Corollary 1.1].
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Abstract. Problems of optimization and optimal control with discontinuous costs are con-
sidered. For that purpose, we introduce some preliminary ideas of a new generalized theory of
differentiation, the main ideas of which are inspired by the work of Clarke [Classics Appl. Math. 5,
SIAM, Philadelphia, 1990]. We present two calculus rules and apply the introduced theory to the
study of some optimization and optimal control problems with discontinuous costs.
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1. Introduction. Many problems in pure and applied mathematics deal with
nondifferentiable data. For instance, nondifferentiable objective functions arise nat-
urally and frequently in optimization problems [4, section 1.1]. When theory and
techniques are to be developed to optimize (e.g., minimize) such functions, a good
generalization of the classical gradient concept seems indispensable.

Since the early 1960s several generalized theories of differentiation have been
proposed by different authors. A first major step in this direction came with the
dissertation of Rockafellar [7], who introduced subgradients for convex functions. An-
other breakthrough occurred when Clarke [2] found a way of extending Rockafellar’s
ideas to the broader class of lower semicontinuous, proper functions. This line of
ideas has given rise to an extensive amount of research, continuing to the present. An
overview of the most important results in a unifying framework may be found in the
excellent recent exposition [9]. Related approaches to nondifferentiable problems may
be found, e.g., in [11, 1, 10].

Consider a function f : R
n → R and a point x ∈ R

n. The classical gradient of
f at x is defined only when f is differentiable at x. For nondifferentiable functions
f , various generalizations of the gradient are summarized in [9], which are termed
(regular, general, proximal, Clarke) subgradients. A common and very important
feature of these subgradients is that they can be characterized geometrically in terms
of normals to the epigraph of f at the point (x, f(x)). (This is a particular instance of
the far-reaching duality between variational analysis and variational geometry.) We
thus see that these different types of subgradient only capture information about the
epigraph of f near (x, f(x)). Notice that if f is discontinuous at x, then the epigraph
of f near the point (x, f(x)) does not contain the same information as f near the point
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x. We illustrate this with a simple one-dimensional example. Consider the function

f : R→ R : x �→ f(x) =

{
αx, x < 0,

−x− 1, x ≥ 0,

with α a real parameter. Clearly, the epigraph of f in a neighborhood of (0,−1) does
not depend on the particular value of α, and thus we see that the (regular, general,
proximal, Clarke) subgradients of f at 0 are also independent of α. For various
applications, this is a favorable property. Suppose, however, that f represents a profit
that has to be maximized. In this case, if α > 0, then f has a supremum at x = 0
and we would certainly be interested in this point x = 0. We are therefore interested
in a generalized theory of differentiation that takes into account the behavior of f for
x < 0 and that is able to detect the supremum.

In the present paper we present some preliminary ideas of a generalized theory of
differentiation that

(1) incorporates information of f in a complete neighborhood of x,
(2) leads to necessary conditions for a function f to have a minimum (maximum,

infimum, supremum) at a point x,
(3) is applicable to arbitrary functions f : R

n → R.
The main ideas that have led to this paper actually were inspired by the seminal work
of Clarke [4]. The present theory coincides with Clarke’s theory when f is locally
Lipschitz but differs from it—and the other theories mentioned in [9]—when f is
more general, although there still is a close relationship.

Furthermore, in the present paper
(4) we develop two calculus rules—one for scalar multiples and a sum rule;
(5) we apply the present theory to the study of the following three problems:

(i) Unconstrained optimization. Let f : R
n → R be an arbitrary function.

Find x ∈ R
n, where f has a local minimum (maximum, infimum, supre-

mum).
(ii) Descent directions. Let f : R

n → R be an arbitrary function and let x
be a point in R

n. Find directions v ∈ R
n such that f(x+ λv) < f(x) for

λ ∈ (0, ∞) sufficiently small.
(iii) Optimal control. Given a sufficiently smooth control system ẋ = X(t, x, u)

(t ∈ R, x ∈ R
n, u ∈ U ⊆ R

s) and an arbitrary function f : R
n → R (the

endpoint cost). Minimize f(χ(t1)) over all trajectories χ of the control
system defined on a fixed interval [t0, t1] and starting in a fixed point x0.

(6) we compare obtained results with results from the literature.
This paper is organized as follows. Section 2 clarifies the relation with the litera-

ture. Sections 3 and 4 introduce a generalized theory of differentiation for arbitrary
functions from R

n to R. Section 5 presents two calculus rules. Section 6 applies the
theory of the present paper to the problem of optimizing an arbitrary function from
R
n to R. Section 7 considers the problem of finding points x, where f(x) < f(x).

Section 8 is devoted to a particular class of nonsmooth optimal control problems.
Section 9 concludes the paper.

2. Relation with the literature. Consider a function f : R
n → R and a point

x ∈ R
n. As mentioned in the introduction, the generalized theories of differentiation

mentioned in [9] only incorporate information of the epigraph of f in the neighborhood
of (x, f(x)). Here we are interested in a theory that incorporates information of f in
a complete neighborhood of the point x. Since the main ideas of the present theory
were inspired by Clarke’s seminal work [2], we start with recalling Clarke’s theory.
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Clarke’s theory [4] associates with f and x two subsets of the dual space (Rn)∗: the
generalized gradient1 of f at x, denoted ∂f(x), and the singular generalized gradient2

of f at x, denoted ∂∞f(x). See [3, 4, 5] for some applications in the calculus of
variations and optimal control theory. In order to recall the definition of ∂f(x) and
∂∞f(x), we first introduce some geometrical concepts. Let S ⊆ R

n, x ∈ S. Clarke’s
tangent cone to S at x, denoted TS(x), is defined by

TS(x) = {v ∈ R
n : ∀ sequence {xi}∞i=1 in S converging to x

∀ sequence {ti}∞i=1 in (0, ∞) converging to 0

∃ sequence {vi}∞i=1 in R
n converging to v : xi + tivi ∈ S ∀i}.

(1)

Clarke’s normal cone to S at x, denoted NS(x), is defined by

NS(x) = {ζ ∈ (Rn)∗ : ζ(v) ≤ 0 ∀v ∈ TS(x)}.(2)

Given an arbitrary function f : R
n → R. The epigraph of f , denoted epi f , is the

following subset of R
n+1:

epi f = {(x, r) ∈ R
n × R : r ≥ f(x)}.(3)

Clarke’s generalized gradient ∂f(x) and Clarke’s singular generalized gradient ∂∞f(x)
are defined as follows:

∂f(x) ={ζ ∈ (Rn)∗ : (ζ,−1) ∈ Nepi f (x, f(x))},(4)

∂∞f(x) ={ζ ∈ (Rn)∗ : (ζ, 0) ∈ Nepi f (x, f(x))}.(5)

If f is continuously differentiable at x, then ∂f(x) is just the singleton whose element
is the classical gradient and ∂∞f(x) = {0}.

We are now about to describe the approach taken in the present paper. How-
ever, before we do this, we first recall an alternative, equivalent definition of Clarke’s
generalized gradient valid for locally Lipschitz functions [4]. When f : R

n → R is a
locally Lipschitz function and x ∈ R, an alternative definition of ∂f(x) is based on
Clarke’s generalized directional derivative. Clarke’s generalized directional derivative
of f at x in the direction v ∈ R, denoted f0(x; v), is defined as follows:

f0(x; v) = inf
ε>0

sup
‖x−x‖<ε, 0<t<ε

f(x+ tv)− f(x)
t

.(6)

Notice that, since f is locally Lipschitz, f0(x; v) is a real number. ∂f(x) may then
be defined as the set

{ζ ∈ (Rn)∗ : ζ(v) ≤ f0(x; v) ∀v ∈ R
n}.(7)

The starting point of the present work was the observation that
(1) The objects defined by (6) and (7) capture information of f in a complete

neighborhood of x, since all states x with ‖x− x‖ < ε are considered in (6).

1See [4, Definition 2.4.10]. Following the terminology of [9], Clarke’s generalized gradient is the
set of Clarke subgradients.

2See [4, p. 102]. Following the terminology of [9], Clarke’s singular generalized gradient is the
set of Clarke horizon subgradients.
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(2) Formulas (6) and (7) still make sense when f is an arbitrary function from R
n

to R, not necessarily locally Lipschitz, provided we allow f0(x; v) to be an extended
real number. This leads to a new generalized theory of differentiation, which will be
studied in the present paper.

Since the subset of (Rn)∗ obtained in this way will, in general, not coincide with
Clarke’s generalized gradient ∂f(x), we introduce a new term, the semigradient of f
at x, and denote it by SGf(x). It is clear from the above discussion that ∂f(x) and
SGf(x) coincide when f is locally Lipschitz at x. (In this case, ∂f(x) and SGf(x)
may be used interchangeably. By convention, we will always use the notation ∂f(x)
and speak about Clarke’s generalized gradient when f is explicitly assumed to be
locally Lipschitz at x.) In addition, we will introduce a singular semigradient, denoted
SG∞f(x), which will play a role similar to ∂∞f(x).

3. Generalized directional derivative. For functions f : R
n → R which are

locally Lipschitz, Clarke introduced the generalized directional derivative (e.g., [4]).
In this section we investigate how this concept extends toward arbitrary functions
f : R

n → R. The generalized directional derivative for arbitrary f will serve as an
intermediate step in defining what we call the (singular) semigradient for arbitrary f .
This will be done in section 4.

Definition 3.1. Assume an arbitrary function f : R
n → R. Let x, v ∈ R

n. The
generalized directional derivative of f at x in the direction v, denoted f0(x; v), is the
extended real number defined by

f0(x; v) = inf
ε>0

sup
‖x−x‖<ε, 0<t<ε

f(x+ tv)− f(x)
t

(8)

with ‖ · ‖ the Euclidean norm on R
n.

It is clear that f0(x; 0) = 0.

Remark 1. Formula (8) is the one Clarke used in [4] to define the generalized
directional derivative in the case of f being locally Lipschitz. In that case, f0(x; v) is
a real number. Formula (8) makes sense for arbitrary f provided we allow f0(x; v) to
be an extended real number.

The following proposition provides an alternative characterization of f0(x; v).
(The proof is elementary and therefore omitted.)

Proposition 3.2. f0(x; v) is the maximum of lim supi→∞
f(xi+tiv)−f(xi)

ti
over

all the sequences {xi}∞i=1 in R
n converging to x and {ti}∞i=1 in (0, ∞) converging to 0.

In the remainder of this section we will study some properties of the generalized
directional derivative for arbitrary functions f : R

n → R.

Proposition 3.3. Assume an arbitrary function f : R
n → R. Let x ∈ R

n. The
function f0(x; ·) : R

n → R ∪ {−∞,∞} is
(i) subadditive, that is, f0(x; v+w) ≤ f0(x; v) + f0(x;w) ∀v, w ∈ R

n for which
the sum in the right-hand side is defined;3

(ii) positively homogeneous, that is, f0(x;λv) = λf0(x; v) ∀v ∈ R
n, λ ∈ (0, ∞);

(iii) convex.

Proof. The proof of (i) and (ii) is similar to the proof in the case of f being locally
Lipschitz [4, Proposition 2.1.1.(a)] except for some straightforward modifications due
to f0(x; ·) being extended real valued. We prove (iii). Take v, w ∈ R

n and λ ∈ (0, 1).

3In this paper, we follow the convention that the sums −∞+∞ and ∞+(−∞) are not defined.
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By (i) and (ii)

f0(x; (1− λ)v + λw) ≤ (1− λ)f0(x; v) + λf0(x;w)(9)

if the sum in the right-hand side is defined. Hence, f is convex by [8, Theorem
4.2].

The previous proposition reveals that f0(x; ·) is a positively homogeneous convex
function. (Positively homogeneous) convex functions are studied, e.g., in [8]. We
recall some notions from that reference. The effective domain of f0(x; ·), denoted
dom f0(x; ·), is the set {v ∈ R

n : f0(x; v) < ∞}. f0(x; ·) is called proper iff it only
takes values in R ∪ {∞}. Otherwise, f0(x; ·) is called improper.4 Let C be a subset
of R

n. C is a cone iff λv ∈ C ∀λ ∈ (0, ∞) and v ∈ C. Let C be a convex subset of
R
n. The relative interior of C, denoted riC, is the interior which results when C is

regarded as a subset of its affine hull. The relative boundary of C, denoted rbdyC, is
defined as clC \ riC, with clC the closure of the set C.

Proposition 3.4. Assume an arbitrary function f : R
n → R. Let x ∈ R

n.
(i) dom f0(x; ·), ri dom f0(x; ·), and cl dom f0(x; ·) are nonempty convex cones.
(ii) If f0(x; ·) is proper, it is real valued continuous on ri dom f0(x; ·). If f0(x; ·)

is improper, it is identically −∞ on ri dom f0(x; ·).
Proof. dom f0(x; ·) is nonempty since f0(x; 0) = 0 <∞, it is convex since f0(x; ·)

is a convex function, and it is a cone since f0(x; ·) is positively homogeneous. Fur-
thermore the relative interior and the closure of a nonempty convex cone are again
nonempty convex cones [8, pp. 45, 50]. This establishes (i). (ii) follows from [8,
Theorems 10.1 and 7.2].

4. Semigradient and singular semigradient. This section introduces the
semigradient and the singular semigradient of an arbitrary function f : R

n → R at a
point x ∈ R

n. The semigradient coincides with Clarke’s generalized gradient when f
is locally Lipschitz.

Definition 4.1. Assume an arbitrary function f : R
n → R. Let x ∈ R

n. The
semigradient of f at x, denoted SGf(x), and the singular semigradient of f at x,
denoted SG∞f(x), are subsets of (Rn)∗, the dual of the vector space R

n, defined by

SGf(x) = {ζ ∈ (Rn)∗ : ζ(v) ≤ f0(x; v) ∀v ∈ R
n},(10)

SG∞f(x) = (dom f0(x; ·))⊥,(11)

where (dom f0(x; ·))⊥ denotes the polar5 of dom f0(x; ·).
Remark 2. Formula (10) is the one Clarke used in [4] to define the generalized

gradient for locally Lipschitz f . This formula still makes sense when working with
arbitrary f . Formula (11) is introduced in the present paper. The resulting object
SG∞f(x) will turn out to play a role similar to Clarke’s singular generalized gradient
∂∞f(x) for arbitrary f .

SGf(x) is a closed convex set, possibly empty. This follows from [8, Corollary
13.2.1]. SG∞f(x) is a closed convex cone containing the origin.

The relation between the (singular) semigradient and Clarke’s (singular) general-
ized gradient is the subject of the following theorem.

4This coincides with the notion of (im)properness in [8] since f0(x; 0) = 0 <∞.
5The polar of a nonempty convex set C ∈ R

n, denoted C⊥, is the nonempty closed convex cone
{ζ ∈ (Rn)∗ : ζ(v) ≤ 0 ∀v ∈ C}. The polar of a nonempty convex set D ∈ (Rn)∗, denoted D⊥, is the
nonempty closed convex cone {v ∈ R

n : ζ(v) ≤ 0 ∀ζ ∈ D}.
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Theorem 4.2 (relation with Clarke’s theory). Let x ∈ R
n. For arbitrary f :

R
n → R the following inclusions hold:

∂f(x) ⊆ SGf(x),(12)

{0} ⊆ ∂∞f(x) ⊆ SG∞f(x).(13)

In the particular case that f : R
n → R is locally Lipschitz, these inclusions reduce to

∂f(x) = SGf(x),(14)

{0} = ∂∞f(x) = SG∞f(x).(15)

Proof. The proof of (12) is similar to the proof of [4, Theorem 2.4.9.(i), “if” part],
except for obvious modifications since now f0(x; ·) is extended real valued. The proof
of (13) is similar to the proof of (12). (14) is proved in [4]. Finally, when f is locally
Lipschitz, f0(x; ·) is real valued and hence SG∞f(x) = {0}. Together with (13), this
establishes (15).

In the remainder of this section, we study some properties of SGf(x). In particu-
lar, we clarify the relationship between SGf(x) and f0(x; ·). As said above, SGf(x)
is a closed convex subset of (Rn)∗, possibly empty. We recall some known facts about
closed convex subsets of (Rn)∗ (e.g., [8]). Let C be a closed convex subset of (Rn)∗.
The support function σC of C is defined by

σC : R
n → R ∪ {−∞,∞} : v �→ sup

ζ∈C
ζ(v).(16)

C and σC contain exactly the same information. That is, if C is known, then σC
is known by (16), and, conversely, if σC is known, then C may be recovered by the
following formula:

C = {ζ ∈ (Rn)∗ : ζ(v) ≤ σC(v) ∀v ∈ R
n}.(17)

When f : R
n → R is locally Lipschitz, then f0(x; ·) is precisely the support function

of ∂f(x) [4]. In other words, it is exactly equivalent to know f0(x; ·) or ∂f(x) when
f is locally Lipschitz. However, this duality does not extend to the case of arbitrary
functions f as studied in the present paper. That is, for arbitrary f : R

n → R, f0(x; ·)
might not be the support function of SGf(x), as may be seen from simple examples.6

Although f0(x; ·) and the support function of SGf(x) are not necessarily the same,
there still is a close relationship between these two functions. In order to reveal
this relationship, we recall the following notion from [8]. The closure of the convex
function f0(x; ·) : R

n → R∪ {−∞,∞}, denoted cl f0(x; ·), is another convex function
from R

n to R∪{−∞,∞} defined as follows. If f0(x; ·) is proper, then cl f0(x; ·) is the
greatest lower semicontinuous function majorized by f0(x; ·). If f0(x; ·) is improper,
then cl f0(x; ·) is identically equal to −∞.7 The following proposition essentially says
that f0(x; ·) and the support function of SGf(x) coincide on ri dom f0(x; ·).

Proposition 4.3. Assume an arbitrary function f : R
n → R. Let x ∈ R

n.
(i) The support function of the closed convex set SGf(x) is cl f0(x; ·).
(ii) If f0(x; ·) is proper, then cl f0(x; ·)(v) = f0(x; v)∀v ∈ R

n\rbdy dom f0(x; ·).
If f0(x; ·) is improper, then cl f0(x; ·)(v) = f0(x; v) ∀v ∈ ri dom f0(x; ·).

Proof. (i) follows from [8, Corollary 13.2.1] since f0(x; 0) = 0. If f0(x; ·) is proper,
then (ii) follows from [8, Theorem 7.4]. If f0(x; ·) is improper, then (ii) follows from
Proposition 3.4(ii).

6Take, for example, function f2 from Example 2 at the origin.
7This coincides with the definition of closure of a function from [8] since f0(x; 0) = 0.
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5. Calculus. In this section, two calculus rules will be presented: a calculus rule
for scalar multiples and a sum rule.

5.1. Scalar multiples.
Theorem 5.1. Assume an arbitrary function f : R

n → R and a nonzero λ ∈ R.
Let x ∈ R

n. Then,

SG(λf)(x) = λSGf(x),(18)

SG∞(λf)(x) = λSG∞f(x).(19)

Remark 3. Equations (18) and (19) may not hold if λ = 0. Clearly, if λ = 0,
then SG(λf)(x) = {0} and SG∞(λf)(x) = {0}. Notice that SG(0f)(x) = {0} may
be different from 0SGf(x), since SGf(x) may be empty.

Notice that for the generalized theories of differentiation that are summarized in
[9], the corresponding calculus rule for scalar multiples holds only for λ > 0 [9, p.
438]. This is illustrated in the following example.

Example 1. Consider f1 : R→ R : x �→√|x|. We have the equality

R = SG(−f1)(0) = −SGf1(0) = R.

Notice that any real number is a (regular, general, proximal, Clarke) subgradient for f1
at 0, whereas −f1 does not have any (regular, general, proximal, Clarke) subgradient
at 0.

Proof of Theorem 5.1. Modulo modifications for f0(x; ·) being extended real
valued, the proof is the same as in the locally Lipschitz case [4].

5.2. Sum rule.
Theorem 5.2. Assume two arbitrary functions f and g from R

n to R. Let
x ∈ R

n. Then, at least one of the following two cases holds.
(1) Good case.

SG(f + g)(x) ⊆ cl (SGf(x) + SGg(x)),(20)

SG∞(f + g)(x) ⊆ cl (SG∞f(x) + SG∞g(x)).(21)

(2) Bad case. There is a nonzero ζ ∈ SG∞f(x) and a nonzero ξ ∈ SG∞g(x)
such that (a) ζ + ξ = 0 and (b) −ζ �∈ SG∞f(x) or −ξ �∈ SG∞g(x).

We illustrate the role of the bad case in Theorem 5.2 with a simple example, as
follows.

Example 2. Consider

f2 : R
2 → R : (x1, x2) �→

{
1 if x1 < x2

2,

0 if x1 ≥ x2
2,

and f3 : R
2 → R : (x1, x2) �→ f2(−x1, x2). The bad case is satisfied, and indeed we

see that the expected sum rule (the good case) does not hold:

R
2 = SG(f2 + f3)(0, 0) �⊆ cl (SGf2(0, 0) + SGf3(0, 0)) = R× {0},

R
2 = SG∞(f2 + f3)(0, 0) �⊆ cl (SG∞f2(0, 0) + SG∞f3(0, 0)) = R× {0}.
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There is a remarkable similarity between Theorem 5.2 and the sum rule for
Clarke’s generalized gradients [5, Proposition 5A.4.]:8 let f and g be lower semi-
continuous functions from R

n to R. Let x ∈ R
n. Then, at least one of the following

two cases holds.

(1) Good case.

∂(f + g)(x) ⊆ ∂f(x) + ∂g(x),(22)

∂∞(f + g)(x) ⊆ ∂∞f(x) + ∂∞g(x).(23)

(2) Bad case. There is a nonzero ζ ∈ ∂∞f(x) and a nonzero ξ ∈ ∂∞g(x) such
that ζ + ξ = 0.

Notice that, unlike the sum rule for Clarke’s generalized gradients, Theorem 5.2
does not require f and g to be lower semicontinuous. Furthermore, the respective bad
cases are somewhat different. We illustrate this with two simple examples, as follows.

Example 3. Consider

f4 : R
2 → R : (x1, x2) �→

{
−1 if x1 = 0,

0 if x1 �= 0,

and f5 = −f4. We leave it as an exercise to the reader to check that our bad case is
not fulfilled, and hence the good case holds. Indeed,

{(0, 0)} = SG(f4 + f5)(0, 0) ⊆ cl (SGf4(0, 0) + SGf5(0, 0)) = R× {0},
{(0, 0)} = SG∞(f4 + f5)(0, 0) ⊆ cl (SG∞f4(0, 0) + SG∞f5(0, 0)) = R× {0}.

The sum rule for Clarke’s generalized gradients, however, is not applicable, since f5
is not lower semicontinuous. Indeed,

{(0, 0)} = ∂(f4 + f5)(0, 0) �⊆ ∂f4(0, 0) + ∂f5(0, 0) = ∅,
{(0, 0)} = ∂∞(f4 + f5)(0, 0) ⊆ ∂∞f4(0, 0) + ∂

∞f5(0, 0) = R× {0}.

Example 4. Consider f6 : R
2 → R : (x1, x2) �→

√|x1| and f7 = −f6. Our bad
case is not fulfilled due to the second condition (b), and hence the good case holds:

{(0, 0)} = SG(f6 + f7)(0, 0) ⊆ cl (SGf6(0, 0) + SGf7(0, 0)) = R× {0},
{(0, 0)} = SG∞(f6 + f7)(0, 0) ⊆ cl (SG∞f6(0, 0) + SG∞f7(0, 0)) = R× {0}.

Both functions are lower semicontinuous, but the bad case of Clarke’s sum rule is
fulfilled, and indeed,

{(0, 0)} = ∂(f6 + f7)(0, 0) �⊆ ∂f6(0, 0) + ∂f7(0, 0) = ∅,
{(0, 0)} = ∂∞(f6 + f7)(0, 0) ⊆ ∂∞f6(0, 0) + ∂

∞f7(0, 0) = R× {0}.

Proof of Theorem 5.2. This theorem follows immediately from Lemmas A.1 to
A.4 stated and proved in the appendix.

8The sum rule in that reference is somewhat more general than the version which we state here:
in that reference it applies to the sum of a finite number of functions from R

n to R ∪ {∞}.
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6. Local optimization. In this section we consider the problem of optimizing
a given function f : R

n → R. Consider, for example, the function

f : R→ R : x �→
{
−x if x ≤ 0,

x− 1 if x > 0.

This function has a local infimum (which is actually global) at x = 0. If this function
represents a certain cost, and we want to reduce the cost, then we would certainly
be interested in the point x = 0. Hence it might be interesting to have a generalized
theory of differentiation that detects this infimum. As argued in the introduction,
the (regular, general, proximal, Clarke) subgradients studied, e.g., in [9] are not a
suitable tool with which to detect this infimum. This is because these objects only
incorporate information of the epigraph of f near (0, 0) and thus discard the behavior
of f for x > 0, which is crucial for f to have an infimum or not. Therefore, although
this function does have an infimum at x = 0, the number 0 is not a (regular, general,
proximal, Clarke) subgradient of f at 0. On the other hand, the semigradient does
detect this infimum; that is,

0 ∈ (−∞, 1] = SGf(0).

This is because the semigradient is defined using the generalized directional derivative,
and this latter uses information of f in complete neighborhoods of x and hence takes
into account the behavior of f for x > 0 equally well as for x < 0. In general it turns
out that the semigradient is a suitable tool with which to detect minima, maxima,
finite infima, and finite suprema.

Definition 6.1. Let x be a point in R
n. A function f : R

n → R is said to
have a local infimum at x if there exists a neighborhood U of x such that f(x̂) ≥
supε>0 inf‖x−x‖<ε f(x) ∀x̂ ∈ U . In this case supε>0 inf‖x−x‖<ε f(x) is called a local
infimum. Similar definitions are made for a local supremum.

Theorem 6.2 (local optimization). Let f : R
n → R be an arbitrary function and

let x be a point in R
n.

(i) If f has a local minimum or maximum at x, then 0 ∈ SGf(x).
(ii) If (a) f has a local infimum or supremum at x and (b) this local infimum

or supremum is finite, then 0 ∈ SGf(x).
We illustrate this theorem with two examples. The first example concerns the

detection of maxima.
Example 5. Consider f8 : R → R : x �→ −√|x|. This function has a local

maximum (which is actually global) at x = 0, and one verifies easily that 0 ∈ R =
SGf8(0) in agreement with Theorem 6.2. To compare, notice that f8 does not have
a (regular, general, proximal, Clarke) subgradient at 0 and thus in particular 0 is not
a (regular, general, proximal, Clarke) subgradient of f8 at 0.

The second example shows that infinite infima or suprema might not be detected
by the semigradient.

Example 6. Consider

f10 : R
2 → R : (x1, x2) �→

{
ln |x1| − x2 if x1 �= 0,

−x2 if x1 = 0.

Clearly f10 has an infimum at (0, 0). This infimum equals −∞. However, 0 �∈
SGf10(0, 0) since f

0
10((0, 0); (0, 1)) = −1.
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Proof of Theorem 6.2 (i) follows immediately from (ii) so we proceed with the proof
of (ii). Suppose f has a finite local infimum at x. Denote this finite local infimum by
m; that is, m = supε>0 inf‖x−x‖<ε f(x) ∈ R. Let, for δ ∈ (0, ∞), Bnδ (x) denote the
open ball in R

n centered at x with radius δ. By definition, there is a δ ∈ (0, ∞) such
that f(x̂) ≥ m ∀x̂ ∈ Bnδ (x). Furthermore, we may construct a sequence {xi}∞i=1 in
Bnδ

2

(x) converging to x such that limi→∞ f(xi) = m. Fix a nonzero v ∈ R
n. We will

show that f0(x; v) ≥ 0. Let ti =
δ

2i‖v‖ (i = 1, 2, . . . ). We construct a subsequence of

{xi}∞i=1 as follows. For every i = 1, 2, . . . , we pick an element xi′ from this sequence
for which f(x̂) ≥ f(xi′)− δ

i2i‖v‖ ∀ x̂ ∈ Bnδ (x). Hence, after relabeling this subsequence

as {xi}∞i=1,

f(xi + tiv)− f(xi)
ti

≥
− δ
i2i‖v‖
δ

2i‖v‖
=
−1
i
.

From this, lim supi→∞
f(xi+tiv)−f(xi)

ti
≥ 0. Using Proposition 3.2 we have thus proved

that, for all nonzero v ∈ R
n, f0(x; v) ≥ 0. Therefore we conclude 0 ∈ SGf(x). The

proof of the supremum case is immediate from the observation that SG(−f)(x) =
−SGf(x).

7. Descent directions. Assume an arbitrary function f : R
n → R and a point

x ∈ R
n. This section shows how SGf(x) and SG∞f(x) may lead to information

about those points x where f(x) < f(x).
Theorem 7.1 (descent directions). Assume an arbitrary function f : R

n → R

and a point x ∈ R
n.

(i) If 0 �∈ SGf(x) �= ∅, then at least one of the following two cases holds.
(1) Good case. For every nonempty closed convex cone K ⊆ ri (SGf(x)⊥)∪{0},

there is a neighborhood U of 0 in R
n with the property

f(x) < f(x) ∀x ∈ {x}+ (U ∩K \ {0}).(24)

(2) Bad case. There is a nonzero ζ ∈ closed convex cone generated by9 SGf(x)
and a nonzero ξ ∈ SG∞f(x) such that (a) ζ+ ξ = 0 and (b) −ζ �∈ closed convex cone
generated by SGf(x) or −ξ �∈ SG∞f(x).

(ii) If SGf(x) = ∅, then, for every nonempty closed convex cone K contained
in ri (SG∞f(x)⊥) ∪ {0}, there is a neighborhood U of 0 in R

n with the property

f(x) < f(x) ∀x ∈ {x}+ (U ∩K \ {0}).(25)

Proof. This theorem follows immediately from Lemmas A.5 and A.6 in the ap-
pendix.

We illustrate this theorem with three examples.
Example 7. Let

f11 : R
2 → R : (x1, x2) �→

{
x1 if |x2| ≤ −x1,

x1 + 1 if |x2| > −x1.

SGf11(0, 0) = ∪λ∈[0,∞){λ+1}× [−λ, λ] and SG∞f11(0, 0) = ∪λ∈[0,∞){λ}× [−λ, λ].
Part (i) of Theorem 7.1 applies and the bad case is not fulfilled. Hence the good case
holds with ri (SGf11(0, 0)

⊥) ∪ {(0, 0)} = (∪λ∈(0,∞){−λ} × (−λ, λ)) ∪ {(0, 0)}.
9The closed convex cone generated by SGf(x) is the set cl (∪λ∈(0,∞)λSGf(x)).
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Example 8. Let

f12 : R
2 → R : (x1, x2) �→

{
x1 if |x2| ≥ x1,

x1 + 1 if |x2| < x1.

SGf12(0, 0) = ∪λ∈[0,∞){λ+1}× [−λ, λ] and SG∞f12(0, 0) = ∪λ∈[0,∞){λ}× [−λ, λ].
Part (i) of Theorem 7.1 applies and the bad case is not fulfilled. Hence the good case
holds with ri (SGf12(0, 0)

⊥) ∪ {(0, 0)} = (∪λ∈(0,∞){−λ} × (−λ, λ)) ∪ {(0, 0)}.
Example 9. Let

f13 : R
2 → R : (x1, x2) �→

{
(x1)

1
3 if |x2| ≤ −x1,

(x1)
1
3 + 1 if |x2| > −x1.

SGf13(0, 0) = ∅ and SG∞f13(0, 0) = ∪λ∈[0,∞){λ}× [−λ, λ]. Part (ii) of Theorem 7.1

applies with ri (SG∞f13(0, 0)
⊥) ∪ {(0, 0)} = (∪λ∈(0,∞){−λ} × (−λ, λ)) ∪ {(0, 0)}.

If we compare the estimates given by Theorem 7.1 with the actual descent direc-
tions in these examples, then we see the following. In Examples 7 and 9, Theorem
7.1 gives very good estimates; in Example 8 it gives conservative estimates.

8. Optimal control. Assume an arbitrary function f : R
n → R and a point

x∗ ∈ R
n. We will apply the results of the previous section. We will show how

SGf(x∗) and SG∞f(x∗) may lead to a linear approximation of the set S = {x ∈
R
n : f(x) < f(x∗)} ∪ {x∗} at the point x∗. The linear approximation considered here

is a generalized approximating cone [10]. This will provide a possible application of
(singular) semigradients to a class of nonsmooth optimal control problems.

The definition of a generalized approximating cone may be found in [10] and will
not be repeated here. Instead we state a sufficient condition for a cone D in R

n to be
a generalized approximating cone for a set S ⊆ R

n at a point x∗ ∈ S.
Lemma 8.1. Let S ⊆ R

n, x∗ ∈ S. A closed convex cone D in R
n, which is

the closure of the union of an increasing sequence D1 ⊆ D2 ⊆ D3 ⊆ · · · of closed
convex cones such that for each i = 1, 2, . . . there exists a neighborhood Ui of 0 in R

n

such that the image of the map Ui ∩ Di → R
n : v �→ x∗ + v is contained in S, is a

generalized approximating cone for S at x∗.
Proof. This lemma follows immediately from [10, Definition 8].
Let S be the particular set {x ∈ R

n : f(x) < f(x∗)} ∪ {x∗}. The following state-
ment shows how SGf(x∗) and SG∞f(x∗) may lead to a generalized approximating
cone for this particular S at x∗.

Theorem 8.2 (generalized approximating cone). Assume an arbitrary function
f : R

n → R and a point x∗ ∈ R
n. Let S be the set {x ∈ R

n : f(x) < f(x∗)} ∪ {x∗}.
(i) If 0 �∈ SGf(x∗) �= ∅, then at least one of the following two cases holds.

(1) Good case. SGf(x∗)⊥ is a generalized approximating cone for S at x∗.
(2) Bad case. There is a nonzero ζ ∈ closed convex cone generated by SGf(x∗)

and a nonzero ξ ∈ SG∞f(x∗) such that (a) ζ + ξ = 0 and (b) −ζ �∈ closed convex
cone generated by SGf(x∗) or −ξ �∈ SG∞f(x∗).

(ii) If SGf(x∗) = ∅, then SG∞f(x∗)⊥ is a generalized approximating cone for
S at x∗.

Proof. This theorem follows from Lemmas A.6 and A.7 in the appendix.
We now show how this relates to optimal control. This will provide a possible

application of the semigradient and the singular semigradient in optimal control prob-
lems with discontinuous costs. The following nonsmooth optimal control problem is
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considered: Assume a sufficiently smooth10 control system ẋ = X(t, x, u) (t ∈ R,
x ∈ R

n, u ∈ U ⊆ R
s) and an arbitrary function f : R

n → R, the endpoint cost. The
optimal control problem asks for minimizing f(χ(t1)) over all trajectories χ of the
control system defined on a fixed time interval [t0, t1] and starting in a fixed point x0.

One way to look at this problem is as follows. Pick a reference trajectory χ∗

of the control system (corresponding to some open-loop control) defined on [t0, t1]
starting in x0. Let x∗ = χ∗(t1). We would like to test this reference trajectory for
optimality. Let S be the set {x ∈ R

n : f(x) < f(x∗)}∪{x∗}. Clearly, a necessary and
sufficient condition for χ∗ to solve the optimal control problem is that there does not
exist a trajectory of the control system defined on [t0, t1] starting in x0 with endpoint
in S \ {x∗}. In other words, the set of points reachable from x0 over the interval
[t0, t1] and the set S should have no common points other than x∗. Under suitable
technical hypotheses, necessary conditions for χ∗ to have this property may be found
in [10]. These necessary conditions require a generalized approximating cone for S at
x∗. It is at this point that SGf(x∗) and SG∞f(x∗) may play a possible role. Indeed,
Theorem 8.2 shows how SGf(x∗) and SG∞f(x∗) may lead to such a generalized
approximating cone.

Remark 4. Theorem 8.2 provides, under certain conditions, a generalized approx-
imating cone for S at x∗. However, a generalized approximating cone for S at x∗ is not
a uniquely defined concept. There might be other generalized approximating cones
for S at x∗ which strictly contain the one provided by Theorem 8.2. These could give
stronger results when plugged into the maximum principle of optimal control as stated
in [10]. Take, for example, the function f12 from Example 8 and x∗ = (0, 0). In this
case, S = ((−∞, 0)× R)∪{(0, 0)}. The set (−∞, 0]×R is a generalized approximat-
ing cone for S at (0, 0) that strictly contains SGf12(0, 0)

⊥ = ∪λ∈[0,∞){−λ}× [−λ, λ].
This latter is the generalized approximating cone provided by Theorem 8.2. Notice,
however, that for the functions f11 and f13 (Examples 7 and 9) the generalized ap-
proximating cone provided by Theorem 8.2 is the best possible one.

9. Conclusion. We have reported some preliminary ideas of a generalized theory
of differentiation for arbitrary functions from R

n to R. The proposed theory associates
with an arbitrary function f : R

n → R and a point x ∈ R
n two subsets of the dual

space (Rn)∗ which we have called the semigradient and the singular semigradient of
f at x. The proposed theory is closely related to and inspired by Clarke’s nonsmooth
analysis [4] and actually coincides with it when the functions involved are locally
Lipschitz.

We have stated two calculus rules and applied the theory to the study of three
nonsmooth optimization problems: we considered the problem of optimizing an arbi-
trary function f from R

n to R, we have shown how the (singular) semigradient leads
to information about those points x where f(x) < f(x), and finally we have described
a possible role for the (singular) semigradient to play in optimal control problems
with discontinuous costs.

The present approach differs from other approaches—(regular, general, proximal,
Clarke) subgradients—studied in [9] in the following respect: the (regular, general,
proximal, Clarke) subgradients can be characterized geometrically in terms of normals
to the epigraph of f . This implies in particular that these subgradients only incor-
porate information of the epigraph of f in the neighborhood of (x, f(x)). Therefore,

10We omit the precise specification of technical details for the control system, since this will not
be needed in the present discussion.
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when f is discontinuous, these subgradients do not take into account the full behavior
of f in a complete neighborhood of the point x. This is in contrast with the (sin-
gular) semigradient, which by definition incorporates information of f in a complete
neighborhood of x. Accordingly, the semigradient turns out to be a valuable tool in
optimization problems with discontinuous costs, where minima, maxima, infima, and
suprema are sought.

Appendix. Technical lemmas.

Lemma A.1. Assume two arbitrary functions f and g from R
n to R. Let x ∈

R
n. Then, ri dom f0(x; ·) ∩ ri dom g0(x; ·) = ∅ iff there is a nonzero ζ ∈ SG∞f(x)

and a nonzero ξ ∈ SG∞g(x) such that (a) ζ + ξ = 0 and (b) −ζ �∈ SG∞f(x) or
−ξ �∈ SG∞g(x).

Proof. By [8, Theorem 11.3], ri dom f0(x; ·) ∩ ri dom g0(x; ·) = ∅ iff there exists a
hyper plane π separating dom f0(x; ·) and dom g0(x; ·) properly. This means (a) that
dom f0(x; ·) is contained in one closed half-space associated with π and dom g0(x; ·)
in the opposite closed half-space, and (b) that dom f0(x; ·) and dom g0(x; ·) are not
both contained in π itself. Since both dom f0(x; ·) and dom g0(x; ·) contain the origin,
this hyper plane π has to contain the origin. Hence, this is equivalent to the existence
of a nonzero ζ ∈ (dom f0(x; ·))⊥ and a nonzero ξ ∈ (dom g0(x; ·))⊥ such that (a)
ζ + ξ = 0 and (b) −ζ �∈ (dom f0(x; ·))⊥ or −ξ �∈ (dom g0(x; ·))⊥. By the definition of
the singular semigradient (Definition 4.1), this establishes the lemma.

Lemma A.2. Assume two arbitrary functions f and g from R
n to R. Let x ∈ R

n.
If ri dom f0(x; ·) ∩ ri dom g0(x; ·) �= ∅, then

(i) (a) f0(x; v) + g0(x; v) = −∞ for some v ∈ R
n or (b) f0(x; ·) and g0(x; ·)

are proper convex functions and cl f0(x; ·) + cl g0(x; ·) ≥ cl (f0(x; ·) + g0(x; ·)),11
(ii) cl dom f0(x; ·) ∩ cl dom g0(x; ·) ⊆ cl (dom f0(x; ·) ∩ dom g0(x; ·)).
Proof. We first prove (i). If f0(x; ·) or g0(x; ·) is an improper convex function,

then f0(x; v) + g0(x; v) is defined and equal to −∞ for every v ∈ ri dom f0(x; ·) ∩
ri dom g0(x; ·) (by Proposition 3.4). Suppose now that both f0(x; ·) and g0(x; ·) are
proper convex functions. We will show that in this case cl f0(x; ·) + cl g0(x; ·) ≥
cl (f0(x; ·)+g0(x; ·)). First of all, notice that, by the properness of f0(x; ·) and g0(x; ·)
and by [8, Theorems 5.2 and 7.4], the left-hand and right-hand sides are defined. Take
an arbitrary w ∈ R

n. Pick a v ∈ ri dom f0(x; ·)∩ ri dom g0(x; ·). For λ ∈ [0, 1), define
wλ as (1−λ)v+λw. By definition, f0(x; ·)(wλ)+g0(x; ·)(wλ) = (f0(x; ·)+g0(x; ·))(wλ).
On the one hand, by [8, Theorem 7.5], the two terms in the left-hand side converge,
as λ ↑ 1, to, respectively, cl f0(x; ·)(w) and cl g0(x; ·)(w). The right-hand side then
converges, as λ ↑ 1, to cl f0(x; ·)(w) + cl g0(x; ·)(w). On the other hand, by [8, p. 52]
this limit is ≥ cl (f0(x; ·) + g0(x; ·))(w). This establishes (i).

We prove (ii). Pick an arbitrary v ∈ ri dom f0(x; ·) ∩ ri dom g0(x; ·). For each
w ∈ cl dom f0(x; ·)∩ cl dom g0(x; ·), (1−λ)v+λw ∈ ri dom f0(x; ·)∩ ri dom g0(x; ·) for
all λ ∈ [0, 1) by [8, Theorem 6.1]. Hence w belongs to the closure of dom f0(x; ·) ∩
dom g0(x; ·). This proves (ii).

Lemma A.3. Assume two arbitrary functions f and g from R
n to R. Let x ∈ R

n.
If (a) f0(x; v)+g0(x; v) = −∞ for some v ∈ R

n or (b) f0(x; ·) and g0(x; ·) are proper
convex functions and cl f0(x; ·) + cl g0(x; ·) ≥ cl (f0(x; ·) + g0(x; ·)), then

SG(f + g)(x) ⊆ cl (SGf(x) + SGg(x)).(26)

11The closure of a convex function c : R
n → R∪{∞}, denoted cl c, is defined as the greatest lower

semicontinuous function from R
n to R ∪ {∞} majorized by c.
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Proof. First of all, notice that

(f + g)0(x; v) ≤ f0(x; v) + g0(x; v)(27)

for all v ∈ R
n for which the sum in the right-hand side is defined. This follows readily

from Proposition 3.2. Consider case (a). If f0(x; v)+g0(x; v) = −∞ for some v ∈ R
n,

then (f + g)0(x; ·) is improper by (27) and hence SG(f + g)(x) = ∅. In this case
the conclusion of the lemma holds trivially. Consider (b). If f0(x; ·) and g0(x; ·) are
proper convex functions, then the right-hand side in (27) is defined ∀ v ∈ R

n. Taking
closures, we get cl (f + g)0(x; ·) ≤ cl (f0(x; ·) + g0(x; ·)), where we have used [8, p. 53
and Theorem 5.2]. We get cl (f + g)0(x; ·) ≤ cl f0(x; ·) + cl g0(x; ·). In this equation,
the left-hand and right-hand sides are support functions of, respectively, SG(f+g)(x)
and SGf(x) + SGg(x) by [8, p. 113]. Using [8, p. 113], the lemma is proved.

Lemma A.4. Assume two arbitrary functions f and g from R
n to R. Let x ∈ R

n.
If cl dom f0(x; ·) ∩ cl dom g0(x; ·) ⊆ cl (dom f0(x; ·) ∩ dom g0(x; ·)), then

SG∞(f + g)(x) ⊆ cl (SG∞f(x) + SG∞g(x)).(28)

Proof. As noticed in the proof of the previous lemma, (f + g)0(x; v) ≤ f0(x; v) +
g0(x; v) ∀ v ∈ R

n for which the sum in the right-hand side is defined. Hence,
dom f0(x; ·) ∩ dom g0(x; ·) ⊆ dom (f + g)0(x; ·) and thus, taking closures, we obtain
cl (dom f0(x; ·) ∩ dom g0(x; ·)) ⊆ cl dom (f + g)0(x; ·). Together with the hypothesis
of the lemma, we get cl dom f0(x; ·) ∩ cl dom g0(x; ·) ⊆ cl dom (f + g)0(x; ·). Taking
polars, it follows that (cl dom (f + g)0(x; ·))⊥ ⊆ (cl dom f0(x; ·) ∩ cl dom g0(x; ·))⊥.
Since for two nonempty closed convex cones K and L in R

n, (K ∩ L)⊥ = (K⊥ +
L⊥)⊥⊥ = cl (K⊥ + L⊥), we get (cl dom (f + g)0(x; ·))⊥ ⊆ cl ((cl dom f0(x; ·))⊥ +
(cl dom g0(x; ·))⊥). Hence, using the fact that for a nonempty convex cone K in R

n

(clK)⊥ = K⊥ and using the definition of the singular semigradient (Definition 4.1),
the conclusion of the lemma follows.

Lemma A.5. Assume an arbitrary function f : R
n → R and a point x ∈ R

n. Let
C be a convex cone in R

n such that f0(x; v) < 0 ∀ v ∈ C. Then, for every nonempty
closed convex cone K ⊆ riC ∪ {0}, there is a neighborhood U of 0 in R

n with the
property

f(x) < f(x) ∀x ∈ {x}+ (U ∩K \ {0}).(29)

Proof. Without loss of generality, we assume that x = 0.
Let ψ be the smallest subspace of R

n containing K. Clearly, if the dimension of
ψ equals 0, then (29) holds trivially. From now on, we suppose that the dimension of
ψ ≥ 1.

Suppose that there does not exist such a neighborhood U . Then there is a se-
quence {xi}∞i=1 in K \ {0} converging to 0 with f(xi) ≥ f(0) ∀ i = 1, 2, . . . . Clearly,
if the dimension of ψ equals 1, then K is a half line. (K is contained in C ∪ {0} and
C ∪ {0} does not contain subspaces of R

n since f0(0; ·) is subadditive.) Then, for
every nonzero v ∈ K, f0(0; v) ≥ 0, which contradicts the fact that v ∈ C. From now
on we assume that the dimension of ψ ≥ 2. Furthermore, all manipulations below
have to be considered as being executed in the space ψ. (riK then actually coincides
with the interior of K.)

Based on compactness arguments, the sequence { xi

‖xi‖}∞i=1 has a limit point e ∈ K
with ‖e‖ = 1. Since the dimension of ψ ≥ 2, there is an e′ ∈ riK with ‖e′‖ = 1 and
e − e′ �= 0 �= e + e′ [8, Theorem 6.2]. The nonzero vector e − e′ defines a unique
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hyper plane π in ψ through the origin. We judiciously choose a v ∈ C such that the
projection of e onto π along the line spanned by v is ∈ riK and such that v and e
are on the same side of π. In order to choose this v, let S1 be the unit circle in the
two-dimensional plane spanned by e and e′. The smallest closed circle segment joining
e and e′ is contained in the closed set K∩S1 which is contained in the open (relatively
with respect to S1) set (riC)∩S1. From this it follows that the intersection of C ∩S1

and the smallest open circle segment joining e and − e+e′
‖e+e′‖ is not empty. Choose a v

from this nonempty intersection. The projection of e onto π along the line spanned
by v is λ(e + e′) for some λ ∈ (0, ∞) and hence is contained in riK [8, p. 50 and
Theorem 6.1]. Hence, the inverse of K ∩π under the mentioned projection is a closed
cone with e in its interior. From this, we see that there exists a cone L ⊆ K which
is a neighborhood of e relatively with respect to K and that projects into K ∩ π.
Choose this cone L small enough such that v �∈ L and L\{0} is contained in the open
half space associated with π containing e− e′. This cone L contains a subsequence of
{xi}∞i=1 which we, after relabeling, again denote by {xi}∞i=1. The projection of these
xi results in a sequence {zi}∞i=1 in K ∩ π \ {0} converging to 0. For all but a finite
number of elements of this sequence, f(zi) has to be ≥ f(0). Indeed, suppose that
f(zi) < f(0) for infinitely many elements of the sequence. Then f(xi)− f(zi) > 0 for
infinitely many indices i and thus, by the judicious choice of v and L, f0(0; v) ≥ 0.
This contradicts the fact that v ∈ C. Hence, there is a subsequence of {zi}∞i=1 which
we again denote, after relabeling, by {zi}∞i=1 such that f(zi) ≥ f(0) ∀ i.

The situation we have arrived at is the following: there is a sequence {zi}∞i=1

in K ∩ π \ {0} converging to 0 with f(zi) ≥ f(0) ∀ i = 1, 2, . . . . This situation is
similar to above: K ∩ π plays the role of K, {zi}∞i=1 plays the role of {xi}∞i=1. But
the dimension of the smallest subspace of R

n containing K ∩ π is one smaller than
the dimension of the smallest subspace of R

n containing K. Hence, repeating this
argument, we eventually arrive at the case of dimension 1, which was dealt with in
the beginning of this proof. Hence the lemma is proved by contradiction.

Lemma A.6. Assume an arbitrary function f : R
n → R and a point x ∈ R

n.

(i) If 0 �∈ SGf(x) �= ∅, then at least one of the following two cases holds.
(1) Good case. f0(x; v) < 0 ∀ v ∈ ri (SGf(x)⊥).
(2) Bad case. There is a nonzero ζ ∈ closed convex cone generated by SGf(x)

and a nonzero ξ ∈ SG∞f(x) such that (a) ζ+ ξ = 0 and (b) −ζ �∈ closed convex cone
generated by SGf(x) or −ξ �∈ SG∞f(x).

(ii) If SGf(x) = ∅, then f0(x; v) = −∞ < 0 ∀ v ∈ ri (SG∞f(x)⊥).
(iii) If 0 ∈ SGf(x), then f0(x; v) ≥ 0 ∀ v ∈ R

n.

Proof. We first prove (i). First of all, v ∈ SGf(x)⊥ iff ζ(v) ≤ 0 ∀ζ ∈ SGf(x) iff
cl f0(x; ·)(v) ≤ 0 (Proposition 4.3).

We show that for each v ∈ ri (SGf(x)⊥), cl f0(x; ·)(v) is actually < 0. First,
since 0 �∈ SGf(x), there is a v ∈ R

n for which f0(x; v) < 0 and thus cl f0(x; ·)(v) <
0. Clearly, v ∈ SGf(x)⊥. Second, take an arbitrary v ∈ ri (SGf(x)⊥). From [8,
Theorem 6.4] there is a µ ∈ (1, ∞) such that w = (1 − µ)v + µv ∈ SGf(x)⊥. With
this µ and w, we have v = (1− 1

µ )v+
1
µw with 1

µ ∈ (0, 1). By convexity of cl f0(x; ·),
we get cl f0(x; ·)(v) ≤ (1− 1

µ )cl f
0(x; ·)(v) + 1

µcl f
0(x; ·)(w) < 0.

We now search for sufficient conditions for cl f0(x; ·) to coincide with f0(x; ·) on
ri (SGf(x)⊥). Notice that, since SGf(x) �= ∅, f0(x; ·) is proper and thus it follows
that cl f0(x; ·)(v) = f0(x; v) = ∞ ∀ v ∈ R

n \ cl dom f0(x; ·). Hence ri (SGf(x)⊥) ⊆
cl dom f0(x; ·). Based on [8, Corollary 6.5.2] at least one of the following two inclusions
holds: ri (SGf(x)⊥) ⊆ ri dom f0(x; ·) or ri (SGf(x)⊥) ⊆ rbdy dom f0(x; ·).
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If ri (SGf(x)⊥) ⊆ ri dom f0(x; ·), then, based on Proposition 4.3, f0(x; v) =
cl f0(x; ·)(v) < 0 ∀ v ∈ ri (SGf(x)⊥). If ri (SGf(x)⊥) ⊆ rbdy dom f0(x; ·), then
ri (SGf(x)⊥) ∩ ri dom f0(x; ·) = ∅. As in the proof of Lemma A.1, we see that this
is equivalent with the existence of a nonzero ζ ∈ SGf(x)⊥⊥ and a nonzero ξ ∈
dom f0(x; ·)⊥ such that (a) ζ+ξ = 0 and (b) −ζ �∈ SGf(x)⊥⊥ or −ξ �∈ dom f0(x; ·)⊥.
The following two observations complete the proof of (i): SGf(x)⊥⊥ is the closed
convex cone generated by SGf(x), and dom f0(x; ·)⊥ = SG∞f(x).

We prove (ii). First, since SGf(x) = ∅, cl f0(x; ·)(v) = −∞ ∀ v ∈ R
n. Second,

f0(x; ·) and cl f0(x; ·) coincide on ri dom f0(x; ·). Third, ri dom f0(x; ·) = ri (cl dom f0

(x; ·)) = ri (dom f0(x; ·)⊥⊥) = ri (SG∞f(x)⊥). This proves (ii).
Finally, (iii) follows immediately from the definition of SGf(x).
Remark 5. The set ri (SGf(x)⊥) in Lemma A.6(i) is a nonempty convex cone.

The set ri (SG∞f(x)⊥) in Lemma A.6(ii) is a nonempty convex cone.
Lemma A.7. Assume an arbitrary function f : R

n → R and a point x∗ ∈ R
n.

Let S be the set {x ∈ R
n : f(x) < f(x∗)}∪{x∗}. Let C be a nonempty convex cone in

R
n such that f0(x∗; v) < 0 ∀ v ∈ C. Then, clC is a generalized approximating cone

for S at x∗.
Proof. C and hence riC [8] is a nonempty convex cone. Let {vi}∞i=1 be a sequence

in riC which is dense in riC. This sequence is also dense in cl riC = clC. Let
Li be the nonempty closed convex cone {v ∈ R

n : v = λvi for some λ ∈ [0, ∞)}
(i = 1, 2, . . . ). Let Ki = L1 + · · · + Li (i = 1, 2, . . . ). For each i, Ki is a nonempty
closed convex cone contained in riC ∪ {0}. (Closedness follows from [8, Corollary
9.1.2].) Lemma A.5 ensures, for each i, the existence of a neighborhood Ui of 0 in R

n

such that the image of the map Ui ∩Ki → R
n : v �→ x∗ + v is contained in S. Hence,

by Lemma 8.1, cl (∪∞i=1Ki) is a generalized approximating cone for S at x∗. We prove
that clC = cl (∪∞i=1Ki). First, since Ki ⊆ riC ∪ {0} ∀ i, ∪∞i=1Ki ⊆ riC ∪ {0}. Hence
cl (∪∞i=1Ki) ⊆ cl (riC ∪ {0}) = cl riC = clC. Second, take an arbitrary v ∈ riC.
Let π be the smallest subspace of R

n containing riC. Let n′ = dimπ. The following
construction has to be considered as being executed in π. Construct an n′ dimensional
cube, centered at v, small enough such that it is ⊆ riC. Each of the 2n

′
orthants of

this cube contains an element of the sequence {vi}∞i=1. Let j1, . . . , j2n′ be the indices
of these elements. Then, v ∈ Kmax{j1,...,j2n′ }. Hence riC ⊆ ∪∞i=1Ki and, taking

closures, clC = cl riC ⊆ cl (∪∞i=1Ki). The lemma is proved.
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Abstract. In this paper we discuss Monte Carlo simulation based approximations of a stochastic
programming problem. We show that if the corresponding random functions are convex piecewise
linear and the distribution is discrete, then an optimal solution of the approximating problem provides
an exact optimal solution of the true problem with probability one for sufficiently large sample size.
Moreover, by using the theory of large deviations, we show that the probability of such an event
approaches one exponentially fast with increase of the sample size. In particular, this happens in
the case of linear two- (or multi-) stage stochastic programming with recourse if the corresponding
distributions are discrete. The obtained results suggest that, in such cases, Monte Carlo simulation
based methods could be very efficient. We present some numerical examples to illustrate the ideas
involved.

Key words. two-stage stochastic programming with recourse, Monte Carlo simulation, large
deviations theory, convex analysis
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1. Introduction. We discuss in this paper Monte Carlo approximations of stochas-
tic programming problems of the form

Min
x∈Θ
{f(x) := EPh(x, ω)} ,(1.1)

where P is a probability measure on a sample space (Ω,F), Θ is a subset of R
m, and

h : R
m × Ω → R is a real valued function. We refer to the above problem as the

“true” optimization problem. By generating an independent identically distributed
(i.i.d.) random sample ω1, . . . , ωN in (Ω,F), according to the distribution P , one can
construct the corresponding approximating program

Min
x∈Θ


f̂N (x) := N−1

N∑
j=1

h(x, ωj)


 .(1.2)

An optimal solution x̂N of (1.2) provides an approximation (an estimator) of an
optimal solution of the true problem (1.1).

There are numerous publications where various aspects of convergence properties
of x̂N are discussed. Suppose that the true problem has a nonempty set A of optimal
solutions. It is possible to show that, under mild regularity conditions, the distance
dist(x̂N , A), from x̂N to the set A, converges with probability one (w.p.1) to zero
as N → ∞. There is a vast literature in statistics dealing with such consistency
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properties of empirical estimators. In the context of stochastic programming we can
mention recent works [9], [14], [17], in which this problem is approached from the
point of view of the epiconvergence theory.

It is also possible to give various estimates of the rate of convergence of x̂N to
A. Central limit theorem-type results give such estimates of order Op(N

−1/2) for the
distance dist(x̂N , A) (e.g., [15], [20]), and the large deviations theory shows that one
may expect that, for any given ε > 0, the probability of the event dist(x̂N , A) ≥ ε
approaches zero exponentially fast as N → ∞ (see, e.g., [13], [16], [19]). These are
general results and it seems that they describe the situation quite accurately in case
the involved distributions are continuous. However, it appears that the asymptotics
are completely different if the distributions are discrete. We show that in such cases,
under rather natural assumptions, the approximating problem (1.2) provides an exact
optimal solution of the true problem (1.1) for N large enough. That is, x̂N ∈ A w.p.1
for sufficiently large N . Even more surprisingly we show that the probability of the
event {x̂N 	∈ A} tends to zero exponentially fast as N → ∞. That is what happens
in the case of two-stage stochastic programming with recourse if the corresponding
distributions are discrete. This indicates that, in such cases, Monte Carlo simulation
based methods could be very efficient.

In order to motivate the discussion, let us consider the following simple exam-
ple. Let Y1, . . . , Ym be i.i.d. real valued random variables. Consider the following
optimization problem:

Min
x∈Rm

{
f(x) := E

(
m∑
i=1

|Yi − xi|
)}

.(1.3)

This problem is a particular case of two-stage stochastic programming with simple
recourse. Clearly the objective function f(x) can be written in the form f(x) :=∑m

i=1 fi(xi), where fi(xi) := E{|Yi − xi|}. Therefore the above optimization problem
is separable. It is well known that a minimizer of fi(·) is given by the median of
the distribution of Yi. Suppose that the distribution of the random variables Yi is
symmetrical around zero. Then x̄ := (0, . . . , 0) is an optimal solution of (1.3).

Now let Y 1, . . . , Y N be an i.i.d. random sample of N realizations of the random
vector Y = (Y1, . . . , Ym). Consider the following sample average approximation of
(1.3):

Min
x∈Rm


f̂N (x) := N−1

N∑
j=1

h(x, Y j)


 ,(1.4)

where h(x, y) :=
∑m

i=1 |yi − xi| with x, y ∈ R
m. An optimal solution of the above

approximating problem (1.4) is given by x̂N := (x̂1N , . . . , x̂mN ), where x̂iN is the
sample median of Y 1

i , . . . , Y
N
i .

Suppose for the moment that m = 1, i.e., we are minimizing E{|Y − x|} over
x ∈ R. We assume that the distribution of Y is symmetrical around zero and hence
x̄ = 0 is an optimal solution of the true problem. Suppose now that the distribution
of Y is continuous with density function g(y). Then it is well known (e.g., [6]) that the
corresponding sample median x̂N is asymptotically normal. That is, N1/2(x̂N − x̄)
converges in distribution to normal with zero mean and variance [2g(x̄)]−2. For
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example, if Y is uniformly distributed on the interval [−1, 1], then N1/2(x̂N − x̄) ⇒
N(0, 1). This means that for N = 100 we may expect x̂N to be in the (so-called
confidence) interval [−0.2, 0.2] with probability of about 95%. Now for m > 1 we
have that the events x̂iN ∈ [−0.2, 0.2], i = 1, . . . ,m, are independent (this is because
we assume that Yi are independent). Therefore the probability that each sample
median x̂iN will be inside the interval [−0.2, 0.2] is about 0.95m. For example, for
m = 50, this probability becomes 0.9550 = 0.077. If we want that probability to be
about 0.95 we have to increase the interval to [−0.3, 0.3], which constitutes 30% of
the range of the random variable Y . In other words for that sample size and with
m = 50 our sample estimate will not be accurate.

The situation becomes quite different if we assume that Y has a discrete distribu-
tion. Suppose now that Y can take values −1, 0, and 1 with equal probabilities 1/3.
In that case the true problem has unique optimal solution x̄ = 0. The corresponding
sample estimate x̂N can be equal to −1, 0, or 1. We have that the event {x̂N = 1}
happens if more than half of the sample points are equal to one. Probability of that is
given by P (X > N/2), where X has a binomial distribution B(N, 1/3). If exactly half
of the sample points are equal to one, then the sample estimate can be any number
in the interval [0, 1]. Similar conclusions hold for the event {x̂N = −1}. Therefore
the probability that x̂N = 0 is at least 1 − 2P (X ≥ N/2). For N = 100, this proba-
bility is 0.9992. Therefore the probability that the sample estimate x̂N , given by an
optimal solution of the approximating problem (1.4) with the sample size N = 100
and the number of random variables m = 50, is at least 0.999250 = 0.96. With the
sample size N = 120 and the number of random variables m = 200 this probability,
of x̂N = 0, is about 0.9998200 = 0.95. Note that the number of scenarios for that
problem is 3200, which is not small by any standard. And yet with sample size of only
120 the approximating problem produces an estimator which is exactly equal to the
true optimal solution with probability of 95%.

The above problem, although simple, illustrates the phenomenon of exponential
convergence referred to in the title of the paper. In the above example the correspond-
ing probabilities can be calculated in a closed form, but in the general case of course
we cannot expect to do so. The purpose of this paper is to extend this discussion to
a class of stochastic programming problems satisfying some assumptions. Our goal is
to exhibit some qualitative (rather than quantitative) results. We do not propose an
algorithm, but rather show asymptotic properties of Monte Carlo simulation based
methods.

The paper is organized as follows. In section 2 we show almost sure (w.p.1)
occurrence of the event {x̂N ∈ A} (recall that A is the set of optimal solutions of
the “true” problem). In section 3 we take a step further and, using techniques from
large deviations theory, we show that the probability of that event approaches one
exponentially fast. In section 4 we discuss the median problem in more detail, and
present some numerical results for a two-stage stochastic programming problem with
complete recourse. Finally, section 5 presents some conclusions.

2. Almost sure convergence. Consider the “true” stochastic programming
problem (1.1). For the sake of simplicity we assume that the corresponding expected
value function f(x) := EPh(x, ω) exists (and in particular is finite valued) for all
x ∈ R

m. For example, if the probability measure P has a finite support (i.e., the
distribution P is discrete and can take a finite number of different values), and hence
the space Ω can be taken to be finite, say Ω := {ω1, . . . , ωK}, and P is given by the
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probabilities P{ω = ωk} = pk, k = 1, . . . ,K, we have

EPh(x, ω) =

K∑
k=1

pkh(x, ωk).(2.1)

We assume that the feasible set Θ is closed and convex and that for every ω ∈ Ω, the
function h(·, ω) is convex. This implies that the expected value function f(·) is also
convex, and hence the “true” problem (1.1) is convex. Also if P is discrete and the
functions h(·, ωk), k = 1, . . . ,K, are piecewise linear and convex, then f(·) is piecewise
linear and convex. That is what happens in two-stage stochastic programming with
a finite number of scenarios.

Let ω1, . . . , ωN be an i.i.d. random sample in (Ω,F), generated according to the
distribution P , and consider the corresponding approximating program (1.2). Note
that, since the functions h(·, ωj) are convex, the approximating (sample average)
function f̂N (·) is also convex, and hence the approximating program (1.2) is convex.

We show in this section that, under some natural assumptions which hold, for
instance, in the case of two-stage stochastic programming with a finite number of
scenarios, w.p.1 forN large enough any optimal solution of the approximating problem
(1.2) belongs to the set of optimal solutions of the true problem (1.1). That is, problem
(1.2) yields an exact optimal solution (w.p.1) when N is sufficiently large.

The statement “w.p.1 for N large enough” should be understood in the sense
that for P -almost every ω ∈ Ω there exists N∗ = N∗(ω), such that for any N ≥
N∗ the corresponding statement holds. The number N∗ is a function of ω, i.e., it
depends on the random sample and therefore in itself is random. Note also that, since
convergence w.p.1 implies convergence in probability, the above statement implies
that the probability of the corresponding event to happen tends to one as the sample
size N tends to infinity.

We denote by A the set of optimal solutions of the true problem (1.1) and by
f ′(x, d) the directional derivative of f at x in the direction d. Note that the set A
is convex and closed, and since f is a real valued convex function, the directional
derivative f ′(x, d) exists, for all x and d, and is convex in d. We discuss initially the
case when A is a singleton; later we will consider the general setting.

Assumption (A). The true problem (1.1) possesses unique optimal solution x̄, i.e.,
A = {x̄}, and there exists a positive constant c such that

f(x) ≥ f(x̄) + c‖x− x̄‖ ∀x ∈ Θ.(2.2)

Of course condition (2.2), in itself, implies that x̄ is the unique optimal solution of
(1.1). In the approximation theory optimal solutions satisfying (2.2) are called sharp
minima. It is not difficult to show, since problem (1.1) is convex, that Assumption
(A) holds iff

f ′(x̄, d) > 0 ∀ d ∈ TΘ(x̄) \ {0},(2.3)

where TΘ(x̄) denotes the tangent cone to Θ at x̄. In particular, if f(x) is differentiable
at x̄, then Assumption (A) (or equivalently (2.3)) holds iff −∇f(x̄) belongs to the
interior of the normal cone to Θ at x̄. Note that since f ′(x̄, ·) is a positively homoge-
neous convex real valued (and hence continuous) function, it follows from (2.3) that
f ′(x̄, d) ≥ ε‖d‖ for some ε > 0 and ∀ d ∈ TΘ(x̄). We refer to a recent paper [4], and
references therein, for a discussion of that condition and some of its generalizations.
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If the function f(x) is piecewise linear and the set Θ is polyhedral, then problem
(1.1) can be formulated as a linear programming problem, and the above assumption
(A) always holds provided x̄ is the unique optimal solution of (1.1). This happens,
for example, in the case of a two-stage linear stochastic programming problem with
a finite number of scenarios provided it has a unique optimal solution. Note that
Assumption (A) is not restricted to such situations only. In fact, in some of our
numerical experiments sharp minima (i.e., Assumption (A)) happened to hold in
the case of continuous (normal) distributions. Furthermore, because the problem is
assumed to be convex, sharp minima are equivalent to first order sufficient conditions.
Under such conditions, first order (i.e., linear) growth (2.2) of f(x) holds globally, i.e.,
for all x ∈ Θ.

Theorem 2.1. Suppose that (i) for every ω ∈ Ω the function h(·, ω) is convex,
(ii) the expected value function f(·) is well defined and is finite valued, (iii) the set Θ
is closed and convex, (iv) Assumption (A) holds. Then w.p.1 for N large enough the
approximating problem (1.2) has a unique optimal solution x̂N and x̂N = x̄.

Proof of the above theorem is based on the following proposition. Results of that
proposition (perhaps not exactly in that form) are basically known, but since its proof
is simple we give it for the sake of completeness. Denote by h′ω(x, d) the directional
derivative of h(·, ω) at the point x in the direction d and by H(B,C) the Hausdorff
distance between sets B,C ⊂ R

m, that is,

H(B,C) := max
{
sup
x∈C

dist(x,B), sup
x∈B

dist(x,C)

}
.(2.4)

Proposition 2.2. Suppose that the assumptions (i) and (ii) of Theorem 2.1 are
satisfied. Then, for any x, d ∈ R

m, the following holds:

f ′(x, d) = EP {h′ω(x, d)} ,(2.5)

lim
N→∞

sup
‖d‖≤1

∣∣∣f ′(x, d)− f̂ ′
N (x, d)

∣∣∣ = 0 w.p.1,(2.6)

lim
N→∞

H
(
∂f̂N (x), ∂f(x)

)
= 0 w.p.1.(2.7)

Proof. Since f(·) is convex we have that

f ′(x, d) = inf
t>0

f(x+ td)− f(x)
t

,(2.8)

and the ratio in the right-hand side of (2.8) decreases monotonically as t decreases
to zero, and similarly for the functions h(·, ω). It follows then by the monotone
convergence theorem that

f ′(x, d) = EP

{
inf
t>0

h(x+ td, ω)− h(x, ω)
t

}
,(2.9)

and hence the right-hand side of (2.5) is well defined and the equation follows.
We have that

f̂ ′
N (x, d) = N−1

N∑
j=1

h′ωj (x, d).(2.10)
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Therefore by the strong form of the law of large numbers it follows from (2.5) that

for any d ∈ R
m, f̂ ′

N (x, d) converges to f
′(x, d) w.p.1 as N → ∞. Consequently for

any countable set D ⊂ R
m we have that the event “limN→∞ f̂ ′

N (x, d) = f ′(x, d) ∀
d ∈ D” happens w.p.1. Let us take a countable and dense subset D of R

m. Recall
that if a sequence of real valued convex functions converges pointwise on a dense
subset of R

m, then it converges uniformly on any compact subset of R
m (e.g., [18,

Theorem 10.8]). Therefore, since the functions f̂ ′
N (x, ·) are convex, it follows from the

pointwise convergence of f̂ ′
N (x, ·) on D that the convergence is uniform on the unit

ball {d : ‖d‖ ≤ 1}. This proves (2.6).
Recall that if g is a real valued convex function, then g′(x, ·) coincides with the

support function of its subdifferential ∂g(x). Therefore the Hausdorff distance be-

tween the subdifferentials of f and f̂N , at x, is equal to the supremum on the left-
hand side of (2.6) (see, e.g., [12, Theorem V.3.3.8]). Consequently (2.7) follows from
(2.6).

Proof of Theorem 2.1. As we discussed earlier, Assumption (A) is equivalent
to condition (2.3) which, in turn, implies that f ′(x̄, d) ≥ ε for some ε > 0 and all
d ∈ TΘ(x̄) ∩ Sm−1, where

Sm−1 := {d ∈ R
m : ‖d‖ = 1}.

By (2.6) it follows that w.p.1 for N large enough

f̂ ′
N (x̄, d) > 0 ∀ d ∈ TΘ(x̄) ∩ Sm−1.(2.11)

Since the approximating problem is convex, this implies that x̄ is a sharp (and
hence unique) optimal solution of the approximating problem. This completes the
proof.

Let us consider now a situation where the true problem (1.1) may have multiple
optimal solutions, i.e., the set A is not necessarily a singleton. In that case Theorem
2.1 can be generalized, under stronger assumptions, as follows.

Theorem 2.3. Suppose that (i) the set Ω is finite, (ii) for every ω ∈ Ω the
function h(·, ω) is piecewise linear and convex, (iii) the set Θ is closed, convex, and
polyhedral, (iv) the true problem (1.1) has a nonempty bounded set A of optimal so-
lutions. Then the set A is compact, convex, and polyhedral, and w.p.1 for N large
enough the approximating problem (1.2) has a nonempty set AN of optimal solutions
and AN is a face of the set A.

Proof of the above theorem is based on the following lemma which may have an
independent interest.

Lemma 2.4. Suppose that the assumptions (i) and (ii) of Theorem 2.3 are sat-
isfied. Then the following holds: (a) There exists a finite number of points z1, . . . , zr
(independent of the sample) such that for every x ∈ R

m, there is k ∈ {1, . . . , r} such

that ∂f(x) = ∂f(zk) and ∂f̂N (x) = ∂f̂N (zk) for any realization of the random sample.

(b) W.p.1 the subdifferentials ∂f̂N (x) converge to ∂f(x) uniformly in x ∈ R
m, i.e.,

lim
N→∞

sup
x∈Rm

H
(
∂f̂N (x), ∂f(x)

)
= 0 w.p.1.(2.12)

(c) If, in addition, the assumptions (iii) and (iv) are satisfied, then there exists a
finite number of points x1, . . . , xq (independent of the sample) such that the points
x1, . . . , x�, # < q, form the set of extreme points of A and if the following condition
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holds,

f̂N (xi) < f̂N (xj) for any i ∈ {1, . . . , #} and j ∈ {#+ 1, . . . , q},(2.13)

then the set AN is nonempty and forms a face of the set A.
Proof. It follows from the assumptions (i) and (ii) that the expected value function

f(x) is piecewise linear and convex, and hence f(x) can be represented as a maximum
of a finite number of affine functions #i(x), i = 1, . . . , n. Consequently the space R

m

can be partitioned into a union of convex polyhedral sets C1, . . . , Cn such that f(x),
restricted to Ci, coincides with #i(x), i = 1, . . . , n.

Let us make the following observations. Suppose that f(x) is affine on a convex
polyhedral set C. Then function h(·, ω) is also affine on C for every ω ∈ Ω. Indeed,
suppose for a moment that the set C has a nonempty interior and that for some
ω ∈ Ω the corresponding function h(·, ω) is not affine on C. Since h(·, ω) is piecewise
linear and convex, this can happen only if there is a point x̂ in the interior of C
such that ∂h(x̂, ω) is not a singleton. By the Moreau–Rockafellar theorem (see [18,

Theorem 23.8]) we have that ∂f(x̂) =
∑K

k=1 pk∂h(x̂, ωk). Therefore if ∂h(x̂, ω) is not
a singleton, then ∂f(x̂) is also not a singleton. This, however, cannot happen since
f(x) is affine on C. In case the interior of C is empty, we can restrict the problem
to the linear space generated by C and proceed as above. Now, since the sample
average function f̂N (x) is a linear combination of the functions h(·, ω), ω ∈ Ω, with
nonnegative coefficients, it follows that f̂N (x) is also affine on C for any realization
of the random sample.

Our second observation is the following. Let g(x) be a convex function taking a
constant value over a convex set S. Then ∂g(x) is constant over the relative interior
of S (e.g., [3, Lemma 1.115]). By adding an affine function to g(x), we obtain that
the same property holds if g(x) is affine over S.

By the above observations we can take points zi in the relative interior of each
face of the sets C1, . . . , Cn. Note that an extreme point of a set Ci is viewed as its
face, of dimension zero, and its relative interior coincides with the considered extreme
point. Since each set Ci is polyhedral, it has a finite number of faces, and hence the
total number of such points will be finite. This completes the proof of the assertion
(a). Assertion (b) follows immediately from Proposition 2.2 and assertion (a).

Let us prove (c). Since the function f(x) is piecewise linear, the set A is a convex
polyhedral set, and by assumption (iv), A is compact.

Let us observe that by adding a barrier function of the form ψ(x) := α dist(x,Θ)
to the objective function f(x), for sufficiently large α > 0, we can reduce the true
problem to the unconstrained problem

Min
x∈Rm

EPh
∗(x, ω),(2.14)

where h∗(x, ω) := h(x, ω)+ψ(x). It is well known that, for α large enough, the optimal
solutions of problems (1.1) and (2.14) coincide (see, e.g., [2, Proposition 5.4.1]). Since
Θ is convex, the barrier function, and hence the functions h∗(·, ω), are also convex.
Moreover, since by the assumption (iii) the set Θ is polyhedral, the barrier function
is also polyhedral if we take distance with respect to the #1 norm in R

m. Therefore,
without loss of generality, we can assume in the subsequent analysis that Θ = R

m,
i.e., that the problem under consideration is unconstrained.

Let S be a sufficiently large convex compact polyhedral set (e.g., a cube) such
that the set A is included in the interior of the set S. Such a set exists since A is
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bounded. Consider the sets C ′
i := Ci ∩ S, i = 1, . . . , n. These sets are polyhedral and

compact. We can assume that all these sets are different from each other and that
A coincides with the set C ′

1. Now let {x1, . . . , xq} be the set of all extreme points
(vertices) of the sets C ′

1, . . . , C
′
n such that, for some # < q, points x1, . . . , x� form the

set of extreme points of A. Since each set C ′
i is polyhedral, there are a finite number

of such points. Suppose that condition (2.13) holds, and let C ′
k, k ≥ 2, be a set from

the above collection such that the intersection of C ′
k with A is nonempty. Since f̂N (x)

is linear on C ′
k and C

′
k is compact, it follows from condition (2.13) that the minimum

of f̂N (x) over C
′
k is attained on a nonempty subset of the set A. Consider a collection

of such sets C ′
k that their union forms a neighborhood of the set A. Then f̂N (x)

attains its minimum over that union on a nonempty subset A∗
N of A. By convexity of

f̂N (x) it follows then that the set AN coincides with A∗
N and hence is nonempty and

is a subset of A. Finally, since f̂N (x) is linear on A, it follows that AN is a face of
A.

We give now two proofs of Theorem 2.3, which give a different insight into the
problem.

Proof of Theorem 2.3. As was shown in the proof of the above lemma, by adding
a barrier function, we can reduce the problem to an unconstrained one. Therefore
without loss of generality, we can assume that Θ = R

m, i.e., that the problem is
unconstrained.

It follows from the assumptions (i) and (ii) that the expected value function f(x)
is piecewise linear and convex. Therefore the set A of optimal solutions of the true
problem is a convex polyhedral and, by (iv), compact set. By the strong law of large

numbers we have that w.p.1 the approximating functions f̂N (x) converge pointwise
to f(x). Moreover, by the same arguments as in the proof of Proposition 2.2 we have
that this convergence is uniform on any compact subset of R

m. Let V be a compact
neighborhood of the set A. Then w.p.1 for N large enough f̂N (x) has a minimizer
over V which is arbitrarily close to A and hence lies in the interior of V . By convexity
this minimizer will be a global minimizer of f̂N (x). This shows that w.p.1 for N large
enough the set AN of optimal solutions of the approximating problem is nonempty.

Since f(x) is piecewise linear and convex, we have that subdifferentials of f(x) are
convex compact polyhedral sets and, by Lemma 2.4, it follows that the total number
of the extreme points of all subdifferentials ∂f(x) is finite. Moreover, since for any
x 	∈ A we have that 0 	∈ ∂f(x), it follows that there exists ε > 0 such that the distance
from the null vector 0 ∈ R

m to ∂f(x) is greater than ε ∀ x 	∈ A. Together with

(2.12) this implies that w.p.1 for N large enough, 0 	∈ ∂f̂N (x) ∀ x 	∈ A, and hence
any x 	∈ A cannot be an optimal solution of the approximating problem. This shows
that w.p.1 for N large enough the inclusion AN ⊂ A holds. Finally let us observe
that since f(x), and hence f̂N (x), are linear on A, and AN is the set of minimizers of

f̂N (x) over A, it follows that AN is a face of A.
Let us give now the second proof. Let {x1, . . . , xq} be the set of points constructed

in assertion (c) of Lemma 2.4. Since this set is finite and A is the set of minimizers of
f(x), we have that there exists ε > 0 such that f(xi)+ε < f(xj) for any i ∈ {1, . . . , #}
and j ∈ {# + 1, . . . , q}. By the law of large numbers we have that f̂N (xi) converges
to f(xi), w.p.1 as N → ∞, for every i ∈ {x1, . . . , xq}. Therefore w.p.1 for N large

enough we have that f̂N (xi) < f(xi)+ε/2 for i ∈ {1, . . . , #}, and f̂N (xj) > f(xj)−ε/2
for j ∈ {#+ 1, . . . , q}, and hence condition (2.13) follows. Together with assertion (c)
of Lemma 2.4 this proves that AN is nonempty and forms a face of A.
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Under the assumptions of the above theorem, the set AN of optimal solutions of
the approximating problem is convex and polyhedral. The above theorem shows that
w.p.1 for N large enough, every optimal solution of the approximating problem is an
optimal solution of the true problem and every vertex of the set of optimal solutions
of the approximating problem is a vertex of the set of optimal solutions of the true
problem.

In order to see what may happen consider the following example. Let h(x, ω) :=
|x1 − ω|, where x = (x1, x2) ∈ R

2 and ω ∈ Ω with Ω := {−2,−1, 1, 2} ⊂ R. Suppose
that the probability of ω being equal to any of the points of Ω is 0.25 and let Θ :=
{x ∈ R

2 : |x2| ≤ 1}. Then the set A of optimal solutions of the corresponding
true problem is A = {x : |x1| ≤ 1, |x2| ≤ 1}. On the other hand, for large N ,
the set of optimal solutions of the approximating problem is given either by the face
{x : x1 = −1, |x2| ≤ 1} or the face {x : x1 = 1, |x2| ≤ 1} of the set A.

3. Exponential rate of convergence. In the previous section we showed that,
under appropriate assumptions, the approximating problem (1.2) yields an exact op-
timal solution of the true problem (1.1) w.p.1 for N large enough. Since convergence
w.p.1 implies convergence in probability, it follows that the probability of this event
tends to one as N tends to infinity. That result, however, does not say how large the
sample size N should be in order for the approximating problem to provide such an
exact solution.

Similarly to the example presented in the introduction, it turns out that, in the
case under consideration (i.e., when Ω is finite and h(·, ω) are piecewise linear), the
convergence of the corresponding probability to one is exponentially fast. A conse-
quence of this somewhat surprising fact is that one does not need a very large sample
to find the optimal solution of (1.1), which shows that Monte Carlo approximations
techniques can be an effective approach to solve such problems.

In this section we formalize and prove this result. We begin by considering again
the case where the true problem (1.1) has a unique optimal solution x̄. Suppose that
Assumption (A) holds. Recall that Sm−1 denotes the sphere in R

m, and consider the
Banach space Z := C(Sm−1) of real valued continuous functions defined on Sm−1

and equipped with the sup-norm. By restricting a positively homogeneous function
to Sm−1, we can identify Z with the space of continuous positively homogeneous
functions on R

m. Denote by Z∗ the dual space of Z, i.e., the space of continuous
linear functionals defined on Z.

Let B be the σ-algebra of Borel sets in Z. Consider the function
η(d, ω) := h′ω(x̄, d), d ∈ R

m, ω ∈ Ω.(3.1)

The function η(·, ω) is convex, and hence continuous, and is positively homogeneous.
Therefore it can be considered as an element of Z. Moreover, the mapping ω �→ η(·, ω),
from (Ω,F) into (Z,B), is measurable and hence η(·, ω) can be considered as a random
element of (Z,B). Let P be the probability measure on Z induced by the measure P .
Note that EP η(d, ω) = f ′(x̄, d) and that the measure P is concentrated on the subset
of Z formed by convex positively homogeneous functions.

Assumption (B). There exists a constant κ > 0 such that

‖η(·, ω)‖Z ≤ κ, for P -almost every ω.

This assumption clearly holds if the set Ω is finite. Note that

‖η(·, ω)‖Z = sup
d∈Sm−1

|h′ω(x̄, d)| .
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Therefore Assumption (B) means that the subdifferentials ∂h(x̄, ω) are uniformly
bounded for P -almost every ω. Notice that this is what happens in two-stage stochas-
tic programming problems with complete recourse if only the right-hand side is ran-
dom, since in that case the dual feasibility set does not depend on ω. Complete
recourse implies that the dual feasibility set is also bounded. Therefore, in such cases
the subdifferentials ∂h(x̄, ω) are uniformly bounded for all ω.

Let us recall now a few facts about random variables on Banach spaces. Let
η1, η2, . . . be an i.i.d. sequence of random elements of (Z,B), with the common dis-
tribution P, and define ζN := N−1

∑N
j=1 ηj . Note that Assumption (B) implies that∫

Z
‖z‖ZP(dz) < ∞. Then, by the strong law of large numbers (for Banach spaces)

we have that ζN → ζ := E[η] w.p.1, where the convergence is in the norm of Z and
the expectation operator corresponds to the so-called Bochner integral (see, e.g., Hiai
[10]).

Let

M(z∗) :=
∫
ez

∗(z)
P(dz), z∗ ∈ Z∗,

be the moment generating function of P (i.e., of η(·, ω)). A version of Cramér’s
theorem for Banach spaces (see, e.g., Deuschel and Stroock [8]) can be stated as
follows. If for any α ∈ [0,∞) we have∫

Z

eα‖z‖P(dz) < ∞,(3.2)

then a large deviations principle (LDP) holds for {ζN}, i.e., for any B-measurable set
Γ ⊂ Z we have that

− infz∈ int(Γ) I(z) ≤ lim infN→∞N−1 log[P (ζN ∈ Γ)]
≤ lim supN→∞N−1 log[P (ζN ∈ Γ)] ≤ − infz∈ cl(Γ) I(z).

(3.3)

Here int(Γ) and cl(Γ) denote the interior and the topological closure, respectively, of
the set Γ ⊂ Z, and I(z) is the large deviations rate function, which is given by

I(z) := sup
z∗∈Z∗

{z∗(z)− logM(z∗)}.(3.4)

Notice that (3.2) follows immediately from Assumption (B).
For any d ∈ Sm−1 we can define a functional z∗d ∈ Z∗ as z∗d(z) := z(d). Let

Md(t) :=M(tz∗d). Note that we can also write

Md(t) = EP

{
etη(d,ω)

}
,

so we recognize Md(t) as the moment generating function of the (one-dimensional)
random variableX := η(d, ω). Note also that Assumption (B) implies thatMd(t) <∞
∀ t ∈ R. Consider the rate function of η(d, ω), that is,

Id(α) := sup
t∈R

[tα− logMd(t)] .(3.5)

By taking z∗ in the right-hand side of (3.4) of the form z∗ := tz∗d , we obtain that, for
any z ∈ Z,

I(z) ≥ sup
d∈Sm−1

sup
t∈R

[tz(d)− logMd(t)] = sup
d∈Sm−1

Id(z(d)).(3.6)
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Let AN be the set of optimal solutions of the approximating problem (1.2), and
consider the event

EN :=
{
the set AN is nonempty and AN = {x̄} } .(3.7)

The above event EN means that the approximating problem possesses a unique optimal
solution x̂N and that x̂N = x̄. Denote by EcN the complement of the event EN . Note
that the probability P (EN ), of the event EN , is equal to 1 − P (EcN ). The following
theorem shows that the probability of the event EcN approaches zero exponentially
fast.

Theorem 3.1. Suppose that the assumptions of Theorem 2.1 are satisfied and
that Assumption (B) holds. Then there exists a constant β > 0 such that

lim sup
N→∞

1

N
log[P (EcN )] ≤ −β.(3.8)

Proof. Consider ζN (·) := N−1
∑N

j=1 η(·, ωj) = f̂ ′
N (x̄, ·) and the set

F :=

{
z ∈ Z : inf

d∈TΘ(x̄)∩Sm−1
z(d) ≤ 0

}
.(3.9)

Since the topology on Z is that of uniform convergence, it follows that the min-function

φ(z) := inf
d∈TΘ(x̄)∩Sm−1

z(d)

is continuous on the space Z, and hence the set F is closed in Z. By the definition of
the set F , we have that if ζN 	∈ F , then ζN (d) > 0 ∀ d ∈ TΘ(x̄)∩Sm−1. Consequently,
in that case, x̂N = x̄ is the unique optimal solution of the approximating problem.
Therefore we have that

P (EcN ) ≤ P (ζN ∈ F ).

It follows then by the last inequality of (3.3) that we need only to show that the
constant

β := inf
z∈F

I(z)(3.10)

is positive.
Consider a fixed direction d ∈ TΘ(x̄) ∩ Sm−1, and let X denote the correspond-

ing random variable η(d, ω). Let Λ(t) := logMd(t) = logE[etX ] be the logarith-
mic moment generating function of X. By the dominated convergence theorem we
have that Md(t) is differentiable ∀ t ∈ R and M ′

d(t) = E[XetX ]. It follows that
Λ′(t) = E[XetX ]/E[etX ] and hence, since |X| ≤ κ by Assumption (B),

|Λ′(t)| ≤ E[|X|etX ]
E[etX ]

≤ κ ∀ t ∈ R.

Similarly, we have

|Λ′′(t)| =

∣∣∣∣E[X2etX ]

E[etX ]
− (Λ′(t))2

∣∣∣∣ ≤ |κ2 − (Λ′(t))2| ≤ κ2 ∀ t ∈ R.(3.11)
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By the mean value theorem, (3.11) implies that ∀ t, s ∈ R,

|Λ′(t)− Λ′(s)| ≤ κ2|t− s|.(3.12)

Since the function Λ(·) is convex, it follows from a result in convex analysis (e.g., [12,
Theorem X.4.2.2]) that the conjugate function Id = Λ∗ is strongly convex modulus
1/κ2, that is,

Id(α2) ≥ Id(α1) + I ′d(α1)(α2 − α1) +
1

2κ2
|α2 − α1|2

∀ α1, α2 ∈ R. Since at ᾱd := E[X] = f ′(x̄, d) we have that Id(ᾱd) = I ′d(ᾱd) = 0, it
follows that

Id(α) ≥ 1

2κ2
|α− ᾱd|2 ∀α ∈ R.(3.13)

By Assumption (A) we have that f ′(x̄, d) ≥ c∀ d ∈ TΘ(x̄) ∩ Sm−1, and hence we
obtain that

Id(0) ≥ c2

2κ2
∀ d ∈ TΘ(x̄) ∩ Sm−1.(3.14)

By the definition of the set F we have that if z ∈ F , then there exists d ∈ TΘ(x̄)∩Sm−1

such that z(d) ≤ 0. It follows then by (3.6) and (3.14) that I(z) ≥ c2/(2κ2) for any
z ∈ F . Consequently we obtain

β ≥ c2

2κ2
,(3.15)

which completes the proof.
The inequality (3.8) means that the probability that the approximating problem

(1.2) has a unique optimal solution which coincides with the optimal solution of the
true problem (1.1) approaches one exponentially fast. The inequality (3.15) also gives
an estimate of the corresponding exponential constant.

Consider now a situation where the true problem (1.1) may have multiple solu-
tions. As in the case of convergence w.p.1 presented in section 2, stronger assumptions
are needed. Let AN be the set of optimal solutions of the approximating problem (1.2),
and consider the event

MN :=
{
the set AN is nonempty and forms a face of the set A

}
.(3.16)

Theorem 3.2. Suppose that the assumptions of Theorem 2.3 hold. Then there
exists a constant β > 0 such that

lim sup
N→∞

1

N
log[P (Mc

N )] ≤ −β.(3.17)

Proof. It is possible to prove this theorem by using arguments of Theorem 3.1
combined with assertions (a) and (b) of Lemma 2.4. The proof becomes even simpler
if we use assertion (c) of Lemma 2.4. Let {x1, . . . , xq} be the set of points constructed
in assertion (c) of Lemma 2.4. Recall that {x1, . . . , x�} forms the set of extreme points
of A, and that f(xi) < f(xj) for any i ∈ {1, . . . , #} and j ∈ {#+ 1, . . . , q}. Note that,
by condition (2.13), we have that

Mc
N ⊂

{
∃ i ∈ {1, . . . , #},∃ j ∈ {#+ 1, . . . , q} such that f̂N (xi) ≥ f̂N (xj)

}
.(3.18)
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Moreover, there is ε > 0 such that the event in the right-hand side of (3.18) is

included in the union of the events Ai := {f̂N (xi) ≥ f(xi) + ε}, i = 1, . . . , #, and

Aj := {f̂N (xj) ≤ f(xj)− ε}, j = #+ 1, . . . , q. It follows that

P (Mc
N ) ≤

�∑
i=1

P
(
f̂N (xi) ≥ f(xi) + ε

)
+

q∑
j=�+1

P
(
f̂N (xj) ≤ f(xj)− ε

)
.

Therefore, in order to prove (3.17) it suffices to show that, for any i ∈ {1, . . . , #},
there exists βi > 0 such that

lim sup
N→∞

1

N
log
[
P
(
f̂N (xi) ≥ f(xi) + ε

)]
≤ −βi

and, similarly, for any j ∈ {#+ 1, . . . , q}, there exists βj > 0 such that

lim sup
N→∞

1

N
log
[
P
(
f̂N (xi) ≤ f(xi)− ε

)]
≤ −βj .

Both assertions follow immediately from the LDP (in a unidimensional setting),

since E[f̂N (xi)] = f(xi), i = 1, . . . , q. This completes the proof by taking β :=
mini∈{1,...,q} βi.

4. Examples. In this section we present some examples to illustrate the ideas
discussed in sections 2 and 3.

4.1. The median problem, revisited. We begin by analyzing in more detail
the median problem (1.3) discussed in the introduction. Let Y1, . . . , Ym be i.i.d. real
valued random variables, each one taking values −1, 0, and 1 with equal probabilities
1/3. Let x̂N denote an optimal solution of the corresponding approximating problem
(1.4). As it was shown in the introduction, x̂N coincides with the true optimal solution
x̄ = 0 with very high probability, even for small values of N compared to the size of
the sample space.

We can approach this problem from the point of view of the large deviations
theory. Let X be a binomial random variable B(N, p) with p = 1/3. As was discussed
in the introduction, the probability of the event x̂N = 0 is at least 1− 2P (X ≥ N/2)
(more precisely, whenN is even this probability is exactly 1−2P (X ≥ N/2)+

(
N
N/2

)
pN ,

the last term becoming negligible as N grows). By Cramér’s large deviations theorem
we have that (see, e.g., [7, Theorem 2.2.3])

− infz>1/2 I(z) ≤ lim infN→∞ 1
N log

[
P
(
X
N ≥ 1

2

)]
≤ lim supN→∞

1
N log

[
P
(
X
N ≥ 1

2

)] ≤ − infz≥1/2 I(z).

For a binomial distribution B(N, p), the large deviations rate function I(z) is given
by

I(z) = z log

[
(1− p)z
p(1− z)

]
− log

[
1− p+ (1− p)z

1− z
]
.(4.1)

Since I(·) is continuous, it follows that

lim
N→∞

1

N
log

[
P

(
X

N
≥ 1

2

)]
= − inf

z≥1/2
I(z) = −I(0.5),
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the last equality arising from the fact that the function I(·) is increasing on the interval
[p,∞). From (4.1) we obtain that

I(0.5) = log

[
(p−1 − 1)1/2
2(1− p)

]
.(4.2)

For p = 1/3 we have I(0.5) = log(3
√

2
4 ) = 0.0589, and hence the probability

P (X/N ≥ 1/2) converges to zero at the exponential rate e−0.0589N . Note that in the
considered (one-dimensional) case the upper bound of Cramér’s theorem holds for any
N (and not just in the limiting sense). It follows that the probability that the sample
estimate x̂N is equal to the true optimal solution is greater than (1 − 2e−0.0589N )m,
which for large N is approximately equal to 1−2me−0.0589N . Consequently the prob-
ability that the sample estimate x̂N is not equal to the true optimal solution decreases
exponentially fast with the sample size N and increases linearly with the number of
variables m. For example, for N = 100 and m = 50 we have, by the above esti-
mate, that the probability of the sample estimate x̂N being equal to the true optimal
solution is at least (1− 2e−5.89)50 = 0.76. This can be compared with the exact prob-
ability of that event, which is about 0.96. This is quite typical for the large deviations
estimates. For finite and not too “large” N , the large deviations estimates give poor
approximations of the corresponding probabilities. What the large deviations theory
provides, of course, is the exponential rate at which the corresponding probabilities
converge to zero.

Suppose now that each variable Yi has the following discrete distribution: it can
take values -1, -0.5, 0.5, and 1 with equal probabilities 0.25. In that case the set of
optimal solutions of the true problem (1.3) is not a singleton and is given by the cube
{x : −0.5 ≤ xi ≤ 0.5}. We have that the probability that the sample estimate x̂iN
belongs to the interval [−0.5, 0.5] is at least 1−2P (X ≥ N/2), where X ∼ B(N, 0.25).
Again we obtain that the probability that x̂N is an exact optimal solution of the true
problem is approaching one exponentially fast with increasing N .

Now let m = 1 and suppose that the distribution of Y is discrete with possible
values given by an odd number r = 2# + 1 of points equally spaced on the interval
[−1, 1] with equal probabilities of 1/r. For “large” r we can view this as a discretization
of the uniform distribution on the interval [−1, 1]. Then by the same arguments as
above we obtain that the probability that x̂N = 0 is at least 1−2P (X ≥ N/2), where
X ∼ B(N, p) with p = #/r.

An estimate of how fast N grows as a function of the number of variables m and
the number of discretization points r can be obtained using again large deviations
techniques. Suppose that m ≥ 1 and that each random variable Yi, i = 1, . . . ,m, has
a discrete distribution as above. From (4.2) we have that in this case the constant
β := I(0.5) is given by

β =
1

2
log

[
r2

r2 − 1
]
,(4.3)

and hence

P (x̂N = 0) ≥ (1− 2e−βN )m ∼= 1− 2me−βN .
Consequently, for a fixed ε > 0, a (conservative) estimate of the sample size N needed
to obtain P (x̂N = 0) ≥ 1− ε is given by

N = β−1 log(2m/ε) ∼= (2r2 − 1) log(2m/ε),
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so we see that N grows quadratically with the number of discretization points and
logarithmically with the number of random variables.

4.2. A two-stage stochastic programming problem. We now present some
numerical results obtained for the capacity expansion problem CEP1 described in [11],
which can be modeled as a two-stage stochastic programming problem with complete
recourse. The problem has 8 decision variables with 5 constraints (plus bound con-
straints) on the first stage, and 15 decision variables with 7 constraints (plus lower
bound constraints) on the second stage. The random variables, which correspond to
demand in the model, appear only on the right-hand side of the second stage. There
are 3 i.i.d. random variables, each taking 6 possible values with equal probability, so
the sample space has size 63 = 216.

For the sake of verification, we initially solved the problem exactly by solving the
equivalent deterministic LP, and we obtained the true minimizer x̄. Notice that this
optimal solution is unique. We then solved the corresponding Monte Carlo approxi-
mations, with sample sizes N = 2, 5, 10, 15, 20, 35, 50. For each sample size, we solved
the approximating problem 400 times and counted how many times the optimal so-
lution x̂N , of the approximating problem, coincided with the true solution x̄. The
corresponding proportion p̂ is then an estimate of the probability P (x̂N = x̄). Since
the generated replications are independent, it follows that an unbiased estimator of
the variance of p̂ is given by p̂(1− p̂)/399. From this value we obtain a 95% confidence
interval whose half-width is denoted by ∆. The results are displayed in Table 4.1.

Table 4.1
Estimated probabilities P (x̂N = x̄).

N p̂ ∆
2 0.463 .049
5 0.715 .044
10 0.793 .040
15 0.835 .036
20 0.905 .029
35 0.958 .020
50 0.975 .015

Notice again the exponential feature of the numbers on the table, i.e., how fast
p̂ gets close to one. It is interesting to notice that convergence in the CEP1 model
is even faster than in the median problem, even though the median problem is much
more structured (in particular, the median problem is separable) with a smaller sam-
ple space (27 points for 3 random variables, as opposed to 216 points in the CEP1
model). For instance, in the median problem a sample size of 20 gives the true op-
timal solution with probability 0.544, whereas in the CEP1 problem that probability
is approximately 0.9. These results corroborate the ideas presented in the previous
sections, showing that convergence can be very fast if there is a sharp minimum such
as in the case of the CEP1 model. The results also suggest that the separability
inherent in the median problem was not a major factor in the speed of convergence,
which encourages us to think that the numerical results reported here can be obtained
in more complex problems. Of course, more research is needed to draw any definite
conclusions.

5. Conclusions. We presented in this paper some results concerning conver-
gence of Monte Carlo simulation-based approximations for a class of stochastic pro-
gramming problems. As pointed out in the introduction, the usual approach to con-
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vergence analysis found in the literature consists in showing that optimal solutions of
approximating problems converge, w.p.1, to optimal solutions of the original problem
or in obtaining bounds for the rate of convergence via central limit theorem or large
deviations type asymptotics. We show, under some specific assumptions (in partic-
ular, under the assumption that the sample space is finite), that the approximating
problem provides an exact optimal solution w.p.1 for sample size N large enough and,
moreover, that the probability of such an event approaches one at an exponential rate.
This suggests that, in such cases, Monte Carlo simulation based algorithms could be
efficient, since one may not need a large sample to find an exact optimal solution.

The median problem presented in section 4 illustrates that point. For a problem
with 3200 scenarios, an approximating problem which employs only N = 120 samples,
of a vector of dimension m = 200, yields the exact optimal solution approximately
95% of the time. Even more impressively, it is possible to show by the same type of
calculations that N = 150 samples are enough to obtain the exact optimal solution
with probability of about 95% form = 1000 random variables, i.e., for 31000 scenarios.
Estimates of the sample size N , which were obtained in section 4 by the large devia-
tions approximations, give slightly bigger values of N (for example, they give N = 180
instead of N = 150 for m = 1000). In either case the required sample size grows as
a logarithm of the number m of random variables in that example. Of course, one
must take into account the fact that this is a very structured problem, and in a more
general case one may not get such drastically fast convergence; in fact, the flatter
the objective function is around the optimal solution, the slower the convergence will
be. Nevertheless, the CEP1 model studied in section 4 seems to indicate that fast
convergence is obtained in more general problems, even in the absence of separability.

One should, however, be cautious about these results, especially with respect to
the following aspect. The fact that the convergence is exponential does not necessarily
imply that a small sample suffices. Indeed, the constant β in the corresponding
exponential rate e−βN can be so small that one would need a large sample size N in
order to achieve a reasonable precision. The lower bound (3.15) gives us an idea about
the exponential constant β. In the median example, with r discretization points for
each random variable Yi, i = 1, . . . ,m, we have that we can take c = 1/r and κ = 1,
if we use #1 norm in the space R

m. This gives us the lower bound β ≥ 1/(2r2), which
can be compared with the exact value of β = 1

2
log[r2/(r2 − 1)] ∼= 1/(2r2 − 1). Note

that the estimate β ≥ 1/(2r2) does not depend on the number m of random variables.
This happens since any multiplicative constant before e−βN can be absorbed into the
exponential rate as N tends to infinity.

Another remark concerns the assumption of Monte Carlo sampling in our analysis.
By doing so, we were able to exploit properties of i.i.d. samples, which we used to
derive our results. In practice, however, one might think of implementing variance
reduction techniques in order to reduce even more the needed sample sizes. The
incorporation of such techniques into stochastic optimization algorithms has been
shown to be very effective in practice (see, e.g., [1], [5], [21]). Research on specific
applications of variance reduction techniques to the type of problems discussed in this
paper is underway.

Acknowledgment. We thank the referees for constructive comments which
helped to improve the presentation of the paper.
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Abstract. Two-stage stochastic programs with random right-hand side are considered. Optimal
values and solution sets are regarded as mappings of the expected recourse functions and their
perturbations, respectively. Conditions are identified implying that these mappings are directionally
differentiable and semidifferentiable on appropriate functional spaces. Explicit formulas for the
derivatives are derived. Special attention is paid to the role of a Lipschitz condition for solution
sets as well as of a quadratic growth condition of the objective function.

Key words. two-stage stochastic programs, sensitivity analysis, directional derivatives, semide-
rivatives, solution sets

AMS subject classifications. 90C15, 90C31

PII. S1052623499316520

1. Introduction. Two-stage stochastic programming is concerned with prob-
lems that require a here-and-now decision on the basis of given probabilistic infor-
mation on the random data without making further observations. The costs to be
minimized consist of the direct costs of the here-and-now (or first-stage) decision as
well as the costs generated by the need of taking a recourse (or second-stage) deci-
sion in response to the random environment. Recourse costs are often formulated by
means of expected values with respect to the probability distribution of the involved
random data. In this way, two-stage models and their solutions depend on the under-
lying probability distribution. Since this distribution is often incompletely known in
applied models, or it has to be approximated for computational purposes, the stability
behavior of stochastic programming models when changing the probability measure
is important. This problem is studied in a number of papers. We mention here only
the surveys [13], [40] and the papers [1], [12], [18], [26], [27], [34], and [35]. The
paper [1] contains general results on continuity properties of optimal values and solu-
tions when perturbing the probability measures with respect to the topology of weak
convergence. Quantitative continuity results of solution sets to two-stage stochastic
programs with respect to suitable distances of probability measures are obtained in
[26] and [27]. Asymptotic properties of statistical estimators of values and solutions
to stochastic programs are derived in [18], [34], [35]. They are based on directional
differentiability properties of the underlying optimization problems with respect to
the parameter that carries the randomness [18], [35] or the probability measure [34].
These directional differentiability results for values [35] and solutions [13], [18], [34]
lead to asymptotic results via the so-called delta-method. For a description of the
delta-method we refer to Chapter 6 in [28], [35], to [36] for an up-to-date presenta-
tion, and to [16] for a set-valued variant. These papers illuminate the importance
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of the Hadamard directional differentiability (for single-valued functions) and of the
semidifferentiability (for set-valued mappings) in the context of asymptotic statistics.

The present paper aims at contributing to this line of differential stability stud-
ies. The results in [18], [34] apply to fairly general stochastic optimization models
but impose conditions that are rather restrictive in our context. The present paper
deals with special two-stage models and, using structural properties, avoids certain
assumptions that complicate or even prevent the applicability of the general results
to two-stage stochastic programs. Such assumptions are the (local) uniqueness of
solutions and differentiability properties of perturbed problems, which are indispens-
able in [18], [34]. Before discussing this in more detail, let us introduce the class of
two-stage stochastic programs we want to consider:

min{g(x) +Qµ(Ax) : x ∈ C},(1.1)

where g : R
m → R is a convex function, C ⊆ R

m is a nonempty closed convex set,
A is an (s,m)-matrix, and Qµ is the expected recourse function with respect to the
(Borel) probability measure µ on R

s;

Qµ(y) =

∫
Rs

Q̃(ω − y)µ(dω),(1.2)

Q̃(t) = inf{〈q, u〉 : Wu = t, u ≥ 0}, t ∈ R
s.(1.3)

Here q ∈ R
m̄ are the recourse costs, W is an (s, m̄)-matrix and called the recourse

matrix, and Q̃(ω−Ax) corresponds to the value of the optimal second-stage decision
for compensating a possible violation of the (random) constraint Ax = ω. To have
the problem (1.1)–(1.3) well defined, we assume

(A1) posW = {Wu : u ∈ R
m̄
+} = R

s (complete recourse),

(A2) MD = {t ∈ R
s : WT t ≤ q} �= ∅ (dual feasibility),

(A3)

∫
Rs

‖ω‖µ(dω) <∞ (finite first moment).

The assumptions (A1) and (A2) imply that Q̃ is finite, convex, and polyhedral
on R

s. Due to (A3), Qµ is also finite and convex on R
s (cf. [15], [39]). Observe that,

in general, an expected recourse function Qµ may be nondifferentiable on a certain
union of hyperplanes in R

s and that, indeed, differentiability properties of Qµ depend
on the degree of smoothness induced by the measure µ (cf. [15], [21], [38], [39], and
Remark 4.10). Another observation is that the uniqueness of solutions to (1.1) is
guaranteed only if the constraint set C picks just one element from the relevant level
set of g(·) +Qµ(A ·). As the next example shows, this set may be large since Qµ(A ·)
is constant on translates of the null space of the matrix A.

Example 1.1. In (1.1)–(1.3), let m = 3, n = 2, g(x) = 1
4 (x2 − x3), C = [0, 1

2 ]
3 ,

A =
(

1 0 −1
1 −1 0

)
, q = (1, 1, 1, 1) , W =

(
1 0 −1 0
0 1 0 −1

)
, and µ be the uniform distribution

on the square [− 1
2 ,

1
2 ]

2 in R
2.

Then we have Q̃(t) = |t1|+|t2| and Qµ(y) = y2
1+y2

2+
1
2 for y = (y1, y2) ∈ [− 1

2 ,
1
2 ]

2.
The optimization problem (1.1) and its solution set ψ(Qµ) take the form

min

{
1

4
(x2 − x3) + (x1 − x3)

2 + (x1 − x2)
2 +

1

2
: (x1, x2, x3) ∈

[
0,

1

2

]3}
,
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ψ(Qµ) =

{(
1

8
+ u, u,

1

4
+ u

)
: u ∈

[
0,

1

4

]}
=

{(
1

8
, 0,

1

4

)
+ kerA

}
∩ C,

where kerA = {(u, u, u) : u ∈ R} is the null space of A.
Proposition 2.1 below provides some more insight into the structure of the solution

set to (1.1) and elucidates the role of the set-valued mapping σ(y) := argmin{g(x) :
x ∈ C,Ax = y} in this respect.

Note that assumption (A1) could be relaxed by introducing the set K = {y ∈
R
s : Qµ(y) < +∞}. Then (A2) and (A3) imply that K is a closed convex polyhedron

and that Qµ is convex and continuous on K (cf. [39]). Now (A1) can be replaced by
the condition K ⊇ A(C) (relatively complete recourse), and much of the work done
in this paper carries over to this more general setting by using spaces of functions
defined on K instead of R

s.
Let KC denote the set of all convex functions on R

s which forms a convex cone
in the space C0(Rs) of all continuous functions on R

s. KC will serve as the set of
possible perturbations of the given expected recourse function Qµ ∈ KC . We define

ϕ(Q) := inf{g(x) +Q(Ax) : x ∈ C},
ψ(Q) := argmin{g(x) +Q(Ax) : x ∈ C}

and regard ϕ and ψ as mappings from KC into the extended reals and the set of all
closed convex subsets of R

m, respectively.
In this paper we develop a sensitivity analysis for the mappings ϕ and ψ at some

given function Qµ. The stochastic programming origin of the model (1.1) takes a
back seat, and our results are stated in terms of general conditions on Qµ and its
perturbations Q. We identify conditions such that the value function ϕ has first- and
second-order directional derivatives and the solution-set mapping ψ is directionally
differentiable at Qµ into admissible directions. Here, admissibility means that the
direction belongs to the radial tangent cone to KC at Qµ, i.e.,

T r(KC ;Qµ) = {λ(Q−Qµ) : Q ∈ KC , λ > 0},
ensuring that the difference quotients are well defined. For v belonging to T r(KC ;Qµ)
the Gateaux directional derivatives of ϕ and ψ at Qµ and (Qµ, x̄), x̄ ∈ ψ(Qµ), respec-
tively, are defined as

ϕ′(Qµ; v) = lim
t→0+

1

t
(ϕ(Qµ + tv)− ϕ(Qµ)),

ϕ′′(Qµ; v) = lim
t→0+

1

t2
(ϕ(Qµ + tv)− ϕ(Qµ)− tϕ′(Qµ; v)),

ψ′(Qµ, x̄; v) = lim
t→0+

1

t
(ψ(Qµ + tv)− x̄),

if the limits exist. The third limit is understood in the sense of (Painlevé–Kuratowski)
set convergence (e.g. [2]). Recall that the lower and upper set limits of a family (St)t>0

of subsets of a metric space (X, d) are defined as

lim inf
t→0+

St = {x ∈ X : lim
t→0+

d(x, St) = 0},
lim sup
t→0+

St = {x ∈ X : lim inf
t→0+

d(x, St) = 0}.

Both sets are closed and the lower set limit is contained in the upper limit. If both
limits coincide, the family (St)t>0 is said to converge and its limit set is denoted
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by lim
t→0+

St. For sequences of sets (Sn)n∈N the definitions of set limits are modified

correspondingly.
We also derive conditions implying that the limits defining the directional deriva-

tives exist uniformly with respect to directions v belonging to compact subsets of cer-
tain functional spaces. The limits are then called (first- or second-order) Hadamard
directional derivatives and semiderivatives for set-valued maps, respectively. The cor-
responding directional derivatives are defined on tangent cones to the cone of convex
functions in certain functional spaces. For more information on concepts of directional
differentiability and multifunction differentiability we refer to [4], [33], and to [2], [3],
[23], and [25], respectively.

Let us fix some notations used throughout the paper. ‖ · ‖ and 〈·, ·〉 denote the
norm and scalar product, respectively, in some Euclidean space R

n; B(x, r) denotes
the open ball around x ∈ R

n with radius r > 0; d(x,D) denotes the distance of x ∈ R
n

to the set D ⊆ R
n; for a real-valued function f on R

n, ∇f denotes its gradient in R
n

and the (n, n)-matrix ∇2f its Hessian; if f is locally Lipschitzian near x ∈ R
n, ∂f(x)

denotes the Clarke subdifferential of f at x; f ′(x; d) denotes the directional derivative
of f at x in direction d if it exists; for x ∈ C, T (C;x) denotes the tangent cone to
C at x, i.e., T (C;x) = lim inft→0+

1
t (C − x) = cl{λ(y − x) : y ∈ C, λ > 0}, where

cl stands for closure; for x ∈ C, ξ ∈ T (C;x), T 2(C;x, ξ) denotes the second-order
tangent set to C at x in direction ξ, i.e., T 2(C;x, ξ) = lim inft→0+

1
t2 (C−x− tξ) (note

that T 2(C;x, ξ) is closed and convex; see [10], [6] for further properties).
In our paper, we use the following linear metric spaces of real-valued functions

on R
s: The space C0(Rs) of continuous functions on R

s equipped with the distance

d∞(f, f̃) =

∞∑
n=1

2−n ‖f − f̃‖∞,n

1 + ‖f − f̃‖∞,n

,

where

‖f‖∞,r = max
‖y‖≤r

|f(y)| for f, f̃ ∈ C0(Rs) and r > 0;

the space C0,1(Rs) of locally Lipschitzian functions on R
s with the metric

dL(f, f̃) =

∞∑
n=1

2−n ‖f − f̃‖∞,n + ‖f − f̃‖L,n
1 + ‖f − f̃‖∞,n + ‖f − f̃‖L,n

,

where

‖f‖L,r = sup

{ |f(y)− f(ỹ)|
‖y − ỹ‖ : ‖y‖ ≤ r, ‖ỹ‖ ≤ r, y �= ỹ

}
,

= sup{‖z‖ : z ∈ ∂f(y), ‖y‖ ≤ r} for f, f̃ ∈ C0,1(Rs) and r > 0;

the space C1(Rs) of continuously differentiable functions on R
s with the metric

d(f, f̃) = d∞(f, f̃) + d∞(∇f,∇f̃), f, f̃ ∈ C1(Rs), and the space C1,1(Rs) of func-
tions in C1(Rs) whose gradients are locally Lipschitzian on R

s equipped with the
distance d(f, f̃) = d∞(f, f̃) + d∞(∇f,∇f̃) + dL(∇f,∇f̃), f, f̃ ∈ C1,1(Rs).

The sensitivity analysis of the mappings ϕ and ψ is carried out by exploiting
structural properties of the optimization model (1.1). We obtain novel differentiability
properties of solution sets and extend our earlier results on directional differentiability
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of optimal values in [12] considerably. As one might expect, the basic ingredients of
our analysis are a Lipschitz continuity result for solution sets with respect to the dis-
tance in C0,1(Rs) (Theorem 2.3) and a quadratic growth condition near solution sets
(Theorem 2.7). Both theorems extend earlier results in [27] to more general situations
for the first-stage costs g and constraint set C. All results in the paper apply to the
linear-quadratic case, i.e., to linear- or convex-quadratic g and polyhedral C. Indeed,
all results are formulated as generally as possible and most of them are accompanied
by illustrative examples. The second-order analysis of ϕ in section 3 utilizes some ideas
from [31] and [32], but its proof is entirely different and its Gateaux differentiability
part is valid for nondifferentiable directions (Theorem 3.4). It is also elaborated that
the Hadamard directional differentiability properties require the C0-topology for the
first-order result and the C1-topology for the second-order one (Theorem 3.8), while
the C1,1-topology is needed for the semidifferentiability of the solution-set mapping
ψ (Theorem 4.9). All results on differentiability properties of ψ in section 4 are new
and do not follow from recent sensitivity results (e.g., [5], [8], [7], [17], [32]; see also
the survey [8] for further references and Remark 4.4 for a more detailed discussion).

The results of sections 3 and 4 have direct implications to asymptotic properties
of values and solution sets of two-stage stochastic programs when applying (smooth)
nonparametric estimation procedures to approximate Qµ. For a discussion of some of
the related aspects we refer to the brief exposition in Remark 4.11. Further applica-
tions to asymptotics are beyond the scope of this paper and will be done elsewhere.

2. Basic directional properties. The first step in our analysis of directional
properties consists in establishing results on the lower Lipschitz continuity of ψ and
on the directional uniform quadratic growth of the objective near its solution set.
Both results become important for our method of deriving directional differentiability
properties for the optimal value function ϕ and the solution set mapping ψ at some
given expected recourse function Qµ. Their proofs are based on a decomposition of
the program

min{g(x) +Q(Ax) : x ∈ C},(2.1)

with Q belonging to KC , into two auxiliary problems. The first one is a convex
program with decisions taken from A(C), and the second represents a parametric
convex program which does not depend on Q.

Proposition 2.1. Let Q ∈ KC , and let ψ(Q) be nonempty. Then we have

ϕ(Q) = inf{π(y) +Q(y) : y ∈ A(C)} = π(Ax) +Q(Ax), for any x ∈ ψ(Q), and

ψ(Q) = σ(Y (Q)), where

Y (Q) := argmin{π(y) +Q(y) : y ∈ A(C)},
π(y) := inf{g(x) : x ∈ C,Ax = y}, and
σ(y) := argmin{g(x) : x ∈ C,Ax = y}, y ∈ A(C).

Moreover, π is convex on A(C) and dom σ is nonempty.
Proof. Let x̄ ∈ ψ(Q). Then we have

ϕ(Q) = g(x̄) +Q(Ax̄) ≥ π(Ax̄) +Q(Ax̄) ≥ inf{π(y) +Q(y) : y ∈ A(C)}.
For the converse inequality, let ε > 0 and ȳ ∈ A(C) be such that

π(ȳ) +Q(ȳ) ≤ inf{π(y) +Q(y) : y ∈ A(C)}+ ε

2
.
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Then there exists a x̄ ∈ C such that Ax̄ = ȳ and g(x̄) ≤ π(ȳ) + ε
2 . Hence

ϕ(Q) ≤ g(x̄) +Q(Ax̄) ≤ π(ȳ) +Q(ȳ) +
ε

2
≤ inf{π(y) +Q(y) : y ∈ A(C)}+ ε.

Since ε > 0 is arbitrary, the first statement has been shown. In particular, x ∈ σ(Ax)
and Ax ∈ Y (Q) for any x ∈ ψ(Q) . Hence, it holds that ψ(Q) ⊆ σ(Y (Q)). Conversely,
let x ∈ σ(Y (Q)). Then x ∈ σ(y) for some y ∈ Y (Q). Thus Ax = y and g(x) = π(y) =
π(Ax), implying

g(x) +Q(Ax) = π(Ax) +Q(Ax) = inf{π(y) +Q(y) : y ∈ A(C)}
= ϕ(Q) and x ∈ ψ(Q).

Since the convexity of π is immediate, the proof is complete.
In the following, it will turn out that Lipschitzian properties of the solution set

mapping y �→ σ(y) and a quadratic growth property of g near σ(y) are essential. For
the linear-quadratic case we are in a comfortable situation in this respect. Namely,
we have the following proposition.

Proposition 2.2. Let g be linear or convex-quadratic, let C be convex polyhedral,
and assume domσ to be nonempty. Then σ is a polyhedral multifunction which is
Hausdorff Lipschitzian on its domain dom σ = A(C), i.e., there exists a constant
L > 0 such that

dH(σ(y), σ(ỹ)) ≤ L‖y − ỹ‖ for all y, ỹ ∈ A(C),

where dH denotes the (extended) Hausdorff distance on subsets of R
m.

Moreover, for each r > 0 there exists a constant η(r) > 0 such that

g(x) ≥ π(Ax) + η(r)d(x, σ(Ax))2 for all x ∈ C ∩B(0, r).

(Here π and σ are defined as in Proposition 2.1.)
Proof. The Lipschitz property of σ is shown in [19, Theorem 4.2]. To prove the

second statement, let g be of the form g(x) = 〈Hx, x〉+ 〈c, x〉, where H is symmetric
and positive semidefinite and c ∈ R

m. For each y ∈ A(C) we fix some z(y) ∈ σ(y).
An elementary characterization of solution sets to convex-quadratic programs with
linear constraints yields that

σ(y) = {x ∈ C : Ax = y,Hx = Hz(y), 〈c, x〉 = 〈c, z(y)〉}.

Due to the Lipschitz behavior of convex polyhedra (cf. [37]), there exists a constant
Lσ > 0 such that

d(x, σ(y)) ≤ Lσ(‖Hx−Hz(y)‖+ |〈c, x〉 − 〈c, z(y)〉|)

for all y ∈ A(C) and x ∈ C with Ax = y. Using the decomposition H = H
1
2H

1
2 ,

where H
1
2 denotes the square root of H, and the representation 〈c, x〉 − 〈c, z(y)〉 =

g(x)− π(y)− ‖H 1
2x‖2 + ‖H 1

2 z(y)‖2, one arrives at the estimate

d(x, σ(y)) ≤ Lσ(‖H 1
2 ‖(1 + ‖x‖+ ‖z(y)‖)‖H 1

2 (x− z(y))‖+ g(x)− π(y))

for all y ∈ A(C) and x ∈ C with Ax = y.
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Now, let r > 0 and let us fix some element x̄ ∈ C ∩ B(0, r) and a correspond-
ing z(Ax̄) ∈ σ(Ax̄). For each y ∈ A(C) we now select z(y) ∈ σ(y) such that
‖z(y) − z(Ax̄)‖ = d(z(Ax̄), σ(y)). Since σ is Hausdorff Lipschitzian on A(C), this
implies ‖z(y)− z(Ax̄)‖ ≤ L‖Ax̄− y‖ for all y ∈ A(C). Hence, there exists a constant
K(r) > 0 such that ‖z(Ax)‖ ≤ K(r) for all x ∈ C∩B(0, r). Thus our estimate contin-

ues to d(x, σ(Ax))2 ≤ L̂(r)(‖H 1
2 (x−z(Ax))‖2+(g(x)−π(Ax))2) for all x ∈ C∩B(0, r)

and some constant L̂(r) > 0. Furthermore, the equation

g

(
1

2
(x+ z(y))

)
=

1

2
g(x) +

1

2
g(z(y))− 1

4
‖H 1

2 (x− z(y))‖2

implies ‖H 1
2 (x − z(y))‖2 ≤ 2(g(x) − π(y)) for all y ∈ A(C), x ∈ C, with Ax = y.

Therefore, we finally obtain

d(x, σ(Ax))2 ≤ L̂(r)(2(g(x)− π(Ax)) + (g(x)− π(Ax))2)

≤ L̂(r)max{2,K(r)}(g(x)− π(Ax))

for all x ∈ C ∩B(0, r), where K(r) := supx∈C∩B(0,r)(g(x)− π(Ax)).
Due to the above proposition, the main results in this section apply to the linear-

quadratic case. Although this case represents the main application of our results, the
assumptions of the following theorems are formulated in terms of general conditions
on the mapping σ in order to widen the range of applications. The first theorem
states (lower) Lipschitz continuity of ψ at Qµ and supplements Theorem 2.4 in [27].

Theorem 2.3. Let Qµ ∈ KC , let ψ(Qµ) be nonempty and bounded, and let Qµ

be strongly convex on some open, convex neighborhood of Aψ(Qµ). Let x̄ ∈ ψ(Qµ)
and assume that there exist a constant L > 0 and a neighborhood U of ȳ with {ȳ} =
Aψ(Qµ) such that

d(x̄, σ(y)) ≤ L‖ȳ − y‖ for all y ∈ A(C) ∩ U.

Then there exist constants L̂ > 0, δ > 0, and r > 0 such that

d(x̄, ψ(Q)) ≤ L̂‖Q−Qµ‖L,r
whenever Q ∈ KC and ‖Q−Qµ‖L,r < δ.

Proof. We may assume that U is open and convex and that Qµ is strongly convex
on U . Let V be an open, convex, bounded subset of R

m such that ψ(Qµ) ⊂ V
and A(V ) ⊂ U . It follows from Proposition 2.3 in [27] (where a slightly different
terminology is used) that there exists a constant δ > 0 such that ∅ �= ψ(Q) ⊂ V
whenever Q ∈ KC and

sup{‖z‖ : z ∈ ∂(Q−Qµ)(y), y ∈ clA(V )} < δ.

Let r > 0 be chosen such that cl A(V ) ⊂ B̄(0, r). Hence, we have ∅ �= ψ(Q) ⊂ V
whenever Q ∈ KC , ‖Q − Qµ‖L,r < δ. Then Proposition 2.1 yields the relation
ψ(Q) = σ(Y (q)), where Y (Q) = argmin{π(y) + Q(y) : y ∈ A(C)}. Since Qµ is
strongly convex on U , there exists a constant κ > 0 such that

κ‖y − ȳ‖2 ≤ π(y) +Qµ(y)− (π(ȳ) +Qµ(ȳ)) for all y ∈ U.

Let Q ∈ KC with ‖Q−Qµ‖L,r < δ, and let ỹ ∈ Y (Q). Since y belongs to A(V ) ⊂ U ,
we obtain

κ‖ỹ − ȳ‖2 ≤ π(ỹ) +Qµ(ỹ)− (π(ȳ) +Qµ(ȳ)) + π(ȳ) +Q(ȳ)− (π(ỹ) +Q(ỹ))

= (Q−Qµ)(ȳ)− (Q−Qµ)(ỹ),
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and, hence,

‖ỹ − ȳ‖ ≤ 1

κ

(Q−Qµ)(ȳ)− (Q−Qµ)(ỹ)

‖ȳ − ỹ‖ ≤ 1

κ
‖Q−Qµ‖L,r.

The proof can now be completed as follows. LetQ ∈ KC be such that ‖Q−Qµ‖L,r < δ.
Then

d(x̄, ψ(Q)) = d(x̄, σ(Y (Q))) ≤ sup
y∈Y (Q)

d(x̄, σ(y))

≤ L sup
y∈Y (Q)

‖ȳ − y‖ ≤ L

κ
‖Q−Qµ‖L,r.

Remark 2.4. The proof shows that a Lipschitz modulus of ψ can be chosen as
the quotient of a Lipschitz constant to σ and a strong convexity constant to Qµ.

From the proof it is immediate that replacing the local Lipschitz condition on σ
by stronger conditions like

sup
x∈σ(ȳ)

d(x, σ(y)) ≤ L‖ȳ − y‖ or

dH(σ(ȳ), σ(y)) ≤ L‖ȳ − y‖ for all y ∈ A(C) ∩ U

leads to corresponding stronger Lipschitz continuity properties of solution sets. Be-
cause of Proposition 2.2, all of this applies to the linear-quadratic case. However, it is
worth mentioning that the theorem also applies to more general problems such that
the corresponding solution sets σ(y) enjoy Lipschitzian properties. Conditions ensur-
ing Lipschitz behavior of σ can be derived from stability results for the corresponding
parametric generalized equation

0 ∈ ∇L(x, λ; y) +NC×Rs(x, λ),(2.2)

which describes the first-order necessary optimality condition. Here L(x, λ; y) :=

g(x) + λT (Ax − y) is the Lagrangian function, ∇L(x, λ; y) =
(∇g(x)+ATλ

Ax−y

)
, where

g is assumed to be continuously differentiable, and NC×Rs is the normal cone map
of convex analysis. Such stability results are presently available for broad classes of
parametric generalized equations (e.g., [17], [22], [24]). A typical recent result in this
direction, which applies to our situation for twice continuously differentiable g, is
Theorem 5.1 in [22]. It says that the solution set mapping of the parametric gener-
alized equation (2.2) is pseudo-Lipschitzian around (x̄, λ̄; ȳ) if the adjoint generalized
equation

0 ∈ ∇2L(x̄, λ̄; ȳ)w∗ +D∗NC×Rs(x̄, λ̄;−∇L(x̄, λ̄; ȳ))(w∗)(2.3)

has only the trivial solution w∗ = 0.
Here D∗NC×Rs(x̄, λ̄;−∇L(x̄, λ̄; ȳ)) is the Mordukhovich coderivative [22] of the

normal cone multifunction at the point (x̄, λ̄;−∇L(x̄, λ̄; ȳ)) belonging to the graph
of NC×Rs . Translating this into our framework, we obtain that the mapping σ is
pseudo-Lipschitzian around (x̄, ȳ) if the following two conditions are satisfied.

(a) There exists an element x̂ belonging to the relative interior of C such that
Ax̂ = ȳ (Slater condition).

(b) The equations Aw∗
1 = 0 and 0 ∈ ∇2g(x̄)w∗

1 +ATw∗
2 +D∗NC(x̄, λ̄;−∇g(x̄)−

AT λ̄)(w∗
1) have only the trivial solution w∗

1 = 0, w∗
2 = 0. (Here (x̄, λ̄) is a

solution of (2.2) for y = ȳ.)
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The next examples show that the theorem applies to instances of two-stage
stochastic programs with nonunique solutions and with nonpolyhedral convex con-
straint sets C.

Example 2.5. We revisit Example 1.1 and obtain with the notations of Proposition
2.1 that A(C) = [− 1

2 ,
1
2 ]

2, π(y) = 1
4 (y1−y2), Y (Qµ) = argmin{ 1

4 (y1−y2)+y2
1+y2

2+
1
2 :

y ∈ A(C)} = {(− 1
8 ,

1
8 )}, and σ(y) = {(u, u − y2, u − y1) : u ∈ R} ∩ C for y ∈ A(C).

Hence, Y (Qµ) is a singleton, but ψ(Qµ) = σ(Y (Qµ)) forms a line segment. Moreover,
σ is Hausdorff Lipschitzian on A(C) and Theorem 2.3 applies.

Example 2.6. In (1.1)–(1.3) let m = 2, s = 1, g(x) ≡ 0, A = (1, 0), q = (1, 1),
W = (1,−1), µ be the uniform distribution on [− 1

2 ,
1
2 ], and C = {(x1, x2) ∈ R

2 :
x2

2 ≤ x1}. Then we have

Q̃(t) = |t|, Qµ(y) =

∫
R

|ω − y|µ(dω) =
{
y2 + 1

4 , y ∈ [− 1
2 ,

1
2 ],

|y| otherwise,

ψ(Qµ) = {(0, 0)}, and Qµ is strongly convex on (− 1
2 ,

1
2 ). For y ∈ A(C) = R+ we have

σ(y) = {x ∈ C : Ax = y} = {(y, x2) ∈ R
2 : x2

2 ≤ y} = {y} × [−√y,
√
y],

and, hence d((0, 0), σ(y)) = y for all y ∈ R+. Thus Theorem 2.3 applies for x̄ = (0, 0).

Example 2.9 shows that Theorem 2.3 gets lost if Qµ fails to be strongly convex
on some neighborhood of Aψ(Qµ). Our next result establishes a sufficient condition
for the uniform quadratic growth near solution sets.

Theorem 2.7. Let Qµ ∈ KC , let ψ(Qµ) be nonempty and bounded, and let Qµ be
strongly convex on some open convex neighborhood U of Aψ(Qµ). Assume that there
exists a constant L > 0 such that

dH(σ(y), σ(ỹ)) ≤ L‖y − ỹ‖ for all y, ỹ ∈ A(C),

and for each r > 0 there exists a constant η(r) > 0 such that

g(x) ≥ π(Ax) + η(r)d(x, σ(Ax))2 for all x ∈ C ∩B(0, r).

Then, for some open, bounded neighborhood V of ψ(Qµ) and each v ∈ T r(KC ;Qµ),
there exist constants c > 0 and δ > 0 such that the following uniform growth condition
holds:

g(x) + (Qµ + tv)(Ax) ≥ ϕ(Qµ + tv) + cd(x, ψ(Qµ + tv))2

for all x ∈ C ∩ V and t ∈ [0, δ).

Proof. Let v ∈ T r(KC , Qµ), and let V be an open, bounded subset of R
m such

that ψ(Qµ) ⊂ V and A(V ) ⊆ U . As in Theorem 2.3 we choose δ > 0 such that
∅ �= ψ(Qµ + tv) ⊂ V and, in addition, that Qµ + tv is strongly convex on U for all
t ∈ [0, δ) (with a uniform constant κ > 0). For each t ∈ [0, δ) Proposition 2.1 then
yields that ψ(Qµ + tv) = σ(yt), where yt is the unique minimizer of the strongly
convex function π + Qµ + tv on A(C) and, moreover, we have κ‖y − yt‖2 ≤ π(y) +
(Qµ + tv)(y) − ϕ(Qµ + tv) for all y ∈ A(C) ∩ U . Now, we choose r > 0 such that
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V ⊆ B(0, r) and continue for each x ∈ C ∩ V and t ∈ [0, δ) as follows:

d(x, ψ(Qµ + tv))2 = d(x, σ(yt))
2

≤ 2(d(x, σ(Ax))2 + dH(σ(Ax), σ(yt))
2)

≤ 2

(
1

η(r)
(g(x)− π(Ax)) + L2‖Ax− yt‖2

)

≤ 2

(
1

η(r)
(g(x)−π(Ax))+

L2

κ
(π(Ax)+(Qµ+tv)(Ax)−ϕ(Qµ+tv))

)

≤ 2max

{
1

η(r)
,
L2

κ

}
(g(x) + (Qµ + tv)(Ax)− ϕ(Qµ + tv)).

Putting c−1 = 2max{ 1
η(r) ,

L2

κ } completes the proof.

The following examples show that the quadratic growth condition gets lost even
for the original problem, i.e., t = 0, if either the Lipschitz condition for σ or the strong
convexity property for Qµ are violated.

Example 2.8. Consider again the set-up of Example 2.6. Since it holds that
dH(σ(y), σ(0)) = (y2 + y)

1
2 for all y ∈ R+ = A(C), σ is not Hausdorff Lipschitzian on

A(C). Supposed there exists a neighborhood V of ψ(Qµ) = {(0, 0)} and a constant
3 > 0 such that the growth condition

3 d(x, ψ(Qµ))
2 = 3‖x‖2 ≤ Qµ(x1)− ϕ(Qµ) = x2

1 for all x ∈ C ∩ V

is satisfied. Since the sequence (( 1
n ,

1√
n
)) belongs to C∩V for sufficiently large n ∈ N,

this would imply 3( 1
n2 + 1

n ) ≤ 1
n2 for large n, which is a contradiction.

Example 2.9. In (1.1)–(1.3) let m = s = 1, g(x) ≡ 0, A = 1, C = R, q = (1, 1),
W = (1,−1), and let µ be the probability distribution on R having the density

fµ(z) =

{
|z|, z ∈ [−1, 1],
0, otherwise.

Then

Qµ(y) =

∫
R

|ω − y|µ(dω) =
{

1
3 |y|3 + 2

3 , y ∈ [−1, 1]
|y|, otherwise,

ψ(Qµ) = {0}, and there is no neighborhood of ψ(Qµ) where Qµ is strongly convex.
It is clear that the quadratic growth condition fails to hold, since the inequality
3x2 ≤ Qµ(x) − ϕ(Qµ) =

1
3 |x|3 cannot be true for some 3 > 0 and all x belonging to

some neighborhood of x = 0.

With the linear function v(x) = −x (x ∈ R) we obtain for all t ∈ [0, 1] that
ψ(Qµ + tv) = {√t} (cf. Example 3.7). Hence, the lower Lipschitz property of ψ
fails to hold as well. Since the strong convexity and later also the strict convexity of
the expected recourse function Qµ (on certain convex subsets of R

s) form essential
conditions in most of our results, we recall a theorem (Theorem 2.2 in [30]) that
provides a handy criterion to check these properties for problem (1.1)–(1.3).
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Proposition 2.10. Let V ⊂ R
s be open convex, and assume (A1) and (A3).

Consider the following conditions.

(A2)
∗

intMD = {t ∈ R
s : WT t < q} �= ∅.

(A4) µ is absolutely continuous on R
s.

(A4)
∗

µ satisfies (A4) and there exist a density fµ for µ and a constant

δ > 0 such that fµ(z) ≥ δ whenever d(z, V ) ≤ δ.

Then (A2)∗ and (A4) imply that Qµ is strictly convex on V if V is a subset of the
support of µ, and (A2)∗ and (A4)∗ imply that Qµ is strongly convex on V .

In addition, it is shown in [30] that under (A1)–(A4) the condition (A2)∗ is
also necessary for the strict convexity of Qµ. For extended simple recourse models
(i.e., W = (H,−H) with some nonsingular (s, s)-matrix H) (A2)∗ is equivalent to
q+ + q− > 0 (componentwise), where q = (q+, q−) and q+, q− ∈ R

s. This may be
used to check strict or strong convexity properties in the Examples 2.6 and 2.9.

3. Directional derivatives of optimal values. In this section, we study first-
and second-order directional differentiability properties of the optimal value function
ϕ on its domain KC . We begin with the first-order analysis and show that ϕ as a
mapping from KC to the extended reals is Hadamard directionally differentiable at
some given expected recourse function Qµ ∈ KC . Here KC is regarded as a subset of
C0(Rs). Recall that ϕ is Hadamard directionally differentiable at Qµ on KC iff for
all sequences (vn) converging to some v in C0(Rs) and all sequences tn → 0+ such
that the elements Qµ + tnvn belong to KC the limit

ϕ′(Qµ; v) = lim
n→∞

1

tn
(ϕ(Qµ + tnvn)− ϕ(Qµ))

exists. Since the condition Qµ + tnvn ∈ KC means that vn = 1
tn
(Qn − Qµ) for

some Qn ∈ KC , the limit v belongs to the tangent cone T (KC ;Qµ) to KC at Qµ in
C0(Rs). In [35], [36] this property is also called Hadamard directional differentiability
tangentially to KC .

Proposition 3.1. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and
bounded. Then ϕ is Hadamard directionally differentiable at Qµ on KC , and it holds
for all v ∈ T (KC ;Qµ) that

ϕ′(Qµ; v) = min{v(Ax) : x ∈ ψ(Qµ)}.
If, in addition, Qµ is strictly convex on some open convex neighborhood of Aψ(Qµ),
we have

ϕ′(Qµ; v) = v(ȳ), where {ȳ} = Aψ(Qµ).

Proof. Arguing similarly as in the proof of Proposition 2.1 in [26] there exists a
neighborhood N of Qµ in C0(Rs) such that ψ(Q) is nonempty for all Q ∈ KC ∩ N .
Let (tn) and (vn) be sequences such that tn → 0+, vn → v in C0(Rs), and Qµ+ tnvn
belongs to KC for all n ∈ N. Then Qµ + tnvn ∈ KC ∩ N for sufficiently large n ∈ N.
Let xn ∈ ψ(Qµ + tnvn) for those n ∈ N. Since ψ is Berge upper-semicontinuous at
Qµ [26], the sequence (xn) has an accumulation point x ∈ ψ(Qµ), and we obtain

lim sup
n→∞

1

tn
(ϕ(Qµ + tnvn)− ϕ(Qµ))

≥ lim sup
n→∞

1

tn
(g(xn) + (Qµ + tnvn)(Axn)− g(xn)−Qµ(Axn)) ≥ v(Ax),
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where the last inequality follows from the uniform convergence of (vn) to v on bounded
subsets of R

s. In order to show the reverse inequality for lim inf, let x ∈ ψ(Qµ). Then

lim inf
n→∞

1

tn
(ϕ(Qµ + tnvn)− ϕ(Qµ))

≤ lim inf
n→∞

1

tn
(g(x) + (Qµ + tnvn)(Ax)− g(x)−Qµ(Ax)) = v(Ax).

This completes the proof of the first part. The second part is an immediate conclusion,
since Aψ(Qµ) is a singleton whenever Qµ is strictly convex on some of its open, convex
neighborhoods.

The preceding result can also be proved by using the methodology of Theo-
rem 6.4.1 in [28]. There the compactness of the constraint set is assumed, and Gateaux
directional differentiability of ϕ at Qµ together with its Lipschitz continuity is shown.
Here we prefer a direct two-sided argument, which will also be used in the subse-
quent second-order analysis of ϕ. Namely, we will first derive an upper bound for
the second-order Hadamard directional derivative of ϕ at some Qµ ∈ KC , where KC

is equipped with the C0,1 topology. Second, we identify conditions implying that
the upper bound coincides with the Gateaux directional derivative of ϕ at Qµ for all
directions taken from T r(KC ;Qµ).

Lemma 3.2. Let y ∈ R
s, Qµ ∈ KC , tn → 0+, (Qn) be a sequence in KC such

that vn := 1
tn
(Qn −Qµ) → v in C0,1(Rs), and let (ξn) be a sequence converging to ξ

in R
s. Then we have lim supn→∞

1
tn
(vn(y + tnξn)− vn(y)) ≤ maxζ∈∂v(y)〈ζ, ξ〉.

Proof. Each function vn is locally Lipschitzian on R
s and, hence, Lebourg’s mean

value theorem for Clarke’s subdifferential [9] implies the existence of elements ỹn
belonging to the segments [y, y + tnξn] such that

1

tn
(vn(y + tnξn)− vn(y)) ∈ {〈ζ, ξn〉 : ζ ∈ ∂vn(ỹn)}.

The convergence vn → v in C0,1(Rs) implies that

sup{‖ζ‖ : ζ ∈ ∂(vn − v)(y), ‖y‖ ≤ r} −→
n→∞ 0

holds for any r > 0. This yields

dH(∂vn(ỹn), ∂v(ỹn)) ≤ sup{‖ζ‖ : ζ ∈ ∂(vn − v)(ỹn)} −→
n→∞ 0.

Here dH denotes the Hausdorff distance, and the inequality is a consequence of general
properties of the subdifferential (cf. Lemma 2.1 in [27]). Hence, there exist elements
ζ̃n belonging to ∂v(ỹn) such that

1

tn
(vn(y + tnξn)− vn(y)) ≤ ‖ξn‖dH(∂vn(ỹn), ∂v(ỹn)) + 〈ζ̃n, ξn〉

and, for some ζ̃ ∈ ∂v(y),

lim sup
n→∞

1

tn
(vn(y + tnξn)− vn(y)) ≤ lim sup

n→∞
〈ζ̃n, ξn〉 = 〈ζ̃, ξ〉 ≤ max

ζ∈∂v(y)
〈ζ, ξ〉,

where the upper semicontinuity of ∂v(·) is used. This completes the proof.
Proposition 3.3. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and

bounded. Let g be twice continuously differentiable, and let Qµ be strictly convex on
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some open convex neighborhood of Aψ(Qµ) and twice continuously differentiable at ȳ,
where {ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ), tn → 0+, and (Qn) be a sequence in KC such
that vn := 1

tn
(Qn −Qµ)→ v in C0,1(Rs). Then

lim sup
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≤ inf{〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉+ 1

2
〈∇2g(x̄), ξ, ξ〉

+
1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ max

ζ∈∂v(ȳ)
〈ζ, Aξ〉 : ξ ∈ S(x̄), z ∈ T 2(C; x̄, ξ)},

where S(x̄) := {ξ ∈ T (C; x̄) : 〈∇g(x̄), ξ〉+ 〈∇Qµ(ȳ), Aξ〉 = 0}, T (C; x̄) is the tangent
cone to C at x̄, and T 2(C; x̄, ξ) is the second-order tangent set to C at x̄ in direction ξ.

Proof. Let ξ ∈ S(x̄) and z ∈ T 2(C; x̄, ξ). Then there exists a sequence (zn) such
that zn → z and x̄+ tnξ + t2nzn ∈ C for all n ∈ N. Using Proposition 3.1, this allows
for the following estimate:

ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ
′(Qµ; vn)

≤ g(x̄+ tnξ + t2nzn) +Qµ(A(x̄+ tnξ + t2nzn)) + tnvn(A(x̄+ tnξ + t2nzn))

−g(x̄)−Qµ(Ax̄)− tnvn(Ax̄)

= [g(x̄+ tnξ + t2nzn)− g(x̄)− tn〈∇g(x̄), ξ〉]
+[Qµ(A(x̄+ tnξ + t2nzn))−Qµ(Ax̄)− tn〈∇Qµ(Ax̄), Aξ〉]
+tn[vn(A(x̄+ tnξ + t2nzn))− vn(Ax̄)].

After dividing by t2n and using Lemma 3.2, the limes superior as n → ∞ of the
right-hand side can be bounded above by

〈∇g(x̄), z〉+1

2
〈∇2g(x̄)ξ, ξ〉+〈∇Qµ(Ax̄), Az〉+1

2
〈∇2Qµ(Ax̄)Aξ,Aξ〉+ max

ζ∈∂v(Ax̄)
〈ζ, Aξ〉.

Taking the infimum on the right-hand side yields the assertion.
We notice that the upper second-order Hadamard directional derivative

lim supn→∞
1
t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn)) is nonpositive, since ϕ is con-

cave on KC and, hence, the inequality ϕ(Qµ + tnvn) − ϕ(Qµ) = ϕ(Qn) − ϕ(Qµ) ≤
ϕ′(Qµ;Qn −Qµ) = tnϕ

′(Qµ; vn) is valid. We also note that the upper bound is non-
positive, since (0, 0) belongs to S(x̄)×T 2(C; x̄, 0) = S(x̄)×T (C; x̄). Next we consider
particular perturbations Qn of Qµ, namely, Qn := Qµ+λtn(Q−Qµ) for some Q ∈ KC ,
λ > 0, and sufficiently large n ∈ N. Then vn = λ(Q − Qµ) ∈ T r(KC ;Qµ). The
next result provides conditions implying that the second-order (Gateaux) directional
derivative exists and coincides with the upper bound of the previous proposition. To
state the result we need the notion of second-order regularity (cf. [6]). The constraint
set C is called second-order regular at x̄ ∈ C if for any direction ξ ∈ T (C; x̄) and any
sequence xn ∈ C of the form xn = x̄ + tnξ + t2nrn where, tn → 0+ and rn being a
sequence in R

m satisfying tnrn → 0, it holds that limn→∞ d(rn, T
2(C; x̄, ξ)) = 0. For

example, C is second-order regular at x̄ ∈ C if 0 ∈ T 2(C; x̄, ξ) for every ξ ∈ T (C; x̄)
(cf. [6]). In particular, a polyhedral (convex) set C is second-order regular at any
x̄ ∈ C.

Theorem 3.4. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and bounded.
Let g be twice continuously differentiable, and let Qµ be strictly convex on some
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open convex neighborhood of Aψ(Qµ) and twice continuously differentiable at ȳ, where
{ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ), v ∈ T r(KC ;Qµ), and assume that

(i) d(x̄, ψ(Qµ + tv)) = O(t) for small t > 0, and
(ii) C is second-order regular at x̄.
Then the second-order Gateaux directional derivative of ϕ at Qµ in direction v

exists, and it holds that

ϕ′′(Qµ; v) = lim
t→0+

1

t2
(ϕ(Qµ + tnv)− ϕ(Qµ)− tϕ′(Qµ; v))

= inf

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ) : ξ ∈ S(x̄)

}
,(3.1)

where b(ξ) = inf{〈∇g(x̄), z〉 + 〈∇Qµ(ȳ), Az〉 : z ∈ T 2(C; x̄, ξ)} is nonnegative and
convex on S(x̄). Moreover, the infimum in (3.1) is attained at some ξ̄ ∈ S(x̄) having
the property that ϕ′′(Qµ; v) =

1
2v

′(ȳ;Aξ̄) + 1
2b(ξ̄).

(Here S(x̄) and T 2(C; x̄, ξ) are defined as in the previous result, v′(ȳ; η) is the
directional derivative of v at ȳ in direction η, and O(t) denotes a real quantity such
that 1

t |O(t)| is bounded as t→ 0+.)
Proof. (i) implies that there exist constants L > 0, δ > 0, and elements x(t) ∈

ψ(Qµ + tv) such that ‖x(t) − x̄‖ ≤ Lt for all t ∈ (0, δ). Now take a sequence (tn)
tending to 0+ in such a way that

lim inf
t→0+

1

t2
(ϕ(Qµ + tv)− ϕ(Qµ)− tϕ′(Qµ; v))

= lim
n→∞

1

t2n
(ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ

′(Qµ; v))

and that ξn := 1
tn
(x(tn)− x̄) −→

n→∞ ξ̄. The latter is possible since ‖ 1
tn
(x(tn)− x̄)‖ ≤ L

for n ∈ N sufficiently large. Then ξ̄ ∈ T (C; x̄) and Proposition 3.1 yields

v(Ax̄) = ϕ′(Qµ; v) = lim
n→∞

1

tn
(ϕ(Qµ + tnv)− ϕ(Qµ))

= lim
n→∞

1

tn
(g(x̄+ tnξn) + (Qµ + tnv)(A(x̄+ tnξn))− g(x̄)−Qµ(Ax̄))

= 〈∇g(x̄), ξ̄〉+ 〈∇Qµ(Ax̄), Aξ̄〉+ v(Ax̄).

This implies ξ̄ ∈ S(x̄). We put rn = 1
tn
(ξn − ξ̄) and xn = x(tn) = x̄+ tnξ̄ + t2nrn. By

expanding g and Qµ and using Proposition 3.1, we obtain

ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ
′(Qµ; v)

= g(xn) +Qµ(Axn) + tnv(Axn)− g(x̄)−Qµ(Ax̄)− tnv(Ax̄)

= 〈∇g(x̄), xn − x̄〉+ 1

2
〈∇2g(x̄)(xn − x̄), xn − x̄〉

+ 〈∇Qµ(Ax̄), Axn − x̄)〉+ 1

2
〈∇2Qµ(Ax̄)(A(xn − x̄)), A(xn − x̄)〉

+ tn(v(Axn)− v(Ax̄)) + o(‖xn − x̄‖2)
= t2n(〈∇g(x̄), rn〉+ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉) + t2n(〈∇Qµ(Ax̄), Arn)〉

+
1

2
〈∇2Qµ(Ax̄)Aξ̄,Aξ̄〉) + tn(v(Axn)− v(Ax̄)) + o(t2n).
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Here we used that o(‖xn − x̄‖2) = o(t2n), where o(tk) denotes a real quantity having
the property 1

tk
o(t)→ 0 as t→ 0+ (k ∈ N).

Since C is second-order regular at x̄, there exists a sequence zn ∈ T 2(C; x̄, ξ̄) such
that limn→∞ ‖rn − zn‖ = 0, and we get from the previous chain of equalities

1

t2n
(ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ

′(Qµ; v))

= 〈∇g(x̄), zn〉+ 〈∇Qµ(ȳ), Azn〉+ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉

+
1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 1

tn
(v(ȳ + tnAξn)− v(ȳ)) + o(1)

≥ b(ξ̄) +
1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 1

tn
(v(ȳ + tnAξn)− v(ȳ)) + o(1).

Using the fact that v is Hadamard directionally differentiable and Clarke regular [9],
i.e., v′(ȳ; η) = maxζ∈∂v(ȳ)〈ζ, η〉, we obtain

lim inf
t→0+

1

t2
(ϕ(Qµ + tv)− ϕ(Qµ)− tϕ′(Qµ; v))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ v′(ȳ;Aξ̄) + b(ξ̄)

≥ inf

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ) : ξ ∈ S(x̄)

}
.

Proposition 3.3 implies that this lower bound for lim inft→0+ is also an upper bound
for lim supt→0+. Hence, the limit limt→0+

1
t2 (ϕ(Qµ+ tv)−ϕ(Qµ)− tϕ′(Qµ; v)) exists

and is equal to the infimum subject to ξ ∈ S(x̄). Moreover, this infimum is attained
at ξ̄ ∈ S(x̄).
The nonnegativity of b is due to the fact that the necessary optimality condition for
(1.1) at x̄ yields

〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉 ≥ 0 for all z ∈ T 2(C; x̄, ξ), ξ ∈ S(x̄).

The convexity of b follows from the property T 2(C; x̄, λξ+(1−λ)ξ̃) ⊇ λT 2(C; x̄, ξ)+
(1− λ)T 2(C; x̄, ξ̃) for all ξ, ξ̃ ∈ T (C; x̄), and λ ∈ [0, 1].

For the remainder of the proof we put a(ξ) := v′(ȳ;Aξ) and

B(ξ) :=
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉 for all ξ ∈ R

m.

Since S(x̄) is a (convex) cone, we have S(x̄) = λS(x̄) for any λ > 0. Moreover, it
holds that T 2(C; x̄, λξ̄) = λT 2(C; x̄, ξ̄) and thus that b(λξ̄) = λb(ξ̄) for any λ > 0.
Hence, we obtain

0 ≤ f(λ) := B(λξ̄) + a(λξ̄) + b(λξ̄)−B(ξ̄)− a(ξ̄)− b(ξ̄)

= λ2B(ξ̄) + (λ− 1)(a(ξ̄) + b(ξ̄))−B(ξ̄) for all λ > 0.

In the case of B(ξ̄) > 0, the quadratic function f vanishes at λ = 1 with the property
f ′(1) = 2B(ξ̄) + a(ξ̄) + b(ξ̄) = 0, and the final assertion is shown. If B(ξ̄) = 0, the
fact that 0 ≤ f(λ) = (λ− 1)(a(ξ̄) + b(ξ̄)) holds for any λ > 0 implies a(ξ̄) + b(ξ̄) = 0.
Thus ϕ′′(Qµ; v) = 0 = 1

2 (a(ξ̄) + b(ξ̄)), and the proof is complete.
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The theorem extends our earlier work in [12], where essentially polyhedrality of
C is assumed. Compared to [12], the additional term b(.) enters the formula for
ϕ′′(Qµ; v). The convex function b(.) reflects second-order properties of the constraint
set C and vanishes if C is polyhedral. Next we state a more handy criterion implying
that ϕ′′(Qµ; v) exists for any direction v ∈ T r(KC ;Qµ).

Corollary 3.5. Let Qµ ∈ KC , and assume that ψ(Qµ) is nonempty and
bounded. Let g be twice continuously differentiable, and let Qµ be strongly convex
on some open convex neighborhood of Aψ(Qµ) and twice continuously differentiable
at ȳ, where {ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ) and assume that

(i)′ there exist a constant L > 0 and a neighborhood U of ȳ such that
d(x̄, σ(y)) ≤ L‖ȳ − y‖ for all y ∈ A(C) ∩ U , where
σ(y) := argmin{g(x) : x ∈ C,Ax = y}, y ∈ A(C), and

(ii) C is second-order regular at x̄.
Then the second-order Gateaux directional derivative of ϕ at Qµ exists for any di-
rection v ∈ T r(KC ;Qµ), and the formula for ϕ′′(Qµ; v) in Theorem 3.4 holds true.
Moreover, conditions (i)′ and (ii) are satisfied for any x̄ ∈ ψ(Qµ) if C is polyhedral
and g is linear or (convex) quadratic.

Proof. Let v ∈ T r(KC ;Qµ). Theorem 2.3 then says that there exist constants

L̂ > 0, δ > 0, and r > 0 such that

d(x̄, ψ(Qµ + tv)) ≤ L̂‖v‖L,rt whenever ‖v‖L,rt < δ.

Hence, the strong convexity of Qµ and condition (i)′ imply that condition (i) of the
previous theorem is satisfied and that the first part of the assertion is shown. If C is
polyhedral and g is linear or (convex) quadratic, (ii) is satisfied and Proposition 2.2
implies (i)′ to hold for any x̄ ∈ ψ(Qµ) = σ(ȳ).

Let us consider two illustrative examples to provide some insight into the benefit
and limits of the previous results.

Example 3.6. We revisit Example 2.6 and know that the general assumptions of
Corollary 3.5 and condition (i)′ are satisfied for x̄ = (0, 0). Furthermore, it holds that
T (C; x̄) = R+ × R and

T 2(C; x̄, ξ) =

{
R

2, ξ1 > 0,

{x1 ∈ R : x1 ≥ ξ2
2} × R, ξ1 = 0,

for any ξ ∈ T (C; x̄).

Moreover, C is second-order regular at x̄ (as can be seen from Proposition 4.1 in
[6]) and it holds that b(ξ) = 0 for all ξ ∈ R

2. Hence, Corollary 3.5 implies that
ϕ′′(Qµ; v) exists for any v ∈ T r(KC ;Qµ) and that ϕ′′(Qµ; v) = 1

2v
′(0, ξ̄1), where

ξ̄ = (ξ̄1, ξ̄2) ∈ argmin{ξ2
1 + v′(0, ξ1) : (ξ1, ξ2) ∈ R+ × R}.

Example 3.7. Here we revisit Example 2.9 and have

Qµ(y) =
1

3
|y|3 + 2

3
for all |y| ≤ 1, and ψ(Qµ) = {0}, ϕ(Qµ) =

2

3
.

For the function v(x) = −x (x ∈ R) and t ∈ [0, 1) we obtain

ϕ(Qµ + tv) = inf{Qµ(x)− tx : x ∈ R} = 2

3
(1− t

3
2 ),

ψ(Qµ + tv) = argmin{Qµ(x)− tx : x ∈ R} = {√t}.
Then ϕ′(Qµ; v) = 0 and 1

t2 (ϕ(Qµ + tv) − ϕ(Qµ) − ϕ′(Qµ; v)) = − 2
3 t

− 1
2 . Hence, ϕ

has no second-order directional derivative at Qµ in direction v. Note that there is no
neighborhood of x̄ = 0 where Qµ is strongly convex.
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Finally, we aim at showing that ϕ is even second-order Hadamard directionally
differentiable at Qµ when equipping KC with a suitable topology. To this end we
need a certain counterpart of Lemma 3.2 for the corresponding limes inferior. Since
such a bound does not exist for nonsmooth functions, it is a natural idea to consider
the space C1(Rs), to restrict ϕ to the subset KC ∩C1, and to equip KC ∩C1 with the
C1 topology. Then we are able to show that the assumptions of Corollary 3.5 imply
the second-order Hadamard directional differentiability of ϕ at Qµ.

Theorem 3.8. Let Qµ ∈ KC ∩ C1, and assume that ψ(Qµ) is nonempty and
bounded. Let g be twice continuously differentiable, and let Qµ be strongly convex
on some open convex neighborhood of Aψ(Qµ) and twice continuously differentiable
at ȳ, where {ȳ} = Aψ(Qµ). Let x̄ ∈ ψ(Qµ) and assume the conditions (i)′ and (ii)
of Corollary 3.5 to hold. Then the second order Hadamard directional derivative of
ϕ at Qµ exists in any direction v belonging to the tangent cone T (KC ∩ C1;Qµ) in
C1(Rs), i.e., for any such v, and all sequences tn → 0+ and (Qn) in KC such that
vn := 1

tn
(Qn −Qµ)→ v in C1(Rs) the limit

ϕ′′(Qµ; v) = lim
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

exists, and it holds that

ϕ′′(Qµ; v) = inf

{
1

2
〈∇2g(x̄)ξ, ξ〉+1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+〈∇v(ȳ), Aξ〉+b(ξ) : ξ ∈ S(x̄)

}
.

Proof. Let v ∈ T (KC ∩ C1;Qµ), tn → 0+, and (Qn) be a sequence in KC such
that vn = 1

tn
(Qn−Qµ)→ v in C1(Rs). Condition (i)′ together with Theorem 2.3 then

imply that there exist constants L > 0, r > 0, n0 ∈ N, and elements xn ∈ ψ(Qµ+tnvn)
such that

‖xn − x̄‖ ≤ Ltn‖vn‖L,r for all n ∈ N, n ≥ n0.

Since the sequence (vn) converges in C1(Rs), the norms ‖vn‖L,r are uniformly bounded
and we have ‖xn−x̄‖ = O(tn). As in the proof of Theorem 3.4 we select a subsequence
of (tn), which is again denoted by (tn), tending to 0+ such that ξn := 1

tn
(xn −

x̄) −→
n→∞ ξ̄ ∈ S(x̄). Analogously, we obtain for sufficiently large n:

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ b(ξ̄) +
1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 1

tn
(vn(ȳ + tnAξn)− vn(ȳ))+o(1).

Using the mean value theorem for vn we may continue with some ȳn ∈ [ȳ, ȳ + tnAξn]
as follows:

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 〈∇vn(ȳn), Aξn〉+ b(ξ̄) + o(1).

Arguing as in the proof of Theorem 3.4 and using vn → v in C1(Rs), we arrive at the
estimate

lim inf
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉+ 〈∇v(ȳ), Aξ̄〉+ b(ξ̄)
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and, using Proposition 3.3, we arrive at the desired result.
Let us finally note that all minimization problems appearing as bounds or formu-

las for second-order directional derivatives represent convex programs. Those in the
results Theorem 3.4, Corollary 3.5, and Theorem 3.8 have convex cone constraints,
which are polyhedral if C is polyhedral. Moreover, the solution sets of the convex min-
imization problems in Theorem 3.4, Corollary 3.5, and Theorem 3.8 are nonempty.
Indeed, we show next that these solution sets represent certain derivatives of the
set-valued mapping ψ at the pair (Qµ, x̄).

4. Differentiability of solution sets. It is well known that second-order dif-
ferentiability properties of optimal values in perturbed optimization are intrinsic for
establishing the differentiability of solutions (see, e.g., [8]). We also pursue this ap-
proach and derive conditions implying directional differentiability properties of the
solution set mapping by exploiting the results of the previous section. Our first re-
sults in this direction concern Gateaux directional differentiability and complement
Theorem 3.4 and its corollary.

Theorem 4.1. Assume that the general conditions on g, Qµ, and C of Theo-
rem 3.4 are satisfied. Let x̄ ∈ ψ(Qµ), v ∈ T r(KC ;Qµ), and suppose the conditions (i)
and (ii) of Theorem 3.4 to be satisfied. In addition, assume that

(iii) there exist a neighborhood V of ψ(Qµ) and constants c > 0, δ > 0 such that
the uniform growth condition

g(x) + (Qµ + tv)(Ax) ≥ ϕ(Qµ + tv) + cd(x, ψ(Qµ + tv))2

for all x ∈ C ∩ V and t ∈ [0, δ) is satisfied.
Then the Gateaux directional derivative of ψ at the pair (Qµ, x̄) into direction v exists,
and it holds that

ψ′(Qµ, x̄; v) = lim
t→0+

1

t
(ψ(Qµ + tv)− x̄)

= argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ) : ξ ∈ S(x̄)

}
.

Proof. Let M(x̄; v) denote the solution set in the assertion. First we show that
lim supt→0+

1
t (ψ(Qµ + tv)− x̄) ⊆M(x̄; v).

Let ξ ∈ lim supt→0+
1
t (ψ(Qµ + tv) − x̄). Then there exists a sequence (tn, ξn)

converging to (0+, ξ) such that ξn ∈ 1
tn
(ψ(Qµ+tnv)−x̄) and, thus, x̄+tnξn ∈ ψ(Qµ+

tnv) for all n ∈ N. Analogously to the proof of Theorem 3.4 we show that ξ belongs
to S(x̄) and that ϕ′′(Qµ; v) =

1
2 〈∇2g(x̄)ξ, ξ〉+ 1

2 〈∇2Qµ(ȳ)Aξ,Aξ〉+ v′(ȳ;Aξ) + b(ξ).
Hence ξ ∈M(x̄; v).

In the second step we demonstrate that

M(x̄; v) ⊆ lim inf
t→0+

1

t
(ψ(Qµ + tv)− x̄),

or, equivalently, that it holds for any ξ ∈M(x̄, v) that

lim
t→0

1

t
d(x̄+ tξ, ψ(Qµ + tv)) = 0.

Let ξ ∈ M(x̄; v) and (tn) be a sequence with tn → 0+. We have to show that
limn→∞ 1

tn
d(x̄+ tnξ, ψ(Qµ + tnv)) = 0.
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Let ε > 0 be given, and let z∈T 2(C; x̄, ξ) be such that 〈∇g(x̄), z〉+〈∇Qµ(ȳ), Az〉≤
b(ξ)+ε. Then there exists a sequence (zn) converging to z with xn = x̄+tnξ+t2nzn ∈ C
for all n ∈ N. Hence, it suffices to show that

lim
n→∞

1

tn
d(x̄+ tnξ + t2nzn, ψ(Qµ + tnv)) = 0.

Condition (iii) implies the following estimate for all sufficiently large n ∈ N:

cd(x̄+ tnξ + t2nzn, ψ(Qµ + tnv))
2

≤ g(x̄+ tnξ + t2nzn) + (Qµ + tnv)(A(x̄+ tnξ + t2nzn))− ϕ(Qµ + tnv).

By expanding g and Qµ as in the proof of Theorem 3.4 and using the fact that ξ
belongs to S(x̄), we may express the right-hand side as

t2n〈∇g(x̄), zn〉+ 1

2
t2n〈∇2g(x̄)(ξ + tnzn), ξ + tnzn〉

+t2n〈∇Qµ(ȳ), Azn〉+ 1

2
t2n〈∇2Qµ(ȳ)(A(ξ + tnzn)), A(ξ + tnzn)〉

−(ϕ(Qµ + tnv)− ϕ(Qµ)− tnϕ
′(Qµ; v))

+tn(v(A(x̄+ tnξ + t2nzn))− v(Ax̄)) + o(t2n‖ξ + tnzn‖2).

After dividing by t2n and taking the lim supn→∞, on both sides of the latter inequality,
we obtain

lim sup
n→∞

c

t2n
d(x̄+ tnξ + t2nzn, ψ(Qµ + tnv))

2

≤ 〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉+ 1

2
〈∇2g(x̄)ξ, ξ〉

+
1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉 − ϕ′′(Qµ; v) + v′(ȳ;Aξ) ≤ ε,

where we made use of the choice of z, ξ ∈M(x̄; v), and Theorem 3.4. This completes
the proof.

Complementing Corollary 3.5, we provide a result on the directional differentia-
bility of ψ at Qµ into any direction v ∈ T r(KC ;Qµ).

Theorem 4.2. Assume that the general conditions on g, Qµ, and C of Corol-
lary 3.5 are satisfied. Let x̄ ∈ ψ(Qµ), and assume the following.

(i)′′ There exists a constant L > 0 such that

dH(σ(y), σ(ỹ)) ≤ L‖y − ỹ‖ for all y, ỹ ∈ A(C),

and, for each r > 0, there exists a constant η(r) > 0 such that

g(x) ≥ π(Ax) + η(r)d(x, σ(Ax))2 for all x ∈ C ∩B(0, r),

where π(y) = inf{g(x) : x ∈ C,Ax = y} and

σ(y) = argmin{g(x) : x ∈ C,Ax = y}, y ∈ A(C).

(ii) C is second-order regular at x̄.
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Then the Gateaux directional derivative ψ′(Qµ, x̄; v) of ψ at the pair (Qµ, x̄) exists for
any direction v ∈ T r(KC ;Qµ) and satisfies the formula in Theorem 4.1. Moreover,
conditions (i)′′ and (ii) are satisfied if C is polyhedral and g is linear- or (convex-)
quadratic.

Proof. Let v ∈ T r(KC ;Qµ). Since Qµ is strongly convex on some open con-
vex neighborhood of Aψ(Qµ), we infer from condition (i)′′ and Theorem 2.7 that
condition (iii) of Theorem 4.1 is satisfied. Moreover, condition (i)′′ implies (i)′, and
thus, Corollary 3.5 says that the second-order directional derivative ϕ′′(Qµ; v) exists.
Hence, the first part of the assertion follows from the proof of the previous theorem.
Condition (ii) is satisfied if C is polyhedral, and if, in addition, g is convex-quadratic,
Proposition 2.2 implies condition (i)′′ holds.

We note that Example 3.7 shows that, in general, the directional differentiability
property of ψ gets lost at pairs (Qµ, x̄), x̄ ∈ ψ(Qµ), where Qµ is not strongly convex
on some neighborhood of Aψ(Qµ). Our next example demonstrates that Theorem 4.2
applies to situations where the solution set and its Gateaux directional derivatives are
not singletons.

Example 4.3. We revisit the Examples 1.1 and 2.5 and observe that the assump-
tions of Theorem 4.2 are satisfied for any x̄ ∈ ψ(Qµ). Hence, the Gateaux direc-
tional derivative ψ′(Qµ, x̄; v) exists at any pair (Qµ, x̄), x̄ ∈ ψ(Qµ) and any direction
v ∈ T r(KC ;Qµ). Since it holds that ∇2g(x̄) = 0, 〈∇g(x̄), ξ〉+ 〈∇Qµ(Ax̄), Aξ〉 = 0 for
all ξ ∈ R

3, and ∇2Qµ(Ax̄) = 2 ( 1 0
0 1 ), it takes the form ψ′(Qµ, x̄; v) = argmin{‖Aξ‖2+

v′(Ax̄;Aξ) : ξ ∈ T (C; x̄)}. Since the function y �→ ‖y‖2 + v′(Ax̄; y) is strongly convex
on A(T (C; x̄)), it has a unique minimizer ȳ(v) ∈ A(T (C; x̄)). Hence, there exists an
element ξ̄(v) ∈ T (C; x̄) such that Aξ̄(v) = ȳ(v) and ψ′(Qµ, x̄; v) = (ξ̄(v) + kerA) ∩
T (C; x̄). In particular, the Gateaux directional derivative ψ′(Qµ, x̄; .) is a set-valued
mapping of the direction.

Remark 4.4. The approach we followed for deriving Gateaux directional differ-
entiability of solution sets to (1.1) into directions v ∈ T r(KC ;Qµ) is based on lower
and upper estimates for the optimal value function. Compared to the work in [5],
[8], and [32], where this approach is developed and reviewed, we assume neither that
the data of the perturbed problems min{g(x) +Q(Ax) : x ∈ C} is differentiable nor
that solutions to (1.1) are unique. The (set-valued) Gateaux directional derivatives
ψ′(Qµ, x̄; v) in the previous results are valid for the case v = Q −Qµ with a general
Q ∈ KC . Hence, the results complement earlier work on contaminated distributions
(e.g., [13], [14]). They apply to situations where Q is an expected recourse function
with respect to a Dirac measure with unit mass placed at ω∗, i.e., Q(y) = Q̃(ω∗ − y),
and, hence, are relevant to study the influence of a specific scenario on changes of
solution sets.

Another prominent approach to sensitivity analysis of optimization problems is
based on the perturbation analysis of first-order necessary optimality conditions writ-
ten as generalized equations (e.g., [17], [22], [24]). Applying this technique to study
sensitivity of (1.1) requires C1-properties of perturbed expected recourse functions Q.
In the case of (1.1) and Q ∈ C1, the parametric generalized equation reads

0 ∈ ∇g(x) +AT∇Q(Ax) +NC(x),

where NC(x) denotes the normal cone to C at x and Q plays the role of a param-
eter. Relevant conditions in this context implying Lipschitz and differentiability
properties of solutions at some (Qµ, x̄) are the strong regularity of the generalized
equation at parameter Qµ [24], and the subinvertibility of the set-valued mapping



DIFFERENTIAL STABILITY OF STOCHASTIC PROGRAMS 107

F (x) = ∇g(x)+AT∇Qµ(Ax)+NC(x) [17] together with the single-valuedness of the
inverse of the contingent derivative of F at (x̄, 0) (cf., [2]), respectively. To see that
both conditions are violated in general, we consider the linear case (i.e., g is linear
and C is polyhedral). Then both conditions are equivalent if Qµ ∈ C2 (Theorem
6.1 in [17]). The contingent derivative of F at (x̄, 0) has the form DF (x̄, 0)(u) =
AT∇2Qµ(Ax̄)Au+DNC(x̄,−∇g(x̄)−AT∇Qµ(Ax̄))(u) (cf., Section 5.1 in [2]), where
the contingent derivative DNC is again a polyhedral multifunction. Since the first
summand remains constant on translates of the null space of the matrix A, single-
valuedness of the inverse of DF (x̄, 0)(u) fails to hold in general. This is essentially
due to the same structural property, which leads to multiple solutions in Example 1.1
and to set-valued Gateaux directional derivatives in Example 4.3.

Finally, we turn to directional differentiability properties of ψ where the deriva-
tives exist uniformly with respect to directions taken from compact sets of certain
functional spaces. For our first result we consider the space C1(Rs) and equip the set
KC ∩ C1 with the C1-topology.

Proposition 4.5. Let Qµ ∈ KC ∩C1 and assume that the general conditions on
g, Qµ, and C in Proposition 3.3 are satisfied. In addition, we suppose condition (ii)
of Theorem 3.4 to be satisfied. Let x̄ ∈ ψ(Qµ), tn → 0+, and let (Qn) be a sequence
in KC such that vn := 1

tn
(Qn −Qµ)→ v in C1(Rs).

Then the upper set limit of the sequence ( 1
tn
(ψ(Qµ + tnvn)− x̄) of closed convex

subsets in R
m, i.e., lim supn→∞

1
tn
(ψ(Qµ + tnvn) − x̄)), is contained in the closed

convex set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ), Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}
.

Proof. Let Dn := 1
tn
(ψ(Qµ+tnvn)−x̄) for all n ∈ N, and let ξ̄ belong to the upper

set limit lim supn→∞ Dn. Then there exist a subsequence (again denoted by (Dn))
and elements ξn ∈ Dn such that ξn → ξ̄. Since x̄ + tnξn ∈ ψ(Qµ + tnvn) ⊆ C, we
have that ξ̄ ∈ T (C; x̄), and as in the proof of Theorem 3.4, we deduce that ξ̄ ∈ S(x̄).
By expanding g and Qµ as in the proof of Theorem 3.4 we obtain analogously

ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ
′(Qµ; vn)

= g(x̄+ tnξn) +Qµ(A(x̄+ tnξn)) + tnvn(A(x̄+ tnξn))− g(x̄)−Qµ(Ax̄)

− tnvn(Ax̄)

≥ t2nb(ξ̄) +
1

2
t2n〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
t2n〈∇2Qµ(Ax̄)Aξ̄,Aξ̄〉

+tn(vn(A(x̄+ tnξn))− vn(Ax̄)) + o(t2n).

After dividing by t2n and taking the lim supn→∞ on both sides of the inequality, we
obtain, as in the proof of Theorem 3.8,

lim sup
n→∞

1

t2n
(ϕ(Qµ + tnvn)− ϕ(Qµ)− tnϕ

′(Qµ; vn))

≥ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉+ 1

2
〈∇2Qµ(Ax̄)Aξ̄,Aξ̄〉+ 〈∇v(Ax̄), Aξ̄〉+ b(ξ̄).

Hence, we may conclude from Proposition 3.3 that ξ̄ belongs to the set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ),Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}
,
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and we are done.
Remark 4.6. The upper limit of the sequence ( 1

tn
(ψ(Qµ + tnvn)− x̄) in Proposi-

tion 4.5 is nonempty if the mapping d(x̄, ψ(·)) from KC into the extended reals has the
Lipschitzian property of Theorem 2.3 at Qµ. Indeed, we may select xn ∈ ψ(Qµ+tnvn)

for large n ∈ N such that for some constants L̂ > 0 and r > 0, ‖x̄ − xn‖ =
d(x̄, ψ(Qµ + tnvn)) ≤ L̂tn‖vn‖L,r. Hence, the sequence ( 1

tn
(xn − x̄)) is bounded and

has a convergent subsequence whose limit belongs to lim supn→∞
1
tn
(ψ(Qµ+tnvn)−x̄).

If the Lipschitz property of d(x̄, ψ(·)) is violated, the upper set limit may be empty.
This is illustrated by Example 3.7, in which we have x̄ = 0, ψ(Qµ + tnv) = {

√
tn},

and, thus, 1
tn
(ψ(Qµ + tnv)− x̄) = {t− 1

2
n }.

In order to establish the semidifferentiability of ψ at a pair (Qµ, x̄) belonging to
the graph of ψ, it remains to show, according to Proposition 4.5, that the solution set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ), Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}

is contained in the lower set limit lim infn→∞ 1
tn
(ψ(Qµ + tnvn) − x̄), where vn :=

1
tn
(Qn−Qµ), Qn ∈ KC , for all n ∈ N, and (vn) converges to v. To this end, a uniform

quadratic growth condition of the objective functions g(·)+ (Qµ+ tnvn)(A ·) for large
n ∈ N is significant. In view of Theorem 2.7, the uniform strong convexity of Qµ and
its approximations Qn for large n ∈ N is decisive for the growth condition. The next
example and the following result show that the approximations Qn do not maintain
the strong convexity property of Qµ in general if the sequence (Qn) converges to Qµ

in C1(Rs), but that the situation is much more advantageous when considering the
C1,1-topology.

Example 4.7. Let Qµ(y) = y2 for all y ∈ R and let Qn be the following differen-
tiable convex function:

Qn(y) := max
{
0,−y − 1

n

}2

+max
{
0, y − 1

n

}2

for all y ∈ R, n ∈ N.

Note that Qn(y) = 0 for all y ∈ [− 1
n ,

1
n ], and Qn is not strongly convex for each

n ∈ N, but (Qn) converges to Qµ in C1(Rs).
Lemma 4.8. Let Qµ ∈ KC ∩C1,1(Rs) be strongly convex on some bounded convex

set U ⊆ R
s (with some constant κ > 0). Then there exists a neighborhood N of Qµ

in C1,1(Rs) such that each function Q belonging to N is strongly convex on U with
constant κ

2 .
Proof. The strong convexity of Qµ on U (with constant κ > 0) is equivalent to

the condition 〈∇Qµ(y) − ∇Qµ(ỹ), y − ỹ〉 ≥ κ‖y − ỹ‖2 for all y, ỹ ∈ U . Let r > 0
be chosen such that cl U ⊆ B(0, r), and let N be a neighborhood of Qµ in C1,1(Rs)
having the property ‖∇(Qµ − Q)‖L,r ≤ κ

2 for all Q ∈ N . Let y, ỹ ∈ U , with y �= ỹ.
Then we obtain for any Q ∈ N

κ ≤ 〈∇Qµ(y)−∇Qµ(ỹ), y − ỹ〉
‖y − ỹ‖2

=
〈∇Q(y)−∇Q(ỹ), y − ỹ〉

‖y − ỹ‖2 +
〈∇(Qµ −Q)(y)−∇(Qµ −Q)(ỹ), y − ỹ〉

‖y − ỹ‖2

≤ 〈∇Q(y)−∇Q(ỹ), y − ỹ〉
‖y − ỹ‖2 +

‖∇(Qµ −Q)(y)−∇(Qµ −Q)(ỹ)‖
‖y − ỹ‖2

≤ 〈∇Q(y)−∇Q(ỹ), y − ỹ〉
‖y − ỹ‖2 + ‖∇(Qµ −Q)‖L,r,
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and, hence,

κ

2
‖y − ỹ‖2 ≤ 〈∇Q(y)−∇Q(ỹ), y − ỹ〉.

This means that Q is strongly convex on U with constant κ
2 .

Now we are able to show that the solution set mapping ψ is semidifferentiable on
KC ∩ C1,1 at some pairs (Qµ, x̄), x̄ ∈ ψ(Qµ), into any direction v from the tangent
cone T (KC ∩ C1,1;Qµ) to KC ∩ C1,1(Rs) at Qµ in C1,1(Rs). The assumptions are
essentially the same as in Theorem 4.2.

Theorem 4.9. Let Qµ ∈ KC ∩ C1,1, and assume that ψ(Qµ) is nonempty and
bounded. Let g be twice continuously differentiable, and let Qµ be strongly convex on
some open convex neighborhood U of Aψ(Qµ) and twice continuously differentiable at
ȳ, where {ȳ} = Aψ(Qµ). Assume that condition (i)′′ of Theorem 4.2 is satisfied.

Then the solution set mapping ψ from KC ∩C1,1 into R
m is semidifferentiable at

any pair (Qµ, x̄), x̄ ∈ ψ(Qµ), such that C is second-order regular at x̄, and into any
direction v ∈ T (KC ∩ C1,1;Qµ), i.e., for any such x̄ and v, tn → 0+, and (Qn) in
KC ∩ C1,1 with vn = 1

tn
(Qn −Qµ)→ v in C1,1(Rs) the set limit

Dψ(Qµ, x̄; v) = lim
n→∞

1

tn
(ψ(Qµ + tnvn)− x̄)

exists. The semiderivative Dψ(Qµ, x̄; v) is equal to the set

argmin

{
1

2
〈∇2g(x̄)ξ, ξ〉+ 1

2
〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇v(ȳ), Aξ〉+ b(ξ) : ξ ∈ S(x̄)

}
.

Moreover, ψ is semidifferentiable at any pair (Qµ, x̄), x̄ ∈ ψ(Qµ), into any direction
v ∈ T (KC ∩ C1,1;Qµ) if C is polyhedral. Condition (i)′′ is satisfied if C is polyhedral
and g is linear- or (convex-) quadratic.

Proof. Let x̄ ∈ ψ(Qµ) be such that C is second-order regular at x̄, v ∈
T (KC ∩C1,1;Qµ), and vn = 1

tn
(Qn−Qµ)→ v in C1,1(Rs), where tn → 0+ and (Qn)

is a sequence in KC ∩ C1,1. We may assume that the neighborhood U is bounded.
Since (Qn) converges to Qµ in C1,1(Rs), we obtain from Lemma 4.8 that there exists
an n0 ∈ N such that Qn is strongly convex on U for each n ≥ n0 with a uniform con-
stant κ > 0. Moreover, we choose n0 sufficiently large such that ψ(Qn) is nonempty
for each n ≥ n0. Arguing as in the proof of Theorem 2.7, we obtain a constant c > 0
and a neighborhood V of ψ(Qn) such that the growth condition

g(x) +Qn(Ax) ≥ ϕ(Qn) + cd(x, ψ(Qn))
2

holds for all x ∈ C ∩ V and n ≥ n0.
Let ξ̄ ∈ S(x̄) be a minimizer of the function 1

2 〈∇2g(x̄)ξ, ξ〉+ 1
2 〈∇2Qµ(ȳ)Aξ,Aξ〉+

〈∇v(ȳ), Aξ〉+ b(ξ) subject to ξ ∈ S(x̄). Because of Proposition 4.5 it remains to show
that ξ̄ belongs to the lower limit lim infn→∞ 1

n (ψ(Qµ+tnvn)−x̄) = lim infn→∞ 1
tn
(ψ(Qn)

− x̄). To this end we argue as in the proof of Theorem 4.1. Let ε > 0 be given, and
let z ∈ T 2(C; x̄, ξ̄) be such that 〈∇g(x̄), z〉 + 〈∇Qµ(ȳ), Az〉 ≤ b(ξ̄) + ε. Then there
exists a sequence (zn) converging to z with xn = x̄ + tnξ + t2nzn ∈ C for all n ∈ N.
Then it suffices to show that

lim
n→∞

1

tn
d(x̄+ tnξ̄ + t2nzn, ψ(Qn)) = 0.
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By using the above growth condition and by expanding the function g and Qµ, we
obtain, similar to the proof of Theorem 4.1, that

lim sup
n→∞

c

t2n
d(x̄+ tnξ̄ + t2nzn, ψ(Qn))

2

≤ 〈∇g(x̄), z〉+ 〈∇Qµ(ȳ), Az〉+ 1

2
〈∇2g(x̄)ξ̄, ξ̄〉

+
1

2
〈∇2Qµ(ȳ)Aξ̄,Aξ̄〉 − ϕ′′(Qµ; v) + 〈∇v(ȳ), Aξ̄〉 ≤ ε .

This implies ξ̄ ∈ lim infn→∞ 1
tn
(ψ(Qn)−x̄) and the semidifferentiability of ψ at (Qµ, x̄)

in direction v is shown. The remaining part of the assertion follows as in the proof of
Theorem 4.2.

For the linear-quadratic case, the essential assumptions in Theorem 4.9 are the
strong convexity of Qµ, and the smoothness properties of Qµ and its perturbations Q,
respectively. While criteria for strong convexity were already discussed in section 2,
we now add some comments on C1,1 and C2 properties of expected recourse functions.
Later we close by indicating some conclusions of the results of sections 3 and 4 on
asymptotic properties of statistical estimators of optimal values and solution sets.

Remark 4.10. Assume (A1)–(A3) and µ to have a density with respect to the
Lebesgue measure on R

s. Then the function Qµ in (1.2) is continuously differentiable

on R
s and its gradient is of the form ∇Qµ(y) =

∑�
i=1 diµ(y+Bi(R

s
+)) for all y ∈ R

s,
where Bi, i = 1, . . . , <, are certain basis submatrices of the recourse matrix W such
that the simplicial cones Bi(R

s
+), i = 1, . . . , <, are linearity regions of Q̃ and −di is

the gradient of Q̃ on int Bi(R
s
+), i = 1, . . . , < (cf., [15], [39]). Denoting by Fµ the

distribution function of µ and using the formula

µ(y +B(Rs
+)) = Fµ◦(−B)(−B−1y) for all y ∈ R

s,

for any nonsingular (s, s)-matrix B, C1,1 and C2 properties of Qµ may thus be formu-
lated in terms of Lipschitz and differentiability properties of the distribution functions
Fµ◦(−Bi) to the linear transforms µ ◦ (−Bi), i = 1, . . . , <, of the measure µ.

The distribution function Fµ of a probability measure µ on R
s is locally Lips-

chitzian if all one-dimensional marginal distribution functions of µ are locally Lips-
chitzian (cf. [26], [38]). Fµ is continuously differentiable if µ has a continuous density
function and all one-dimensional marginal distribution functions of µ are continuously
differentiable (cf. [21], [38]). If µ has a continuous density function, then µ ◦B has a
continuous density for any nonsingular (s, s)-matrix B, too. Hence, we may conclude,
for instance, that Qµ belongs to C1,1(Rs) (and C2(Rs)) if µ has a (continuous) den-
sity and the above-mentioned conditions on the one-dimensional marginal distribution
functions for Fµ◦B belonging to C0,1(Rs) (and C1(Rs), respectively) are satisfied for
any nonsingular (s, s)-matrix B. This criterion is particularly useful for probability
distributions µ which have the property that all one-dimensional marginal distribu-
tions of µ and all linear transforms µ ◦ B for all nonsingular matrices B belong to
the same class of measures. For instance, all multivariate normal and all logarithmic
concave probability measures (e.g., [15]) form classes having this property.

Remark 4.11. We consider a sequence (Qn) of nonparametric estimators of Qµ

and assume that each Qn is a random variable with values in some linear metric
(function) space Z and in KC . Furthermore, we assume that a central limit result of
the form

τ−1
n (Qn −Qµ)→d ζ
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is satisfied for some sequence of positive numbers (τn) decreasing to 0 and for some
random variable ζ taking values in a separable subset of Z. Here, we denote by→d the
convergence in distribution of Z-valued random variables. Then versions of the delta-
method (see, e.g., [36]) together with the second-order Hadamard differentiability of
the optimal value ϕ at Qµ (Theorem 3.8 and Z = C1(Rs)) and the semidifferentia-
bility of the solution set ψ at Qµ (Theorem 4.9 and Z = C1,1(Rs)) lead to central
limit formulas for the sequence (ϕ(Qn)) of real random variables and the sequence of
random sets (ψ(Qn)), respectively. In particular, we obtain from Theorem 3.8 and a
second-order version of the delta-method that

τ−2
n (ϕ(Qn)−ϕ(Qµ)−ϕ′(Qµ;Qn−Qµ)) = τ−2

n (ϕ(Qn)−g(x̄)−Qn(Ax̄))→d ϕ′′(Qµ; ζ),

where x̄ ∈ ψ(Qµ) and →d refer to convergence in distribution of real-valued random
variables. Theorem 4.9 and a set-valued version of the delta-method [16], [20] imply

τ−1
n (ψ(Qn)− x̄)→d Dψ(Qµ, x̄; ζ),

where x̄ ∈ ψ(Qµ) and→d refer to convergence in distribution of closed-valued measur-
able multifunctions in R

m (cf. [29]). The asymptotic distributions in both central limit
results are the probability distributions of the optimal value and of the solution set,
respectively, of the random convex program that consists in minimizing the (random)
objective 1

2 〈∇2g(x̄)ξ, ξ〉+ 1
2 〈∇2Qµ(ȳ)Aξ,Aξ〉+ 〈∇ζ(ȳ), Aξ〉+b(ξ) subject to ξ satisfy-

ing the (deterministic) constraints ξ ∈ T (C; x̄) and 〈∇g(x̄), ξ〉 + 〈∇Qµ(ȳ), Aξ〉 = 0 .
Furthermore, in the linear-quadratic case the set-valued central limit result may be
complemented by limit theorems for selections forming a Castaing representation of
ψ (cf. [11]).
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Abstract. In this paper, we propose a new QP-free method, which ensures the feasibility of
all iterates, for inequality constrained optimization. The method is based on a nonsmooth equation
reformulation of the KKT optimality condition, by using the Fischer–Burmeister nonlinear comple-
mentarity problem function. The study is strongly motivated by recent successful applications of
this function to the complementarity problem and the variational inequality problem. The method
we propose here enjoys some advantages over similar methods based on the equality part of the
KKT optimality condition. For example, without assuming isolatedness of the accumulation point or
boundedness of the Lagrangian multiplier approximation sequence, we show that every accumulation
point of the iterative sequence generated by this method is a KKT point if the linear independence
condition holds. And if the second-order sufficient condition and the strict complementarity condi-
tion hold, the method is superlinearly convergent. Some preliminary numerical results indicate that
this new QP-free method is quite promising.

Key words. QP-free method, linear independence, strict complementarity, global convergence,
superlinear convergence
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1. Introduction. This paper is concerned with finding a solution of the inequal-
ity constrained optimization problem

min f(x)
subject to (s.t.) x ∈ F := {x ∈ R

n|g(x) ≤ 0},(1.1)

where f : R
n → R and g : R

n → R
m are continuously differentiable. A pair (x, λ) ∈

R
n+m with x ∈ F is called a stationary point of (1.1) if it satisfies

∇xL(x, λ) = 0,
λigi(x) = 0, i = 1, . . . ,m,

(1.2)

where L(x, λ) = f(x) +
∑m
i=1 λigi(x) is the Lagrangian function of (1.1). If further-

more λ ≥ 0, (x, λ) is called a KKT point. Sometimes, we also call x ∈ F a stationary
point or a KKT point of (1.1) if there exists λ ∈ R

m such that (x, λ) is a stationary
point or a KKT point of (1.1).

Our study here is encouraged by recent successful numerical methods for nonlinear
complementarity problems; for a survey see [6]. The function most often used in
these methods is probably the Fischer–Burmeister nonlinear complementarity problem
(NCP) function, which has a very simple structure:

φ(a, b) =
√
a2 + b2 − a− b, a, b ∈ R.
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The function enjoys several interesting, indeed somewhat surprising, properties, among
which are

• φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.
• The square of φ is continuously differentiable.
• φ is twice continuously differentiable everywhere except at the origin, but it
is strongly semismooth at the origin.

So the KKT condition of (1.1) can be equivalently reformulated as

Φ(x, λ) =




∇xL(x, λ)
φ(−g1(x), λ1)

...
φ(−gm(x), λm)


 = 0,(1.3)

and the semismooth Newton method [20, 24] can be applied to the function Φ. The
differentiability of the norm square ψ = ‖Φ‖2 of Φ justifies its role as a merit func-
tion in the globalized procedure of the semismooth Newton method; see [2, 27] for
excellent examples of this idea. Numerical experiments on nonlinear complementar-
ity problems show advantages of methods based on the Fischer–Burmeister function
over existing ones [2, 1]. Encouraged by the success on nonlinear complementarity
problems, the methods have been carried over to solve variational inequality problems
(VIP) [4, 15], which include the KKT system of (1.1) as a special case. However, such
methods are only able to find a stationary point of ψ, which is a KKT point under
additional conditions. For other semismooth equation reformulations of the KKT
condition, see the paper by Qi and Jiang [23]. We note that, in a very recent paper
[8], Ferris and Sinapiromsaran used the Fischer–Burmeister function to reformulate
the KKT system of (1.1) as a mixed complementarity problem. The function serves
as the merit function in their PATH solver. The numerical results reported there are
very competitive over known problem solvers for nonlinear constrained optimization
problems. We also note that a QP-free method based on the Fischer–Burmeister
function is studied in [15]. The preliminary numerical results reported there show
the promise of the method. For the advantage of QP-free methods for nonlinear
constrained optimization problems, see the paper [5] by Facchinei and Lucidi.

The feasibility issue for (1.1) is always important because some real-life applica-
tions such as in engineering design and economics [12, 18] require the data only defined
in the feasible region. The QP-free method proposed in [15] does not ensure the fea-
sibility of all iterates. A QP-free method for (1.1), which also ensures the feasibility
of all iterates, was proposed about 10 years ago by Panier, Tits, and Herskovits [19].
Letting (xk, µk) with xk ∈ F be an approximation to a KKT point (x∗, λ∗), their al-
gorithm first calculates a descent direction dk0 by solving the following system, which
is derived from (1.2):[

Hk, ∇g(xk)
diag(µk)∇gT (xk), diag(gk)

] [
d
λ

]
=

[ −∇f(xk)
0

]
,(1.4)

where Hk ∈ R
n×n is a positive definite matrix, gk := g(xk), ∇g(xk) denotes the

transposed Jacobian of g at xk, and for a vector µ ∈ R
m diag(µ) denotes the diagonal

matrix whose ith diagonal element is µi. If (x
k, µk) is a KKT point, then the coefficient

matrix in (1.4) is nonsingular if and only if the linear independence condition and the
strict complementarity condition hold. This observation is crucial to their convergence
analysis. In order to guarantee the feasibility of the next iterate, i.e., xk+1 ∈ F , they
continue to calculate a direction dk1 by solving a perturbed system of (1.4):
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[
Hk, ∇g(xk)

diag(µk)∇gT (xk), diag(gk)

] [
d
λ

]
=

[ −∇f(xk),
−‖dk0‖ν diag(µk)e

]
,(1.5)

where ν > 2 and e is the vector of all ones in an appropriate dimensional space (here
e ∈ R

m). Globally, the search direction is a convex combination of the two directions,
namely,

dk = (1− ρk)dk0 + ρkdk1,
where ρk is calculated explicitly. To avoid the Maratos effect, locally the search
direction should be bent slightly by a relatively small amount of direction, which is
also a solution of a linear system.

On the one hand, as Panier, Tits, and Herskovits observed [19, p. 810] that “linear
system (1.4), (1.5) may become very ill-conditioned if some multiplier µi correspond-
ing to a nearly active constraint gi becomes very small. This may occur close to
a solution of problem (1.1) at which the strict complementarity conditions are not
satisfied,” their QP-free method is very sensitive to the parameters chosen. The ill-
conditionedness of the matrix may force the multiplier approximation sequence to
diverge. On the other hand, they could show only that any accumulation point of
the iterates is a stationary point. Under additional assumption of isolatedness of the
stationary point, this point is shown to be a KKT point. The algorithm was later
improved by Gao, He, and Wu [11] in the sense that every accumulation point of the
iterates is a KKT point. To achieve this, they solve an extra linear system, which is
a slight perturbation of (1.4) on the right-hand side. However, they assume that the
multiplier approximation sequence remains bounded, which is unlikely as the matrix
in (1.4) becomes very ill-conditioned.

Regarding the recent development on QP-free methods for constrained optimiza-
tion problems, we note that the method of Panier–Tits–Herskovits was recently con-
verted to a primal-dual logarithmic barrier interior-point method, whose convergence
properties are also established under the conditions for the original one; see [26] for
details. We also note that a quite general feasible direction approach for the con-
strained optimization problem was studied by Herskovits in [13]. The convergence
of this approach is established under a set of conditions similar to [19]. Based on
this approach, first-order, Newton, and quasi-Newton algorithms can be obtained,
depending on what information about functions was used.

In this paper, we propose a new QP-free method for (1.1) based on the Fischer–
Burmeister function. Our method always ensures the strict feasibility of all iterates,
and the property in turn ensures the differentiability of Φ. If the linear independence
condition is assumed in F , then the matrix sequence used in our algorithm is uniformly
nonsingular. We stress that we do not need the strict complementarity condition for
the uniform nonsingularity. This, we believe, is an outstanding advantage of our
method over the ones proposed in [19, 11]. Some ideas are borrowed from [19, 11].
For example, to ensure the descentness of the search direction and the feasibility of
the iterates we adopt the idea of “bending” in the paper [19]; and to ensure the
convergence to a KKT point, we also solve an extra linear system. Without assuming
the boundedness of the multiplier approximation sequence or the isolatedness of the
limit point, we establish that every accumulation point of the iterates is a KKT point
of (1.1). Under mild conditions, we establish superlinear convergence of the algorithm.
The paper is organized as follows. In section 2, we present our algorithm and develop
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some properties for later use. The global convergence of this algorithm to a KKT point
of (1.1) is established in section 3, whereas we prove local fast convergence in section
4. Section 5 is devoted to some preliminary numerical results. Some conclusions are
drawn in section 6.

2. Algorithm. Let (xk, µk) ∈ R
n+m be given with xk being strictly feasible in

the sense that gi(x
k) < 0 for all i = 1, . . . ,m. We define three vectors ηk, θk, and

δk ∈ R
m as follows:

ηki =
gi(x

k)√
g2i (x

k) + (µki )
2

+ 1, θki =


1− µki√

g2i (x
k) + (µki )

2




1/2

,

and

δki =


 1√

g2i (x
k) + (µki )

2(µki +
√
g2i (x

k) + (µki )
2)




1/2

.

Since xk is strictly feasible, ηk, θk, and δk are well defined. It is well known [9, 10]
that

(ηki )
2 + (θki )

4 ≥ 3− 2
√
2.(2.1)

Also it is easy to check that

θki = −δki gi(xk).(2.2)

Let Ak = ∇g(xk), Γk = diag(ηk), and Θk = −√2 diag(θk). If f , gi, i = 1, . . . ,m, are
twice continuously differentiable, then the function defined in (1.3) is continuously
differentiable at (xk, µk) and the Jacobian of Φ at (xk, µk) is given by

Φ′(xk, µk) =

[
∇2
xL(x

k, µk) Ak
ΓkA

T
k −1

2(Θk)
2

]
.

In order to apply quasi-Newton methods to solve (1.1), we replace ∇2
xL(x

k, µk) by a
symmetric positive definite matrix Hk. And in order to achieve superlinear conver-
gence of our algorithm, we use the matrix

Vk =

[
Hk Ak

ΓkA
T
k Θk

]

instead of the Jacobian matrix of Φ in our algorithm. The use of Θk in Vk, instead of
one half of the negative of its square, is very important to our superlinear convergence
result. Now we formally state our algorithm.

Algorithm 2.1 (new QP-free method).
(S.0) Initialization. Choose parameters: α ∈ (0, 1/2), θ ∈ (0, 1), β ∈ (0, 1), ν >

2, τ ∈ (2, 3), κ ∈ (0, 1), µ̄ > 0.
Choose data: x0, a strictly feasible point in F , H0 ∈ R

n×n, a symmetric
positive definite matrix; µ0

i , a scalar satisfying 0 < µ0
i ≤ µ̄, i = 1, . . . ,m. Let

w0 = (x0, µ0) and set k := 0.
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(S.1) Computation of the search direction.
(i) Compute dk0 and λk0 by solving the following linear system in (d, λ):

Vk

[
d
λ

]
=

[ −∇f(xk)
0

]
.(2.3)

If dk0 = 0, stop. Otherwise go to (ii) below.
(ii) Compute dk1 and λk1 by solving the linear system in (d, λ)

Vk

[
d
λ

]
=

[ −∇f(xk)
Γk(λ

k0
− )3

]
,(2.4)

where the ith element of (λk0− )3 is defined by (min{λk0i , 0})3.
(iii) Compute dk2 and λk2 by solving the linear system in (d, λ)

Vk

[
d
λ

]
=

[ −∇f(xk)
Γk(λ

k0
− )3 − ‖dk1‖νΓke

]
.(2.5)

(iv) Compute the search direction dk and the approximate multiplier vector
λk according to [

dk

λk

]
= (1− ρk)

[
dk1

λk1

]
+ ρk

[
dk2

λk2

]
,(2.6)

where

ρk = (θ − 1)
〈∇f(xk), dk1〉

1 + |
m∑
i=1

λk0i |‖dk1‖ν
.(2.7)

(v) Compute a correction d̂k, solution of the linear square problem in d

min
1

2
〈d,Hkd〉 s.t. gi(x

k + dk) + 〈∇gi(xk), d〉 = −ψk for all i ∈ Ik,(2.8)

where Ik = {i |gi(xk) ≥ −λki } and

ψk = max

{
‖dk‖τ ,max

i∈Ik

∣∣∣∣∣ ηki√
2δki λ

k
i

− 1

∣∣∣∣∣
κ

‖dk‖2
}
.

If (2.8) has no solution or if ‖d̂k‖ > ‖dk‖, set d̂k = 0.
(S.2) Line search. Compute tk, the first number t of the sequence {1, β, β2, . . .}

satisfying {
f(xk + tdk + t2d̂k) ≤ f(xk) + αt〈∇f(xk), dk〉,
gi(x

k + tdk + t2d̂k) < 0, i = 1, . . . ,m.
(2.9)

(S.3) Update. Compute a new symmetric definite positive approximation Hk+1 to
the Hessian matrix. Set

xk+1 = xk + tkd
k + t2kd̂

k, µk+1 = min{max{λk0, ‖dk‖e}, µ̄e}.(2.10)

Let wk+1 = (xk+1, µk+1), and set k = k + 1. Go to (S.1).
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Remarks: The main purpose of system (2.3) is to enforce the direction dk0 to be
a descent direction of f . However, this direction may converge to zero with a negative
multiplier; thus a deep descent direction is supplied by solving (2.4), which is a slight
perturbation of (2.3) by adding to the right side the negative part of the multipliers
associated with (2.3). The purpose of (2.5) is to ensure the feasibility of the next
iterate.

The rest of the section is devoted to showing that Algorithm 2.1 is well defined.
To this end, we first show that if it terminates at (S.1)(i), the current point is an
unconstrained stationary point (hence a trivial KKT point) of (1.1). Then we continue
to show that the matrices involved in the linear systems (2.3)–(2.5) are nonsingular
if the algorithm does not terminate at xk. Finally we show that the direction dk is
actually a descent direction of the merit function f so that the line search is always
possible and hence the algorithm is well defined.

Lemma 2.2. If dk0 = 0, then ∇f(xk) = 0, i.e., xk is an unconstrained stationary
point of f .

Proof. If dk0 = 0, the system (2.3) reduces to

m∑
i=1

λk0i ∇gi(xk) +∇f(xk) = 0,(2.11)

θki λ
k0
i = 0, i = 1, . . . ,m.

Since gi(x
k) < 0 for all i = 1, . . . ,m, θki > 0 by its definition. It follows from (2.11)

that ∇f(xk) = 0.
Without loss of generality, we assume that the algorithm never terminates at

(S.1)(i), i.e., dk0 �= 0. Since xk is strictly feasible and µk > 0, we have ηk > 0 and
θk > 0. We now show the matrix Vk is nonsingular. Let u ∈ R

n and v ∈ R
m be a

solution of

Hku+Akv = 0,(2.12)

ΓkA
T
k u+Θkv = 0.(2.13)

It follows from (2.13) that

v = −Θ−1
k ΓkA

T
k u.(2.14)

Substituting (2.14) into (2.12) and multiplying (2.12) by uT , we have

uTHku− uTAkΘ−1
k ΓkA

T
k u = 0.(2.15)

Since Hk is positive definite and the matrix (−AkΘ−1
k ΓkA

T
k ) is positive semidefinite,

we have u = 0 from (2.15). It follows (2.14) that v = 0. Hence Vk is nonsingular.
So the quantities dk1, dk2, λk1, λk2 are well defined. The nonsingularity of Vk implies
that the matrix Dk = ΓkA

T
kH

−1
k Ak −Θk is also nonsingular. Let

Bk = H−1
k AkD

−1
k and Qk = H−1

k (I −AkΓkBTk ).
The following relations are important to our analysis.


dk0 = −Qk∇f(xk), λk0 = −ΓkBTk ∇f(xk),
dk1 = dk0 +BkΓk(λ

k0
− )3, λk1 = λk0 −D−1

k Γk(λ
k0
− )3,

dk2 = dk1 − ‖dk1‖νBkΓke, λk2 = λk1 + ‖dk1‖νD−1
k Γke,

dk = dk1 − ρk‖dk1‖νBkΓke, λk = λk1 + ρk‖dk1‖νD−1
k Γke.

(2.16)
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It is also easy to see that (dk, λk) satisfies the linear system

Vk

[
dk

λk

]
=

[ −∇f(xk)
Γk(λ

k0
− )3 − ρk‖dk1‖νΓke

]
.(2.17)

The following results show dk1 is a very deep descent direction of f over dk0.
Lemma 2.3. (i) 〈∇f(xk), dk0〉 ≤ −〈dk0, Hkdk0〉.
(ii)

〈∇f(xk), dk1〉 = 〈∇f(xk), dk0〉 −
∑

i:λk0
i
<0

(λk0i )4.

(iii) 〈∇f(xk), dk〉 ≤ θ〈∇f(xk), dk1〉.
Proof. (i) can be proved similarly to [19, Lemma 3.2]. It follows from (2.16) that

〈∇f(xk), dk1〉 = 〈∇f(xk), dk0〉+ 〈∇f(xk), BkΓk(λk0− )3〉
= 〈∇f(xk), dk0〉+ 〈ΓkBTk ∇f(xk), (λk0− )3〉
= 〈∇f(xk), dk0〉 − 〈λk0, (λk0− )3〉
= 〈∇f(xk), dk0〉 −

∑
i:λk0

i
<0

(λk0i )4.

This establishes (ii). Now we prove (iii). Straight calculation gives

〈∇f(xk), dk〉
= 〈∇f(xk), dk1〉 − ρk‖dk1‖ν∇f(xk)TBkΓke

= 〈∇f(xk), dk1〉+ (θ − 1)
〈∇f(xk), dk1〉

1 + ‖dk1‖ν |
m∑
i=1

λk0i |
‖dk1‖ν

m∑
i=1

λk0i

≤ θ〈∇f(xk), dk1〉.

The last inequality above used the fact that 〈∇f(xk), dk1〉 < 0.
It is easy by following standard analysis of [19, Proposition 3.3] to show that

there exists a tk, the first number of the sequence {1, β, β2, . . .}, which satisfies the
line search (2.9), so that we are able to get the next iterate xk+1 from the current
iterate xk, and µk+1 > 0. Therefore we claim as follows.

Proposition 2.4. Algorithm 2.1 is well defined.

3. Global convergence. To study the convergence behavior of the algorithm,
let {wk = (xk, µk)} be a sequence generated by Algorithm 2.1. In addition to existence
of a strictly feasible point x0, we need the following assumptions.

(H1) For all x ∈ F , the linear independence condition holds at x, i.e., the set of
vectors {∇gi(x) : i ∈ I(x)} is linearly independent, where I(x) = {i : gi(x) =
0}.

(H2) The set F ∩ {x| f(x) ≤ f(x0)} is compact.
(H3) There exist positive numbers σ1 and σ2 such that σ1‖d‖2 ≤ 〈d,Hkd〉 ≤ σ2‖d‖2

for all k and all d ∈ R
n.

We have assumed that dk0 �= 0 for all k = 0, 1, . . . . It follows from Lemma 2.3
that dk �= 0. Hence the updating rule in (2.10) implies that µk+1 > 0, which in turn
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implies ηk+1 > 0 and θk+1 > 0. Therefore Vk is nonsingular for all k. Moreover, we
have a strong result on the nonsingularity of Vk.

Lemma 3.1. The sequence {‖V −1
k ‖} is bounded for k = 0, 1, . . . .

Proof. It is already known that Vk is nonsingular for all k. Now suppose to the
contrary that there exists a subsequence {Hk, xk, µk}K such that

‖V −1
k ‖ → ∞ as k ∈ K →∞.(3.1)

Since {ηk} and {θk} are bounded, without loss of generality, we may assume that

ηk → η∗, θk → θ∗.

By (H2), without loss of generality, we may assume that xk → x∗ ∈ F . It is easy to
see that θ∗i = 0 only if gi(x

∗) = 0 and η∗i = 1. Moreover, the relation (2.1) is observed
in the limit, i.e., for all i,

(η∗i )
2 + (θ∗i )

4 ≥ 3− 2
√
2.

By (H3), without loss of generality, we may assume that Hk → H∗, a positive definite
matrix in R

n×n. Putting all the limits together, we have

Vk → V∗ =

[
H∗, ∇g(x∗)

diag(η∗)∇gT (x∗), −√2 diag(θ∗)
]
.

Now we show that V∗ is nonsingular, which contradicts the assumption at the begin-
ning of the proof and hence establishes the result. Let (u, v) ∈ R

n+m be a solution of
the linear system

H∗u+∇g(x∗)v = 0,(3.2)

diag(η∗)∇gT (x∗)u−
√
2 diag(θ∗)v = 0.(3.3)

We show (u, v) = (0, 0). First we consider such i for which η∗i = 0; it follows from the
relation (2.1) that θ∗i > 0, hence vi = 0 by (3.3). For i such that η∗i �= 0, multiplying
(3.2) by uT we get

uTH∗u+
√
2
∑
i:η∗

i
�=0

θ∗i
η∗i
v2
i = 0.

Since H∗ is positive definite, we must have

u = 0 and θ∗i vi = 0 for all i such that η∗i �= 0.

If θ∗i = 0 for some i, then gi(x
∗) = 0. Hence (3.2) implies∑
i:gi(x∗)=0

∇gi(x∗)vi = 0.

We note that the linear independence condition holds, which implies vi = 0 for all
i ∈ I(x∗). This proves (u, v) = (0, 0) and hence V∗ is nonsingular, which contradicts
the assumption (3.1). Hence the lemma holds.

The following two corollaries are some important consequences of Lemma 3.1.
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Corollary 3.2. The sequences of {(dk0, λk0)}, {(dk1, λk1)}, and {(dk2, λk2)}
are all bounded on k = 0, 1 . . . .

Proof. The matrix sequence {V −1
k } is uniformly bounded as proved in Lemma 3.1;

{xk} is bounded due to the assumption (H2). The solvability of system (2.3) implies
that {(dk0, λk0)} is bounded, which implies the boundedness of the right-hand side
of (2.4). Hence {(dk1, λk1)} is also bounded. The boundedness of {dk1} implies the
boundedness of the right-hand side of system (2.5), and thus the sequence {(dk2, λk2)}
is also bounded.

Corollary 3.3. There exists κ1 > 0 such that for all k = 0, 1, . . . ,

‖dk − dk1‖ ≤ κ1‖dk1‖ν .

Proof. Since {dk1} and {λk0} are bounded, the definition of ρk yields the bound-
edness of the sequence {ρk}. Let

κ1 = 2 sup{ρk} sup{‖V −1
k ‖}.

It is from Lemma 3.1 that κ1 is a finite scalar. Now define

∆dk = dk − dk1 and ∆λk = λk − λk1.

Then the vector (∆dk,∆λk) is the solution of

Vk

[
∆dk

∆λk

]
=

[
0

−ρk‖dk1‖νΓke
]
.(3.4)

It is easy to see that ηki ≤ 2, (3.4) yield

‖(∆dk,∆λk)‖ ≤ κ1‖dk1‖ν

so that

‖∆dk‖ ≤ κ1‖dk1‖ν .

Lemma 3.4. Let x∗ be an accumulation point of {xk} and suppose that {xk}K →
x∗. If {dk}K → 0, then x∗ is a KKT point of (1.1) and {λk0}K → λ∗, where λ∗ is
the unique multiplier vector associated with x∗.

Proof. It follows from Lemma 2.3 and the assumption (H3) that

〈∇f(xk), dk〉 ≤ −σ1θ‖dk0‖2 − θ
∑

i:λk0
i
<0

(λk0i )4.

Hence {dk}K → 0 implies that

{dk0}K → 0 and
∑

i:λk0
i
<0

(λk0i )4 → 0, k ∈ K.(3.5)

Since {λk0} and {µk} are bounded, there exist λ∗, µ∗ ∈ R
m, and a subset K ′ of K

such that (λ∗, µ∗) is the limit of the subsequence {(λk0, µk)}K′ . We now show that
(x∗, λ∗) is a KKT point of (1.1). First it follows from (3.5) that λ∗ ≥ 0, i.e., the limit
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of the multipliers is nonnegative. Now we consider that for i �∈ I(x∗), θki converges
on K ′ and satisfies

lim
k∈K′

θki = θ∗i =


1− µ∗i√

g2i (x
∗) + (µ∗i )2




1/2

> 0.(3.6)

Taking the limits in both sides of (2.3) on K ′, we obtain by noting dk0 → 0 as
k ∈ K →∞

m∑
i=1

λ∗i∇gi(x∗) = −∇f(x∗),(3.7)

lim
k∈K

θki λ
∗
i = 0, i = 1, . . . ,m.(3.8)

Note that θki does not necessarily converge for i ∈ I(x∗). (3.8) and (3.6) imply

λ∗i = 0 for i �∈ I(x∗).

Therefore (x∗, λ∗) satisfies

∇f(x∗) +
∑

i∈I(x∗)

λ∗i∇gi(x∗) = 0.

Furthermore, x∗ ∈ F because {xk} ⊆ F . Hence (x∗, λ∗) is a KKT point of
(1.1).

The proof of the following result is the same as [19, Lemma 3.8] by using Lemma
3.4.

Lemma 3.5. Let x∗ be an accumulation point of {xk} and {xk}K → x∗. If

{dk−1}K → 0,(3.9)

then x∗ is a KKT point.
The following result addresses the case where the condition (3.9) does not hold

on a subsequence.
Lemma 3.6. Let x∗ be an accumulation point of {xk} and {xk}K → x∗. If

inf{‖dk−1‖}K > 0,

then x∗ is a KKT point.
Proof. What we proved in Lemma 3.4 is the following: If 〈∇f(xk), dk1〉 → 0, then

x∗ must be a KKT point. Now we suppose that x∗ is not a KKT point of (1.1). Then
there must exist γ > 0 satisfying

〈∇f(xk), dk1〉 ≤ −γ for all k ∈ K,(3.10)

which implies that there exists δ > 0

lim inf
k∈K
‖dk1‖ > δ.
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A direct consequence of (3.10) is that there exists ρ̄ > 0 such that ρk ≥ ρ̄ for all
k ∈ K ′. This can be proved by employing the boundedness of {dk1}, {λk0} and
(3.10).

We now show that there exists t̄ > 0 such that for all t ∈ [0, t̄] and k ∈ K large
enough, two line search conditions in (2.9) are satisfied. It follows from (3.10) that,
for k ∈ K large enough,

〈∇f(xk), dk〉 ≤ −θγ.(3.11)

From the proof of [19, Proposition 3.9], we have following basic relations (because of
the differentiability of the functions) for the functions f, gi, i = 1, . . . ,m, and k ∈ K
large enough

f(xk + tdk + t2d̂k)− f(xk)− αt〈∇f(xk), dk〉

≤ t
{

sup
ξ∈[0,1]

‖∇f(xk + tξdk + t2ξ2d̂k)−∇f(xk)‖‖dk‖

+ 2t sup
ξ∈[0,1]

‖∇f(xk + tξdk + t2ξ2d̂k)‖‖d̂k‖ − (1− α)θγ
}
,(3.12)

gi(x
k + tdk + t2d̂k) ≤ gi(xk) + t{uki (t) + 〈∇gi(xk), dk〉},(3.13)

where for i = 1, . . . ,m

uki (t) = sup
ξ∈[0,1]

‖∇gi(xk + tξdk + t2ξ2d̂k)−∇gi(xk)‖‖dk‖

+ 2t sup
ξ∈[0,1]

‖∇gi(xk + tξdk + t2ξ2d̂k)‖‖d̂k‖.

We note that {d̂k} is also bounded due to the relation ‖d̂k‖ ≤ ‖dk‖. Hence (3.12)
implies that there exists t̄f > 0, independent of k, such that, for k ∈ K large enough,

f(xk + tdk + t2d̂k)− f(xk)− αt〈∇f(xk), dk〉 ≤ 0 for all t ∈ [0, t̄f ].(3.14)

Since {‖dk−1‖} is bounded away from zero on K, the definition in (2.10) implies that
there exists µ̂ > 0 such that µk ≥ µ̂ for all k ∈ K large enough. It follows from (2.17)
that for all i = 1, . . . ,m

〈∇gi(xk), dk〉 = (λk0− )3i +

√
2λki
ηki

θki − ρk‖dk1‖ν .

For these indices i �∈ I(x∗), there exists γ1 > 0 such that

gi(x
k) ≤ −γ1

for all k ∈ K large enough. It is easy to see from the boundedness of the directions
dk and d̂k that for these indices, there exists t̄i, i �∈ I(x∗) independent of k such that

gi(x
k + tdk + t2d̂k) < 0

for all t ∈ (0, t̄i]. For i ∈ I(x∗), we have for k ∈ K sufficiently large

gi(x
k)→ 0, ηki → 1,
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and

θki =


 g2i (x

k)√
(µki )

2 + g2i (x
k)(µki +

√
(µki )

2 + g2i (x
k))




1/2

≤ 1√
2µ̂
|gi(xk)|.

The boundedness of {λki }, the continuity of uki (t) as a function of t, and uki (0) = 0
imply that there exists t̄i > 0, independent of k, such that, for t ∈ [0, t̄i], i ∈ I(x∗),
and k ∈ K large enough,

uki (t) + 〈∇gi(xk), dk〉 ≤ uki (t) + (λk0− )3i −
|λki |
µ̂ηki

gi(x
k)− ρ̄δν < 0.

This fact, together with (3.13) and gi(x
k) < 0, implies

gi(x
k + tdk + t2d̂k) < 0 for all t ∈ [0, t̄i].

Let

t̄ = min{t̄f , t̄1, . . . , t̄m}.
The line search rule gives tk ≥ βt̄ for all k ∈ K sufficiently large. It follows from
(3.11) and (3.14) that

f(xk + tkd
k + t2kd̂

k)− f(xk) ≤ −αβt̄θγ,
which drives f(xk)→ −∞, a contradiction to (H2). Hence x∗ is a KKT point.

Putting the results in Lemmas 3.4–3.6 together, we obtain our global convergence
result.

Theorem 3.7. If (x∗, λ∗) is a limit point of the sequence {(xk, λk0)} generated
by Algorithm 2.1, then (x∗, λ∗) is a KKT point of (1.1).

4. Local convergence. Beside the assumptions of (H1)–(H3), we also need the
following assumptions in our superlinear convergence analysis. Let w∗ = (x∗, λ∗) be
an accumulation point of the sequence {(xk, λk0)}. Then, according to Theorem 3.7,
w∗ is a KKT point.

(H4) The strict complementarity condition holds at w∗, i.e., λ∗ − g(x∗) > 0.
(H5) The second-order sufficient condition holds at w∗, i.e., the Hessian∇2

xL(x
∗, λ∗)

is positive definite on the space {u : 〈∇gi(x∗), u〉 = 0, i ∈ I(x∗)}.
(H6) The scalar µ̄ > 0 is sufficiently large such that λ∗ ≤ µ̄.
The next result is on the convergence of the whole sequence to an isolated point.

The original version of the result is due to Moré and Sorensen [17]; here we cite a
slightly different version of the result from [15, Proposition 5.4].

Proposition 4.1. Assume that w∗ ∈ R
t is an isolated accumulation point of a

sequence {wk} ⊂ R
t such that, for every subsequence {wk}K converging to w∗, there

is an infinite subset K̃ ⊆ K such that {‖wk+1−wk‖}K̃ → 0. Then the whole sequence
{wk} converges to w∗.

The proposition is used in the following result.
Lemma 4.2. Under the stated assumptions, the whole sequence {xk} converges

to x∗, and {λk0} converges to the unique multiplier λ∗.
Proof. The second-order sufficient condition and the linear independence condi-

tion mean that x∗ is an isolated accumulation point of {xk}; see [25]. Let {xk}K be
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a subsequence converging to x∗. It is enough, according to Proposition 4.1, to show
that there exists a subsubsequence of {xk}K′ with K ′ ⊆ K satisfying

‖xk+1 − xk‖ → 0 as k ∈ K ′ →∞.

Since

‖xk+1 − xk‖ ≤ ‖dk‖+ ‖d̂k‖ ≤ 2‖dk‖,

it is sufficient to show that

‖dk‖ → 0 as k ∈ K ′ →∞.(4.1)

Assume to the contrary that there does not exist such a subsequence K ′ such that
(4.1) holds, i.e.,

lim inf
k∈K
‖dk‖ > 0.

Corollary 3.3 implies that

lim inf
k∈K
‖dk1‖ > 0.(4.2)

Without loss of generality, we assume that

ηk → η∗, θk → θ∗, Hk → H∗ as k ∈ K →∞.

(H3) implies that H∗ is positive definite. Hence

Vk → V∗ =

[
H∗, ∇g(x∗)

diag(η∗)∇gT (x∗), −√2 diag(θ∗)
]
.

Following a similar proof of Lemma 3.1, we can prove that V∗ is nonsingular. It is
proved in Lemma 3.4 that λk0 → λ∗. Hence we must have λk0− → 0. By the continuity
properties of Vk → V∗ and of the function ∇f(x), the nonsingularity of V∗ implies
(dk1, λk1) converges to the unique solution of the linear system

V∗

[
d
λ

]
=

[ −∇f(x∗)
0

]
.(4.3)

It is already known that (x∗, λ∗) is a KKT point and (0, λ∗) is the unique solution
of the above system. So we must have dk1 → 0, which contradicts with (4.2). Hence
there must exist a subsequence K ′ such that (4.1) is satisfied. Proposition 4.1 implies
xk converges to x∗. The convergence of λk0 to λ∗ is a direct consequence of Lemma
3.4. This completes the proof.

We stress that we do not use the strict complementarity condition in proving the
convergence of {xk} to x∗. The following result is an easy consequence of Lemma 4.2.

Corollary 4.3. For k large enough, Ik = I(x∗) and
(i) dk → 0, dk0 → 0, dk1 → 0.
(ii) λk → λ∗, λk1 → λ∗.
(iii) µk → λ∗.
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Proof. We first prove that dk0 → 0. We note that {dk0} is bounded. Let d∗0 be an
accumulation point of some subsequence {dk0}K . It is already shown that λk0 → λ∗.
Hence (d∗0, λ∗) must be the unique solution of the linear system (4.3), where V∗ is a
limit of {Vk}K and V∗ must be nonsingular by Lemma 3.1. It is already known that
(x∗, λ∗) is a KKT point and (0, λ∗) is the unique solution of (4.3). So we must have
{dk0}K → 0. Hence dk0 → 0 as k →∞. dk → 0 and dk1 → 0 follow from Lemma 2.3.
This establishes (i). Just as we show that {Vk} is uniformly nonsingular in Lemma
3.1, we can show that the matrix sequence {Dk} is uniformly nonsingular. (ii) follows
from the relations in (2.16). (H6) and the updating rule (2.10) give (iii). It is well
known that if the strict complementarity condition holds at x∗, then the set Ik detects
I(x∗) completely whenever (xk, λk) is close to (x∗, λ∗).

The following simple observation is very useful in the analysis later.
Lemma 4.4. For i ∈ I(x∗),
(i) ηki → 1, θki → 0.
(ii) λki θ

k
i /gi(x

k)→ −1/√2, λki δ
k
i → 1/

√
2.

For i �∈ I(x∗), we have (iii) ηki → 0, θki → 1.
Proof. Straightforward calculation on ηki and θki gives the results in (i) and (iii).

For (ii), we note that

(θki )
2 = 1− µki√

g2i (x
k) + (µki )

2

=
g2i (x

k)

(µki +
√
g2i (x

k) + (µki )
2)
√
g2i (x

k) + (µki )
2

.

The limits in Corollary 4.3 and the strict complementarity condition yield the results
in (ii).

Now we consider the case i �∈ I(x∗). It follows from (2.3) that dk0 satisfies

ηki 〈∇gi(xk), dk0〉 −
√
2θki λ

k0
i = 0.

Lemma 4.4 implies that

λk0i = o(‖dk0‖) for all i �∈ I(x∗).(4.4)

So it follows from (2.16) that

dk = dk0 + o(‖dk0‖2) and dk1 = dk0 + o(‖dk0‖2).(4.5)

In order that the steplength of unit is accepted eventually, and hence the superlinear
convergence is obtained, we assume that

(H7) The sequence of matrices {Hk} satisfies
‖Pk(Hk −∇2

xL(x
∗, λ∗))dk‖

‖dk‖ → 0,

where

Pk = I −Nk(NT
k Nk)

−1NT
k and Nk = [∇gi(xk) : i ∈ I(x∗)].

We now develop two lemmas, which are the correspondence of Lemmas 4.3 and
4.4 in [19] and are essential for the steplength of one to be accepted.

Lemma 4.5. For k large enough, the direction dk can be decomposed into

dk = Pkd
k + d̃k



QP-FREE METHODS FOR CONSTRAINED OPTIMIZATION 127

with

‖d̃k‖ = O


 ∑
i∈I(x∗)

g2i (x
∗)




1/2

+ o(‖dk0‖2).

Proof. It follows from (2.17) that dk satisfies, for i = 1, . . . ,m,

ηki 〈∇gi(xk), dk〉 −
√
2θki λ

k
i = ηki (min{λk0i , 0})3 − ηki ρk‖dk1‖ν .

In particular,

NT
k d

k = hk,

where hk is a |I(x∗)|-vector whose components are the numbers
√
2θki λ

k
i

ηki
− (min{λk0i , 0})3 − ρk‖dk1‖ν , i ∈ I(x∗).

It follows from Lemma 4.4 and (4.5) that

‖hk‖ = O


 ∑
i∈I(x∗)

g2i (x
∗)




1/2

+ o(‖dk0‖2).

It is easy to know that

d̃k = Nk(N
T
k Nk)

−1hk.

This establishes the result.
It follows from the relation (2.2) and the system (2.17) that for i ∈ I(x∗)

−ψk − gi(xk + dk) = −ψk +
(

ηki√
2δki λ

k
i

− 1

)
〈∇gi(xk), dk〉+O(‖dk‖2).

Following almost the same argument as in [19, Lemma 4.4], we have the following

result, regarding the direction d̂k. We omit the proof.
Lemma 4.6. For k large enough, the direction d̂k is obtained as the solution of

(2.8) and it satisfies

‖d̂k‖ = O

(
max

{
‖dk‖2, max

i∈I(x∗)

∣∣∣∣∣ ηki√
2δki λ

k
i

− 1

∣∣∣∣∣ ‖dk‖
})

= o(‖dk‖).

Almost all preparation is obtained to ensure the steplength of one to be eventually
accepted. The rest our of analysis is based on Taylor expansion and we omit the
detailed proof. Two good examples for the proof of the next result can be found in
[19, Proposition 4.5] and [11, Theorem 4.1].

Proposition 4.7. For k large enough, the step tk = 1 is accepted by the line
search.

Now we consider the superlinear convergence of {xk}. Note that the iteration can
be cast as

xk+1 = xk + dk0 + o(‖dk0‖).(4.6)
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We first consider the following iterate. Let (dkf , λ
k
f ) be a solution of the linear system

[
Hk Nk
NT
k 0

] [
dkf
λkf

]
= −

[ ∇f(xk)
gIk(x

k)

]
,(4.7)

where the elements of gIk(x
k) are given by gi(x

k), i ∈ Ik. The linear system (4.7)
is well studied in a neighborhood of x∗ and much is known about its convergence
properties under stated conditions. We cite several facts from the literature. The
symbol ∼ below means that the ratio of the expression on the left-hand side to the
right-hand side is both bounded above and bounded away from zero, as k →∞.

Lemma 4.8. (i) [22, Lemma 4] ‖dkf‖ ∼ ‖gIk(xk)‖+ ‖Pk∇f(xk)‖.
(ii) [16, Lemma 21] ‖xk − x∗‖ ∼ ‖gIk(xk)‖+ ‖Pk∇f(xk)‖.
(iii) [5, Theorem 5.2] ‖xk + dkf − x∗‖ = o(‖xk − x∗‖).
An immediate consequence of Lemma 4.8 is

‖xk + dkf + o(‖dkf‖)− x∗‖ = o(‖xk − x∗‖).(4.8)

To establish superlinear convergence of the iterate (4.6), we prove

dk0 = dkf + o(‖dk0‖).(4.9)

By definition, the direction dk0 satisfies

Hkd
k0 +

m∑
i=1

λk0i ∇gi(xk) = −∇f(xk),(4.10)

ηki 〈∇gi(xk), dk0〉+
√
2λk0i δ

k
i gi(x

k) = 0, i = 1, . . . ,m.(4.11)

We have from (4.4) and (4.10)

Hkd
k0 +

∑
i∈I(x∗)

λk0i ∇gi(xk) = −∇f(xk) + o(‖dk0‖).(4.12)

Since λk0 → λ∗ from Lemma 4.2, it is easy to calculate λk0i δ
k
i = 1/

√
2 for i ∈ I(x∗),

as we have proved for λk in Lemma 4.4. Hence (4.11) yields

〈∇gi(xk), dk0〉+ gi(xk) = o(‖dk0‖), i ∈ I(x∗).(4.13)

We note that Ik = I(x∗) for k sufficiently large, and the matrix in (4.7) is nonsin-
gular in a sufficiently small neighborhood of x∗. Comparing (4.12) and (4.13) with
(4.7), we have the relation (4.9) because of the nonsingularity of the matrix involved.
Putting the facts (4.6), (4.8), and (4.9) together, we obtain superlinear convergence
of Algorithm 2.1.

Theorem 4.9. Under the stated assumptions, we have

‖xk+1 − x∗‖ = o(‖xk − x∗‖).
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5. Numerical results. Algorithm 2.1 was implemented in MATLAB and tested
on a DEC George Server 8200 over a set of problems from [14]. The details about the
implementation are described as follows.

(a) The termination criterion. By Lemma 2.2, ‖dk0‖ = 0 only ensures that xk is
an unconstrained stationary point of f . Hence we replaced the termination criterion
in Algorithm 2.1 by

‖Φ(xk, λk0)‖ ≤ tol,(5.1)

where Φ is defined by (1.3) and tol is the tolerance. It follows from the properties of
the Fischer–Burmeister function that the final iterate must be an approximate KKT
point of (1.1). This termination criterion worked quite well for our test problems.

(b) BFGS update. The initial Lagrangian Hessian estimate is H0 = I, and Hk is
updated by the damped BFGS formula described in [21]. In particular, we set

Hk+1 = Hk − Hksks
T
kHk

sTkHksk
+
yky

T

skyk
,

where

yk =

{
ŷk, ŷTk sk ≥ 0.2sTkHksk,
θkŷk + (1− θk)Hksk otherwise,

and 

sk = xk+1 − xk,
ŷk = ∇f(xk+1)−∇f(xk) + (∇g(xk+1)−∇g(xk))λk0,
θk = 0.8sTkHksk/(s

T
kHksk − sTk ŷk).

We note that λk0 is used in defining ŷk because λk0 converges to a KKT multiplier of
(1.1) according to Theorem 3.7.

(c) Computing the correction direction. In order to save computation, evaluation

of the correction d̂k should be calculated only when the iterate is close to a solution
of problem (1.1). In our implementation, d̂k is calculated when

‖Φ(xk, λk)‖ ≤ 1 and ‖dk‖ ≤ 0.1.

Doing so, we need to estimate the active set at xk. Instead of using the traditional
strategy stated in (S.1)(v) of Algorithm 2.1, we define

Ik :=

{
i| − gi(xk) ≤

√
‖R(xk, λk)‖

}
,(5.2)

where

R(x, λ) =

( ∇xL(x, λ)
min(−g(x), λ)

)
.

It follows from [3, Theorem 3.7] that Ik defined by (5.2) is able to identify the actual
active set I∗ without requiring the strict complementarity condition. We note that
such a replacement does not affect the convergence of Algorithm 2.1 because the strict
complementarity condition is required in our local fast convergence analysis.
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Table 5.1
Numerical results for Algorithm 2.1.

Problem It Nf Ng ‖Φ‖ FV
1 40 66 66 1.5e-07 1.0884e-17
3 12 17 23 1.3e-08 1.2778e-08
4 4 9 11 7.5e-09 2.6667e+00
5 6 11 11 2.2e-06 -1.9132e+00
12 7 15 17 1.2e-06 -3.0000e+01
24 11 19 24 1.8e-13 -1.0000e+00
25 0 1 1 1.8e-08 3.2835e+01
29 8 15 18 3.4e-06 -2.2627e+01
30 7 10 14 2.5e-09 1.0000e+00
31 10 37 41 1.7e-07 6.0000e+00
33 10 28 34 1.3e-09 -4.0000e+00
34 23 68 78 2.3e-11 -8.3403e-01
35 7 12 15 9.9e-06 1.1111e-01
36 13 72 74 3.6e-13 -3.3000e+03
37 17 79 85 4.8e-06 -3.4560e+03
43 12 25 30 1.5e-06 -4.4000e+01
44 17 39 42 1.1e-11 -1.5000e+01
76 10 18 23 8.9e-09 -4.6818e+00
100 15 39 45 1.5e-08 6.8063e+02
113 22 50 58 5.6e-06 2.4306e+01

(d) Test problems and the parameter setting. A total of 20 problems are selected
from [14]. These problems have inequality constraints only and the starting points
provided are strictly feasible. The parameters used in our implementation are

α = 0.3, β = 0.5, θ = 0.8, ν = 3, τ = 2.5, κ = 0.9, µ̄ = +∞, tol = 10−5.

In Table 5.1, which presensts results of the numerical experiments, we use the
following notation:

Problem: number of the problem in [14],
It: number of iterations,
Nf: number of objective function evaluations,
Ng: number of constraint function evaluations,
‖Φ‖: value of ‖Φ(·, ·)‖ at the final iterate (xk, λk0),
FV: objective function value at the final iterate.

We note that the number of Jacobian evaluations is one more than the number
of iterations.

The results in Table 5.1 indicate that Algorithm 2.1 is quite promising. In general,
the number of iterations and the function evaluations are very small. Moreover,
the results compare well with those given in [26]. For almost all problems except
problem 25, our algorithm can find the solution. The starting point for problem
25 already satisfies the criterion (5.1). We note that the number of the constraint
function evaluations is relatively larger than the number of the objection function
evaluations. The reason is that we need to calculate the correction direction d̂k

whenever the iterate is close to the solution. The calculation needs evaluation of
constraint functions at an additional point, namely, xk + dk. Finally, we stress that
the behavior of the algorithm appeared to be relatively insensitive to changes in the
values of the algorithm parameters.

6. Conclusions. A new feasible QP-free method is proposed for the inequality
constrained optimization problem. The method is based on a nonsmooth equation
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reformulation of the KKT optimality condition. Compared with the one in [19], which
is based on the equality part of the KKT optimality condition, our method enjoys sev-
eral advantages, among which are the nonsingularity of the iteration matrices without
assuming the strict complementarity condition (see Lemma 3.1); the fact that every
limit point of the iterative sequence is a KKT point of the original problem without
assuming boundedness of the Lagrangian multiplier approximation sequence as re-
quired in [11]; and the uniform boundedness of the direction sequences. All of those
merits come from the one simple fact that the Jacobian matrix of the reformulated
nonsmooth equation is nonsingular under mild assumptions. The efficiency of the
new method is verified with a subset of problems from [14]. The numerical results
confirmed our feeling that the Fischer–Burmeister function can be successfully used
for the solution of the inequality constrained optimization problems, not only for
complementarity problems.

An interesting problem which remains open is whether the strict complementarity
condition can be removed from the analysis of the local fast convergence. It seems
hopeful by incorporating the identification technique recently studied by Facchinei,
Fischer, and Kanzow in [3] into our algorithm. However, it is extremely hard since
we are unable to ensure that the unit steplength is accepted eventually without the
strict complementarity condition.

Acknowledgments. We would like to thank both referees for their valuable
comments and suggestions, which greatly improved the presentation of the paper. In
particular, one referee drew our attention to references [13, 26]. We are also grateful
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1. Introduction. Considering the fact that the primal-dual algorithm of Ko-
jima, Megiddo, and Mizuno [3] (henceforth called the KMM algorithm) does not use
a predictor-corrector approach, it is surprising that it is an efficient algorithm for
solving linear programming problems in practice. Of course, this efficiency follows
not only from the use of the Newton search direction, which is clearly inferior to the
predictor-corrector direction proposed by Mehrotra [7], but also from the fact that
the KMM algorithm features some other useful properties that are missing in most
other infeasible-interior-point algorithms: It allows the use of arbitrary starting points
and long step sizes that can be different in the primal and dual subspaces. Moreover,
because of the simple structure of the KMM algorithm, it can easily be modified to
handle inexact search directions.

In this paper we give a variant of the KMM algorithm that allows the use of search
directions that are calculated only to moderate accuracy (inexact search directions)
and we prove its convergence behavior under the assumption that the iterates are
bounded. This is different from the analysis of the exact algorithm in [3], which
gives some information about the infeasibility of the given problem if the iterates
are unbounded. This (theoretical) information cannot be obtained with the analysis
presented here.

The use of inexact search directions is a major difference to most interior-point
algorithms, whose convergence is proved under the assumption that the search di-
rections are calculated exactly. Algorithms featuring similar search directions were
proposed by Freund, Jarre, and Mizuno (see [1], [2], and [8]).

After some basic notes and definitions (section 2) we give a motivation for the
use of inexact search directions and state our inexact variant of the KMM algorithm
(section 3). In section 4 we show that the (polynomial) convergence of the new variant
can be proved in almost the same way as the convergence of the original algorithm.
After that we give a short analysis of the behavior of the algorithm if unsolvable
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problems are processed. In section 5 we give a method to incorporate the predictor-
corrector direction of Mehrotra in the inexact framework of this paper. Finally, we
state some numerical results in section 6.

Throughout the paper we use the following notation: If xk and zk are elements of
R
n, then Xk and Zk denote the diagonal matrices Xk = diag(xk) and Zk = diag(zk).

By e we denote the vector e = (1, . . . , 1)T ∈ R
n and by 0 and I the zero, resp., the

identity, matrix with sizes apparent from the context. As usual, the notation x > 0
(x ≥ 0) means that every component of x is greater then zero (nonnegative). For
a matrix A ∈ R

m×n with rank(A) > 0 we denote by σmax(A) (σmin(A)) the largest
(smallest positive) singular value of A, and by κ2(A) := σmax(A)/σmin(A) we denote
the spectral condition number of A.

2. The problem. In this paper we consider the linear program

(PD) :

{
minimize xT z,
(x, y, z) ∈ PD, where PD :=




(x, y, z) ∈ R
n+m+n,

Ax = b,
AT y + z = c,
x ≥ 0,
z ≥ 0.

A is an m× n matrix with rank(A) = m, b ∈ R
m, and c ∈ R

n. The set PD is called
the set of all feasible points. The basic duality theorem states that (x∗, y∗, z∗) is a
solution of (PD) iff

(x∗, y∗, z∗) ∈ {(x, y, z) ∈ R
n+m+n : x ≥ 0, z ≥ 0, xT z = 0, Ax = b, AT y + z = c}.

For given ε > 0, εp > 0, and εd > 0 the infeasible-interior-point algorithms introduced
here try to calculate an element of the set

{(x, y, z) ∈ R
n+m+n : x ≥ 0, z ≥ 0, xT z ≤ ε, ‖Ax− b‖2 ≤ εp, ‖AT y+ z− c‖2 ≤ εd}

and take it as an approximation to a solution of (PD) (a so-called (ε, εp, εd)-solution).

In order to ensure convergence toward an (ε, εp, εd)-solution, we force the iterates
to lie within a neighborhood of the central path. In this paper we will use the following
wide neighborhood proposed by Kojima, Megiddo, and Mizuno [3].

Definition 2.1. Let γ ∈ (0, 1), γp > 0, γd > 0, εp > 0, and εd > 0. The
neighborhood N = N (γ, γp, γd, εp, εd) is defined by

N = {(x, y, z) ∈ R
n+m+n : x > 0, z > 0,

xizi ≥ γxT z/n (i = 1, . . . , n),
xT z ≥ γp‖Ax− b‖2 ∨ ‖Ax− b‖2 ≤ εp,
xT z ≥ γd‖AT y + z − c‖2 ∨ ‖AT y + z − c‖2 ≤ εd}.

The following trivial lemma gives a connection between N (γ, γp, γd, εp, εd) and an
(ε, εp, εd)-solution.

Lemma 2.2. If (x, y, z) ∈ N (γ, γp, γd, εp, εd) and x
T z ≤ min{ε, εpγp, εdγd}, then

(x, y, z) is an (ε, εp, εd)-solution of (PD).

3. An inexact infeasible-interior-point algorithm. To give a motivation
for the use of inexact search directions, we review how the KMM algorithm tries to
calculate an (ε, εp, εd)-solution. Let’s assume (just for this motivation) that the set
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of strictly feasible points
◦
PD := {(x, y, z) ∈ PD : x > 0, z > 0} is not empty. Thus

for all µ > 0,

Fµ(x, y, z) =


 Ax− b

AT y + z − c
Xz − µe




has a unique zero (xµ, yµ, zµ) with xµ > 0 and zµ > 0, and limµ→0(xµ, yµ, zµ) is a solu-
tion of (PD). The KMM algorithm therefore calculates a decreasing sequence µk with
limk→∞µk = 0 and determines in each iteration k an approximation (xk+1, yk+1, zk+1)
of the central point (xµk , yµk , zµk) via a damped Newton step: For the given vector
(xk, yk, zk) ∈ N the linear system

 A 0 0
0 AT I
Zk 0 Xk


 ·


 ∆xk

∆yk

∆zk


 =


 b−Axk

c−AT yk − zk

µke−Xkzk


(3.1)

is solved and αkp ∈ (0, 1] and αkd ∈ (0, 1] are chosen such that the new iterate

(xk+1, yk+1, zk+1) = (xk + αkp∆x
k, yk + αkd∆y

k, zk + αkd∆z
k)

is an element of N (and satisfies an additional descent condition). This procedure
together with the fact that the search direction cannot be calculated exactly in practice
leads us to the consideration that it should be sufficient to calculate an approximation
of (∆xk,∆yk,∆zk) and then proceed as stated before. In this paper we use search
directions that can be calculated without any knowledge of (∆xk,∆yk,∆zk) from
(3.1): We accept (∆xk,∆yk,∆zk) as an inexact (Newton) search direction, if

 A 0 0
0 AT I
Zk 0 Xk


 ·


 ∆xk

∆yk

∆zk


 =


 b−Axk

c−AT yk − zk

µke−Xkzk


+


 rk

sk

tk


 ,(3.2)

where the “residual components” satisfy

‖rk‖2 ≤ (1− τ1)‖Axk − b‖2,
‖sk‖2 ≤ (1− τ2)‖AT yk + zk − c‖2,
‖tk‖∞ ≤ τ3

(xk)T zk

n

(3.3)

and τ1 ∈ (0, 1], τ2 ∈ (0, 1], and τ3 ∈ [0, 1) are some appropriately chosen constants.
Note that (3.3) can be interpreted as a condition of the relative exactness on

each of the three components individually. Therefore, as was pointed out by one of
the referees, we cannot guarantee that an iterate calculated via some iterative solver
applied to system (3.1) will eventually satisfy condition (3.3), even if the iteration is
known to converge. However, (3.3) will be satisfied if we perform an iteration on an
appropriately reduced system. This will be explained in detail at the beginning of
section 6, where we report on our numerical experiments.

As the new “inexact” algorithm follows the central path in a less rigorous way
than the “exact” KMM algorithm, we expect an increase in the number of iterations.
But the use of inexact search directions can nevertheless result in a decrease of the
total processing time, because inexact search directions can sometimes be calculated
very efficiently (see section 6).

We are now ready to state our inexact variant of the KMM algorithm.
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Algorithm 1.
1. Choose ε > 0, εp > 0, εd > 0, γ ∈ (0, 1), γp > 0, γd > 0, ω ≥ 1, and

(x0, y0, z0) ∈ N (γ, γp, γd, εp, εd) with ‖(x0, z0)‖1 ≤ ω. Set k = 0 and choose
0 < β1 < β2 < β3 < 1, τ1 ∈ (0, 1], τ2 ∈ (0, 1], and τ3 ∈ [0, 1) with
(a) δ1 := (1− γ)β1 − (1 + γ)τ3 > 0, (b) δ2 := β1 + τ1 − τ3 − 1 > 0,
(c) δ3 := β1 + τ2 − τ3 − 1 > 0, (d) δ4 := β2 − β1 − τ3 > 0.

2. If (xk, yk, zk) is an (ε, εp, εd)-solution, stop.
3. Set µk = β1(x

k)T zk/n and calculate a search direction (∆xk,∆yk,∆zk) that
satisfies (3.2) and (3.3).

4. Calculate

α∗,k
p = sup{α ∈ R : xk + α∆xk ≥ 0},

α∗,k
d = sup{α ∈ R : zk + α∆zk ≥ 0},

α∗,k = min{α∗,k
p , α∗,k

d }.
If (xk, yk, zk) + α∗,k(∆xk,∆yk,∆zk) is an (ε, εp, εd)-solution, stop.

5. Let αk be the maximum of all α̃ ∈ [0, 1] restricted to: All α ∈ [0, α̃] are
satisfying

(xk, yk, zk) + α(∆xk,∆yk,∆zk) ∈ N (γ, γp, γd, εp, εd),
(xk + α∆xk)T (zk + α∆zk) ≤ (1− α(1− β2))(x

k)T zk.

6. Choose αkp ∈ [0, 1] and αkd ∈ [0, 1] in such a way that the new iterate

(xk+1, yk+1, zk+1) = (xk + αkp∆x
k, yk + αkd∆y

k, zk + αkd∆z
k) satisfies

(xk+1, yk+1, zk+1) ∈ N (γ, γp, γd, εp, εd),
(xk+1)T zk+1 ≤ (1− αk(1− β3))(x

k)T zk.

7. If ‖(xk+1, zk+1)‖1 ≥ ω, stop. Otherwise set k = k + 1 and go to step 2.

Remark 3.1.
1. For τ1 = 1, τ2 = 1, and τ3 = 0 Algorithm 1 reduces to the “exact” KMM

algorithm.
2. ||(x0, z0)||1 is generally quite large, hence ω should be chosen to be large too.
3. The conditions (a)–(d) in step 1 are met if β1 = 0.1, β2 = 0.99995, τ1 = 0.95,

τ2 = 0.95, τ3 = 0.049, and γ < 51/149.
4. Every vector (∆xk,∆yk,∆zk) which satisfies the conditions (3.2) and (3.3)

satisfies (∆xk,∆zk) �≥ 0, hence α∗,k ∈ (0,∞).
5. Since (xk, yk, zk) + αk(∆xk,∆yk,∆zk) ∈ N and

(xk + αk∆xk)T (zk + αk∆zk) ≤ (1− αk(1− β3))(x
k)T zk,

it is always possible to choose αkp = αkd = αk.

6. Usually it is not necessary to calculate αk. The conditions in step 6 are met
for a given vector (xk+1, yk+1, zk+1) ∈ N if

(xk+1)T zk+1 ≤ (1− α∗,k(1− β3))(x
k)T zk,

because we have (by Theorem 4.2 below)

(1− α∗,k(1− β3))(x
k)T zk ≤ (1− αk(1− β3))(x

k)T zk.
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4. Convergence results. We now modify the ideas of Kojima, Megiddo, and
Mizuno [3] to prove the global convergence of Algorithm 1. We first state some basic
properties of Algorithm 1, then give a lower bound for αk (Lemma 4.3), and finally
prove global convergence (Theorem 4.4). We start by defining

fki (α) = (xki + α∆xki )(z
k
i + α∆zki )− γ(xk + α∆xk)T (zk + α∆zk)/n

(i = 1, . . . , n),
gkp(α) = (xk + α∆xk)T (zk + α∆zk)− γp‖A(xk + α∆xk)− b‖2,
gkd(α) = (xk + α∆xk)T (zk + α∆zk)− γd‖AT (yk + α∆yk) + z + α∆zk − c‖2,
hk(α) = (1− α(1− β2))(x

k)T zk − (xk + α∆xk)T (zk + α∆zk)

and α̇k as the maximum of all α̃ ∈ [0, 1] for which


fki (α) ≥ 0,
gkp(α) ≥ 0 or ‖A(xk + α∆xk)− b‖2 ≤ εp,
gkd(α) ≥ 0 or ‖AT (yk + α∆yk) + zk + α∆zk − c‖2 ≤ εd,
hk(α) ≥ 0

(4.1)

hold for all α ∈ [0, α̃].
The following lemma can be proved easily with the help of steps 3 and 6 of

Algorithm 1 and its proof is therefore omitted.
Lemma 4.1. At step 2 of iteration k
1. (xk, yk, zk) ∈ N (γ, γp, γd, εp, εd),
2. ‖(xk, zk)‖1 ≤ ω,
3. (xk)T zk ≤ (1− αk−1(1− β3))(x

k−1)T zk−1 (if k > 0).
At step 4 of iteration k we have for α ∈ [0, 1]

4. ‖A(xk + α∆xk)− b‖2 ≤ (1− ατ1)‖Axk − b‖2,
5. ‖AT (yk + α∆yk) + zk + α∆zk − c‖2 ≤ (1− ατ2)‖AT yk + zk − c‖2,
6. (a) (xk+α∆xk)T (zk+α∆zk) ≤ (1+α(β1+τ3−1))(xk)T zk+α2(∆xk)T∆zk,

(b) (xk+α∆xk)T (zk+α∆zk) ≥ (1+α(β1−τ3−1))(xk)T zk+α2(∆xk)T∆zk,
7. (xki +α∆xki )(z

k
i +α∆zki ) ≥ (1−α)xki zki +α(β1− τ3)(xk)T zk/n+α2∆xki∆z

k
i

for i = 1, . . . , n.
Theorem 4.2. If Algorithm 1 does not terminate at step 4 of iteration k, then

αk = α̇k < α∗,k.
Proof. Suppose that α̇k ≥ α∗,k. The conditions (4.1) therefore hold for α∗,k.

Because of the definition of α∗,k, there exists an index i with (xki + α∗,k∆xki )(z
k
i +

α∗,k∆zki ) = 0, hence

fki (α
∗,k) = −γ(xk + α∗,k∆xk)T (zk + α∗,k∆zk)/n ≥ 0,

or, equivalently, (xk + α∗,k∆xk)T (zk + α∗,k∆zk) ≤ 0. Using (xk + α∗,k∆xk) ≥ 0 and
(zk + α∗,k∆zk) ≥ 0 we have (xk + α∗,k∆xk)T (zk + α∗,k∆zk) = 0.

If gkp(α
∗,k) < 0, then ‖A(xk + α∗,k∆xk)− b‖2 ≤ εp; otherwise

gkp(α
∗,k) = −γp‖A(xk + α∗,k∆xk)− b‖2 ≥ 0,

or, equivalently, ‖A(xk + α∗,k∆xk) − b‖2 = 0. In the same way we can show that
‖AT (yk+α∗,k∆yk)+zk+α∗,k∆zk−c‖2 ≤ εd, hence (x

k, yk, zk)+α∗,k(∆xk,∆yk,∆zk)
is an (ε, εp, εd)-solution of (PD). This is a contradiction, because Algorithm 1 would
have stopped in step 4 of iteration k. So we have shown α̇k < α∗,k. Using the
definitions of α̇k and αk, one also sees that αk = α̇k < α∗,k holds.
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Lemma 4.3. Let η > 0, |∆xki∆zki − γ(∆xk)T∆zk/n| ≤ η for i = 1, . . . , n and
|(∆xk)T∆zk| ≤ η. At step 5 of iteration k we have

αk ≥ α̃k := min

{
1,
δ1(x

k)T zk

nη
,min{δ2, δ3, δ4} · (x

k)T zk

η

}
.

Proof. Using parts 7, 6(a), and 1 of Lemma 4.1 and the definition of δ1 in step 1,
we have for α ∈ [0, α̃k] and i = 1, . . . , n

fki (α) = (xki + α∆xki )(z
k
i + α∆zki )− γ(xk + α∆xk)T (zk + α∆zk)/n

≥ (1− α)xki z
k
i + α(β1 − τ3)(x

k)T zk/n+ α2∆xki∆z
k
i

− γ

n
(1 + α(β1 + τ3 − 1))(xk)T zk − γ

n
α2(∆xk)T∆zk

= [∆xki∆z
k
i − γ(∆xk)T∆zk/n]α2 + (1− α)[xki z

k
i − γ(xk)T zk/n]

+

(
(β1 − τ3 − γβ1 − γτ3)

(xk)T zk

n

)
α

≥ −ηα2 +

(
((1− γ)β1 − (1 + γ)τ3)

(xk)T zk

n

)
α

=

(
δ1(x

k)T zk

n
− ηα

)
α

≥
(
δ1(x

k)T zk

n
− ηα̃k

)
α

≥ 0.

If gkp(0) = (xk)T zk − γp||Axk − b||2 ≥ 0, we have by parts 4 and 6(b) of Lemma 4.1

for all α ∈ [0, α̃k]

gkp(α) = (xk + α∆xk)T (zk + α∆zk)− γp‖A(xk + α∆xk)− b‖2
≥ (1 + α(β1 − τ3 − 1))(xk)T zk + α2(∆xk)T∆zk − γp(1− ατ1)‖Axk − b‖2
≥ −ηα2 + (1 + α(δ2 − τ1))(x

k)T zk − γp(1− ατ1)‖Axk − b‖2
= −ηα2 + [δ2(x

k)T zk]α+ (1− ατ1)g
k
p(0)

≥ [δ2(x
k)T zk − ηα̃k]α

≥ 0.

If gkp(0) < 0, we have ‖Axk − b‖2 ≤ εp since (xk, yk, zk) ∈ N . Using part 4 of

Lemma 4.1, we therefore obtain for α ∈ [0, α̃k]

‖A(xk + α∆xk)− b‖2 ≤ (1− ατ1)‖Axk − b‖2 ≤ (1− ατ1)εp ≤ εp.

Similiarly we can prove that for α ∈ [0, α̃k]
1. gkd(α) ≥ 0 or ‖AT (yk + α∆yk) + zk + α∆zk − c‖2 ≤ εd,
2. hk(α) ≥ 0;

hence α̇k ≥ α̃k. So the lemma follows from applying Theorem 4.2.
Theorem 4.4. Algorithm 1 terminates after a finite number of iterations.
Proof. Suppose that Algorithm 1 does not terminate. From (xk, yk, zk) ∈ N ,

Lemma 2.2, and part 2 of Lemma 4.1 it follows for all k ≥ 0

(xk)T zk ≥ ε∗ := min{ε, εpγp, εdγd}, ‖(xk, zk)‖1 ≤ ω, and(4.2)
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(xk, zk) ∈M :=

{
(x, z) ∈ R

n+n :
γε∗

nω
≤ xi, zi ≤ ω for i = 1, . . . , n

}
.

Using parts 4 and 5 of Lemma 4.1, (xk, zk) ∈ M , ω ≥ 1, and step 3 of Algorithm 1,
we have

‖b−Axk + rk‖2 ≤ ‖Axk − b‖2 + ‖rk‖2
≤ ‖Axk − b‖2 + (1− τ1)‖Axk − b‖2
= (2− τ1)‖Axk − b‖2

≤ (2− τ1)

(
k−1∏
i=0

(1− αipτ1)

)
‖Ax0 − b‖2

≤ (2− τ1)‖Ax0 − b‖2,

‖c−AT yk − zk + sk‖2 ≤ (2− τ2)‖AT y0 + z0 − c‖2,

‖µke−Xkzk + tk‖2 ≤ (β1 + 1 + τ3)
√
nω2.

Hence the search direction (∆xk,∆yk,∆zk) is the solution of a linear system
 A 0 0

0 AT I
Zk 0 Xk


 ·


 ∆xk

∆yk

∆zk


 =


 h

i
j


 ,(4.3)

where

‖h‖2 ≤ (2− τ1)‖Ax0 − b‖2,
‖i‖2 ≤ (2− τ2)‖AT y0 + z0 − c‖2,
‖j‖2 ≤ (β1 + 1 + τ3)

√
nω2.

We note that by (xk, zk) ∈ M and the fact that M is a compact set, there exists a
compact set K which contains the matrix of (4.3) for all k and every matrix B ∈ K
is regular. Since the inverses of all B ∈ K are bounded, (∆xk,∆yk,∆zk) is bounded
for all k ≥ 0. It follows that there exists a fixed η > 0 with

|∆xki∆zki − γ(∆xk)T∆zk/n| ≤ η and |(∆xk)T∆zk| ≤ η

for i = 1, . . . , n and all k ≥ 0. Using Lemma 4.3 and (4.2) we have

αk ≥ α̃k ≥ α∗ := min

{
1,
δ1ε

∗

nη
,min{δ2, δ3, δ4} · ε

∗

η

}
∈ (0, 1];

hence applying part 3 of Lemma 4.1 yields

(xk)T zk ≤ (1− α∗(1− β3))
k(x0)T z0.

This implies limk→∞(xk)T zk = 0, which contradicts (4.2).
Remark 4.5. If ε, εp, εd, γ, γp, γd, ω, δ1, δ2, δ3, δ4, β1, β2, β3, τ1, τ2, and τ3

are chosen independently of the problem, then it is possible to prove (see [4]) that the
quantity η in the proof of Theorem 4.4 satisfies

η = O
(
κ2

2(AA
T ) ·

(
1 + (2− τ2)‖AT y0 + z0 − c‖2 + (2− τ1)‖Ax0 − b‖2

σmax(A)

)2

· n6.5

)
.
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Because of this relation it is easy to show that Algorithm 1 terminates after at most

O
(
κ2

2(AA
T ) ·

(
1 + (2− τ2)‖AT y0 + z0 − c‖2 + (2− τ1)‖Ax0 − b‖2

σmax(A)

)2

· n7.5 · L
)

iterations if L is defined as L = max{0, �ln( (x0)T z0

min{ε,εpγp,εdγd} )�}. We have in particular

that the KMM algorithm terminates after at most

O
(
κ2

2(AA
T ) ·

(
1 + ‖AT y0 + z0 − c‖2 + ‖Ax

0 − b‖2
σmax(A)

)2

· n7.5 · L
)

iterations.
We finish this section with some notes on the stopping criterion given in step 7 of

Algorithm 1: If the algorithm terminates in step 7 of iteration j, the search direction
is the exact Newton direction in iterations s to j, and ω is chosen large enough, then
there exists no strictly feasible point in a certain subregion of R

n (see Theorem 4.3

in [3]). Therefore a termination in step 7 can be viewed as a hint that
◦
PD = ∅ or,

equivalently (see Robinson [10]), that (PD) is not solution/functional-stable. In this
sense we can say that the KMM algorithm either calculates an (ε, εp, εd)-solution or
detects that (PD) is probably unstable/unsolvable.

It does not seem possible to establish a variant of this statement for inexact search
directions. Therefore, if one wants to detect instability or unsolvability of a problem,
we propose to restart Algorithm 1 with the current iterate as the starting point, τ1 = 1,
τ2 = 1, τ3 = 0, and a larger ω if the algorithm terminates in step 7. (One can also
use an exact algorithm, e.g., the algorithm of Mizuno and Jarre [9], that guarantees
the calculation of an (ε, εp, εd)-solution, if ω is large enough and (PD) is solvable.)
Although this is a theoretical disadvantage, this is not important in practice: First,
exact search directions cannot be calculated in practice.

Secondly, even for simple unsolvable problems the exact KMM algorithm behaves
in the following way (see [4]; the search directions are calculated with high accuracy
and treated as exact): After a few iterations (≤ 10) the norm of the search direction
becomes very large and the algorithm is forced to use very small step sizes to stay
in N . At this point, ‖(xk, zk)‖1 is usually quite small (≤ 1020) compared with ω
(≈ 1040), and ‖(xk, zk)‖1 is increased by only approximately 100 in each iteration.
Since this means that the stopping criterion in step 7 will not be met in a reasonable
time, the exact KMM algorithm is unable to detect the instability or the unsolvability
of a problem in practice.

Since Algorithm 1 is a variant of the KMM algorithm, it is not surprising that
Algorithm 1 behaves in a similar way when being applied to unsolvable problems. It
is therefore natural not to restart Algorithm 1, but to terminate in step 7 with the
statement that (PD) is probably unstable or unsolvable.

Moreover, because of the behavior of the norm of the search direction, it seems
reasonable to use the following stopping criterion: Stop, if ‖(∆xk,∆zk)‖∞ > ω. If this
stopping criterion is used by Algorithm 1, it is easy to prove (see [4]) that under the
assumptions of Remark 4.5, Algorithm 1 terminates after at most O(n2L) iterations.

5. Inexact predictor-corrector methods. We now give a variant of Algo-
rithm 1 that allows the use of a whole class of inexact search directions. This class
includes an inexact variant of the predictor-corrector search direction of Mehrotra [7],
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which is of one of the most efficient search directions in practice (see, e.g., Lustig,
Marsten, and Shanno [5], [6]). The convergence of the given variant is ensured in a
simple way: If the current search direction does not allow for sufficiently large step
sizes, we use an inexact Newton search direction instead. After we state our algorithm,
we therefore give only one remark that states the convergence of Algorithm 2.

Algorithm 2.
The steps 2, 4, and 6 are identical to steps 2, 4, and 6 of Algorithm 1.
1. Choose all quantities as in step 1 of Algorithm 1 and αc ∈ (0, 1]. Set N0 = 0.
3. (a) If Nk = 1, calculate (∆xk,∆yk,∆zk) as in step 3 of Algorithm 1.

(b) If Nk = 0, calculate a search direction (∆xk,∆yk,∆zk) which satisfies
 A 0 0

0 AT I
Zk 0 Xk


 ·


 ∆xk

∆yk

∆zk


 =


 b−Axk

c−AT yk − zk

jk


+


 rk

sk

tk


 ,

where

||rk||2 ≤ (1− τ1)||Axk − b||2,
||sk||2 ≤ (1− τ2)||AT yk + zk − c||2,
and jk ∈ R

n and tk ∈ R
n are arbitrary.

If (∆xk,∆zk) ≥ 0, set Nk = 1 and go to step 3.
5. (a) This step is identical to step 5 of Algorithm 1.

(b) If Nk = 0 and αk < αc, set N
k = 1 and go to step 3.

7. If ‖(xk+1, zk+1)‖1 ≥ ω, stop. Otherwise set k = k+1 and Nk = 0, and go to
step 2.

Remark 5.1. If αc is chosen independently of the problem, then Remark 4.5 can
be applied to Algorithm 2.

Remark 5.2. We can modify Algorithm 2 in the following way: If Nk = 0, we
attempt to find a vector

(xk+1, yk+1, zk+1) = (xk + αkp∆x
k, yk + αkd∆y

k, zk + αkd∆z
k)

which satisfies

(xk+1, yk+1, zk+1) ∈ N (γ, γp, γd, εp, εd),
(xk+1)T zk+1 ≤ (1− αc(1− β3))(x

k)T zk,

and we reject the search direction only if no appropriate vector can be found through
some trials (e.g., αkp = β4α

∗,k
p and αkd = β4α

∗,k
d , or αkp = αkd = β4α

∗,k with β4 ∈
(0, 1)).

An inexact variant of the search direction of Mehrotra can now be incorporated
in the following way:

A. Calculate a predictor direction (∆xka,∆y
k
a ,∆z

k
a) which satisfies

 A 0 0
0 AT I
Zk 0 Xk


 ·


 ∆xka

∆yka
∆zka


 =


 b−Axk

c−AT yk − zk

−Xkzk


+


 rka

ska
tka


 ,

where
(a) ||rka ||2 ≤ (1− τ1)||Axk − b||2,
(b) ||ska||2 ≤ (1− τ2)||AT yk + zk − c||2,
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(c) ||tka||∞ ≤ τ3
(xk)T zk

n .

B. If (xk)T zk < 1, ∆xka ≥ 0, or ∆zka ≥ 0, define µk = (xk)T zk

Φ(n) , where

Φ(n) =

{
n2, n ≤ 5000,
n1.5, n > 5000.

Otherwise set

α̃p = min

{
− xki
(∆xka)i

: i ∈ {1, . . . , n} and (∆xka)i < 0

}
,

α̃d = min

{
− zki
(∆zka)i

: i ∈ {1, . . . , n} and (∆zka)i < 0

}
,

α̃∗
p = 0.99995α̃p, α̃

∗
d = 0.99995α̃d, and

µk =

(
(xk + α̃∗

p∆x
k
a)
T (zk + α̃∗

d∆z
k
a)

(xk)T zk

)2

·
(
(xk + α̃∗

p∆x
k
a)
T (zk + α̃∗

d∆z
k
a)

n

)
.

C. Calculate a search direction (∆xk,∆yk,∆zk) which satisfies
 A 0 0

0 AT I
Zk 0 Xk


·

 ∆xk

∆yk

∆zk


 =


 b−Axk

c−AT yk − zk

µke−Xkzk −∆Xk
a∆z

k
a


+


 rk

sk

tk


 ,

where
(a) ||rk||2 ≤ (1− τ1)||Axk − b||2,
(b) ||sk||2 ≤ (1− τ2)||AT yk + zk − c||2,
(c) ||tk||∞ ≤ τ3

(xk)T zk

n .
This approach has the following drawback: One of the main reasons for the effi-

ciency of the exact search direction of Mehrotra is the fact that it can be calculated
with the help of only one matrix factorization. But if we determine “inexact” direc-
tions (∆xka,∆y

k
a ,∆z

k
a) and (∆xk,∆yk,∆zk) with the help of Krylov subspace meth-

ods, we have to do the Krylov iteration for two linear systems. The calculation of a
search direction with Krylov subspace methods can therefore be more time-consuming
than the calculation via direct methods. We make some more notes on this topic in
the following section.

6. Numerical results. We now give some numerical results that were obtained
with the algorithms of this paper. Inexact search directions can be calculated in
several ways (see [1], [2], and [4]), but in this paper we give results for only two
methods. We note that the exact Newton search direction can be calculated via (with
Dk = Xk(Zk)−1 and (see (4.3)) appropriate h, i, and j )


∆yk = (ADkAT )−1(ADk(−(Xk)−1j + i) + h),
∆zk = i−AT∆yk,
∆xk = −Dk(∆zk − (Xk)−1j).

(6.1)

For the calculation of an inexact Newton search direction we therefore define M =
ADkAT and b = ADk(−(Xk)−1j + i) + h and solve M∆yk = b with the help of

Method A. the sparse Cholesky decomposition of the (minimum-degree reordered)
matrix M ,

Method B. the preconditioned CG algorithm.
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The CG algorithm was implemented to use the simple Jacobi preconditioner and
to terminate if the CG iterate ∆ỹk satisfies

‖M∆ỹk − b‖2 ≤ (1− τ1)‖Axk − b‖2.

∆yk is then set to ∆ỹk, and for both methods ∆xk and ∆zk are then calculated as
stated in (6.1). Note that in the case of Method B the vector (∆xk,∆yk,∆zk) satisfies

‖rk‖2 = ‖A∆xk − h‖2
= ‖A((Zk)−1j −Dk∆zk)− h‖2
= ‖A(Zk)−1j −ADk(i−AT∆yk)− h‖2
= ‖M∆ỹk − b|2
≤ (1− τ1)‖Axk − b‖2.

Furthermore, we have ‖sk‖2 = ‖tk‖∞ = 0; hence (∆xk,∆yk,∆zk) satisfies (3.3). This
means that (∆xk,∆yk,∆zk) is a valid inexact search direction in the sense of this
paper.

The search direction which is calculated with the help of Method A is usually
treated as an “exact” search direction, although, due to the effect of round-off, it is
sometimes not even an inexact search direction in the sense of this paper. Neverthe-
less, we always treat the differences in the results of Method A and Method B as being
caused by the use of inexact search directions in Method B. Note that Algorithm 1
reduces to the KMM algorithm if the search direction is calculated with Method A.

Algorithm 2 always tried to use the inexact predictor-corrector search direction
of the preceding section, which were calculated analogous to inexact Newton search
directions. Note that Algorithm 2 reduces to a variant of the algorithm of Mehrotra
(see, e.g., Lustig, Marsten, and Shanno [5], [6]) if the search direction is calculated
with Method A.

Before we state results, we give some details of the implementation:

1. The algorithms were programmed with MATLAB 5.3 on a Sun UltraSparc 60.
2. The starting points are calculated as proposed by Lustig, Marsten, and

Shanno [5].
3. The parameters in step 1 of the algorithms are chosen as follows (N is en-

larged, if necessary): εp = 1e− 08, εd = 1e− 08, γ = 1e− 08, γp = 1e− 08,
γd = 1e − 08, ω = 1e+40, αc = 1e − 10, β1 = 0.1, β2 = 0.99995, β3 =
0.99997, β4 = 0.99995, τ1 = 0.95, τ2 = 0.95 and τ3 = 0.049. ε was set to
1e− 08, 1e− 07, or 5e− 03.

4. In each iteration the algorithms try to use the large step sizes αkp = β4α
∗,k
p

and αkd = β4α
∗,k
d or the step sizes αkp = αkd = β4α

∗,k. If the calculated vector

does not satisfy the conditions in step 6 of the algorithms, αkp = αkd = αk is
used instead. The use of large step sizes is one of the reasons for the efficiency
of the exact variants of Algorithm 1 and Algorithm 2, because the use of this
step sizes results in a low number of iterations. But after a few iterations it
also results in a very high condition number of M , because some components
of x and z become very small. This forces the CG algorithm to use a large
number of iterations for the determination of ∆yk. We nevertheless use the
stated step sizes, because we mainly want to detect differences in the number
of iterations until convergence.
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5. We use the (scaled) stopping criterion used by Lustig, Marsten, and Shanno
[5], that is, the algorithms terminate if (xk, yk, zk) satisfies

(xk)T zk

1 + |bT yk| ≤ ε,
‖Axk − b‖2
1 + ‖xk‖2 ≤ εp,

‖AT yk + zk − c‖2
1 + ‖zk‖2 ≤ εd.

First we have a look at some results obtained with the small problem israel of the
NETLIB set. More results for 38 problems of the NETLIB set and the problems of
the NETGEN set can be found in [4]. The first table gives the number of iterations
and the times (in seconds) that the algorithms needed for the calculation of a (scaled)
(ε, εp, εd)-solution (ε was set to 1e− 08).

Results for problem israel

Method A Method B
iterations seconds iterations seconds

Algorithm 1 35 3.60 34 31.87
Algorithm 2 23 2.56 23 27.63

We notice that the number of iterations for Method B can be compared with the
number of iterations needed by Method A, but the processing time is higher by a
factor of 8.9 and 10.8. We already stated that the reason for this is the high number
of iterations of the CG algorithm within each step of Algorithm 1 and Algorithm 2,
which in turn is caused by the high demands on the accuracy of the search direction
combined with the high condition number of M for large k. Figures 1 and 2 show the
primal accuracy demand (1 − τ1)‖Axk − b‖2 and the calculation time for Algorithm
1 and Method B.

We can see that the time needed for the calculation of the search direction in-
deed increases for higher k. Because in the final iterations the calculation time is
30 times as high as the calculation time in the first iteration, and because the cal-
culation of the search direction via Method A needs a constant time (only 0.09 sec-
onds), it makes sense to use Method B only in the first few iterations and switch to
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Method A if Method B needs more time than Method A (this method is henceforth
called Method C). Using Method C we obtain the following results: Algorithm 1 (Al-
gorithm 2) needs 34 (23) iterations and 3.42 (2.41) seconds, with a total of only 6
(3) search directions calculated via Method B. This result (a small increase in the
number of iterations, a small increase or decrease in the total processing time, and
very few search directions calculated with Method B) is typical for nearly all problems
of the NETLIB set (see [4]) and can be explained by the fact that the sparse Cholesky
decomposition can be calculated very efficiently (in MATLAB) for those small prob-
lems. Even for the few NETLIB problems for which Method C calculated at least
two search directions with Method B the difference in the processing time (and the
number of iterations) of Method A and Method C is nearly negligible (≤ 7%).

In order to show the performance of our algorithms on large problems, we give re-
sults for some slightly modified problems of the NETGEN set (the upper bounds on x
were removed). The matrices of these large problems (n = 15.325, 27.887, 52.809, m =
5.000) have a sparsity of less than 0.06%; the calculation of the Cholesky decompo-
sition of the reordered matrix M takes 41–251 seconds. Since, on the other hand,
an iteration of the CG algorithm takes 0.01–0.08 seconds, we expect that the use of
Method C will result in a substantial decrease of the needed calculation time. The
following tables give the results for ε = 1e − 07 or 5e − 03. (Smaller values for ε
produced numerical problems when calculating the Cholesky decomposition of M .)

We notice two facts. First, the use of Method C results in an increase in the
number of iterations, but because of the high number of search directions that are
calculated with Method B a speed-up between 1.72 and 7.13 (usually ≈ 3) is reached.
Secondly, the shortest running time is reached with Algorithm 2 and Method C.
This is somewhat surprising, because in most iterations it is necessary to use the CG
algorithm for the solution of two linear systems. In Figure 3, we finally have a look
at the time that Algorithm 2 needs to calculate a search direction via Method A and
Method B for the problem NETGEN 103.

The plot in Figure 3 shows that in the first iterations Method B is much faster
than Method A. Because the number of iterations of Algorithm 2 increases by only
two if Method C is used instead of Method A, the use of Method C results in a huge
decrease in processing time.
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Algorithm 1: Results for NETGEN problems, ε = 1e− 07

Method A Method C
iterations seconds iterations seconds Speed-up

total Method B

101 38 7589 43 38 2315 3.28
102 40 8024 45 32 3111 2.58
103 39 7978 46 38 2647 3.01
105 37 7863 44 34 2979 2.64
108 49 12453 56 30 6887 1.81
109 54 12461 44 31 3397 3.67

Algorithm 1: Results for NETGEN problems, ε = 5e− 03

Method A Method C
iterations seconds iterations seconds Speed-up

total Method B

104 24 4932 36 36 1163 4.24
106 22 920 26 21 433 2.08
107 32 7848 42 42 1995 3.93
110 23 943 26 20 500 1.89

Algorithm 2: Results for NETGEN problems, ε = 1e− 07

Method A Method C
iterations seconds iterations seconds Speed-up

total Method B

101 20 4262 25 21 1494 2.85
102 25 4891 27 19 1767 2.77
103 23 4796 25 21 1640 2.92
105 20 4317 23 20 1492 2.89
108 28 7366 30 23 2504 2.94
109 26 6341 31 24 2427 2.61

Algorithm 2: Results for NETGEN problems, ε = 5e− 03

Method A Method C
iterations seconds iterations seconds Speed-up

total Method B

104 15 3220 23 20 1081 2.98
106 13 597 21 16 348 1.72
107 17 4480 22 22 628 7.13
110 14 617 16 14 255 2.42

7. Concluding remarks. In this paper we proved the (polynomial) complexity
of a class of inexact infeasible-interior-point algorithms. This class includes inexact
variants of some practically efficient infeasible-interior-point algorithms, in particular
variants of the algorithms of Kojima et al. and Mehrotra. The theory developed in
this paper usually justifies the use of the Cholesky decomposition for determining
a search direction, because the calculated search direction, which is afflicted with
rounding errors, is in most cases an inexact search direction in the sense of this paper.
Furthermore, we have seen that the use of Krylov subspace methods results in an
increase in the number of iterations, and for large problems, in a huge decrease of the
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processing time. To make this kind of calculation more time efficient, it seems neces-
sary to use a more sophisticated preconditioner and to calculate the search directions
with the help of stable linear systems if (xk)T zk approaches zero (e.g., one can try to
use (M +µI) for some µ > 0). Another approach is to use smaller step sizes, because
the used long step sizes are at least partially the reason for the high condition number
of M even for small k. The use of smaller step sizes will result in an increase of the
number of iterations of Algorithm 1 and Algorithm 2, but if the step sizes are chosen
carefully, this can nevertheless lead to a decrease in the total processing time. Some
numerical evidence for this is that we can achieve a decrease of 22% in processing
time for problem israel and Algorithm 1 with Method B if we set β4 = 0.99 instead
of β4 = 0.99995.
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Abstract. The auction-reduction algorithm is a strongly polynomial version of the auction
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methods for specific classes of hypergraphs.
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1. Introduction. The shortest hyperpath problem is the extension to directed
hypergraphs [12] of the classical shortest path problem (SPT) in directed graphs.
Though not as pervasive as SPT, shortest hyperpaths have several relevant applica-
tions. In particular, they are at the core of traffic assignment algorithms for transit
networks [15, 16, 20]. Shortest hyperpath models have been constructed for the SPT
problem in stochastic and time-dependent networks [19] and for production planning
in assembly lines [13]. Moreover, shortest hyperpath algorithms are used as building
blocks of enumerative algorithms for hard combinatorial problems [11]. As a conse-
quence, there is a growing interest for efficient shortest hyperpath algorithms. This
provides motivations for further investigating known methods [12, 17], both from a
theoretical and a practical point of view, and for developing new ones.

Auction algorithms were first proposed by Bertsekas [1, 2] for the assignment
problem and later extended to general transportation problems [5, 6]. A survey of the
auction algorithms for network optimization problems is contained in [4, Chapter 4].
Auction algorithms for shortest path problems on graphs were proposed in [3]. For the
single-origin single-destination case the method can be viewed as an application of the
auction method (with ε = 0) to a specifically constructed assignment problem, and
finite termination of the procedure can be established. Furthermore, the algorithm is
a dual coordinate ascent method. Strongly polynomial versions of the auction method
were proposed by Pallottino and Scutellà [18], who define a pruning procedure that
reduces the graph to the shortest path tree. Further improvements to this method
are given in [7], where the pruning method is strengthened and the structure of the
reduced graph is exploited to obtain a better time complexity. A variant of the auction
algorithm with pruning is proposed in [8].

In this paper, we devise an auction method for shortest hyperpaths with nonneg-
ative hyperarc weights, by slightly modifying the SPT algorithm given in [7]. Our
method can be tailored to solve several types of shortest hyperpath problems; for
the various cases, we provide a worst case complexity bound. Finally, we report the
results of a preliminary computational experience.
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In section 2 we give the basic definitions of hypergraphs and shortest hyperpaths.
The proposed auction method for shortest hyperpaths is presented in section 3. Com-
putational results and conclusions are presented in sections 4 and 5, respectively.

2. Shortest hyperpaths in directed hypergraphs. A directed hypergraph H
is a pair (V, E), where V is a set of nodes and E is a set of directed hyperarcs; a hyperarc
is a pair e = (T (e), h(e)), where T (e) ⊂ V is the tail of e, and h(e) ∈ V\T (e) is its head.
A detailed introduction to directed hypergraphs can be found in [12], where a more
general definition of hypergraphs is introduced; the particular class of hypergraphs
considered in this paper is called B-graphs in [12]. The size |e| of hyperarc e is the
number of nodes it contains in its tail and head:

|e| = |T (e)|+ 1.

The hyperarc e is an arc if |e| = 2, and a proper hyperarc if |e| > 2. Denote by ma and
mh the number of arcs and proper hyperarcs, respectively; let m = ma + mh = |E|
and n = |N |. The size of H is the sum of the cardinalities of its hyperarcs:

size(H) =
∑
e∈E
|e|.

Given a node u, the forward star of u, FS(u), is the set of hyperarcs e such that
u ∈ T (e) and the backward star of u, BS(u), is the set of hyperarcs e such that
u = h(e).

A path Pst, of length q, in the hypergraph H = (V, E) is a sequence:

Pst = (v1 = s, e1, v2, e2, . . . , vq+1 = t),

where, for 1 ≤ i ≤ q, ei ∈ E , vi ∈ T (ei), and vi+1 = h(ei). The nodes s and t are
the origin and the destination of the path Pst, respectively. We say that node t is
connected to node s in H if a path Pst exists in H. If t ∈ T (e1), then the path Pst is
a cycle. A path is cycle-free if it does not contain any subpath which is a cycle, i.e.,
vi ∈ T (ej)⇒ j ≥ i, for 1 ≤ i ≤ q + 1.

Given a hypergraph H = (V, E) and two nodes s, t ∈ V, a hyperpath πst is a
minimal hypergraph (with respect to deletion of nodes and hyperarcs) Hπ = (Vπ, Eπ)
such that

1. Eπ ⊆ E ;
2. s, t ∈ Vπ =

⋃
e∈Eπ

(T (e) ∪ {h(e)});
3. u ∈ Vπ, u �= s =⇒ u is connected to s in Hπ by a cycle-free path.

Observe that for each u ∈ Vπ \ {s} there exists a unique hyperarc e ∈ Eπ such that
h(e) = u; e is the predecessor hyperarc of u in π and is denoted by eπ(u). We say that
node t is hyperconnected to s in H if there exists a hyperpath from s to t in H.

Given a hyperarc a, we say that a hyperarc ar is contained in a, or is a reduction
of a, if h(ar) = h(a), and ∅ �= T (ar) ⊆ T (a). Note that a is contained in itself, and
ar is strictly contained in a if T (ar) ⊂ T (ar). Given a and u ∈ T (a), we denote by
a \ u the reduction of a obtained deleting u from T (a). We say that a hypergraph is
full when it contains all the possible reductions of each of its proper hyperarcs. A full
hypergraph can be represented by its support hypergraph Hs, obtained by deleting all
the strictly contained hyperarcs. Conversely, given any hypergraph H, we can obtain
the corresponding full hypergraph Hf by adding all the strictly contained hyperarcs.
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2.1. Shortest hyperpaths. A weighted hypergraph is such that each hyperarc
e is assigned a nonnegative real weight w(e). The weight of a hyperpath in a weighted
hypergraph can be defined in several ways. It is known that some definitions lead to
intractable shortest hyperpath problems [10]. Here we restrict ourselves to definitions
that are known to be tractable [12].

A weighting function is a node function that, given a hyperpath πst = (Vπ, Eπ),
assigns a value Wπ(u) to its nodes, depending on the weights of its hyperarcs. The
value Wπ(t) is the weight of π under the chosen weighting function. An additive
weighting function satisfies the properties that Wπ(s) = 0, and for u �= s, Wπ(u) is a
function of the predecessor eπ(u) only. Formally, an additive weighting function can
be defined by means of the following recursive equations:

Wπ(u) =

{
0 if u = s,
w(eπ(u)) + F (eπ(u)) if u ∈ Vπ/{s},(2.1)

where F (e) is a nondecreasing function of the weights of the nodes in T (e). Clearly,
many different additive weighting functions can be defined (see [12]); consider first
the value function, which is obtained by defining F (e) in (2.1) as follows:

F (e) =
∑

u∈T (e)

Wπ(u).

The minimum value (shortest hyperpath) problem consists of finding a set of minimum
value hyperpaths from the origin node s to each node u �= s hyperconnected to s. We
denote by V (u) the minimum value of a hyperpath πsu in H; we assume V (s) = 0,
and V (u) = +∞ if u is not hyperconnected to s.

The distance function is obtained from (2.1) defining F (e) as follows:

F (e) = max{Wπ(u) : u ∈ T (e)}.

Theminimum distance problem asks for the minimum distance hyperpaths from origin
s. Denote by D the vector of minimum distances, where again D(s) = 0, and D(u) =
+∞ if u is not hyperconnected to s.

Since arc weights are nonnegative, the minimum value and minimum distance
problems can be solved efficiently by procedure SBT [12]. A computational analysis
of several variants of SBT can be found in [17].

The value function considered here is a particular case of the more general function
defined in [14, 12], where F (e) is a generic weighted sum with nonnegative weights. A
linear programming formulation of the minimum value problem can be given in terms
of flows in hypergraphs [14]. This formulation cannot be extended to the distance
function, for which only a bounded MIP-representation has been given [11].

2.1.1. Minimum time problems in transit hypergraphs. The problem of
finding the passenger’s expected travel time is at the core of several urban transit
networks models. This problem has been formulated in terms of hyperpaths in transit
networks [15] and in F-graphs [12, 16]. Here, introducing the time weighting func-
tion in transit hypergraphs, we define a particular shortest hyperpath problem that,
though using a different (and slightly more general) terminology, is equivalent to the
formulations found in [15, 16].

A transit hypergraph is a weighted support hypergraph H = (V, E), where a
positive parameter φu is associated with each node u ∈ V. Let Hf = (V, Ef ) be the
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full hypergraph represented by H. Consider an e ∈ Ef contained in a proper hyperarc
a ∈ H: the time weighting function is obtained from (2.1) by defining the weight w(e)
and the function F (e) as follows:

w(e) = 1/Φ(e),

F (e) =
∑

u∈T (e)

φu
Φ(e)

Wπ(u),

where

Φ(e) =
∑

u∈T (e)

φu.

In practice, F (e) is the weighted average (with weights φ.) of the values Wπ(·)
in T (e), while w(e) is the inverse of the sum of the weights φ. in T (e). For an arc
e = ({u}, v) ∈ Ef corresponding to an arc a ∈ E the function F (e) is defined in the
same way, which gives F (e) = Wπ(u); however, in this case w(e) = w(a) can be any
nonnegative value.

The minimum time problem consists of finding the minimum time hyperpaths,
from a given origin s, in the full hypergraph Hf . Note that Hf may be considerably
larger than its support H: in practice, solving the minimum time problem efficiently
requires one to work directly on H. This is the aim of the following observations.

Denote by E the vector of minimum times, where E(s) = 0 and E(u) =∞ if u is
not hyperconnected to s in Hf . For each e ∈ Ef denote by t(e) the value of the time
weighting function for e with respect to E, i.e.,

t(e) = w(e) +
∑

u∈T (e)

φu
Φ(e)

E(u).

Consider a proper hyperarc a ∈ E , and let R(a) ⊂ Ef be the set of the reductions of a.
We are interested in finding a reduction of a yielding minimum time, i.e., a hyperarc
e(a) ∈ R(a) such that

t(e(a)) = min
e∈R(a)

t(e).

Consider the nodes in T (a) in increasing order of E, i.e., let T (a) = {u1, . . . , uk}, with
E(ui) ≤ E(ui+1), 1 ≤ i < k. For 1 ≤ i ≤ k let ai be the reduction of a such that
T (ai) = {u1, . . . , ui}. The following property holds:

t(e(a)) = min
e∈R(a)

t(e) = min
1≤i≤k

t(ai).(2.2)

In order to see why (2.2) is true, consider two different reductions e, e′ of a, where
T (e′) = T (e) ∪ {u}; it follows from the definition of time that

t(e′)− t(e) =
t(e)Φ(e) + E(u)φu − t(e)Φ(e′)

Φ(e′)
=

φu
Φ(e′)

(
E(u)− t(e)

)
.

In other words, T (e′) is smaller (greater) than T (e) if and only if E(u) < t(e) (E(u) >
t(e), respectively). This implies the following relations [15, Proposition 6]:

t(e(a)) ≥ E(w) ∀w ∈ T (e(a)),
t(e(a)) ≤ E(w) ∀w ∈ T (a) \ T (e(a)),

(2.3)
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which in turn imply (2.2).
According to the previous observations, we can find the hyperarc e(a) without

considering the whole set of reductions of a. This can be done by processing the nodes
in T (a) in the order u1, u2, . . . , uk. For each ui ∈ T (a), compute the value t(ai): if
E(ui) < t(ai), then ui ∈ T (e(a)), otherwise, e(a) = ai−1. This technique has been
used to compute expected travel times efficiently [15, 16] and will be adopted in our
auction algorithm for the minimum time problem.

2.1.2. Reductions and shortest hyperpaths. A hyperarc reduction operation
on a proper hyperarc a consists of replacing a by a hyperarc ar contained in a,
returning a reduced hypergraph. Clearly, if the hypergraph is weighted, a nonnegative
weight w(ar) must be assigned to ar. The following propositions show that by suitably
choosing the weight on ar a reduction operation does not modify the optimal solution
of the shortest hyperpath problem. Proofs are rather straightforward and are omitted.

Suppose we are given a weighted hypergraph H, and the corresponding vectors of
optimal solutions V, D for the value and distance weighting functions. Given a proper
hyperarc a and u ∈ T (a), consider replacing a by ar = a \ u.

Proposition 2.1. If w(ar) = w(a) + V (u), V is the vector of optimal values in
the reduced hypergraph.

Proposition 2.2. If D(u) ≤ max{D(v) : v ∈ T (ar)} and w(ar) = w(a), D is
the vector of optimal distances in the reduced hypergraph.

Now suppose we are given a transit hypergraph H, the corresponding full hy-
pergraph Hf , and the optimum times E. Let e be a proper hyperarc in Hf , with
t(e) > E(u) for each u ∈ T (e), and consider replacing e by an arc er = ({u}, h(a)),
with u ∈ T (e) as follows.

Proposition 2.3. If w(er) = t(e) − E(u), E is the vector of optimal times in
the reduced full hypergraph.

3. Auction algorithms for shortest hyperpaths. In this section we propose
an auction method for the minimum value problem and discuss the adaptation to
other weighting functions. Before introducing our approach, we briefly recall some
relevant features of the auction algorithms for SPT; the reader is referred to the cited
literature for further details.

The auction algorithm for shortest path problems on graphs maintains a path P
(the candidate path) starting at the origin s and a set of dual node prices p satisfying
the following complementary slackness (CS) conditions:

p(i) ≤ cij + p(j) ∀(i, j),
p(i) = cij + p(j) ∀(i, j) ∈ P,

(3.1)

where cij is the cost of arc (i, j). The algorithm consists of three basic operations:
path extension, path contraction, and dual price raise. At each iteration, the candidate
path P is possibly extended, by adding a new node at the end of the path without
violating (3.1). When no extensions are possible, the dual price of the terminal node
i in P is raised, and if i �= s the path is contracted by deleting node i. For the single-
origin single-destination case the algorithm terminates when the destination node is
reached; several variants have been devised, also for the multiple-destination case.

Consider the case of nonnegative costs and dual prices initially set to zero. At
the first scan of a node i (i.e., when node i becomes the last node in P for the first
time) the optimal distance of node i is determined; indeed, it is equal to p(s). As
a consequence, since p(s) is never decreased during the algorithm, the sequences of
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first scan operations ranks the nodes in increasing order of distance from the origin
s. Based on the above property, the auction-reduction method [18] introduces the
following reduction operation: at the first scan of node i, delete each arc entering
i, except the last arc in P . By means of these reduction operations, the graph is
transformed into the shortest path tree, and a strongly polynomial time complexity
can be obtained. Further reduction operations, including deletion of nodes, have been
proposed in [7], improving the complexity bound.

The following observation is at the core of our auction shortest hyperpath method.
Observation 3.1. According to the definition of value, distance, and time weight-

ing functions, for an arc a = ({u}, v) we have F (a) = Wπ(u).
In other words, the weighting functions above define a standard SPT problem if

the hypergraph is a directed graph. This suggests the following technique:
• apply the auction-reduction SPT algorithm to the arcs of the hypergraph;
• at the first scan of node i, apply hyperarc reduction operations according to

Properties (2.1)–(2.3), possibly generating new arcs.
Note that the hypergraph is modified during the algorithm; each step is applied to
the current hypergraph, as returned by the previous reduction operations. In practice,
during the execution the proper hyperarcs lie in the not yet explored part of the
hypergraph, and they are not considered until they are replaced by arcs as a result of
successive reductions.

Our auction algorithm for the minimum value problem is described in procedure
MinValue. Remark that procedure MinValue applied to a graph becomes the auction
algorithm with graph reduction described in [7].
Procedure MinValue(H, s)
Step 0 (initialization)

for each u ∈ V: pred(u) := ∅, p(u) := 0, V (u) := l(u) := +∞;
l(s) := 0, P := {s};

Step 1 i := last(P ); if i = s and FSA(s) = ∅ return V ;
if V (i) = +∞: perform steps (a). . . (d) (first scan of i)
(a) (set value) V (i) := l(i);
(b) (delete BS(i)) E := E \BS(i) ∪ pred(i);
(c) (reduce hyperarcs) for each a ∈ FSH(i):

a := a \ i, w(a) := w(a) + V (i);
(d) (update labels, delete arcs) for each a = (i, j) ∈ FSA(i):

if l(i) + w(a) < l(j) :
E := E \ pred(j), pred(j) := {a}, l(j) := l(i) + w(a);
otherwise, E := E \ {a};

Step 2 (node deletion; contraction or expansion)
if FSA(i) = ∅: V := V \ {i}, E := E \ pred(i), contract P, go to Step 1;
if p(i) = min{w(a) + p(j)| a = (i, j) ∈ FSA(i)}: go to Step 4;

Step 3 (contraction) contract P ; set

p(i) := min
a=(i,j)∈FSA(i)

{w(a) + p(j)};

go to Step 1;
Step 4 (expansion) expand P by node ji, where:

ji := arg min
a=(i,j)∈FSA(i)

{w(a) + p(j)};

go to Step 1.
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For each node i, the predecessor pred(i) gives the last arc in the best s-i path
determined so far; for notational convenience, we consider pred(i) as a set; initially,
pred(i) = ∅. The label l(i) is the minimum s-i hyperpath value determined so far,
which becomes the optimum s-i hyperpath value V (i) at the first scan of node i. We
denote by FSA(i) and FSH(i) the arcs and proper hyperarcs in FS(i), respectively;
thus FS(i) = FSA(i)∪FSH(i). Replacing hyperarc a by its reduction a\ i is denoted
by a := a \ i; note that a \ i may be an arc. The last node in P is denoted by last(P ).

During the execution of the algorithm, the contained graph HA = (VA, EA) is the
directed graph defined by the nodes and arcs in the current hypergraph H = (V, E),
i.e., VA = V and

EA =
⋃
i∈V

FSA(i).

Proposition 3.1. At each step of the algorithm, for each node i ∈ VA such
that V (i) < +∞ the quantity V (i) gives the shortest s-i path length in the current
contained graph HA.

Proof. The property follows from the correctness of the auction algorithm for
SPT, observing that a new arc (i, j) is created only before the first scan of nodes i
and j.

Theorem 3.2. The vector V determined by the algorithm gives the minimum
hyperpath values in the original hypergraph.

Proof. The theorem can be proved by induction considering nodes in order of
first scan, that is, in nondecreasing order of value V (·). The claim is clearly true at
the beginning because to node s is assigned V (s) = 0. Assume that all the previously
assigned V are correct at the first scan of node i. It follows from Proposition 3.1 that
l(i) is a lower bound on the length of any path in HA from node s to each node j
such that p(j) = 0. Therefore, in the current hypergraph, the value of any hyperpath
containing a proper hyperarc cannot be less than l(i). This implies that V (i) = l(i) is
correct; as a consequence, Step 1(c) does not change the optimal solution (Proposition
2.1).

3.1. Other weighting functions. The auction algorithm for minimum value
can be easily adapted to the minimum distance problem. To this aim, it suffices to
skip the weight update w(a) := w(a) + V (i) in Step 1(c). This follows from Property
(2.2) since, when a is replaced by a \ i, V (i) ≤ V (j) for each node j ∈ T (a \ i). At
the end of the algorithm, D = V gives the vector of optimal distances. The proof of
correctness for the distance function is similar to the one of Theorem 3.2.

The situation is slightly more complex for travel times. Recall that our goal is to
work with the support transit hypergraph, thus we must deal with the corresponding
full hypergraph implicitly. To this aim, we replace hyperarc reductions by arc insertion
operations, as described below.

Consider a proper hyperarc a in the support, with T (a) = {u1, . . . , uk} and
E(ui) ≤ E(ui+1), 1 ≤ i < k. We know that it suffices to consider the k reductions
ai, 1 ≤ i ≤ k, with T (ai) = {u1, . . . , ui} (see section 2.1.1). At the first scan of
node ui ∈ T (a), we compute the value t(ai); if t(ai) > V (ui), we generate an arc
(ui, h(a)) with weight t(ai) − V (ui), according to Proposition 2.3. Otherwise, i.e., if
t(ai) ≤ V (ui), we conclude that ai−1 is the reduction e(a) of a yielding minimum time,
and we delete a. If necessary, a is removed at the first scan of node uk. In conclusion,
for a proper hyperarc a, up to |T (a)| arcs can be generated.
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In order to compute each t(ai) efficiently, for each proper hyperarc a in the support
hypergraph we keep two values, initially set to zero:

σ(a) =
∑

u∈T (a)
V (u)<+∞

φuV (u);

ϕ(a) =
∑

u∈T (a)
V (u)<+∞

φu.

At first scan of ui, it is t(ai) = σ(a)/ϕ(a). We also keep a counter k(a) of visited
nodes in T (a). We rewrite Step 1(c) as follows.

Step 1(c) (reduce hyperarcs) for each a ∈ FSH(i): σ(a) := σ(a) +φiV (i),

ϕ(a) := ϕ(a) + φi, t := σ(a)/ϕ(a);
if t < l(h(a)): add arc a′ = (i, h(a)), w(a′) := t− V (i);
k(a) := k(a) + 1; if t ≤ V (i) or k(a) = |T (a)|: delete a.

Observe that a new arc is added only if it can be used to improve the label of h(a).
In this case, the current predecessor pred(h(a)) will be deleted in Step 1(d); therefore,
at most one arc generated from a belongs to the current contained graph at the end
of Step 1.

The correctness of the auction algorithm for minimum times can be proved by
induction, as we did for Theorem 3.2. The induction step requires a slightly more
complicated analysis, given in the following lemma.

Lemma 3.3. If the values V (·) assigned before the first scan of node i are correct,
then the value V (i) assigned at the first scan of node i is correct.

Proof. Let S be the set of nodes in the current hypergraph whose first scan
occurred before first scan of node i. We know that, for u ∈ S, V (u) gives the SPT
distance from s in the contained graph; moreover, V (i) is a lower bound on the SPT
distance for each node u �∈ S. Consider a generic proper hyperarc a in the current
support hypergraph; note that h(a) �∈ S and l(h(a)) ≥ V (i). The reductions of a
containing nodes in S only have been already considered by the algorithm, possibly
adding new arcs; for each such reduction e, we have t(e) ≥ V (i). It follows from
(2.3) that V (i) is a lower bound on t(e(a)), and therefore, V (i) is a lower bound on
the minimum time E(u) for each node u �∈ S in the current hypergraph. The thesis
follows.

3.2. Computational complexity. The auction-reduction algorithm presented
in [7] solves the SPT problem on a graph G = (V,E) in O(|V |min{|E|, |V | log |V |})
time. It is easy to see that the maximum number of arcs generated during the execution
of MinValue is m, for the value and distance weighting functions, and O(size(H)) for
the time function. Moreover, the total time spent in first scans (Step 1) is O(size(H)).
Therefore, we can state the following proposition.

Proposition 3.4. The running time of the auction shortest hyperpaths algorithm
is O(size(H) + nmin{m,n log n}), for value and distance, while for the time function
it is O(size(H) + nmin{size(H), n log n}).

Two techniques for improving the running time of the auction-reduction method
are presented in [7]: path scanning and multipath restructuring. The resulting com-
plexity is O(|V |2 + |E|). In fact, the total computation time between two successive
first scan operations is O(|V |), and clearly there are at most |V | first scans. The above
techniques can be easily applied within our shortest hyperpath algorithm; the next
proposition follows.
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Proposition 3.5. The auction shortest hyperpath algorithm with path scanning
or multipath restructuring takes O(size(H) + n2) time, for the value, distance, and
time functions.

4. Computational results. In this section we present the preliminary com-
putational results for auction methods for shortest hyperpath problems. Our main
goal here is to compare a few variants of the basic method; a complete experimental
evaluation of auction shortest hyperpath methods would require a much larger effort.

Our basic shortest hyperpath algorithm, denoted by HAR, is an implementation
of procedure MinValue where we used the last data structure [7]. A variant of this
algorithm, denoted by HAR2, makes use of the “second best” device [4, Chapter
4] too. We implemented a third version, denoted by HARn, where the “second best”
device is not used, and a node contraction operation is introduced. A node contraction
deletes a node k with indegree and outdegree equal to one: the arcs incident with node
k, say (i, k) and (k, j), are replaced by an arc (i, j), where w(i, j) = w(i, k) + w(k, j).
Node contractions simplify the current graph and may help in keeping the current
path shorter. A similar technique was introduced in [9].

We compared our auction algorithms to an implementation of procedure SBT-
heap [12], denoted by SBTh. All algorithms were coded in C language, and run on an
IBM RISC-6000 P43 workstation, with 64Mb RAM, using the AIX operating system.

In general, devising a reasonable experimental setup for shortest hyperpaths is
not a trivial task, since hypergraphs show many more degrees of freedom than graphs
(see, e.g., [17]). Here, we restricted ourselves to one weighting function, namely the
distance, and we considered two different hypergraph topologies: random and grid.

Random hypergraphs do not show any special structures, except that the origin s
is a distinguished node, and FS(s) contains only arcs. The size of proper hyperarcs is
chosen randomly in the interval [dmin, dmax]. In our experiments, we set dmin = 3 and
|FS(s)| = 125, and we defined five classes of random hypergraphs with different values
of dmax, n, mh, and ma. For proper hyperarcs, and for arcs exiting the root, weights
were generated randomly in the interval [0, 1

10 ]; for the remaining arcs, weights belong
to [ 1

10 , 1]. This choice has been motivated by the attempt to increase the relevance of
hyperarcs.

The results for random hypergraphs are shown in Table 4.1. For each class, the
value δ is the expected size of FS(u) for u �= s. Execution times are given in millisec-
onds; each entry is the (rounded) average of 20 instances.

In a grid hypergraph nodes are arranged in a b × h grid; a node is identified by
its coordinates (x, y), 1 ≤ x ≤ b, 1 ≤ y ≤ h. Nodes with the same x coordinate form
a level; for each pair (x, y) and (x, y′), with y′ = y + 1 mod h, there are two vertical
arcs ((x, y), (x, y′)) and ((x, y′), (x, y)). Hyperarcs connect nodes in successive levels;
for each (x, y) with 1 < x ≤ b there exists a hyperarc({

(x− 1, y′), (x− 1, y′′)
}
, (x, y)

)
,

where y′ = y + 1 mod h, and y′′ = y − 1 mod h. In addition, there is an origin node
s, and arcs (s, (1, y)) for each 1 ≤ y ≤ h.

We generated three classes of grid hypergraphs: square, where b = h, long, where
b � h, and high, where h � b. Parameters b and h were chosen in order to have the
same number of nodes in the three classes. Hyperarc weights lay in the interval [0, 1];
vertical arcs weights lay in [1, 2]; weights of arcs leaving s lay in [0, 1

10 ].
Execution times are reported in Table 4.2. Each entry is the (rounded) average

of five instances; times are given in seconds.
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Table 4.1
Random hypergraphs.

n 4, 000 2, 000 1, 000 1, 000 1, 000
ma 2n 25n 2n 25n 50n
mh 2n 2n 25n 25n 50n

dmax 5 5 7 7 7
δ 8 31 102 125 250

HAR 171 117 131 144 273
HAR2 144 98 126 135 257
HARn 176 123 135 150 277
SBT 65 90 95 125 270

Table 4.2
Grid hypergraphs.

High Square Long
b 80 100 400 500 2, 000 2, 500
h 2, 000 2, 500 400 500 80 100

HAR 44 88 86 172 370 785
HAR2 34 67 87 177 388 798
HARn 44 85 86 176 370 783
SBT 2.22 3.85 1.18 2.06 .65 1.15

Though clearly incomplete, the above results allow us to draw some conclusions.
For what concerns random hypergraphs, our auction algorithms are comparable to
standard label-setting methods, that are the most efficient for this class of hyper-
graphs [17]. Auction methods become more and more competitive as the density
increases; in one case, HAR2 gives the best results. On the other hand, auction meth-
ods do not seem to be suitable for large grid hypergraphs. This result (that matches
the computational results for auction methods for long grid graphs) is not surprising,
since the auction algorithm must maintain a long current path P in order to connect
nodes in the last layers.

The “second best” data structure gives the best results for random hypergraphs,
and for high grids, but it is not suitable for square and long grids. Again, this result
is not surprising, since in a grid hypergraph there exist at most two hyperarcs (plus
two vertical arcs) leaving each node; it is conceivable that the good results for high
grids are due to savings obtained when scanning the origin node.

On the contrary, the node contraction operation is almost useless, also for grid
hypergraphs. This result is rather disappointing, since in some preliminary experi-
ments this operation proved to be very effective on some classes of grid graphs. A
possible explanation may be the following: if a node has the highest distance in the
tail of a hyperarc, it is likely to have the highest distance also in the tail of the other
hyperarc it belongs to; in this case, hyperarc reduction may create two arcs leaving
the node, so that node contraction cannot be applied. This observation may suggest
some guidelines for improving our algorithms.

5. Conclusions. In this paper, we propose an auction method for shortest hy-
perpath problems, that can be adapted to several types of weighting functions. Our
method is derived, with minor changes, from the auction-reduction SPT algorithm.
Indeed, an appealing feature of our approach is that several techniques originally
developed for graphs could be easily exported to hypergraphs.

From a practical point of view, auction shortest hyperpath methods are compa-
rable to other known methods, at least in favorable cases. As one would expect, their
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behavior can be dramatically affected by the structure of the underlying hypergraph;
however, this seems to resemble closely what happens for graphs.

We may conclude that auction shortest hyperpath methods are an interesting
topic for further research, both on the theoretical and the practical side. A possible
direction could be adapting some of the variants proposed in the literature, such as the
price raise technique devised in [8]. In particular, we are currently investigating the
forward-reverse approach, which proved to be quite effective for single-origin single-
destination (or few destinations) [4, Chapter 4].
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Abstract. Calmness is a restricted form of local Lipschitz continuity where one point of com-
parison is fixed. We study the calmness of solutions to parameterized optimization problems of the
form

min{f(x,w)} over all x ∈ R
n,

where the extended real-valued objective function f is continuously prox-regular in x with compatible
parameterization in w. This model covers most finite-dimensional optimization problems, though
we focus particular attention here on the case of parameterized nonlinear programming. We give
a second-order sufficient condition for there to exist unique optimal solutions that are calm with
respect to the parameter. We also characterize a slightly stronger stability property in terms of
the same second-order condition, thus clarifying the gap between our sufficient condition and the
calmness property. In the case of nonlinear programming, our results complement a long study of
the stability properties of optimal solutions: for instance, one consequence of our results is that
the Mangasarian–Fromovitz constraint qualification when paired with a new (and relatively weak)
second-order condition ensures the calmness of solutions to parameterized nonlinear programs.
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1. Introduction. In this paper, we study the stability with respect to the pa-
rameter w ∈ R

d of solutions to the optimization problems

min{f(x,w)} over all x ∈ R
n,(1)

where the extended real-valued objective function f is continuously prox-regular in x
with compatible parameterization by w. To measure solution stability, we use a weak
form of Lipschitz continuity called “calmness.”

Definition 1.1. We say that x̄ gives a calm local minimum for f if there exists
a δ > 0 and a neighborhood W ∈ R

d of 0 such that for each parameter w ∈ W , there
exists a unique solution x(w) to

min{f(x,w)} over all x ∈ R
n with |x− x̄| ≤ δ

and that x(w) satisfies

|x(w)− x̄| ≤ K|w| for all w ∈W(2)

for some fixed K > 0.
Notice that the calmness bound (2) is slightly weaker than the usual local Lip-

schitz continuity since the base point x̄ is required in (2) to always be one of the
two points considered for comparison. Nonetheless, calmness is obviously a very use-
ful and important stability property since it gives a Lipschitz bound on the distance
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of perturbed solutions from the unperturbed solution. Note also that the calmness
bound (2) itself, without the existence and uniqueness assertions, is essentially the
property of local upper Lipschitz continuity studied widely (for example, in [21], [11],
[3], and [8]).

The class of continuously prox-regular functions was introduced in [17] where it
was shown to include all C1,1 functions, all lower semicontinuous, proper, convex func-
tions, all lower-C2 functions, all primal-lower-nice functions (see [16]), and all “strongly
amenable functions” (convex functions composed with C2 mappings; see [22], for ex-
ample). This list covers most of the objective functions in finite-dimensional opti-
mization, including constrained optimization where constraints are incorporated into
the objective via infinite penalties. In this paper, we study continuously prox-regular
parameterized functions which are continuously prox-regular in a uniform way with
respect to the parameterization, and we call such functions continuously prox-regular
with compatible parameterization (see the following section for more details). One
important example in parameterized constrained optimization on which we will focus
particular attention is the case when f represents the essential objective associated
with the nonlinear program:

min{g0(x,w)} over all x ∈ C(w),(3)

where g0 is of class C2 and the constraint set is defined by C2 functions gi as follows:
C(w) := {x ∈ R

n : gi(x,w) ≤ 0 if i = 1, . . . , s and gi(x,w) = 0 if i = s+ 1, . . . ,m}.
The essential objective f in this case is defined for pairs (x,w) satisfying x ∈ C(w)
by f(x,w) = g0(x,w) and by f(x,w) =∞ otherwise.

Our main result is a sufficient condition for x̄ to give a calm local minimum for a
continuously prox-regular function f with compatible parameterization. We assume
that 0 is a partial subgradient with respect to x of f at x̄, denoted 0 ∈ ∂xf(x̄, 0),
since this is a necessary condition for local optimality. We also assume the following
constraint qualification:

(0, y) ∈ ∂∞f(x̄, 0)⇒ y = 0,(4)

in terms of the set ∂∞f(x̄, 0) of horizon subgradients of f at (x̄, 0). Our result is stated
in terms of two different generalized second-order derivatives: a strong partial outer
graphical derivative D̃2

xxf(x̄, 0|0), and a partial outer graphical derivative D2
xf(x̄, 0|0)

(see the following section for details on partial subgradients, horizon subgradients,
continuous prox-regularity, and the generalized second-derivatives).

Theorem 1.1. Consider a function f : R
n+d → R ∪ {∞} that is continuously

prox-regular in x at x̄ for 0 ∈ ∂xf(x̄, 0) with compatible parameterization in w at 0. If
the constraint qualification (4) holds, and the strong partial outer graphical derivative
D̃2
xxf(x̄, 0|0) is positive-definite in the sense that

v′ ∈ D̃2
xxf(x̄, 0|0)(x′)⇒ 〈v′, x′〉 > 0 unless x′ = 0,(5)

then there exists a δ > 0 and a neighborhood W ∈ R
d of 0 such that for each parameter

w ∈W , there exists a unique solution x(w) to

min{f(x,w)} over all x ∈ R
n with |x− x̄| ≤ δ.

If, in addition, the partial outer graphical derivative D2
xf(x̄, 0|0) satisfies the kernel

condition

0 ∈ D2
xf(x̄, 0|0)(x′, 0)⇒ x′ = 0,(6)
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then the point x̄ gives a calm local minimum for f (2).

The gap between the sufficient conditions (5) and (6) and the calmness property is
shown in Theorem 3.1 to include only functions whose local minima are not Lipschitz
stable with respect to linear perturbations (a property here called “tilt stability”). In
the special case of parameterized nonlinear programming (3), the constraint qualifi-
cation (4) is just the usual Mangasarian–Fromovitz constraint qualification, and the
second-order conditions (5) and (6) are both weaker than the general strong second-
order sufficient condition defined in [4]. It follows that our result improves the previous
sufficient conditions for calm local minima in nonlinear programming (see the final
section for more details on this).

The stability properties of solutions to parameterized constrained optimization
problems have been studied widely. Most of this study has focused on particular
models such as nonlinear programs, but there has also been work on more general
constrained optimization models. A very general result in the same spirit as our The-
orem 1.1 is found in [14], where a sufficient condition is obtained for the Lipschitz
continuity of optimal solutions to problems with continuously prox-regular objectives.
However, this stronger stability property is obtained in [14] through very different
generalized derivative objects, and consequently no application is made to nonlinear
programs. Other results about calmness include a recent survey [1] of stability in con-
strained optimization covering a generalized nonlinear program where the constraints
are of the form G(x,w) ∈ K and containing sufficient conditions for the calmness
of optimal solution selections associated with perturbations of the parameter along
a fixed direction. Another paper [7] also considers general constrained optimization
models and gives conditions for calmness of solution selections when the unperturbed
problem can have multiple solutions. Various stability properties of parameterized
nonlinear programs are studied in [4], [3], [9], [21], [19], [15], [5], [6], and [23], among
others.

The organization of this paper illustrates how our approach is distinguished from
many of the previous results in this area. Instead of using a particular optimization
model from the beginning, we first derive sufficient conditions for calmness of solutions
to the general model (1). With this basic theorem in hand, we can derive sufficient
conditions for calmness of solutions to particular optimization problems merely by
computing the appropriate generalized second derivatives, which we do for the case
of nonlinear programming.

2. Continuous prox-regularity and generalized second derivatives. In
dealing with subgradients, we follow the notation and terminology of the book [22].
For a function f : R

n → R ∪ {∞} and a point x ∈ R
n, a vector v ∈ R

n is a regular
subgradient of f at x if f(x) is finite and f(x + w) ≥ f(x) + 〈v, w〉 + o(|w|). It is
a (general) subgradient at x if f(x) is finite and there exist sequences {xν}∞ν=1 and
{vν}∞ν=1 with vν a regular subgradient of f at xν , such that vν → v, xν → x, and
f(xν) → f(x). The set of all such (general) subgradients of f at x includes the
regular subgradients at x and is denoted by ∂f(x). A set-valued subgradient mapping
∂f : R

n →→ R
n is thereby defined, which is empty-valued outside of {x : f(x) < ∞}.

The graph of ∂f is the set gph ∂f ⊂ R
n × R

n consisting of the pairs (x, v) such that
v ∈ ∂f(x).

Also of use to us will be the concept of v being a horizon subgradient of f at
x. This refers to the existence of sequences {xν}∞ν=1 and {vν}∞ν=1 with vν a regular
subgradient of f at xν , such that xν → x, f(xν) → f(x), and λνvν → v for some
scalar sequence {λν}∞ν=1 with λν ↓0. The set of horizon subgradients v of f at x is
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denoted by ∂∞f(x).

We call a lower semicontinuous function f : R
n+d → R ∪ {∞} continuously prox-

regular in x at x̄ for v̄ ∈ ∂xf(x̄, 0) with compatible parameterization in w at 0 if
it is prox-regular and subdifferentially continuous in the sense of [22] and if these
properties extend uniformly with respect to w in the following way: There exists a
neighborhood W ∈ R

d of 0 such that

(i) (uniform subdifferential continuity) for any positive scalar η, there
is a δ > 0 such that whenever w ∈ W and x1, x2 satisfy |xi − x̄| ≤ δ
for i = 1, 2 with vi ∈ ∂xf(xi, w) satisfying |vi − v̄| ≤ δ for i = 1, 2,
the function f satisfies |f(x1, w)− f(x2, w)| ≤ η; and

(ii) (uniform prox-regularity) there exist constants δ > 0 and r > 0
such that for any w ∈W , the function f satisfies

f(x1, w)− 〈v, x1〉 ≥ f(x2, w)− 〈v, x2〉 − r

2
|x1 − x2|2(7)

whenever |xi− x̄| ≤ δ for i = 1, 2 and v ∈ ∂xf(x2, w) with |v− v̄| ≤ δ.

For this paper, one important example of a continuously prox-regular function with
compatible parameterization is the essential objective associated with the nonlin-
ear program (3) under the Mangasarian–Fromovitz constraint qualification (cf. [14,
Proposition 2.2]).

The generalized second-derivatives that we use here are obtained as outer graphi-
cal derivatives of the partial subdifferential multifunction ∂xf . For any multifunction
T : R

m →→ R
n, the outer graphical derivative at x for v ∈ T (x) is the multifunction

DT (x|v) : Rm →→ R
n that is the outer graphical limit as τ ↓0 of the family of difference

quotient multifunctions ∆τT (x|v) : Rn →→ R
n defined by

∆τT (x|v)(x′) :=
T (x+ τx′)− v

τ
.

Recall that the outer graphical limit as τ ↓0 of a family of multifunctions ∆τ : Rm →
R
n is the multifunction ∆ : Rm → R

n whose graph gph∆ agrees with the collection of
all cluster points obtained from elements chosen from the graphs gph∆τn for sequences
τn ↓0.

One generalized derivative of f that we use is the multifunction D2
xf(x,w|v) :

R
n+d →→ R

n that is the outer graphical derivative at (x,w) for v ∈ ∂xf(x,w) of the
multifunction (x,w) �→ ∂xf(x,w). This derivative is a generalization of the Hessian
mapping

(x′, w′) �→ ∇xxf(x,w) · x′ +∇xwf(x,w) · w′.

Another generalized derivative that we use is the multifunctionD2
xxf(x,w|v) : Rn →→ R

n

that is the outer graphical derivative at x for v ∈ ∂xf(x,w) of the multifunction
x �→ ∂xf(x,w). It follows that D

2
xxf(x,w|v) is a generalization of the Hessian map-

ping x′ �→ ∇xxf(x,w) · x′. (See [22] for more on graphical derivatives defined in this
way.) In the present paper, we “strengthen” this latter generalized second derivative
by taking a final outer graphical limit. We use the notation D̃2

xxf(x̄, 0|v̄) to denote
the strong partial outer graphical derivative of f at x̄ for v̄ ∈ ∂xf(x̄, 0) that is defined
as the outer graphical limit as x → x̄, w → 0, and v → v̄ of the sequence of partial
outer graphical derivative multifunctions D2

xxf(x,w|v).
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3. Tilt stability and the proof of Theorem 1.1. In order to study the
calmness of the optimal solutions to (1), it turns out to be useful to consider a slightly
modified optimization problem

min{f(x,w)− 〈v, x〉} over all x satisfying |x− x̄| ≤ δ,(8)

where the graph of the objective function is “tilted” by the parameter v. Associated
with this problem is the local solution mapping

Pδ(w, v) := argmin
x∈B(x̄;δ)

{f(x,w)− 〈v, x〉},(9)

where B(x̄; δ) denotes the closed ball of radius δ about x̄.
Definition 3.1. We say that x̄ gives a tilt stable local minimum for f locally

uniformly in w if there exists a δ > 0 such that the local solution mapping (9) satisfies
Pδ(0, 0) = {x̄} and is single-valued on some neighborhood W × V ⊆ R

d+n of (0, 0)
with the mappings v �→ Pδ(w, v) Lipschitz continuous on V with the same modulus
K > 0 for all fixed w ∈W .

Remark. A related concept of tilt stability is studied in [14], but without the
requirement that such stability persist for a neighborhood of w. The locally uniform
version of tilt stability that we study here is thus a stronger condition than the one
considered in [14].

Tilt stability for unparameterized prox-regular functions f(x) was first studied in
[18], where this property was characterized by the positive-definiteness of a different
generalized second derivative than either of those used in the present paper. This
concept has also been seen before in other contexts; in particular it is related to
Robinson’s strong regularity [20] applied to optimal solutions (see [1], [2], and [3] for
more on strong regularity).

To study tilt stability for parameterized functions f(x,w), it is useful to consider
“localizations” Tw on B(x̄; δ) × V of the partial subgradient mappings ∂xf(x,w).
Recall that the localization of x �→ ∂xf(x,w) on B(x̄; δ) × V is the mapping Tw :
R
n →→ R

n defined by

Tw(x) :=

{
∂xf(x,w) ∩ V for x ∈ B(x̄; δ),

∅ otherwise.

Proposition 3.1. Consider a function f : R
n+d → R∪{∞} that is continuously

prox-regular in x at x̄ for 0 ∈ ∂xf(x̄, 0) with compatible parameterization in w at 0,
and consider any ρ greater than the modulus r of prox-regularity. If the constraint
qualification (4) holds and x̄ gives an isolated minimum for the unperturbed problem,
then there exists a δ > 0 and a neighborhood W × V ⊆ R

d+n of (0, 0) such that the
localization Tw of x �→ ∂xf(x,w) on B(x̄; δ) × V is such that the mapping Fw :=
(Tw + ρI)−1 is single-valued, monotone, and Lipschitzian with modulus 1/(ρ− r) on
V + ρx̄.

Proof. We consider the auxiliary minimization problem

min
x∈B(x̄;δ)

{
f(x,w) +

ρ

2
|x− x̄|2 − 〈v, x〉

}
(10)

and note that the assumption Pδ(0, 0) = {x̄} ensures that x̄ is the only solution to
(10) with (w, v) = (0, 0). It follows that we can apply [14, Proposition 3.5] to the
function (x,w) �→ f(x,w) + ρ/2 |x − x̄|2 to obtain a neighborhood W × V ⊆ R

d+n
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of (0, 0) such that the minimum in (10) for (w, v) ∈ W × V must be achieved in the
interior of B(x̄; δ). Thus any point giving this minimum is also a stationary point.

For any w ∈ W , if Tw is the localization of x �→ ∂xf(x,w) on B(x̄; δ) × V , we
know (cf. [17, Theorem 3.2]) that the mapping Tw + rI is monotone. We define
the mapping Fw := (Tw + ρI)−1, let λ = 1/(ρ − r), and note that according to [22,
Theorem 12.12], the mapping

(
I + λ(Tw + rI)

)−1
=
(
λF−1

w

)−1

is monotone and nonexpansive. This implies that Fw itself is monotone and that
any elements (v1, x1) and (v2, x2) in the graph of Fw satisfy |x1 − x2| ≤ λ|v1 − v2|.
In particular, it follows from this that Fw has a single-valued image at any point
in its domain. Since the image of Fw at v + ρx̄ is the set of the stationary points
associated with the minimization problem (10), it follows from the above discussion
that the domain of Fw includes the set V + ρx̄, so that Fw is actually Lipschitzian
with modulus λ on this set.

We can now prove a characterization of tilt stability in terms of the positive-
definiteness of the strong partial outer graphical derivative. In places, this proof is
essentially a parametric version of the argument supporting [18, Theorem 1.3], though
special accommodations must be made for the entirely different type of generalized
derivative used here (generalized “coderivatives” were used in [18]).

Proposition 3.2. Consider a function f : R
n+d → R∪{∞} that is continuously

prox-regular in x at x̄ for 0 ∈ ∂xf(x̄, 0) with compatible parameterization in w at 0.
If the constraint qualification (4) holds, then the following are equivalent:

(i) The point x̄ gives a tilt stable local minimum for f locally uniformly in w at
0.

(ii) The strong partial outer graphical derivative D̃2
xxf(x̄, 0|0) is positive-definite

in the sense of (5).
(iii) There exist constants δ > 0 and K > 0, and a neighborhood W × V ⊆ R

d+n

of (0, 0) such that for every w ∈W and the stationary point mapping defined by

Sδ(w, v) := {x ∈ B(x̄; δ)|v ∈ ∂xf(x,w)},
the mapping v �→ Sδ(v, w) is single-valued, monotone, and Lipschitzian on V with
modulus K.

Moreover, under any of these equivalent conditions, the optimal solution mapping
satisfies Pδ(w, v) = Sδ(w, v) on W × V .

Proof. (ii) ⇒ (i) In order to prove this implication, we consider the mapping
R : R

n →→ R
n that is defined exactly as the strong partial outer graphical derivative

D̃2
xxf(x̄, 0|0), but where the final graphical outer limit is taken with respect only to

sequences x→ x̄, w → 0, and v → 0 for which the partial outer graphical derivatives
D2
xxf(x,w|v) satisfy

D2
xxf(x,w|v)(x′) =

{
v′
∣∣∣∣∣
∃ ε > 0 and v(t) ∈ ∂xf

(
x(t), w

)
for t ∈ [0, ε] such

that
[(
x(t), v(t)

)− (x, v)]/t→ (x′, v′) as t ↓0

}

(11)

and gphD2
xxf(x,w|v) is an n-dimensional subspace of R

2n.

Clearly, under assumption (ii), the mapping R is also positive-definite since its image
set R(x′) is always contained in the image set D̃2

xxf(x̄, 0|0)(x′).
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According to [18], when D2
xxf(x,w|v) satisfies the two properties (11), it can be

expressed in terms of symmetric matrices Ax,w,v ∈ R
n×n and subspaces Mx,w,v ⊆ R

n

as

D2
xxf(x,w|v)(x′) =

{
Ax,w,v(x

′) +
(
Mx,w,v

)⊥
if x′ ∈Mx,w,v,

∅ otherwise

}
.(12)

The bound

〈Ax,w,v(x′), x′〉 ≥ −r|x′|2 for all x′ ∈Mx,w,v(13)

follows immediately from the continuous prox-regularity of f since (via [17, Theorem
3.2]) the mappings x �→ ∂xf(x,w) + rx are locally monotone. We use the expression
(12) to show that the inequality |Ax,w,v(x′)| ≥ ε > 0 holds for all unit vectors x′ ∈
Nx,w,v. Suppose that this is not the case and that for some sequence ε ↓0, there are
sequences wε → 0, xε → x̄, and vε → 0, and a sequence of unit vectors x′

ε ∈Mxε,wε,vε

with |Axε,wε,vε(x
′
ε)| < ε. Taking subsequences of {x′

ε} and {v′ε} if necessary, we
conclude that v′ε → 0 and that there exists a unit vector x′ such that x′

ε → x′. By the
definition above of the mapping R, this implies that 0 ∈ R(x′) which contradicts the
positive-definiteness assumption. It follows that there exist scalars δ > 0 and ε > 0
such that for any triple (x,w, v) ∈ B((x̄, 0, 0); δ) for which D2

xxf(x,w|v) satisfies the
two conditions (11), the following holds:

|Ax,w,v(x′)| ≥ ε|x′| for all x′ ∈Mx,w,v.(14)

It follows from (14) that all the eigenvalues of the Ax,w,v have absolute value greater
than ε, and we claim that these eigenvalues are actually positive.

To prove this claim, we suppose that for some sequence ε ↓0, there are sequences
wε → 0, xε → x̄, and vε → 0, and a sequence of nonpositive eigenvalues λε with their
corresponding sequence of unit eigenvectors x′

ε ∈ Mxε,wε,vε . There are two cases to
consider. In one case, the λε are bounded in absolute value, so a subsequence must
converge to some λ. Since the eigenvectors are all unit length, a subsubsequence
of them converges to some unit vector x′. It follows that λx′ ∈ R(x′), which by
the positive-definiteness assumption implies that λ is positive. This contradicts the
assumption that the eigenvalues λε are nonpositive. The only alternative is that the
λε diverge to −∞ so that the inner product λε|x′

ε|2 = 〈Axε,wε,vε(x
′
ε), x

′
ε〉 also diverges

to −∞. But this contradicts the bound (13), so neither can this case occur. It follows
that the eigenvalues of the Ax,w,v are all positive, which means that the bound (14)
translates into the fact that for any (x,w, v) ∈ B((x̄, 0, 0); δ), the graphs of the partial
outer graphical derivatives D2

xxf(x,w|v) satisfying (11) contain only pairs (x′, v′)
which satisfy 〈x′, v′〉 ≥ ε|x′|2, which implies that the mappings D2

xxf(x,w|v)− εI are
monotone.

We wish to apply Proposition 3.1 in this situation, so we must first verify that
x̄ gives an isolated local minimum for the unperturbed problem. To prove this, we
construct the function

f̃(x) :=

{
f(x+ x̄, 0)− f(x̄, 0) for x ∈ B(0; δ),

∞ otherwise.

It follows from the prox-regularity of x �→ f(x, 0) at x̄ for 0 ∈ ∂xf(x̄, 0) that f̃ is
prox-regular at 0 for 0 ∈ ∂f̃(0). From the monotonicity of D2

xxf(x,w|v)− εI obtained
above, it follows from [17, Proposition 5.7] that there exists some δ̃ > 0 such that the
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localization of ∂f̃ on B((0, 0); δ̃) is strongly monotone with modulus ε. According to
[17, Proposition 5.5] then, there are positive constants λ and c for which the function
eλ − c| · |2 is convex near 0, where eλ represents the Moreau envelope

eλ(x) := min
x′

{
f̃(x′) +

1

2λ
|x′ − x|2

}
.

Since f̃(0) = 0 and f̃ is prox-regular at 0 for 0 ∈ ∂f̃(0), we know that the Moreau
envelope satisfies eλ(0) = 0, so that the strong convexity above translates into the
inequality eλ(x) ≥ c |x|2 for x near 0. By the definition of eλ, this implies that
f̃(x) ≥ c |x|2 for x near 0, which translates into the bound

f(x, 0) ≥ c |x− x̄|2 + f(x̄, 0) for x near x̄.

This final bound ensures that we can shrink δ if necessary to obtain Pδ(0, 0) = {x̄}.
We can now apply Proposition 3.1 for any ρ > r to obtain a new δ > 0 and a

neighborhood W × V ∈ R
d+n of (0, 0) such that for every w ∈ W the localization

Tw of x �→ ∂xf(x,w) on B(x̄; δ) × V has the property that the mapping Fw :=(
Tw+ρI

)−1
is single-valued, monotone, and Lipschitz continuous on V +ρx̄ (we adjust

δ > 0 if necessary to be the smallest of the δ’s encountered so far, and we shrink the
neighborhoodsW and V to include the balls of radius δ > 0 about 0). By its definition,
Fw is differentiable at v+ρx̄ exactly when the graph of D2

xxf(Fw(v+ρx̄), w|v) is an n-
dimensional subspace. Since the outer graphical derivative of the inverse is the inverse
of the outer graphical derivative (see [22]), and since the outer graphical derivative of
Fw at v+ ρx̄ is the same as the Jacobian ∇Fw(v+ ρx̄) when Fw is differentiable (see
[22]), it follows that for any w ∈W and any v′ ∈ R

n the following inclusion holds:

v′ − ρ∇Fw(v + ρx̄)v′ ∈ D2
xf(Fw(v + ρx̄), w|v)(∇Fw(v + ρx̄)v′).

By the definition of Fw, the element Fw(v + ρx̄) is contained in the set B(x̄; δ) for
any v ∈ V , so the monotonicity of the mappings D2

xxf(x,w|v)− εI proved above then
implies that the inequality

〈v′,∇Fw(v + ρx̄)v′〉 ≥ (ε+ ρ)|∇Fw(v + ρx̄)v′|2

holds, which via [17, Lemma 5.6] implies that F−1
w − (ε+ ρ)I = Tw − εI is monotone.

Applying [14, Proposition 3.5] (and shrinking W and V if necessary), we have
that Sδ is nonempty on W × V , and since for any w ∈ W the image of the mapping
v �→ Sδ(w, v) is the inverse of the mapping x ∈ B(x̄; δ) �→ ∂xf(x,w), the monotonicity
of Tw − εI ensures that the mapping v �→ Sδ(w, v) is single-valued, monotone, and
Lipschitzian on V (with modulus K = 1/ε). Finally, [14, Proposition 3.5] ensures
that these same properties hold for the optimal solution mapping Pδ.

(iii)⇒ (ii) We again consider the mapping R : R
n →→ R

n whose graph is the outer
limit as x → x̄, w → 0, and v → 0 of the D2

xxf(x,w|v) satisfying (11). Since the
mappings v �→ Sδ(w, v) are monotone on V , it follows that any pair (x′, v′) in the
graph of the partial outer graphical derivative D2

xxf(x,w|v) also satisfies 〈x′, v′〉 ≥ 0,
and thus so does every pair (x′, v′) in the graph of R. Moreover, the only point
x′ ∈ R

n with 0 ∈ R(x′) is x′ = 0. This follows since 0 ∈ R(x′) if and only if there
exist sequences τ ↓0, x′

n → x′, v′n → 0, vn → 0, wn → 0, and xn → x̄ satisfying
xn ∈ Sδ(wn, vn) and xn + τx′

n ∈ Sδ(wn, vn + τv′n). Since for every w ∈ W , the
mapping v �→ Sδ(w, v) is Lipschitzian on V with modulus K > 0, it follows that
|x′
n| ≤ K|v′n|, and since v′n → 0, x′

n must converge to 0 also.
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We can now apply an argument similar to that in (ii) ⇒ (i) to show that there
exist scalars δ > 0 and ε > 0 together with neighborhoods W of 0 and V of 0, such
that for any triple (x,w, v) ∈ B((x̄, 0, 0); δ) for which D2

xxf(x,w|v) satisfies (11), the
following holds:

|Ax,w,v(x′)| ≥ ε|x′| for all x′ ∈Mx,w,v.(15)

It follows from (15) that all the eigenvalues of the Ax,w,v have absolute value greater
than ε. However, any eigenvalue λx,w,v of Ax,w,v satisfies λx,w,v|x′|2 = 〈Ax,w,v(x′), x′〉
where x′ is the corresponding eigenvector, and we already showed above that the
inner product on the right was nonnegative. It follows that these eigenvalues are all
positive and greater than ε, so that the graphs of the D2

xxf(x,w|v) satisfying (11)
contain only pairs (x′, v′) which satisfy 〈x′, v′〉 ≥ ε|x′|2. From this last inequality, the
positive-definiteness of the mapping R follows immediately.

Having established the positive-definiteness of the mapping R, we apply Propo-
sition 3.1 (as in the proof of (ii) ⇒ (i)) to obtain δ > 0, ρ > r, and a neighbor-
hood W × V ⊆ R

d+n of (0, 0) such that for every w ∈ W , the localization Tw of

x �→ ∂xf(x,w) on B(x̄; δ)× V has the property that the mapping Fw :=
(
Tw + ρI

)−1

is single-valued, monotone, and Lipschitzian on V +ρx̄, and moreover F−1
w −(ε+ρ)I =

Tw − εI is monotone for some ε > 0. This means that any two triples (x,w, v) and
(x′, u, v′) close enough to (x̄, 0, 0) and with v ∈ ∂xf(x,w) and v′ ∈ ∂xf(x

′, w) satisfy

〈x− x′, v − v′〉 ≥ ε|x− x′|2.
This last inequality implies that the partial outer graphical derivatives D2

xxf(x,w|v)
satisfy

v′ ∈ D2
xxf(x,w|v)(x′)⇒ 〈v′, x′〉 ≥ ε|x′|2

which implies that the strong partial outer graphical derivative D̃2
xxf(x̄, 0|0) is positive-

definite.
(i) ⇒ (iii) For w ∈W we define the function

gw(v) := max
x∈B(x̄;δ)

{〈x, v〉 − f(x,w)}

which is the convex conjugate of the function x �→ f(x,w) + δB(x̄;δ). Thus defined,
gw : R

n → R is proper, lower semicontinuous, convex, and finite-valued. We also
define the mapping

G(w, v) := argmax
x∈B(x̄;δ)

{〈x, v〉 − f(x,w)}

which is the same as Pδ(w, v) so that under our assumptions, G is single-valued on
W × V . It is easy to show that G(w, ·) is monotone on V , and since G(w, ·) is single-
valued and Lipschitz on V (thus maximal monotone on V ), it is easy to verify that
G(w, v) = ∂gw(v) for any v ∈ V . If we let Tw be the localization of x �→ ∂xf(x,w)
on B(x̄; δ) × V , it follows from [14, Proposition 3.5] that the following inclusion also
holds:

∂gw(v) = G(w, v) = Pδ(w, v) ⊆ Sδ(w, v) =
(
Tw)

−1(v)(16)

for all v ∈ V .
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Now we define hw to be the convex conjugate of gw so that

hw(x) = sup
v∈Rn

{〈x, v〉 − gw(v)}.

It follows that hw is a proper, lower semicontinuous, convex function whose maximal

monotone subgradient mapping satisfies ∂hw =
(
∂gw

)−1
. From the inclusion (16),

the subgradient mapping ∂hw must also satisfy(
gph ∂hw ∩

(
B(x̄; δ)× V

)) ⊆ gphTw.(17)

We claim that this inclusion is actually an identity. To show this claim, we notice
that Tw + ρI is monotone for any ρ greater than the modulus r of prox-regularity.
Since ∂hw is maximal monotone, it follows that ∂hw + ρI is also maximal monotone.
If H is the localization of ∂hw on B(x̄; δ) × V , then the inclusion (17) implies that
H satisfies gph

(
H + ρI

) ⊆ gph
(
Tw + ρI

)
, which by the maximal monotonicity of

∂hw + ρI translates into the identity H + ρI = Tw + ρI, which proves the claim. By
its definition then, the stationary point mapping Sδ satisfies

Sδ(w, v) =
(
∂hw

)−1
(v) = ∂gw(v) = G(w, v)

for all v ∈ V and w ∈ W . Therefore, Sδ inherits the properties of G = Pδ on W × V
which include monotonicity with respect to v.

The final claim about the equivalence between Pδ and Sδ on W × V clearly also
follows from the above.

Remark. In the special unparameterized case where f(x,w) = f(x), the con-
straint qualification is trivially satisfied and the mapping Pδ depends only on the tilt
parameter v. In this setting, our Proposition 3.2 provides a complementary condition
(ii) in terms of outer graphical derivatives to the characterizations of tilt stability from
[18, Theorem 1.3] (those authors studied the unparameterized case only and provided
several other equivalent conditions based on a generalized coderivative).

Notice that according to our argument above, any restricted version of the strong
partial outer graphical derivative can replace D̃2

xxf(x̄, 0|0) in Proposition 3.2, as long
as the final outer graphical limit used to construct it includes the sequences x → x̄,
w → 0, and v → 0 for which D2

xxf(x,w|v) satisfies (11). Note also that such sequences
are plentiful, because (cf. the proof of Proposition 3.2) there is a locally Lipschitzian
mapping Fw whose inverse agrees with x �→ ∂xf(x,w) + ρ x near (x̄, ρx̄) for some
fixed ρ > 0. By its construction, the mapping Fw is differentiable precisely when
D2
xxf(x,w|v) satisfies (11). According to Rademacher’s theorem then, this occurs

almost everywhere in the domain of Fw.
Theorem 3.1. Consider a function f : R

n+d → R ∪ {∞} that is continuously
prox-regular at x̄ for 0 ∈ ∂xf(x̄, 0) with compatible parameterization in w at 0. If the
constraint qualification (4) holds then the following are equivalent:

(i) The point x̄ gives both a tilt stable local minimum for f locally uniformly in w
and a calm local minimum for f .

(ii) The strong partial outer graphical derivative D̃2
xxf(x̄, 0|0) is positive-definite

(5) and the partial outer graphical derivative D2
xf(x̄, 0|0) satisfies (6).

Proof. According to Proposition 3.2, tilt stability is equivalent to the positive-
definiteness of D̃2

xxf(x̄, 0|0). One consequence of tilt stability shown in Proposition
3.2 is that the optimal solution mapping Pδ agrees near (0, 0) with the stationary
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point mapping Sδ. According to [11, Proposition 4.1], the (single-valued) stationary
point mapping Sδ(w, v) satisfies

|Sδ(w, v)− x̄| ≤ K|(w, v)|(18)

for all pairs (w, v) near (0, 0) if and only if the outer graphical derivative of Sδ satisfies

DSδ(0, 0|x̄)(0, 0) = {0}.(19)

However, by the definition of Sδ, the outer graphical derivative of Sδ also satisfies

DSδ(0, 0|x̄)(w′, v′) =
{
x′ | v′ ∈ D2

xf(x̄, 0|0)(x′, w′)
}
,

so that the conditions (19) and (18) are equivalent to the kernel condition (6) on the
partial outer graphical derivative D2

xf(x̄, 0|0). Thus, we see that condition (ii) above
is equivalent to the paired conditions of tilt stability and joint calmness (18).

To finish the proof, we note that in the presence of tilt stability, the (generally
stronger) joint calmness property (18) is equivalent to the calmness property (2).
This follows since calmness in the presence of tilt stability implies the joint calmness
property (18) via the following series of inequalities:

|Pδ(w, v)− Pδ(0, 0)|2 ≤ |Pδ(w, v)− Pδ(w, 0)|2 + |Pδ(w, 0)− Pδ(0, 0)|2

≤ K1|v|2 +K2|w|2

≤ max{K1,K2}
(|v|2 + |w|2)

= max{K1,K2}|(w, v)|2.

Proof of Theorem 1.1. The first part of this result follows from the tilt stability
guaranteed under (5) by Proposition 3.2, and the calmness under (6) follows from
Theorem 3.1.

Remark. Notice that Theorem 3.1 exposes exactly the gap between the sufficient
condition in Theorem 1.1 for calm local minima: Only points x̄ which do not give a
tilt stable local minimum for f locally uniformly in w have a chance of giving a calm
local minimum for f while violating the sufficient condition.

An alternate sufficient condition for calmness can be given in terms of a single
second-order condition on a different strong partial outer graphical derivative of f ,
D̃2
xf(x̄, 0|0) : R

n+d →→ R
n which is outer graphical limit as (x,w, v) → (x̄, 0, 0) of

the outer graphical derivatives at (x,w) for v ∈ ∂xf(x,w) of the mappings (x,w) �→
∂xf(x,w). The drawback of this sufficient condition is that the gap between it and
the calmness property is in general larger than the gap in Theorem 1.1.

Theorem 3.2. Consider a function f : R
n+d → R ∪ {∞} that is continuously

prox-regular at x̄ for 0 ∈ ∂xf(x̄, 0) with compatible parameterization in w at 0. If
the constraint qualification (4) holds and the strong partial outer graphical derivative
D̃2
xf(x̄, 0|0) satisfies

v′ ∈ D̃2
xf(x̄, 0|0)(x′, 0)⇒ 〈x′, v′〉 > 0 unless x′ = 0,

then x̄ gives a calm local minimum for f .
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Proof. This follows from Theorem 1.1 since by its definition, D̃2
xf(x̄, 0|0)(x′, 0)

satisfies the following two inclusions:

D̃2
xxf(x̄, 0|0)(x′) ⊆ D̃2

xf(x̄, 0|0)(x′, 0) and

D2
xf(x̄, 0|0)(x′, 0) ⊆ D̃2

xf(x̄, 0|0)(x′, 0).

The first inclusion follows since v′ ∈ D̃2
xxf(x̄, 0|0)(x′) implies that there exist se-

quences v′n → v′, x′
n → x′, x→ x̄, w → 0, and v → 0 such that v′n ∈ D2

xxf(x,w|v)(x′
n).

This means that there are sequences τ ↓0, vτn → v′n, and xτn → x′
n such that v+ τvτn ∈

∂xf(x+τxτn, w). By defining a sequence w
τ = 0, we see that v′n ∈ D2

xf(x,w|v)(x′
n, 0),

from which it follows that v′ ∈ D̃2
xf(x̄, 0|0)(x′, 0).

The second inclusion follows because the constant sequence (x̄, 0, 0) is one of the
candidate sequences for the final outer limit used to construct the strong partial outer
graphical derivative D̃2

xf(x̄, 0|0)(x′, 0).
Notice that just as in Theorem 1.1, the conditions in Theorem 3.2 are actually

enough to ensure tilt stability as well as calmness.

4. Tilt stability in nonlinear programming. An important example of a
continuously prox-regular function is the essential objective function associated with
the parameterized nonlinear program (3)

f(x,w) = g0(x,w) + δC(w)(x),(20)

where δC(w) represents the indicator function associated with the set C(w):

δC(w)(x) =

{
0 if x ∈ C(w),
∞ otherwise.

To apply Theorem 1.1 in this situation, we need to compute the two generalized
second-order derivatives given there. To do this, it will be useful to consider the
Lagrangian

L(x,w, y) := g0(x,w) + y1 g1(x,w) + · · ·+ ym gm(x,w),

defined in terms of Lagrange multiplier vectors y ∈ R
m. A vector y ∈ R

s
+ × R

m−s

(here R
s
+ denotes the nonnegative orthant in R

s) is a Lagrange multiplier for the pair
of parameters (w, v) at the point x ∈ C(w) if y satisfies ∇xL(x,w, y) = v, and either
yi or gi(x,w) is equal to 0 for i = 1, . . . , s. The set of Lagrange multipliers can be
defined compactly in terms of the mapping G(x,w) :=

(
g1(x,w), . . . , gm(x,w)

)
and

the normal cone

NK(q) := {y ∈ R
s
+ × R

m−s : yi = 0 or qi = 0 for i = 1, . . . , s}

to K = R
s
− × {0}m−s at a point q ∈ K. In terms of these, the set of Lagrange

multipliers Y (x,w, v) for parameters (w, v) at the point x ∈ C(w) is

Y (x,w, v) := {y ∈ NK(G(x,w)) : v = ∇xL(x,w, y)},

and it is well known that under the Mangasarian–Fromovitz constraint qualification,
this set is bounded for any pair of parameters (w, v) near 0 and any point x near x̄.
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We can also use the mapping G and the normal cone NK to state one form of the
Mangasarian–Fromovitz constraint qualification at x̄ ∈ C(0):

y ∈ NK(G(x̄, 0)) and

m∑
1

yi∇xgi(x̄, 0) = 0 ⇒ y = 0.

We now modify formulas for partial outer graphical derivatives from [12, Theorem
3.2] (these formulas were developed in [12] for partial protoderivatives (cf. [13]), but
when they exist these are always the same as the partial outer graphical derivatives).
According to [12], the image set D2

xxf(x,w|v)(x′) is nonempty only if Y (x,w, v) is
nonempty and x′ is in the critical cone Q(x,w) ∩ (v − ∇xg0(x,w))

⊥, where Q(x,w)
denotes the tangent cone

Q(x,w) :=

{
x′ ∈ R

n :
〈∇xgi(x,w), x′〉 ≤ 0 for active i = 1, . . . , s
〈∇xgi(x,w), x′〉 = 0 for i = s+ 1, . . . ,m

}
.

According to [12, Theorem 3.2], the value of the partial outer graphical derivative
can be expressed in terms of the mapping G(x,w) :=

(
g1(x,w), . . . , gm(x,w)

)
, the

subset of Lagrange multipliers defined by

Ymax(x,w, v, x
′) := argmax

y∈Y (x,w,v)

〈
x′,∇2

xxL(x,w, y)x
′〉,

and the polyhedral cone

Y ′(x,w, x′) :=
{
y′ ∈ NK

(
G(x,w)

)
: y′i 〈∇xgi(x,w), x′〉 = 0} .

At any vector x′ in the critical cone Q(x,w) ∩ (v − ∇xg0(x,w))
⊥, the partial outer

graphical derivative is defined by

D2
xxf(x,w|v)(x′) :=

{
v′ = ∇2

xxL(x,w, y)x
′ +

m∑
i=1

y′i∇xgi(x,w)− y′0 (v −∇xg0(x,w))

}
,

where this set is constructed from arbitrary choices of y ∈ Ymax(x,w, v, x
′), y′ ∈

Y ′(x,w, x′), and y′0 ∈ R. Since the elements (x̄′, v̄′) of the graph of the strong partial
outer graphical derivative are obtained as limits of pairs (x′, v′) from the graphs of
D2
xxf(x,w|v), and since according to the preceding discussion the inner product of

such pairs satisfies

〈x′, v′〉 = 〈x′,∇2
xxL(x,w, y)x

′〉
for some Lagrange multiplier y ∈ Ymax(x,w, v, x

′), we can translate the positive-
definiteness condition in Theorem 3.1 to obtain the following characterization of tilt
stability.

Theorem 4.1. For the essential objective f (20) associated with the parame-
terized nonlinear program (3), if the Mangasarian–Fromovitz constraint qualification
holds at x̄ ∈ C(0) and the set Y (x̄, 0, 0) of Lagrange multipliers is nonempty, then the
following are equivalent:

(i) x̄ gives a tilt stable local minimum for f locally uniformly in w.
(SOC1) For any sequences x → x̄, w → 0, and v → 0 satisfying x ∈ C(w), and

any convergent sequence of points x′ ∈ Q(x,w) ∩ (v − ∇xg0(x,w))
⊥ with nonzero
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limit x̄′, together with any corresponding convergent sequence of multipliers y ∈
Ymax(x,w, v, x

′) with limit ȳ, the Hessian satisfies 〈x̄′,∇2
xxL(x̄, 0, ȳ) x̄

′〉 > 0.

Proof. According to our discussion prior to this theorem, the only thing to show
is that a sequence of Lagrange multipliers y ∈ Ymax(x,w, v, x

′) for sequences x → x̄,
w → 0, and v → 0 has at least a subsequence that converges to a vector ȳ in Y (x̄, 0, 0).
This follows from the upper semicontinuity of the Lagrange multiplier mapping proved
in [21, Theorem 2.3].

The second-order condition (SOC1) in Theorem 4.1 is unprecedented, and it re-
lates in the following way to a simpler second-order condition.

Lemma 4.1. The second-order condition (SOC1) in Theorem 4.1 implies the
second-order condition

max
y∈Y (x̄,0,0)

〈
x̄′,∇2

xxL(x̄, 0, y) x̄
′〉 > 0 for all nonzero x̄′ ∈ Q(x̄, 0) ∩∇xg0(x̄, 0)

⊥.(21)

Proof. The second-order condition here is just the special case of (SOC1) where
the sequences {x}, {w}, and {v} are taken to be the constant sequences x̄, 0, and 0,
respectively.

The following example shows that the implication in Lemma 4.1 cannot be re-
versed.

Example A. Consider the minimization problem

min{g0(x1, x2) := (x1)
2 − (x2)

2} over all x ∈ C,

where the constraint set is defined as follows:

C := {x ∈ R
2 : g1(x1, x2) := −x1 + 2x2 ≤ 0 and g2(x1, x2) := −x1 − 2x2 ≤ 0}.

At the point x̄ = (0, 0), both constraints are active and their gradients ∇g1(0, 0) =
(−1, 2) and ∇g2(0, 0) = (−1,−2) are linearly independent (so the Mangasarian–
Fromovitz constraint qualification is certainly satisfied). Moreover, the set of Lagrange
multipliers Y (x̄, 0, 0) consists of the singleton y = (0, 0), the gradient ∇xg0(0, 0) =
(0, 0), and the tangent cone Q(x̄, 0) is the same as the feasible region {x′ ∈ R

2 : x1 ≥
0, x2 ∈ [−x1/2, x1/2]}. It follows that the second-order condition (21) is satisfied.
However, if we consider the tilted minimization problem for the vector v = (ε, 0) for
any ε > 0, there are two optimal solutions (2ε/3, ε/3) and (2ε/3,−ε/3), so x̄ = (0, 0)
certainly cannot give a tilt stable minimum (it does not even give a unique local min-
imum for these tilt parameters). It follows from Theorem 4.1 that the second-order
condition (SOC1) is violated in this case.

According to the remark following Proposition 3.2, we can further refine our char-
acterization of tilt stability by focusing our attention on sequences (x,w, v) converging
to (x̄, 0, 0) for which the graph of theD2

xxf(x,w|v) is an n-dimensional subspace. From
the formula for the partial outer graphical derivative, it follows that if its graph is
an n-dimensional subspace then its domain is a subspace too. Moreover, its domain
Q(x,w) ∩ (v − ∇xg0(x,w))

⊥ can be rewritten in terms of any Lagrange multiplier
y ∈ Y (x,w, v) as the set

D(x,w, y) :=


x′ ∈ R

n :
〈∇xgi(x,w), x′〉 ≤ 0 for active i = 1, . . . , s
〈∇xgi(x,w), x′〉 = 0 for i = s+ 1, . . . ,m∑m
i=1 yi 〈∇xgi(x,w), x′〉 = 0


 ,
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which, since any multiplier y ∈ Y (x,w, v) is an element ofNK(G(x,w)), can be further
refined to

D(x,w, y) =




⋂
i∈I1(x,w,y)

∇xgi(x,w)⊥

∩{x′ : 〈∇xgi(x,w), x′〉 ≤ 0 for i ∈ I0(x,w, y)}

(22)
in terms of the index sets

I1(x,w, y) := {i = 1, . . . , s : gi(x,w) = 0 and yi > 0} ∪ {i = s+ 1, . . . ,m},

and

I0(x,w, y) := {i = 1, . . . , s : gi(x,w) = 0 and yi = 0}

(where the first intersection in the formula (22) is interpreted to be all of R
n if the set

of indices I1(x,w, y) is empty). From the expression (22), it is clear that the domain
D(x,w, y) of D2

xxf(x,w|v) is a subspace if and only if it satisfies

D(x,w, y) =




⋂
i∈I1(x,w,y)∪I0(x,w,y)

∇xgi(x,w)⊥

 =




⋂
i∈[1,m] with gi(x,w)=0

∇xgi(x,w)⊥

 .

(23)
This observation leads to a different characterization of tilt stability in parameterized
nonlinear programming.

Theorem 4.2. For the essential objective f (20) associated with the parame-
terized nonlinear program (3), if the Mangasarian–Fromovitz constraint qualification
holds at x̄ ∈ C(0) and the set Y (x̄, 0, 0) of Lagrange multipliers is nonempty, then the
following are equivalent:

(i) x̄ gives a tilt stable local minimum for f locally uniformly in w.
(SOC2) For any sequences x → x̄, w → 0, and v → 0 satisfying x ∈ C(w),

and any convergent sequence of points x′ ∈ ⋂
i∈[1,m] with gi(x,w)=0∇xgi(x,w)⊥ with

nonzero limit x̄′, together with any corresponding convergent sequence of multipliers
y ∈ Ymax(x,w, v, x

′), the Hessian at the limit multiplier ȳ satisfies 〈x̄′,∇2
xxL(x̄, 0, ȳ) x̄

′〉
> 0.

Proof. This follows from the remark following Proposition 3.2, since according to
the discussion above, the class of partial outer graphical derivatives considered here
includes all of those whose graphs are n-dimensional subspaces of R

2n.
The second-order condition (SOC2) in Theorem 4.2 is also unprecedented, but

relates in the following way to a standard strong second-order condition.
Lemma 4.2. The (equivalent) second-order conditions (SOC2) and (SOC1) are

implied by the general strong second-order sufficient condition [4]: For every La-
grange multiplier y ∈ Y (x̄, 0, 0), the Hessian ∇2

xxL(x̄, 0, y) is positive-definite on the
set
⋂
i∈I1(x̄,0,ȳ)∇xgi(x̄, 0)⊥.

Proof. This follows since any vector ȳ obtained as the limit of multipliers y ∈
Y (x,w, v) is an element of Y (x̄, 0, 0), and its positive components must come from pos-
itive components of the sequence of multipliers (so I1(x,w, y) ⊇ I1(x̄, 0, ȳ)).
Thus, any x̄′ obtained as a limit of x′ perpendicular to the gradients ∇xgi(x,w)
for indices i ∈ I1(x,w, y), must have x̄′ perpendicular to ∇xgi(x̄, 0) for any index
i ∈ I1(x̄, 0, ȳ).
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The following example shows that the implication in Lemma 4.2 cannot be re-
versed, so that the second-order conditions (SOC1) and (SOC2) are weaker than the
general strong second-order sufficient condition.

Example B. Consider the minimization problem

min{g0(x1, x2) := (x1)
2 − x1 + (x2)

2} over all x ∈ C,

where the constraint set is defined as

C := {x ∈ R
2 : g1(x1, x2) := x1 − x2

2 ≤ 0 and g2(x1, x2) := x1 ≤ 0}
(note that the first constraint function is superfluous). The objective tilted by 〈x, (v1, v2)〉
is

x2
1 − (1 + v1)x1 + x2

2 − v2 x2

which has a unique (global) constrained minimum at the point (0, v2/2) as long as
v1 is sufficiently small. It follows that x̄ = (0, 0) gives a tilt stable local minimum.
Moreover, at x̄ both constraints are active and their gradients are both equal to (1, 0)
so the Mangasarian–Fromovitz constraint qualification is satisfied. Theorems 4.1 and
4.2 then ensure that the second-order conditions (SOC1) and (SOC2) hold in this
case.

However, the set of Lagrange multipliers Y (x̄, 0, 0) consists of the y ∈ R
2
+ satis-

fying y1 + y2 = 1 and the Hessian of the Lagrangian is the matrix[
2 0
0 2(1− y1)

]
.

For the choice of multiplier y = (1, 0), this matrix is only positive semidefinite on
{0} × R (which is the perpendicular subspace to both active constraint gradients).
Therefore, the general strong second-order sufficient condition is not satisfied in this
case.

Thus we see through Lemmas 4.1 and 4.2 that the (equivalent) second-order
conditions (SOC1) and (SOC2) characterizing tilt stability are sandwiched properly
between the second-order condition (21) and the general strong second-order sufficient
condition. It would be nice if the conditions (SOC1) and (SOC2) could be refined in
such a way as to depend only on information at the base point like more traditional
second-order conditions and not on the limits of nearby parameter values. In partic-
ular, such a refinement would likely make (SOC1) and (SOC2) less daunting to verify
in many situations. However, such refinements are not generally possible, as can be
understood by considering two different parameterizations of an unperturbed prob-
lem that exhibits tilt stability: One parameterization is trivial, with each perturbed
problem being the same as the unperturbed model, and the other parameterization
is anything that creates a lack of tilt stability.

For instance, consider the objective function g0(x1, x2) := x2
1/2 with parameter-

ized constraint set

C(w) := {(x1, x2) ∈ R
2 : g1(x,w) := x2 − w2k ≤ 0 and g2(x,w) := −x2 − w2k ≤ 0}

for any positive integer k. For the unperturbed problem (with w = 0), the constraint
set reduces to C(0) = {(x1, x2) ∈ R

2 : x2 = 0}, and the tilted minimization has a
unique solution at x(v1, v2) = (v1, 0). It follows that the point x̄ = (0, 0) gives a
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tilt stable local minimum for the trivially parameterized essential objective function
g0 + δC(0) locally uniformly in w. Notice, moreover, that the general strong second-
order condition is satisfied in this case. However, the tilted minimization of g0 over
C(w) for w �= 0 has multiple solutions when v2 = 0, so tilt stability does not hold. In
this case, only the derivatives of order 2k with respect to w of g1 and g2 evaluated at
the base point (x̄, 0) distinguish the two different parameterizations. Since k is any
positive integer, no test using only derivatives evaluated at the base point will be able
to distinguish the stability discrepancies illustrated in this example.

Our study of tilt stability here complements a long line of results concerning
the Lipschitz stability of solutions to nonlinear programs (as opposed to calmness
where a base point is fixed). The previous work has focused primarily on the more
general parameters (denoted in this paper by w), but of course tilt stability can be
viewed as a special case of such a parameterization. Robinson showed in [20] that
the general strong second-order sufficient condition can be combined with the linear
independence of the gradients of all the binding constraints to give the local Lipschitz
continuity with respect to w of the optimal solutions to the nonlinear program (3).
This result was complemented by Liu [15] and Ralph and Dempe [19] where a constant
rank condition was paired with the Mangasarian–Fromovitz constraint to replace the
linear independence condition in Robinson’s result. Moreover, this sufficient condition
for Lipschitz stable optimal solutions was completed in [3, Corollary 3.5] where under
the constant rank condition, Lipschitz stability of optimal solutions was shown to be
equivalent to the Mangasarian–Fromovitz constraint qualification together with the
general strong second-order sufficient condition. Robinson [21] also gave an example
to show that Mangasarian–Fromovitz and the general strong second-order sufficient
condition (without the constant rank condition) are not enough to give Lipschitz
stability.

5. Calm local minima in nonlinear programming. According to [12] and
[11, Theorem 5.1],1 the partial outer graphical derivative D2

xf(x̄, 0|0) satisfies the
kernel condition in Theorem 1.1 if and only if

(KER) x̄′ = 0 is the only point in Q(x̄, 0)∩(−∇xg0(x̄, 0))
⊥ satisfying

∇2
xxL(x̄, 0, ȳ) · x̄′ +∇xL(x̄, 0, ȳ′) = ȳ0∇xg0(x̄, 0)

for some ȳ′ ∈ Y ′(x̄, 0, x̄′), some ȳ0 ∈ R, and some ȳ achieving the
maximum of the inner product

〈
x̄′,∇2

xxL(x̄, 0, y) x̄
′〉 taken over all

multipliers y ∈ Y (x̄, 0, 0) having the same gradient ∇wL(x̄, 0, ȳ) with
respect to the parameter w.

This kernel condition follows from the general second-order sufficient condition [4]: for
every Lagrange multiplier y ∈ Y (x̄, 0, 0), the Hessian ∇2

xxL(x̄, 0, y) is positive-definite
on the set D(x̄, 0, y) (22). Clearly the general second-order sufficient condition is
weaker than the general strong second-order sufficient condition and stronger than
the second-order condition (21). Now we show that it is stronger than our kernel
condition (KER): Consider any x̄′ in Q(x̄, 0) ∩ (−∇xg0(x̄, 0))

⊥ that satisfies

∇2
xxL(x̄, 0, ȳ) · x̄′ +∇xL(x̄, 0, ȳ′) = ȳ0∇xg0(x̄, 0)(24)

for some ȳ′ ∈ Y ′(x̄, 0, x̄′), some ȳ0 ∈ R, and some ȳ achieving the maximum of the
inner product

〈
x̄′,∇2

xxL(x̄, 0, y) x̄
′〉 taken over all multipliers y ∈ Y (x̄, 0, 0) having

1See [10] for a corrected version of [11, Theorem 5.1]
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the same gradient ∇wL(x̄, 0, ȳ). After multiplying (24) by the vector x̄′, we conclude
that 〈x̄′,∇2

xxL(x̄, 0, ȳ) x̄
′〉 = 0. It follows that our kernel condition (KER) is no

stronger than the general second-order sufficient condition, but it is actually weaker
since it characterizes a calmness property weaker (cf. [11, Theorem 5.1]) than the one
Robinson established in [21] using the general second-order sufficient condition.

It is interesting to note that the general second-order sufficient condition is neither
weaker nor stronger in general than our equivalent second-order conditions (SOC1)
and (SOC2), as can be seen from Examples A and B in the previous section. The
general second-order sufficient condition holds in Example A where both (SOC1) and
(SOC2) fail, while the opposite is true in Example B.

The results of [12] and [11] thus lead to the following direct corollary to Theorems
3.1, 4.1, and 4.2.

Corollary 5.1. Consider the essential objective f (20) associated with the
parameterized nonlinear program (3), and consider a point x̄ for which there exists
a Lagrange multiplier. If the Mangasarian–Fromovitz constraint qualification holds,
then the following are equivalent:

(i) The point x̄ gives both a tilt stable local minimum for f locally uniformly in w
and a calm local minimum for f .

(ii) One of the (equivalent) second-order conditions (SOC1) and (SOC2) holds,
and the kernel condition (KER) holds.

Remark. Some results involving stability in nonlinear programming which are
particularly closely related to Corollary 5.1 include those in [21] where Robinson
used the general second-order sufficient condition together with the Mangasarian–
Fromovitz constraint qualification to prove that there exist locally optimal solutions
to the perturbed optimization problems (3) for any parameter w near 0, and that
any single-valued selection of such local solutions satisfied the bound (2). Shapiro
[23] proved a similar result but giving only the bound (2) (and not necessarily the
existence) under a different second-order condition. Robinson’s result in [21] is com-
plemented by a result of Kojima [9] which states that if the general strong second-order
sufficient condition holds in tandem with the Mangasarian–Fromovitz constraint qual-
ification, then there exist neighborhoods X ⊆ R

n of x̄ and W ⊆ R
d of 0 for which

there are unique optimal solutions to (3) when the minimization is restricted to X
and that these solutions behave continuously with respect to the parameter w on W .
Robinson’s and Kojima’s results together yield the calmness of the local minimum for
f as in our Corollary 5.1, but only under the general strong second-order sufficient
condition which we have shown to be stronger than any of our conditions (SOC1),
(SOC2), or (KER). In this way, our Corollary 5.1 is an improvement on the com-
bination of Robinson’s and Kojima’s results. Moreover, our Corollary 5.1 actually
characterizes the calmness of the local minimum for f when it is combined with tilt
stability, so the gap between condition (ii) of Corollary 5.1 as a sufficient condition
for calmness of local minima is precisely identified here.
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Abstract. We consider nonconvex quadratic optimization problems with binary constraints.
Our main result identifies a class of quadratic problems for which a given feasible point is global
optimal. We also establish a necessary global optimality condition. These conditions are expressed
in a simple way in terms of the problem’s data. We also study the relations between optimal solutions
of the nonconvex binary quadratic problem versus the associated relaxed and convex problem defined
over the l∞ norm. Our approach uses elementary arguments based on convex duality.
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1. Introduction. This work is concerned with quadratic optimization problems
with binary constraints of the form

(D) min{q(x) : x ∈ D := {−1, 1}n},(1.1)

where q is the quadratic function q(x) = 1
2x

tQx+ btx, where Q is an n×n symmetric
matrix, and where b ∈ R

n are the given data. Problems of the above type arise
naturally in several important combinatorial optimization problems, such as the max-
cut problem. These problems are known to be NP hard; see, e.g., Garey and Johnson
[2]. One typical approach to solve these problems is to construct lower bounds for
approximating the optimal value. The classical technique to obtain bounds is either
via a continuous relaxation or via the dual problem, which is usually followed by
branch and bound type algorithms for refining it. This kind of approach was used,
e.g., by Shor [5], and several variants of this technique, including various relaxations
of the constraint set can be found in several works; see, e.g., the recent survey paper of
[1] and references therein. More recently, semidefinite programming relaxations of (D)
have been studied and proven to be quite powerful for finding approximate optimal
solutions; see, e.g., [3] and references therein.

1.1. Motivation. This paper is not concerned with computation of bounds for
problem (D). Our main goal here is to exploit the peculiar structure of problem (D)
in order to characterize global optimal solutions of problem (D), as well as to study
the relations between the optimal solutions of (D) and the optimal solutions of its
continuous relaxation (C) defined by

(C) min{q(x) : x ∈ C := {x : −1 ≤ xi ≤ 1, i = 1, . . . , n}}.
We derive a sufficient optimality condition which guarantees that a given feasible
point in D is a global optimal for problem (D) as well as a necessary global optimality
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condition. An interesting fact about these conditions is that they are simply expressed
in terms of the problem’s data [Q,b] involving only primal variables and do not involve
any dual variables. To motivate the kind of conditions we are looking at, consider the
following trivial example. Let Q be the diagonal matrix Q = diag(λj)

n
j=1, where

λ1 ≥ λ2 ≥ · · ·λn > 0, and let b ∈ R
n be the given data. We then ask under which

conditions on the data [Q, b] we can write

min{q(x) : x ∈ D} = min{q(x) : x ∈ C}.

In this example, the function q is separable and can be written as

q(x) =
1

2
xtQx+ btx =

n∑
j=1

1

2
λjx

2
j + bjxj .

It is easy to verify that for any a, b ∈ R we have

min

{
1

2
ax2 + bx : −1 ≤ x ≤ 1

}
=



−b2(2a)−1 if |ba−1| < 1,
(2a)−1 + b if |ba−1| ≥ 1, b ≤ 0,
(2a)−1 − b if |ba−1| ≥ 1, b ≥ 0.

From the above computation, we thus have that a sufficient (and in this case necessary)
condition to have the optimal value of the continuous minimum (C) equal to the
optimal value of the discrete one (D) is simply

λj ≤ |bj | ∀j = 1, . . . , n.(1.2)

This condition shows that for this particular example, we need to ask that the matrix
Q is in the sense of inequality (1.2) smaller than the vector b. Another way to look
at (1.2) is that when Q is in some sense smaller than b, then we can disregard the
quadratic term and solve the trivial problem minx∈D btx.

In the next section, using simple convex duality arguments, we derive the suffi-
cient global optimality condition for the general problem (D). This condition, like the
condition derived for the trivial example above, also requires that Q is in some sense
“smaller” than b. We also derive a necessary global optimality condition which is sim-
ilar in form to the sufficient condition. Both conditions are simply expressed in terms
of the problem’s data [Q, b] and do not involve any dual variables. In section 3 we
treat the special case of (D), when the matrix Q is positive semidefinite. In that case,
problem (D) remains nonconvex due to the constraints set; however, its continuous
relaxation (C) becomes a convex problem. Applying the results of section 2, we then
establish relations between the optimal solutions of (C) and (D). In particular, we
find necessary and sufficient conditions for a vector x ∈ D to be the solution of both
(C) and (D). Furthermore, we characterize a global optimal solution of (D), whenever
it is close enough to an optimal solution of the corresponding relaxed convex problem
(C). We conclude the paper in section 4 with a simple application.

1.2. Notations and definitions. Throughout this paper we will use the
following notations and definitions. The n-dimensional Euclidean space is denoted
by R

n, and R
n
+,R

n
++ stand for the nonnegative and positive orthant, respectively.

For a vector x ∈ R
n, the Euclidean norm (l2-norm) and l∞- norm are denoted, re-

spectively, by ||x|| := (
∑n
i=1 x

2
i )

1/2 and ||x||∞ := max1≤i≤n |xi|. Let {ej}nj=1 be the

canonical basis of R
n, and let the vector of all 1’s be denoted by e, i.e., e = (1, . . . , 1)T .
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Given an n × n matrix Q, Diag(Q) denotes the n × n diagonal matrix with entries
qii. For x ∈ R

n, the corresponding capital letter will define the diagonal n×n matrix
X := diag(x) with ith diagonal element xi, i = 1, . . . , n, and thus we will also write
x = Xe.

The feasible set {−1, 1}n of problem (D) can be written in a continuous form
equivalently as:

D := {x ∈ R
n : x2

i = 1, i = 1, . . . , n}.

The following three equivalent formulations of the convex relaxation of D will be
useful to us:

C = {x ∈ R
n : ||x||∞ ≤ 1}

= {x ∈ R
n : −1 ≤ xi ≤ 1, i = 1, . . . , n}

= {x ∈ R
n : x2

i ≤ 1, i = 1, . . . , n}.

Clearly, the following relation holds: D ⊂ C.
We will denote the optimization problem of minimizing the quadratic function

q(x) over the set D by (D) and its global optimal value by qD(x). A similar notation
is used when optimizing q(x) over the set C.

For a symmetric n× n real matrix Q with elements qij = qji, i, j = 1, . . . , n, we
denote by λi(Q) ≡ λi, i = 1, . . . , n its eigenvalues ordered as

λ1 ≥ λ2 ≥ · · · ≥ λn.

We also use λn ≡ λmin(Q) = min{xTQx, ||x|| = 1}. The matrix Q is positive semidef-
inite, denoted by Q  0 (positive definite, denoted by Q � 0) if and only if λn ≥ 0
(λn > 0). The trace of Q is defined by tr(Q) =

∑n
i=1 qii =

∑n
i=1 λi and it holds that

nλmin(Q) ≤ tr(Q).

2. Global optimality conditions. Consider the nonconvex quadratic problem

(D) min{q(x) : x2
i = 1, i = 1, . . . , n}.

This section is divided in two parts in which we first derive the sufficient globally
optimality conditions and then the necessary one.

Sufficient conditions. Let y ∈ R
n be the multiplier associated with the constraints

of (D) and form the Lagrangian

L(x, y) = q(x) +

n∑
i=1

yi(x
2
i − 1).

Defining the diagonal matrix Y = diag(y), L can be written as

L(x, y) =
1

2
xT (Q+ Y )x+ bTx− e

T y

2
.(2.1)

The dual problem corresponding to (D) is then defined by the concave maximization
problem

(DD) sup{h(y) : y ∈ R
n ∩ domh},
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where here h is the dual functional

h(y) := inf{L(x, y) : x ∈ R
n},(2.2)

and domh = {y ∈ R
n : h(y) > −∞}.

From standard duality we always have the weak duality relation

q(x) ≥ h(y) ∀x ∈ D, ∀y ∈ R
n ∩ domh.

Strong duality here of course does not hold since problem (D) is nonconvex. However,
we recall the following useful result, which follows from basic duality theory [4].

Lemma 2.1. If there exists x̄ ∈ D and ȳ ∈ R
n ∩ domh such that q(x̄) = h(ȳ) =

infx L(x, ȳ), then x̄ is a global optimal solution of (D).
Thus, if we are lucky enough to guess such a pair (x̄, ȳ) satisfying the conditions

of Lemma 2.1, we can conclude that x̄ globally solves (D). The special structure of
problem (D) precisely allows us to identify such a pair. First we need to recall an
elementary result on quadratic functions which will be helpful to make explicit the
feasible set of the dual problem (DD).

Lemma 2.2. Let A be an n × n symmetric matrix, and let f : R
n → R be the

quadratic function f(x) = 1
2x

TAx+ bTx, where b ∈ R
n. Then, inf{f(x) : x ∈ R

n} >
−∞ if and only if the following two conditions hold:

(i) ∃x ∈ R
n : Ax+ b = 0.

(ii) The matrix A is positive semidefinite.
We can now establish the following sufficient global optimality condition.
Theorem 2.3. Consider problem (D) with the data [Q, b], with Q a real symmet-

ric matrix. Let x = Xe ∈ D. If
[SC] λn(Q)e ≥ XQXe+Xb,

then x is a global optimal solution for (D).
Proof. Applying Lemma 2.2 on the dual objective h defined via (2.1)–(2.2), we

have inf{L(x, y) : x ∈ R
n} > −∞ if and only if the following conditions hold:

∃x ∈ R
n : (Q+ Y )x+ b = 0,(2.3)

Q+ Y  0.(2.4)

Let x be any feasible point of (D). Then, since x = Xe with X = diag(x), from
x2
i = 1, i = 1, . . . , n, we also have X2 = I. Now, let

y := −(Xb+XQXe).(2.5)

We first show that the pair (x, y) just defined above satisfies (2.3). Indeed with x = Xe
and y defined in (2.5),

(Q+ Y )x+ b = QXe+ Y Xe+ b

= QXe+Xy + b

= QXe−X2b−X2QXe+ b

= 0 (since X2 = I).

Now using (2.3) we can rewrite the dual objective h as

h(y) = inf
x∈Rn

{
1

2
xT (Q+ Y )x+ bTx− eT y

}

= −1

2
xT (Q+ Y )x− e

T y

2
,
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with x satisfying (2.3) and such that Q + Y  0. Using the above expression for h,
we now compute for the pair (x = Xe, y = −XQXe−Xb):

h(y) = −1

2
eTX(Q+ Y )Xe− 1

2
eT y

= −1

2
eTXQXe− eT y

=
1

2
eTXQXe+ bTXe = q(Xe) = q(x).

To complete the proof it thus remains to show that y defined in (2.5) is feasible for
(DD), i.e., that Q+ Y  0, and the result will follow from Lemma 2.1. For that, note
that we always have

λn(Q+ Y ) ≥ λn(Q) + λn(Y ),

and hence Q+Y is positive semidefinite if λn(Q) ≥ −λn(Y ). But since Y is diagonal,
from (2.5) we have −λn(Y ) = maxi(Xb+XQXe)i and the later inequality can thus
be written as λn(Q)e ≥ XQXe+Xb, and the proof is completed.

Necessary conditions. We now derive global necessary optimality conditions which
resemble the sufficient conditions derived in Theorem 2.3.

Theorem 2.4. Consider problem (D) with the data [Q, b], where Q is a real
symmetric matrix. If x ∈ D is a global minimum for (D), then

[NC] XQXe+Xb ≤ Diag(Q)e.

Proof. If x ∈ D is a global minimum for (D), then

q(x) ≤ q(z) ∀z ∈ D.
In particular, for z = z1 := −2x1e1 + x = (−x1, x2, . . . , xn)T ∈ D, where e1 =
(1, 0, . . . 0)T , we obtain

1

2
xTQx+ bTx ≤ 1

2
(x− 2x1e1)TQ(x− 2x1e1) + bT (x− 2x1e1)

=
1

2
xTQx+ 2x2

1e
T
1Qe1 − 2x1e

T
1Qx− 2x1b

T e1 + bTx.

Since x2
i = 1, et1Qe1 = q11, the later inequality reduces to

x1e
T
1Qx+ x1b

T e1 ≤ q11.
In a similar way we can show that for any j = 1, . . . , n

xje
T
j Qx+ xjb

T ej ≤ qjj ,
which proves the relation [NC].

It is interesting to note that both the necessary and optimality conditions are
expressed only in terms of the primal variables and do not involve any dual variables.
Moreover, rewriting the optimality conditions in the form

[SC] −Xb ≥ X(Q− λmin(Q)I)Xe,

[NC] −Xb ≥ X(Q−Diag(Q)I)Xe,
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we can interpret these as mentioned in the introduction by saying that a global optimal
solution of (D) can be identified when the matrix Q is “smaller” than the vector b in
the sense of the inequalities above. Several remarks are now in order regarding the
derived optimality conditions.

Remark 2.5. In the case of pure quadratic optimization problems, i.e., when b ≡ 0,
then the sufficient condition [SC] becomes λmin(Q)e ≥ XQXe, which forces Xe to
be the minimum eigenvector of Q. Thus, in the case of pure quadratic optimization
problems, the sufficient condition becomes less informative. However, this difficulty
can be handled by converting the pure quadratic problem into an equivalent one with
a nonzero linear term in the objective. A standard and simple way to do this is just to
observe that when in problem (D) q(x) := 1/2xTQx, then since q(x) = q(−x), we can
just fix the value of an arbitrary component of x, say xk = 1, and immediately get
a nonhomogeneous quadratic objective, which has the same objective function value
(see section 4 for an application).

Remark 2.6. Recall that qjj ≥ λmin(Q) ∀j = 1,. . . , n, i.e., Diag(Q)e ≥ λmin(Q)e.
Thus, using the sufficient optimality condition [SC] derived in Theorem 2.3, we have
the natural implication

λmin(Q)e ≥ XQXe+Xb =⇒ Diag(Q)e ≥ XQXe+Xb.

Remark 2.7. Let x̄ := Xe ∈ D. Then [NC] implies

tr(Q) ≥ x̄TQx̄+ bT x̄,

where tr(Q) =
∑n
i=1 qii. On the other hand, [SC] implies

nλmin(Q) ≥ x̄TQx̄+ bT x̄.

Since tr(Q) ≥ nλmin(Q), one could be tempted to conjecture that nλmin(Q) ≥ x̄TQx̄+
bT x̄ could be considered as a potentially “better” sufficient condition for x̄ ∈ D to be
a global minimum. This is, however, not true as illustrated by the following simple
example.

Example 2.8. Consider problem (D) in R
2 with q(x) := x2

1 − 1
2x

2
2 + 6x1 + 2x2.

The optimal solution is obtained at x∗ = (−1,−1)T . Now, let x̄ = (−1, 1)T . Since here
λmin(Q) = −1 and n = 2, one can easily verify that nλmin(Q) = −2 ≥ x̄TQx̄+ bT x̄ =
−3, yet x̄ is not global optimal.

Remark 2.9. Let x = (σ(bi))
n
i=1, where σ(bi) = 1 if bi ≥ 0 and −1 otherwise.

Then [SC] reduces to XQXe ≤ |b| + λmin(Q)e. Thus, if the later inequality holds
with X = diag(σ(b)), the optimal solution of problem (D) is given by x = (σ(bi))

n
i=1,

namely, as the solution of the trivial problem min{bTx : x ∈ D}; i.e., problem (D)
can be solved by removing the quadratic term from the objective function.

We end this section by mentioning that we can state global optimality conditions
for more general quadratic problems (and in particular for {0, 1} quadratic programs)
of the form

min{q(x) : x ∈ {a, c}n},(2.6)

where a < c are given real numbers. Using the linear transformation

x =
c− a

2
y +

c+ a

2
e,
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the above problem is transformed to min{q′(y) : y ∈ D}, where q′(y) can be explicitly
written in terms of Q, b, a, c. A straightforward computation shows that [SC] and [NC]
become, respectively,

c− a
2
λmin(Q)e ≥ a+ c

2
Y QY e+ Y b+

a+ c

2
Y Qe,(2.7)

c− a
2

Diag(Q)e ≥ a+ c

2
Y QY e+ Y b+

a+ c

2
Y Qe,(2.8)

and the optimal solution x of problem (2.6) can be recovered from the optimal solution
y via the linear transformation given above.

3. The positive semidefinite case. Let Q be a positive semidefinite matrix.
Then (D) is still nonconvex because of the constraints x ∈ D = {−1, 1}n = {x ∈ R

n :
x2
i = 1, i = 1, . . . , n}. However, the corresponding relaxed problem (C) becomes the
convex problem:

(C) min{q(x) : x2
i ≤ 1, i = 1, . . . ,m}.

Then the question of the relations between the solution of the “easy” convex problem
(C) versus the “hard” nonconvex problem (D) arises. Our first result shows that there
is a simple necessary and sufficient condition for a point in D to be the solution of
both the convex problem (C) and the nonconvex problem (D).

Theorem 3.1. Consider the nonconvex problem (D) with data [Q,b], with Q a
real symmetric positive semidefinite matrix. Let x = Xe ∈ D. Then x is a solution of
both (C) and (D) if and only if

XQXe+Xb ≤ 0.

Proof. First, suppose that XQXe + Xb ≤ 0. Since (C) is convex and satisfies
Slater’s condition, strong duality applies and we have min{q(x) : x ∈ C} = max{h(y) :
y ≥ 0}, where h is the dual objective function of (C), which is the same as the
one given in (2.2), except that here y ∈ R

n
+. As in the proof of Theorem 2.3 with

y = −(XQXe + Xb), which is nonnegative by our assumption, we obtain h(y) =
qC(Xe) = qC(x), showing that x is a solution of (C) and hence of (D). To prove the
converse, suppose x = Xe solves (C) and (D). From the KKT optimality conditions
for (C) we have (Q + Y )x + b = 0, Y  0, where y ∈ R

n
+ are the multipliers for the

constraints of (C). Therefore,

XQXe+Xb = X(Qx+ b)

= −XY x
= −Y, since x ∈ D,

and hence the result follows since y ∈ R
n
+.

Our next result characterizes an optimal solution of (D) whenever it is “close
enough” to an optimal solution of the relaxed convex problem (C).

Theorem 3.2. Consider the problem (D) with data [Q,b], with Q a real symmetric
positive semidefinite matrix. Let x be an optimal solution of the convex problem (C).
If y ∈ D satisfies the conditions

(i) yi = xi when x
2
i = 1,

(ii) Y Q(y − x) ≤ λmin(Q)e,
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then y is a global optimal solution for (D).

Proof. Since (C) is a convex problem and Slater’s condition holds, then x solves
(C) if and only if the KKT conditions hold, i.e., there exists λ ≥ 0 such that

(Q+ Λ)x+ b = 0,(3.1)

λi(x
2
i − 1) = 0, i = 1, . . . , n,(3.2)

where Λ := diag(λ). Set δ := y − x, and ∆ := diag(δ). Then

Y QY e+ Y b = Y (Qy + b)

= Y (Q(x+ δ) + b)

= Y (−Λx+Qδ) (using (3.1))

= (X + ∆)(−Λx+Qδ)

= −XΛx+ (X + ∆)Qδ −∆Λx

= −λ+ Y Qδ −∆Λx,

where in the last equality we use (3.2). Now, we claim that ∆Λx = 0. Indeed, if δi = 0,
then λiδi = 0, and if δi �= 0, then from the assumption of the theorem, this means
x2
i �= 1, and hence from (3.2) this implies λi = 0. Therefore, λiδi = 0 ∀i, and from the

above computations, together with the fact that λ ≥ 0, we have obtained

Y QY e+ Y b = −λ+ Y Qδ ≤ Y Qδ = Y Q(y − x).

Invoking Theorem 2.3 then completes the proof.

Note that when x2
i �= 1 for some i, then the corresponding binary value yi in

the theorem above can be chosen as yi = σ(xi), where σ(xi) = 1 if xi ≥ 0 and −1
otherwise.

Example 3.3. Consider the problem (D) with data [Q,b], where

Q =




4 2 0 2
2 4 0 2
0 0 4 2
2 2 2 4


 , b =




4
4
3
3


 .

Here, we have λmin(Q) = 1.036 so that Q is positive definite. The solution of the
relaxed convex problem (C) is obtained at the point x = (−0.875,−0.875,−1, 0.625)T

and thus we can take (by rounding as explained above) as a “closest” point y ∈ D to
x the vector y = (−1,−1,−1, 1)T . Now we compute Y Q(y − x) = (0, 0,−0.75, 1) so
that the inequality Y Q(y − x) ≤ λmin(Q)e is satisfied, and therefore from Theorem
3.2, y is the minimizing vector of (D).

4. An application. We consider a simple application of our results to problems
with pure quadratic objectives, originally motivated from the max-cut problem. Given
an undirected weighted graph G = (V,E), V = {1, 2, . . . , n}, with weights wij = wji ≥
0 on the edges (i, j) ∈ E and with wij = 0 if (i, j) /∈ E, the max-cut problem is to
find the set of vertices S ⊂ V that maximizes the weight of the edges with one end
point in S and the other in its complement S̄, i.e., to maximize the total weight across
the cut (S, S̄). The cut can be defined by the integer variables xi ∈ {−1, 1} assigned
to each vertex i. Then, with xi = 1 if i ∈ S and −1 otherwise, the weight of the
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cut is
∑
i<j wij(1− xixj)/2, and the max-cut problem is equivalent to the quadratic

optimization problem (see, e.g., [3]):

(MC) max



∑
i<j

wij
1− xixj

2
: x2

i = 1, i = 1, . . . , n


 .

Problem (MC) can be reformulated equivalently as

(MC) min



∑
i=j

wijxixj : x2
i = 1, i = 1, . . . , n


 ,

with wii = 0. Defining the matrix W = 2(wij), i, j = 1, . . . , n, we then obtain the
formulation of (MC) as a pure quadratic problem fitting our generic formulation (D)
with data [W, 0], namely,

(MC) min

{
q(x) =

1

2
xTWx : x ∈ D

}
.

By elementary arguments we can obtain the following sufficient condition for a
vertex to define a max-cut.

Lemma 4.1. Let G = (V,E) be an undirected graph with V = {1, . . . , n} and with
weight matrix W . Let l be a vertex that satisfies the following condition:

∀k ∈ V \ l : wkl ≥
∑
i �=l
wik.(4.1)

Then l defines a max-cut; i.e., the max-cut is S = {l} and S̄ is the complementary
set with the remaining vertices.

In other words, Lemma 4.1 says that under a particular condition as given in (4.1)
on the matrix W, the vector (−1, . . . ,−1, 1︸︷︷︸

k

,−1, . . . ,−1)T (meaning xk = 1, xi =

−1∀i �= k) is the minimizing vector of the problem (MC). This result relies on the
fact that the matrix W in the max-cut problems satisfies the very special conditions
Diag(W ) = 0 and wij ≥ 0. This motivates us to ask if a similar type of result can
be established for an arbitrary pure quadratic problem, namely, when W is an n× n
arbitrary symmetric matrix. An application of Theorem 2.3 leads us to establish a
similar result for a class of matrices satisfying a sort of “eigenvalue-row-dominance”
condition akin to the concept of diagonally dominant matrices.

Proposition 4.2. LetW be an n×n symmetric matrix that satisfies the following
condition:

∀k �= l : wkl ≥
∑
i �=l
wik − λmin(W (k)),

where W (k) is the (n− 1)× (n− 1) matrix obtained from W by removing the kth row
and column. Then the vector (−1, . . . ,−1, 1︸︷︷︸

k

,−1, . . . ,−1)T is the minimizing point

of problem (D) with data [W,0].
Proof. Without loss of generality we prove the result only for k = 1. By Remark

2.5, we can substitute x1 = 1 and obtain a nonhomogeneous equivalent problem with
data [W ′, b′] defined by
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w
′
ij = wij if i �= 1, j �= 1; w

′
ij = 0 if i = 1 or j = 1,

b′ = (wj1)nj=1.

The above transformation obviously reduces the dimension of the original problem
with data [W, 0] posed in R

n to a nonhomogeneous problem which can now be defined
in R

n−1, with data [W (1), b(1)], where W (1) is obtained by removing the first row
and column of W and b(1) the first row of b′. Then, letting X := −In−1×n−1, in
Theorem 2.3 it follows that if

λmin(W (1))e ≥W ′e− b(1),

then (−1, . . . ,−1)T ∈ R
n−1 is the solution of problem (D) with data [W (1), b(1)] and

thus ( 1︸︷︷︸
1

,−1, . . . ,−1)T ∈ R
n is the solution of (D) with data [W, 0]. Similarly, the

above argument can be repeated for each k, and the proof is completed.
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Abstract. In this work we consider the minimization problem f(x) + h(x) → min, x ∈ X,
with f ∈ Cl(X) and h ∈ M . Here X is a complete metric space, Cl(X) is the space of all lower
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Introduction. Let (X, ρ) be a complete metric space. Denote by Cl(X) the set
of all lower semicontinuous bounded from below functions f : X → R1 ∪ {∞} which
are not identically ∞. The set Cl(X) will be endowed with an appropriate complete
uniformity (see section 1). In this paper we consider the minimization problem

f(x) + h(x)→ min, x ∈ X,(P)

with f ∈ L and h ∈ M , where M is a countable union of compact sets in Cl(X)
and L is a subset of Cl(X) with an appropriate complete uniformity. (In particular,
L = Cl(X) and M is a countable union of a convex hull of finite sets in Cl(X)
satisfying certain assumptions.) We will establish the existence of a set F ⊂ Cl(X)
which is a countable intersection of open everywhere dense sets in L such that for each
f ∈ F and each h ∈ M the minimization problem (P) has a solution and, moreover,
the set of its solutions is compact.

A result of this kind when M is a singleton, X is a Banach space, and L is
a subspace of Cl(X) satisfying certain assumptions has been obtained by Deville,
Godefroy, and Zizler [2]. Their result implies that given h ∈ L we can find a small
perturbation f ∈ L such that the problem (P) has a solution. In this paper we will
show that we can find a small perturbation f ∈ L such that the problem (P) has a
solution for all functions h belonging to a countable union of compact sets in Cl(X).

Since a countable intersection of everywhere dense Gδ subsets of a complete metric
space is also an everywhere dense Gδ set, the result of Deville, Godefroy, and Zizler [2]
can easily be extended to a countable set M . For an uncountable set M the situation
is more difficult and less understood.

In [2] and in this paper, instead of studying the existence of solutions for a single
cost function f we consider it for the space L of all such functions and show that the
existence result holds for most of them. This approach has already been successfully
applied in optimization theory and the calculus of variations [1, 3, 5, 7, 8, 9, 10]. This
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allows us to establish the existence of solutions of minimization problems without
restrictive assumptions on the space X.

1. The main results. Let (K1, d1) and (K2, d2) be metric spaces. We say that
a mapping a : K1 → K2 is uniformly continuous if for each ε > 0 there is a δ > 0 such
that d2(a(x), a(y)) ≤ ε for each x, y ∈ K1 satisfying d1(x, y) ≤ δ.

Assume that a set K is endowed with two metrics d1 and d2. We say that the
metric d2 is stronger than the metric d1 if the identity operator I : (K, d2)→ (K, d1)
(Ix = x for all x ∈ X) is uniformly continuous.

Let (X, ρ) be a complete metric space. For each f : X → R1 ∪ {∞} set

inf(f) = inf{f(x) : x ∈ X} and dom(f) = {x ∈ X : f(x) <∞}.
For each f : X → R1 ∪ {∞} and each number λ ≥ 0 we define the function λf :
X → R1 ∪ {∞} by (λf)(x) = λf(x), x ∈ X (we define 0 · ∞ = 0).

For each x ∈ X and each A ⊂ X set

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.
For the set Cl(X) we consider the uniformity determined by the following base:

U1(ε) = {(f, g) ∈ Cl(X)× Cl(X) :(1.1)

f(x) ≤ g(x) + ε and g(x) ≤ f(x) + ε for all x ∈ X},
where ε > 0. Clearly the space Cl(X) with this uniformity is metrizable (by a metric
d1(·, ·)) and complete [6]. Fix θ ∈ X. The set Cl(X) is also equipped with the
uniformity determined by the following base:

U0(n) = {(f, g) ∈ Cl(X)× Cl(X) :(1.2)

f(x) ≤ g(x) + n−1 and g(x) ≤ f(x) + n−1 for all x ∈ X such that

ρ(x, θ) ≤ n or min{f(x), g(x)} ≤ n},
where n = 1, 2, . . . . Clearly the space Cl(X) with this uniformity is metrizable (by
a metric d0(·, ·)) and complete. This uniformity does not depend on our choice of θ.
Evidently the metric d1 is stronger than the metric d0.

Suppose that M,L ⊂ Cl(X). We endow the space L with the metrics d0 and
d1. Assume that L is also equipped with a metric d2(·, ·) : L × L → [0,∞), which is
stronger than d1, and the metric space (L, d2) is complete. For the space L we consider
the strong and weak topologies induced by the metrics d2 and d0, respectively.

We will use the following assumption for the pair (M,L).
(A) For each f ∈ L and each γ, ε > 0 there exist f̄ ∈ L, η > 0, and a finite set

{x̄i : i = 1, . . . q} such that

d2(f, f̄) ≤ ε, sup{inf(h + f̄) : h ∈M} <∞,

and for each h ∈M and each y ∈ X satisfying

h(y) + f̄(y) ≤ inf(h + f̄) + η
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the following relation holds:

inf{ρ(y, x̄i) : i = 1, . . . , q} ≤ γ.

We will establish the following result.
Theorem 1.1. Assume that assumption (A) holds and there is a constant c

such that h(x) ≥ c for all x ∈ X and all h ∈ M . Then there exists a set F ⊂ L
which is a countable intersection of open (in the weak topology) everywhere dense (in
the strong topology) sets in L such that for each f ∈ F and each h ∈ M the set
{x ∈ X : f(x) + h(x) = inf(f + h)} is nonempty and compact.

Theorem 1.1 implies the following result.
Theorem 1.2. Let M = ∪∞i=1Mi where each Mi ⊂ Cl(X), and for all integers

i ≥ 1, let assumption (A) hold with M = Mi and

inf{h(x) : h ∈Mi and x ∈ X} > −∞.

Then there exists a set F ⊂ L which is a countable intersection of open (in the weak
topology) everywhere dense (in the strong topology) sets in L such that for each f ∈ F
and each h ∈ M the set {x ∈ X : f(x) + h(x) = inf(f + h)} is nonempty and
compact.

In this paper we will also prove the following result.
Theorem 1.3. Suppose that M ⊂ Cl(X) is compact in the weak topology and the

following property holds:
For each f ∈ L, each finite set A ⊂ X, and each γ ∈ (0, 1) the function

fAγ (x) = f(x) + γ min{ρ(x,A), 1}, x ∈ X,

belongs to L and d2(fAγ , f)→ 0 as γ → 0 uniformly on

{(f,A) : f ∈ L and A is a finite subset of X}.

Then assumption (A) holds.
For the set Cl(X) we consider the uniformity determined by the following base:

U2(n) = {(f, g) ∈ Cl(X)× Cl(X) :(1.3)

f(x) ≤ g(x) + n−1 and g(x) ≤ f(x) + n−1 for each x ∈ X and

f(x) + g(y) ≤ f(y) + g(x) + n−1ρ(x, y) for each x, y ∈ X},

where n = 1, 2, . . . . Clearly the space Cl(X) with this uniformity is metrizable.
Theorem 1.3 implies the following result in which the metric d2 is compatible with

the uniformity determined by (1.3) and the space L is either Cl(X) or

{f ∈ Cl(X) : f is finite-valued and continuous}

or the set of all finite-valued continuous functions f ∈ Cl(X) such that

sup{|f(y)− f(x)|/ρ(x, y) : x, y ∈ X and x �= y} <∞.

(Note that in all these cases the metric space (L, d2) is complete.)
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Theorem 1.4. Assume that M is a countable union of compact sets in Cl(X)
with the weak topology. There exists a set F ⊂ L which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) sets in L such
that for each f ∈ F and each h ∈ M the set {x ∈ X : f(x) + h(x) = inf(f + h)} is
nonempty and compact.

Remark. Theorem 1.4 is true with M = ∪∞i=1Mi, where for each integer i ≥ 1

Mi =




ni∑
j=1

αjhij : αj ≥ 0, j = 1, . . . , ni


 ,

hij ∈ Cl(X) is bounded on bounded subsets of dom(hij) for j = 1, . . . , ni, and

∩ni
j=1dom(hij) �= ∅.

To show this it is sufficient to verify that for each integer i ≥ 1, each ε ∈ (0, n−1
i ), and

each number r > 1 the set


ni∑
j=1

αjhij : αj ≥ ε for j = 1, . . . , ni and

ni∑
j=1

αj ≤ r




is compact in the weak topology. This verification can be done in a straightforward
manner.

2. Proof of Theorem 1.1. By assumption (A) for each f ∈ L and each natural
number n there exist g(f, n) ∈ L, η(f, n) ∈ (0, 1), c(f, n) > 0, a natural number
q(f, n), and a finite set {xi(f, n) : i = 1, . . . , q(f, n)} such that

d2(f, g(f, n)) ≤ n−1,(2.1)

inf(h + g(f, n)) ≤ c(f, n) for all h ∈M,(2.2)

and for each h ∈M and each y ∈ X satisfying

h(y) + g(f, n)(y) ≤ inf(h + g(f, n)) + 4η(f, n)(2.3)

the following relation holds:

inf{ρ(y, xi(f, n)) : i = 1, . . . , q(f, n)} ≤ n−1.(2.4)

Let f ∈ L and let n be a natural number. Fix a natural number

s(f, n) > max{ρ(θ, xi(f, n)) : i = 1, . . . , q(f, n)}+ 4 + c(f, n) + |c|+ η(f, n)−1

(2.5)

and set

A(f, n) = {xi(f, n) : i = 1, . . . , q(f, n)}.
By the definition of the metric d0 (see (1.2)) there exists an open neighborhood U(f, n)
of g(f, n) in L with the weak topology such that

U(f, n) ⊂ {h ∈ L : (h, g(f, n)) ∈ U0(s(f, n))}.(2.6)
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We will show that the following property holds:
(i) For each h ∈M , each ξ ∈ U(f, n), and each y ∈ X satisfying

h(y) + ξ(y) ≤ inf(h + ξ) + η(f, n)(2.7)

the relation (2.4) is valid.
Let h ∈M and let ξ ∈ U(f, n). It follows from the definition of g(f, n) and η(f, n)

(see (2.3), (2.4)) that

inf(h + g(f, n)) = inf{h(y) + g(f, n)(y) : y ∈ X and(2.8)

inf{ρ(y, xi(f, n)) : i = 1 . . . , q(f, n)} ≤ n−1}.
By (2.8), (2.5), and (1.2)

inf(h + ξ) ≤ inf{h(y) + ξ(y) : y ∈ X and ρ(y,A(f, n)) ≤ n−1}
≤ inf(h + g(f, n)) + s(f, n)−1.

(2.9)

Assume that y ∈ X and (2.7) is valid. Then by (2.7), (2.9), (2.2), and (2.5)

h(y) + ξ(y) ≤ inf(h + g(f, n)) + s(f, n)−1 + η(f, n)(2.10)

and

ξ(y) ≤ c(f, n) + 2 + |c|.(2.11)

It follows from (2.11), (2.6), (1.2), (2.5), and (2.10) that

g(f, n)(y) ≤ ξ(y) + s(f, n)−1

and

h(y) + g(f, n)(y) ≤ inf(h + g(f, n)) + 2s(f, n)−1 + η(f, n)
≤ inf(h + g(f, n)) + 3η(f, n).

(2.12)

By (2.12) and the definition of g(f, n) and η(f, n) the inequality (2.4) is valid. There-
fore we have shown that property (i) holds. Define

F = ∩∞m=1 ∪ {U(f, n) : f ∈ L and n ≥ m}.
Clearly F is a countable intersection of open (in the weak topology) everywhere dense
(in the strong topology) sets in L.

Assume that h ∈M and ξ ∈ F . Consider a sequence {zi}∞i=1 ⊂ X such that

lim
i→∞

(h(zi) + ξ(zi)) = inf(h + ξ).(2.13)

Let ε ∈ (0, 1). Choose a natural number k for which

k > 64ε−1.(2.14)

There exist f ∈ L and an integer n ≥ k such that

ξ ∈ U(f, n).(2.15)
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It follows from (2.15), (2.13), (2.14), and property (i) that for all large enough integers
i the relation

zi ∈ ∪q(f,n)
j=1 {z ∈ X : ρ(z, xj(f, n)) ≤ 4−1ε}

is true. Since ε is an arbitrary positive number in (0, 1) this relation implies that for

each integer p ≥ 1 there exists a subsequence {z(p)
ik
}∞k=1 of the sequence {zi}∞i=1 such

that the following properties hold:

For each p ≥ 1 the sequence {z(p+1)
ik

}∞k=1 is a subsequence of {z(p)
ik
}∞k=1.

For each integer p ≥ 1 and each pair of integers j, s ≥ 1,

ρ
(
z
(p)
ij

, z
(p)
is

)
≤ p−1.

These properties imply that there exists a subsequence {z∗ik}∞k=1 of the sequence
{zi}∞i=1 that is a Cauchy sequence. There exists x∗ = limk→∞ z∗ik . By (2.13) and
the lower semicontinuity of ξ and h

h(x∗) + ξ(x∗) = inf(h + ξ).(2.16)

Therefore we have shown that for each sequence {zi}∞i=1 ⊂ X satisfying (2.13) there
exists a subsequence {z∗ik}∞k=1 that converges to x∗ ∈ X and that x∗ satisfies (2.16).
This completes the proof of the theorem.

Remark. Actually we proved that every minimizing sequence (for the function
ξ+h with ξ ∈ F and h ∈M) has a convergent subsequence. That is, the optimization
problem is well posed in the generalized sense (see [4]).

3. Proof of Theorem 1.3. For the proof of Theorem 1.3 we need the following
auxiliary lemmas.

Lemma 3.1. Assume that a set M ⊂ Cl(X) is compact in the weak topology.
Then there is c ∈ R1 such that h(x) ≥ c for all x ∈ X and all h ∈M .

Proof. Let f ∈M . Choose a number c(f) and a natural number n(f) such that

f(x) ≥ c(f) for each x ∈ X and n(f) ≥ 2 + |c(f)|.(3.1)

There exists an open neighborhood U(f) of f in Cl(X) in the weak topology such
that

U(f) ⊂ {g ∈ L : (f, g) ∈ U0(n(f))}.(3.2)

We will show that for each h ∈ U(f) and each x ∈ X the relation h(x) ≥ c(f)− 2 is
true.

Assume the contrary. Then there exist h ∈ U(f) and x ∈ X such that h(x) <
c(f)− 2. By the definition of U(f) (see (3.2)), (3.1), and (1.2)

f(x) ≤ h(x) + n(f)−1 ≤ c(f)− 1.

This relation is contradictory to (3.1). The obtained contradiction proves that h(x) ≥
c(f) − 2 for each h ∈ U(f) and each x ∈ X. Since M ⊂ ∪{U(f) : f ∈ M} there
exists a finite set {f1, . . . , fk} ⊂ M such that M ⊂ ∪ki=1U(fi). This implies that for
each h ∈M and each x ∈ X

h(x) ≥ min{c(fi) : i = 1, . . . , k} − 2.
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The lemma is proved.
Lemma 3.2. Assume that a set M ⊂ Cl(X) is compact in the weak topology and

g ∈ Cl(X). Then

sup{inf(h + g) : h ∈M} <∞.(3.3)

Proof. By Lemma 3.1 there exists a number c such that

inf(h) ≥ c for all h ∈M and inf(g) ≥ c.(3.4)

Let f ∈M . Choose a natural number

n(f) > 2 + |c|+ | inf(f + g)|.(3.5)

There exists an open neighborhood U(f) of f in Cl(X) with the weak topology such
that

U(f) ⊂ {h ∈ Cl(X) : (f, h) ∈ U0(n(f))}.(3.6)

Let h ∈ U(f). There is x ∈ X such that

f(x) + g(x) < inf(f + g) + 1.(3.7)

The inequalities (3.7), (3.4), and (3.5) imply that

f(x) < inf(f + g) + 1− c < n(f).(3.8)

By (3.8), (3.6), (1.2), and (3.7)

h(x) ≤ f(x) + 1

and

inf(h + g) ≤ g(x) + h(x) ≤ g(x) + f(x) + 1 < inf(f + g) + 2.(3.9)

Clearly there exists a finite set {f1, . . . , fn} ⊂M such that M ⊂ ∪ni=1U(fi). Together
with (3.9) this implies that for each h ∈M

inf(h + g) ≤ max{inf(fi + g) : i = 1, . . . , n}+ 2.

The lemma is proved.
Lemma 3.3. Let q ≥ 1 be an integer, ε ∈ (0, 1), f1, . . . , fq ∈ Cl(X) and let

{xi}qi=1 ⊂ X,

fi(xi) ≤ inf(fi) + 8−1ε2, i = 1, . . . , q.(3.10)

For i = 1, . . . , q define f̄i : X → R1 ∪ {∞} by

f̄i(z) = fi(z) + εmin{1, ρ(z, {xj : j = 1, . . . , q})}, z ∈ X.(3.11)

Then for each p ∈ {1, . . . , q} and each y ∈ X satisfying

f̄p(y) ≤ inf f̄p + 4−1ε2(3.12)
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the following relation holds:

y ∈ ∪qj=1{z ∈ X : ρ(z, xj) ≤ 2−1ε}.(3.13)

Proof. Clearly f̄p ∈ Cl(X), p = 1, . . . , q. Assume that p ∈ {1, . . . , q}, y ∈ X, and
(3.12) holds. By (3.11), (3.12), and (3.10)

fp(y) + εmin{1, ρ(y, {xj : j = 1, . . . , q})} = f̄p(y) ≤ inf(f̄p) + 4−1ε2

≤ 4−1ε2 + f̄p(xp) ≤ 4−1ε2 + fp(xp) ≤ 4−1ε2 + 8−1ε2 + inf(fp)

≤ 4−1ε2 + 8−1ε2 + fp(y).

Therefore

inf{1, ρ(y, {xj : j = 1, . . . , q})} ≤ 4−1ε + 8−1ε.

This implies (3.13). The lemma is proved.
For each set A ⊂ X define φA : X → R1 by

φA(x) = min{1, ρ(x,A)}, x ∈ X.(3.14)

Lemma 3.4. Assume that a set M ⊂ Cl(X) is compact in the weak topology,
g ∈ Cl(X), and ε ∈ (0, 1). Then there exists a finite set A = {xi : i = 1, . . . , q} ⊂ X,
where q is a natural number such that for each f ∈M and each y ∈ X satisfying

f(y) + g(y) + εφA(y) ≤ inf(f + g + εφA) + 32−1ε2(3.15)

the following relation holds:

inf{ρ(y, xj) : j = 1, . . . , q} ≤ 2−1ε.(3.16)

Proof. By Lemmas 3.1 and 3.2 there are numbers c0, c1 such that

inf(g) ≥ c0, inf(h) ≥ c0 for all h ∈M and sup
h∈M

| inf(h + g)| < c1.(3.17)

Choose a natural number

n0 > 64ε−2 + 4 + |c0|+ |c1|.(3.18)

There exists a finite set {fi : i = 1, . . . , q} ⊂M such that

M ⊂ ∪qi=1{h ∈ Cl(X) : (h, fi) ∈ U0(n0)}.(3.19)

For each i = 1, . . . , q choose xi ∈ X such that

fi(xi) + g(xi) ≤ inf(fi + g) + 64−1ε2.(3.20)

Set

A = {x1, . . . , xq}.(3.21)
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Assume that f ∈ M , y ∈ X, and (3.15) holds. We will show that (3.16) is valid.
There is p ∈ {1, . . . , q} such that

(f, fp) ∈ U0(n0).(3.22)

We will show that

fp(y) + g(y) + εφA(y) ≤ inf(fp + g + εφA) + 16−1ε2.(3.23)

By (3.17) for any h ∈M

inf(h + g + εφA) = inf{h(z) + g(z) + εφA(z) : z ∈ X and

h(z) + g(z) + εφA(z) ≤ inf(h + g + εφA) + 1}

= inf{h(z) + g(z) + εφA(z) : z ∈ X and h(z) ≤ inf(h + g + εφA) + 1 + |c0|}

= inf{h(z) + g(z) + εφA(z) : z ∈ X and h(z) ≤ 2 + |c0|+ |c1|}.
It follows from this relation, (3.18), (3.22) and (1.2) that

inf(f + g + εφA) = inf{f(z) + g(z) + εφA(z) :(3.24)

z ∈ X and f(z) ≤ 3 + |c0|+ |c1|} ≤ inf{fp(z) + g(z) + εφA(z) :

z ∈ X and f(z) ≤ 3 + |c0|+ |c1|}+ n−1
0

≤ inf{fp(z) + g(z) + εφA(z) : z ∈ X and fp(z) ≤ 2 + |c0|+ |c1|}+ n−1
0

= inf(fp + g + εφA) + n−1
0 .

The relations (3.14), (3.15), (3.17), and (3.18) imply that

f(y) + g(y) + εφA(y) ≤ c1 + 2 and f(y) ≤ |c1|+ 2 + |c0| < n0.

By this relation, (3.22), (1.2), (3.15), (3.24), and (3.18)

fp(y) ≤ f(y) + n−1
0

and

fp(y) + g(y) + εφA(y) ≤ f(y) + g(y) + εφA(y) + n−1
0

≤ n−1
0 + inf(f + g + εφA) + 32−1ε2

≤ n−1
0 + 32−1ε2 + inf(fp + g + εφA) + n−1

0 ≤ 16−1ε2 + inf(fp + g + εφA).

Therefore (3.23) is valid. By Lemma 3.3 the inequality (3.16) holds. The lemma is
proved.

Lemmas 3.4 and 3.2 implies Theorem 1.3.
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Abstract. We propose a BFGS primal-dual interior point method for minimizing a convex func-
tion on a convex set defined by equality and inequality constraints. The algorithm generates feasible
iterates and consists in computing approximate solutions of the optimality conditions perturbed by
a sequence of positive parameters µ converging to zero. We prove that it converges q-superlinearly
for each fixed µ. We also show that it is globally convergent to the analytic center of the primal-dual
optimal set when µ tends to 0 and strict complementarity holds.
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1. Introduction. We consider the problem of minimizing a smooth convex func-
tion on a convex set defined by inequality constraints. The problem is written as{

min f(x),
c(x) ≥ 0,

(1.1)

where f : R
n → R is the function to minimize and c(x) ≥ 0 means that each compo-

nent c(i) : R
n → R (1 ≤ i ≤ m) of c must be nonnegative at the solution. To simplify

the presentation and to avoid complicated notation, the case when linear equality
constraints are present is discussed at the end of the paper. Since we assume that the
components of c are concave, the feasible set of this problem is convex.

The algorithm proposed in this paper and the convergence analysis require that
f and c are differentiable and that at least one of the functions f , −c(1), . . . , −c(m) is
strongly convex. The reason for this latter hypothesis will be clarified below. Since the
algorithm belongs to the class of interior point (IP) methods, it may be well suited for
problems with many inequality constraints. It is also more efficient when the number
of variables remains small or medium, say, fewer than 500, because it updates n× n
matrices by a quasi-Newton (qN) formula. For problems with more variables, limited
memory BFGS updates [39] can be used, but we will not consider this issue in this
paper.

Our motivation is based on practical considerations. During the last 15 years
much progress has been realized on IP methods for solving linear or convex mini-
mization problems (see the monographs [29, 10, 38, 44, 23, 42, 47, 49]). For nonlinear
convex problems, these algorithms assume that the second derivatives of the functions
used to define the problem are available (see [43, 35, 36, 12, 38, 26]). In practice, how-
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ever, it is not uncommon to find situations where this requirement cannot be satis-
fied, in particular for large scale engineering problems (see [27] for an example, which
partly motivates this study and deals with the estimation of parameters in a three
phase flow in a porous medium). Despite the possible use of computational differen-
tiation techniques [8, 19, 3, 28], the computing time needed to evaluate Hessians or
Hessian-vector products may be so large that IP algorithms using second derivatives
may be unattractive.

This situation is familiar in unconstrained optimization. In that case, qN tech-
niques, which use first derivatives only, have proved to be efficient, even when there
are millions of variables (see [32, 20] and [9] for an example in meteorology). This fact
motivates the present paper, in which we explore the possibility of combining the IP
approach and qN techniques. Our ambition remains modest, however, since we con-
fine ourselves to the question of whether the elegant BFGS theory for unconstrained
convex optimization [41, 6] is still valid when inequality constraints are present. For
the applications, it would be desirable to have a qN-IP algorithm in the case when
f and −c are nonlinear and not necessarily convex. We postpone this more difficult
subject for future research (see [21, 48] for possible approaches).

Provided the constraints satisfy some qualification assumptions, the Karush–
Kuhn–Tucker (KKT) optimality conditions of problem (1.1) can be written (see [17],
for example) as follows: there exists a vector of multipliers λ ∈ R

m such that

∇f(x)−∇c(x)λ = 0,
C(x)λ = 0,
(c(x), λ) ≥ 0,

where ∇f(x) is the gradient of f at x (for the Euclidean scalar product), ∇c(x) is a
matrix whose columns are the gradients ∇c(i)(x), and C = diag(c(1), . . . , c(m)) is the
diagonal matrix, whose diagonal elements are the components of c. The Lagrangian
function associated with problem (1.1) is defined on R

n × R
m by

�(x, λ) = f(x)− λ�c(x).
Since f is convex and each component c(i) is concave, for any fixed λ ≥ 0, �(·, λ) is
a convex function from R

n to R. When f and c are twice differentiable, the gradient
and Hessian of � with respect to x are given by

∇x�(x, λ) = ∇f(x)−∇c(x)λ and ∇2
xx�(x, λ) = ∇2f(x)−

m∑
i=1

λ(i)∇2c(i)(x).

Our primal-dual IP approach is rather standard (see [24, 36, 35, 11, 12, 1, 26, 25,
15, 7, 5]). It computes iteratively approximate solutions of the perturbed optimality
system 


∇f(x)−∇c(x)λ = 0,
C(x)λ = µe,
(c(x), λ) > 0

(1.2)

for a sequence of parameters µ > 0 converging to zero. In (1.2), e = (1 · · · 1)�

is the vector of all ones whose dimension will be clear from the context. The last
inequality means that all the components of both c(x) and λ must be positive. By
perturbing the complementarity equation of the KKT conditions with the parameter
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µ, the combinatorial aspect of the problem, inherent in the determination of the active
constraints or the zero multipliers, is avoided. We use the word inner to qualify those
iterations that are used to find an approximate solution of (1.2) for fixed µ, while an
outer iteration is the collection of inner iterations corresponding to the same value
of µ.

The Newton step for solving the first two equations in (1.2) with fixed µ is the
solution d = (dx, dλ) ∈ R

n × R
m of the linear system(

M −∇c(x)
Λ∇c(x)� C(x)

)(
dx

dλ

)
=

(−∇f(x) +∇c(x)λ
µe− C(x)λ

)
,(1.3)

in which M = ∇2
xx�(x, λ) and Λ = diag(λ(1), . . . , λ(m)). This direction is sometimes

called the primal-dual step, since it is obtained by linearizing the primal-dual system
(1.2), while the primal step is the Newton direction for minimizing in the primal
variable x the barrier function

ϕµ(x) := f(x)− µ
m∑
i=1

log c(i)(x)

associated with (1.1) (the algorithms in [16, 33, 4] are in this spirit). The two problems
are related since, after elimination of λ, (1.2) represents the optimality conditions of
the unconstrained barrier problem {

min ϕµ(x),
c(x) > 0.

(1.4)

As a result, an approximate solution of (1.2) is also an approximate minimizer of the
barrier problem (1.4). However, algorithms using the primal-dual direction have been
shown to present a better numerical efficiency (see, for example, [46]).

In our algorithm for solving (1.2) or (1.4) approximately, a search direction d
is computed as a solution of (1.3) in which M is now a positive definite symmetric
matrix approximating ∇2

xx�(x, λ) and updated by the BFGS formula (see [14, 17] for
material on qN techniques). By eliminating dλ from (1.3) we obtain

(M +∇c(x)C(x)−1Λ∇c(x)�)dx = −∇f(x) + µ∇c(x)C(x)−1e = −∇ϕµ(x).(1.5)

Since the iterates will be forced to remain strictly feasible, i.e., (c(x), λ) > 0, the
positive definiteness ofM implies that dx is a descent direction of ϕµ at x. Therefore,
to force convergence of the inner iterates, a possibility could be to force the decrease
of ϕµ at each iteration. However, since the algorithm also generates dual variables λ,
we prefer to add to ϕµ the function (see [45, 1, 18])

V(x, λ) := λ�c(x)− µ
m∑
i=1

log
(
λ(i)c(i)(x)

)

to control the change in λ. This function is also used in [30, 31] as a potential function
for nonlinear complementarity problems. Even though the map (x, λ) 
→ ϕµ(x) +
V(x, λ) is not necessarily convex, we will show that it has a unique minimizer, which is
the solution of (1.2), and that it decreases along the direction d = (dx, dλ). Therefore,
this primal-dual merit function can be used to force the convergence of the pairs
(x, λ) to the solution of (1.2), using line-searches. It will be shown that the additional
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function V does not prevent unit step-sizes from being accepted asymptotically, which
is an important point for the efficiency of the algorithm.

Let us stress the fact that our algorithm is not a standard BFGS algorithm for
solving the barrier problem (1.4), since it is the Hessian of the Lagrangian that is
approximated by the updated matrixM , not the Hessian of ϕµ. This is motivated by
the following arguments. First, the difference between ∇2

xx�(x, µC(x)
−1e) and

∇2ϕµ(x) = ∇2f(x) + µ

m∑
i=1

(
1

c(i)(x)2
∇c(i)(x)∇c(i)(x)�− 1

c(i)(x)
∇2c(i)(x)

)
(1.6)

involves first derivatives only. Since these derivatives are considered to be available,
they need not be approximated. Second, the Hessian ∇2

xx�, which is approximated by
M , is independent of µ and does not become ill-conditioned as µ goes to zero. Third,
the approximation of ∇2

xx� obtained at the end of an outer iteration can be used as
the starting matrix for the next outer iteration. If this looks attractive, it has also the
inconvenience of restricting the approach to (strongly) convex functions, as we now
explain.

After the computation of the new iterates x+ = x+ αdx and λ+ = λ+ αdλ (α is
the step-size given by the line-search), the matrixM is updated by the BFGS formula
using two vectors δ and γ. Since we want the new matrixM+ to be an approximation
of ∇2

xx�(x+, λ+) and because it satisfies the qN equation M+δ = γ (a property of the
BFGS formula), it makes sense to define δ and γ by

δ := x+ − x and γ := ∇x�(x+, λ+)−∇x�(x, λ+).

The formula is well defined and generates stable positive definite matrices provided
these vectors satisfy γ�δ > 0. This inequality, known as the curvature condition,
expresses the strict monotonicity of the gradient of the Lagrangian between two suc-
cessive iterates. In unconstrained optimization, it can always be satisfied by using
the Wolfe line-search, provided the function to minimize is bounded below. If this is
a reasonable assumption in unconstrained optimization, it is no longer the case when
constraints are present, since the optimization problem may be perfectly well defined
even when � is unbounded below. Now, assuming this hypothesis on the boundedness
of � would have been less restrictive than assuming its strong convexity, but it is not
satisfactory. Indeed, with a bounded below Lagrangian, the curvature condition can
be satisfied by the Wolfe line-search as in unconstrained optimization, but near the
solution the information on ∇2

xx� collected in the matrix M could come from a region
far from the optimal point, which would prevent q-superlinear convergence of the it-
erates. Because of this observation, we assume that f or one of the functions −c(i)
is strongly convex, so that the Lagrangian becomes a strongly convex function of x
for any fixed λ > 0. With this assumption, the curvature condition will be satisfied
independently of the kind of line-search techniques actually used in the algorithm.
The question whether the present theory can be adapted to convex problems, hence
including linear programming, is puzzling. We will come back to this issue in the
discussion section.

A large part of the paper is devoted to the analysis of the qN algorithm for solving
the perturbed KKT conditions (1.2) with fixed µ. The algorithm is detailed in the
next section, while its convergence speed is analyzed in sections 3 and 4. In particular,
it is shown that, for fixed µ > 0, the primal-dual pairs (x, λ) converge q-superlinearly
toward a solution of (1.2). The tools used to prove convergence are essentially those of
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the BFGS theory [6, 13, 40]. In section 5, the overall algorithm is presented and it is
shown that the sequence of outer iterates is globally convergent, in the sense that it is
bounded and that its accumulation points are primal-dual solutions of problem (1.1).
If, in addition, strict complementarity holds, the whole sequence of outer iterates
converges to the analytic center of the primal-dual optimal set.

2. The algorithm for solving the barrier problem. The Euclidean or �2
norm is denoted by ‖ · ‖. We recall that a function ξ : R

n → R is said to be
strongly convex with modulus κ > 0, if for all (x, y) ∈ R

n × R
n one has ξ(y) ≥

ξ(x) +∇ξ(x)�(y − x) + κ‖y − x‖2 (for other equivalent definitions, see, for example,
[22, Chapter IV]). Our minimal assumptions are the following.

Assumption 2.1. (i) The functions f and −c(i) (1 ≤ i ≤ m) are convex and
differentiable from R

n to R and at least one of the functions f , −c(1), . . . , −c(m) is
strongly convex. (ii) The set of strictly feasible points for problem (1.1) is nonempty,
i.e., there exists x ∈ R

n such that c(x) > 0.
Assumption 2.1(i) was motivated in section 1. Assumption 2.1(ii), also called

the (strong) Slater condition, is necessary for the well-posedness of a feasible interior
point method. With the convexity assumption, it is equivalent to the fact that the
set of multipliers associated with a given solution is nonempty and compact (see
[22, Theorem VII.2.3.2], for example). These assumptions have the following clear
consequence.

Lemma 2.2. Suppose that Assumption 2.1 holds. Then, the solution set of prob-
lem (1.1) is nonempty and bounded.

By Lemma 2.2, the level sets of the logarithmic barrier function ϕµ are compact,
a fact that will be used frequently. It is a consequence of [16, Lemma 12], which we
recall for completeness.

Lemma 2.3. Let f : R
n → R be a convex continuous function and c : R

n → R
m

be a continuous function having concave components. Suppose that the set {x ∈ R
n :

c(x) > 0} is nonempty and that the solution set of problem (1.1) is nonempty and
bounded. Then, for any α ∈ R and µ > 0, the set{

x ∈ R
n : c(x) > 0, f(x)− µ

m∑
i=1

log c(i)(x) ≤ α
}

is compact (and possibly empty).
Let x1 be the first iterate of our feasible IP algorithm, hence satisfying c(x1) > 0,

and define the level set

LP

1 := {x ∈ R
n : c(x) > 0 and ϕµ(x) ≤ ϕµ(x1)}.

Lemma 2.4. Suppose that Assumption 2.1 holds. Then, the barrier problem (1.4)
has a unique solution, which is denoted by x̂µ.

Proof. By Assumption 2.1, Lemma 2.2, and Lemma 2.3, LP
1 is nonempty and

compact, so that the barrier problem (1.4) has at least one solution. This solution
is also unique, since ϕµ is strictly convex on {x ∈ R

n : c(x) > 0}. Indeed, by
Assumption 2.1(i), ∇2ϕµ(x) given by (1.6) is positive definite.

To simplify the notation we denote by

z := (x, λ)

a typical pair of primal-dual variables and by Z the set of strictly feasible z’s:

Z := {z = (x, λ) ∈ R
n × R

m : (c(x), λ) > 0} .
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The algorithm generates a sequence of pairs (z,M), where z ∈ Z and M is a
positive definite symmetric matrix. Given a pair (z,M), the next one (z+,M+) is
obtained as follows. First

z+ := z + αd,

where α > 0 is a step-size and d = (dx, dλ) is the unique solution of (1.3). The
uniqueness comes from the positivity of c(x) and from the positive definiteness of M
(for the unicity of dx, use (1.5)). Next, the matrix M is updated into M+ by the
BFGS formula

M+ :=M − Mδδ
�M

δ�Mδ
+
γγ�

γ�δ
,(2.1)

where γ and δ are given by

δ := x+ − x and γ := ∇x�(x+, λ+)−∇x�(x, λ+).(2.2)

This formula gives a symmetric positive definite matrixM+, providedM is symmetric
positive definite and γ�δ > 0 (see [14, 17]). This latter condition is satisfied because
of the strong convexity assumption. Indeed, since at least one of the functions f or
−c(i) is strongly convex, for any fixed λ > 0, the function x 
→ �(x, λ) is strongly
convex, that is, there exists a constant κ > 0 such that

2κ‖x− x′‖2 ≤ (∇x�(x, λ)−∇x�(x′, λ))� (x− x′) for all x and x′.

Since α sizes the displacement in x and λ, the merit function used to estimate
the progress to the solution must depend on both x and λ. We follow an idea of
Anstreicher and Vial [1] and add to ϕµ a function forcing λ to take the value µC(x)−1e.
The merit function is defined for z = (x, λ) ∈ Z by

ψµ(z) := ϕµ(x) + V(z),

where

V(z) = λ�c(x)− µ
m∑
i=1

log
(
λ(i)c(i)(x)

)
.

Note that

∇ψµ(z) =
(∇f(x)− 2µ∇c(x)C(x)−1e+∇c(x)λ

c(x)− µΛ−1e

)
.(2.3)

Using ψµ as a merit function is reasonable provided the problem

{
min ψµ(z),
z ∈ Z(2.4)
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has for unique solution the solution of (1.2) and the direction d = (dx, dλ) is a descent
direction of ψµ. This is what we check in Lemmas 2.5 and 2.6 below.

Lemma 2.5. Suppose that Assumption 2.1 holds. Then, problem (2.4) has a

unique solution ẑµ := (x̂µ, λ̂µ), where x̂µ is the unique solution of the barrier prob-

lem (1.4) and λ̂µ has its ith component defined by (λ̂µ)(i) := µ/c(i)(x̂µ). Furthermore,
ψµ has no other stationary point than ẑµ.

Proof. By optimality of the unique solution x̂µ of the barrier problem (1.4)

ϕµ(x̂µ) ≤ ϕµ(x) for any x such that c(x) > 0.

On the other hand, since t → t − µ log t is minimized at t = µ and since µ =
c(i)(x̂µ)(λ̂µ)(i) for all index i, we have

V(ẑµ) ≤ V(z) for any z ∈ Z.

Adding up the preceding two inequalities gives ψµ(ẑµ) ≤ ψµ(z) for all z ∈ Z. Hence
ẑµ is a solution of (2.4).

It remains to show that ẑµ is the unique stationary point of ψµ. If z is stationary,
it satisfies { ∇f(x)− 2µ∇c(x) C(x)−1e+∇c(x) λ = 0,

c(x)− µΛ−1e = 0.

Canceling λ from the first equality gives ∇f(x) − µ∇c(x)C(x)−1e = 0, and thus

x = x̂µ is the unique minimizer of the convex function ϕµ. Now, λ = λ̂µ by the
second equation of the system above.

Lemma 2.6. Suppose that z ∈ Z and that M is symmetric positive definite. Let
d = (dx, dλ) be the solution of (1.3). Then

∇ψµ(z)�d = −(dx)�(M+∇c(x)ΛC(x)−1∇c(x)�)dx−‖C(x)−1/2Λ−1/2(C(x)λ−µe)‖2,

so that d is a descent direction of ψµ at a point z �= ẑµ, meaning that ∇ψµ(z)�d < 0.
Proof. We have ∇ψµ(z)�d = ∇ϕµ(x)�dx +∇V(z)�d. Using (1.5),

∇ϕµ(x)�dx = −(dx)�(M +∇c(x)C(x)−1Λ∇c(x)�)dx,

which is nonpositive. On the other hand, when d satisfies the second equation of (1.3),
one has (see [1])

∇V(z)�d = (∇c(x)λ− µ∇c(x) C(x)−1e)�dx + (c(x)− µΛ−1e)�dλ

= (e− µC(x)−1Λ−1e)�(Λ∇c(x)�dx + C(x)dλ)
= −(µe− C(x)λ)�C(x)−1Λ−1(µe− C(x)λ)
= −‖C(x)−1/2Λ−1/2(C(x)λ− µe)‖2,

which is also nonpositive. The formula for ∇ψµ(z)�d given in the statement of the
lemma follows from this calculation. Furthermore, ∇ψµ(z)�d < 0, if z �= ẑµ.

We can now state precisely one iteration of the algorithm used to solve the per-
turbed KKT system (1.2). The constants ω ∈ ]0, 1[ and 0 < τ < τ ′ < 1 are given
independently of the iteration index.
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Algorithm Aµ (for solving (1.2); one iteration).
0. At the beginning of the iteration, the current iterate z = (x, λ) ∈ Z is

supposed available, as well as a positive definite matrix M approximating
the Hessian of the Lagrangian ∇2

xx�(x, λ).
1. Compute d := (dx, dλ), the solution of the linear system (1.3).
2. Compute a step-size α by means of a backtracking line search.

2.0. Set α = 1.
2.1. Test the sufficient decrease condition:

ψµ(z + αd) ≤ ψµ(z) + ωα∇ψµ(z)�d.(2.5)

2.2. If (2.5) is not satisfied, choose a new trial step-size α in [τα, τ ′α] and
go to Step 2.1. If (2.5) is satisfied, set z+ := z + αd.

3. Update M by the BFGS formula (2.1) where γ and δ are given by (2.2).

By Lemma 2.6, d is a descent direction of ψµ at z, so that a step-size α > 0 satisfy-
ing (2.5) can be found. In the line-search, it is implicitly assumed that (2.5) is not
satisfied if z + αd �∈ Z, so that (c(x+), λ+) > 0 holds for the new iterate z+.

We conclude this section with a result that gives the contribution of the line-
search to the convergence of the sequence generated by Algorithm Aµ. It is in the
spirit of a similar result given by Zoutendijk [50] (for a proof, see [6]). We say that
a function is C1,1 if it has Lipschitz continuous first derivatives. We denote the level
set of ψµ determined by the first iterate z1 = (x1, λ1) ∈ Z by

LPD

1 := {z ∈ Z : ψµ(z) ≤ ψµ(z1)}.
Lemma 2.7. If ψµ is C1,1 on an open convex neighborhood of the level set LPD

1 ,
there is a positive constant K such that for any z ∈ LPD

1 , if α is determined by the
line-search in Step 2 of Algorithm Aµ, one of the following two inequalities holds:

ψµ(z + αd) ≤ ψµ(z)−K|∇ψµ(z)�d|,

ψµ(z + αd) ≤ ψµ(z)−K |∇ψµ(z)
�d|2

‖d‖2 .

It is important to mention here that this result holds even though ψµ may not be
defined for all positive step-sizes along d, so that the line-search may have to reduce
the step-size in a first stage to enforce feasibility.

3. The global and r-linear convergence of Algorithm Aµ. In the con-
vergence analysis of BFGS, the path to q-superlinear convergence traditionally leads
through r-linear convergence (see [41, 6]). In this section, we show that the iterates

generated by Algorithm Aµ converge to ẑµ = (x̂µ, λ̂µ), the solution of (1.2), with that
convergence speed. We use the notation

Ĉµ := diag(c(1)(x̂µ), . . . , c(m)(x̂µ)) and Λ̂µ := diag((λ̂µ)(1), . . . , (λ̂µ)(m)).

Our first result shows that, because the iterates (x, λ) remain in the level set LPD
1 ,

the sequence {(c(x), λ)} is bounded and bounded away from zero.
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Lemma 3.1. Suppose that Assumption 2.1 holds. Then, the level set LPD
1 is

compact and there exist positive constants K1 and K2 such that

K1 ≤ (c(x), λ) ≤ K2 for all z ∈ LPD

1 .

Proof. Since λ�c(x) − µ∑i log(λ(i)c(i)(x)) is bounded below by mµ(1 − logµ),
there is a constant K ′

1 > 0 such that ϕµ(x) ≤ K ′
1 for all z = (x, λ) ∈ LPD

1 . By
Assumption 2.1 and Lemma 2.3, the level set L′ := {x : c(x) > 0, ϕµ(x) ≤ K ′

1} is
compact. By continuity, c(L′) is also compact, so that c(x) is bounded and bounded
away from zero for all z ∈ LPD

1 .
What we have just proven implies that {ϕµ(x) : z = (x, λ) ∈ LPD

1 } is bounded
below, so that there is a constantK ′

2 > 0 such that λ�c(x)−µ∑i log(λ(i)c(i)(x)) ≤ K ′
2

for all z = (x, λ) ∈ LPD
1 . Hence the λ-components of the z’s in LPD

1 are bounded and
bounded away from zero.

We have shown that LPD
1 is included in a compact set. Now, it is itself compact

by continuity of ψµ.
The next proposition is crucial for the technique we use to prove global conver-

gence (see [6]). It claims that the proximity of a point z to the unique solution of (2.4)
can be measured by the value of ψµ(z) or the norm of its gradient ∇ψµ(z). In un-
constrained optimization, the corresponding result is a direct consequence of strong
convexity. Here, ψµ is not necessarily convex, but the result can still be established
by using Lemma 2.5 and Lemma 3.1. The function ψµ is nonconvex, for example,
when f(x) = x2 is minimized on the half-line of nonnegative real numbers.

Proposition 3.2. Suppose that Assumption 2.1 holds. Then, there is a constant
a > 0 such that for any z ∈ LPD

1

a‖z − ẑµ‖2 ≤ ψµ(z)− ψµ(ẑµ) ≤ 1

a
‖∇ψµ(z)‖2.(3.1)

Proof. Let us show that ψµ is strongly convex in a neighborhood of ẑµ. Using

(2.3) and the fact that Ĉµλ̂µ = µe, the Hessian of ψµ at ẑµ can be written as

∇2ψµ(ẑµ) =

(
∇2
xx�(x̂µ, λ̂µ) + 2µ∇c(x̂µ) Ĉ−2

µ ∇c(x̂µ)� ∇c(x̂µ)
∇c(x̂µ)� 1

µ Ĉ
2
µ

)
.

From Assumption 2.1, for fixed λ > 0, the Lagrangian is a strongly convex function
in the variable x. It follows that its Hessian with respect to x is positive definite at
(x̂µ, λ̂µ). Let us show that the above matrix is also positive definite. Multiplying the
matrix on both sides by a vector (u, v) ∈ R

n × R
m gives

u�∇2
xx�(x̂µ, λ̂µ)u+ 2µu�∇c(x̂µ) Ĉ−2

µ ∇c(x̂µ)�u+ 2u�∇c(x̂µ)v + 1

µ
v�Ĉ2

µv

= u�∇2
xx�(x̂µ, λ̂µ)u+ µu

�∇c(x̂µ)Ĉ−2
µ ∇c(x̂µ)�u+ ‖µ1/2Ĉ−1

µ ∇c(x̂µ)�u+ µ−1/2Ĉµv‖2.

Since ∇2
xx�(x̂µ, λ̂µ) is positive definite and c(x̂µ) > 0, this quantity is nonnegative. If

it vanishes, one deduces that u = 0 and next that v = 0. Hence ∇2ψµ(ẑµ) is positive
definite.

Let us now prove a local version of the proposition: there exist a constant a′ > 0
and an open neighborhood N ⊂ Z of ẑµ such that

a′‖z − ẑµ‖2 ≤ ψµ(z)− ψµ(ẑµ) ≤ 1

a′
‖∇ψµ(z)‖2 for all z ∈ N .(3.2)
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The inequality on the left comes from the fact that ∇ψµ(ẑµ) = 0 and the strong
convexity of ψµ near ẑµ. For the inequality on the right, we first use the local convexity
of ψµ: for an arbitrary z near ẑµ, ψµ(ẑµ) ≥ ψµ(z) + ∇ψµ(z)�(ẑµ − z). With the
Cauchy–Schwarz inequality and the inequality on the left of (3.2), one gets

ψµ(z)− ψµ(ẑµ) ≤ ‖∇ψµ(z)‖
(
ψµ(z)− ψµ(ẑµ)

a′

) 1
2

.

Simplifying and squaring give the inequality on the right of (3.2).
To extend the validity of (3.2) for all z ∈ LPD

1 , it suffices to note that, by virtue
of Lemma 2.5, the ratios

ψµ(z)− ψµ(ẑµ)
‖z − ẑµ‖2 and

ψµ(z)− ψµ(ẑµ)
‖∇ψµ(z)‖2

are well defined and continuous on the compact set LPD
1 \ N . Since ẑµ is the unique

minimizer of ψµ on LPD
1 (Lemma 2.5), the ratios are respectively bounded away from

zero and bounded above on LPD
1 \ N , by some positive constants K ′

1 and K ′
2. The

conclusion of the proposition now follows by taking a = min(a′,K ′
1, 1/K

′
2).

The proof of the r-linear convergence rests on the following lemma, which is part
of the theory of BFGS updates. It can be stated independently of the present context
(see Byrd and Nocedal [6]). We denote by θk the angle between Mkδk and δk:

cos θk :=
δ�kMkδk

‖Mkδk‖ ‖δk‖
and by �·� the roundup operator: �x� = i when i− 1 < x ≤ i and i ∈ N.

Lemma 3.3. Let {Mk} be positive definite matrices generated by the BFGS for-
mula using pairs of vectors {(γk, δk)}k≥1, satisfying for all k ≥ 1

γ�k δk ≥ a1‖δk‖2 and γ�k δk ≥ a2‖γk‖2,(3.3)

where a1 > 0 and a2 > 0 are independent of k. Then, for any r ∈ ]0, 1[, there exist
positive constants b1, b2, and b3, such that for any index k ≥ 1,

b1 ≤ cos θj and b2 ≤ ‖Mjδj‖
‖δj‖ ≤ b3(3.4)

for at least �rk� indices j in {1, . . . , k}.
The assumptions (3.3) made on γk and δk in the above lemma are satisfied in

our context. The first one is due to the strong convexity of one of the functions f ,
−c(1), . . . , −c(m), and to the fact that λ is bounded away from zero (Lemma 3.1).
When f and c are C1,1, the second one can be deduced from the Lipschitz inequality,
the boundedness of λ (Lemma 3.1), and the first inequality in (3.3).

Theorem 3.4. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions. Then, Algorithm Aµ generates a sequence {zk} converging to ẑµ r-linearly,
meaning that lim supk→∞ ‖zk − ẑµ‖1/k < 1. In particular,∑

k≥1

‖zk − ẑµ‖ <∞.

Proof. We denote by K ′
1, K

′
2, . . . positive constants (independent of the iteration

index). We also use the notation

cj := c(xj) and Cj := diag(c(1)(xj), . . . , c(m)(xj)).
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The bounds on (c(x), λ) given by Lemma 3.1 and the fact that f and c are C1,1

imply that ψµ is C1,1 on some open convex neighborhood of the level set LPD
1 , for

example, on (
c−1

( ]
K1

2
,+∞

[m )
×
]
K1

2
, 2K2

[m)
∩ O,

where O is an open bounded convex set containing LPD
1 (this set O is used to have ∇c

bounded on the given neighborhood).
Therefore, by the line-search and Lemma 2.7, there is a positive constant K ′

1 such
that either

ψµ(zk+1) ≤ ψµ(zk)−K ′
1|∇ψµ(zk)�dk|(3.5)

or

ψµ(zk+1) ≤ ψµ(zk)−K ′
1

|∇ψµ(zk)�dk|2
‖dk‖2 .(3.6)

Let us now apply Lemma 3.3: fix r ∈ ]0, 1[ and denote by J the set of indices j
for which (3.4) holds. Using Lemma 2.6 and the bounds from Lemma 3.1, one has for
j ∈ J
|∇ψµ(zj)�dj | = (dxj )

�(Mj +∇cjΛjC−1
j ∇c�j )dxj + ‖C−1/2

j Λ
−1/2
j (Cjλj − µe)‖2

≥ (dxj )
�Mjd

x
j +K

−2
2 ‖Cjλj − µe‖2

≥ b1
b3
‖Mjd

x
j ‖2 +K−2

2 ‖Cjλj − µe‖2

≥ K ′
2

(‖Mjd
x
j ‖2 + ‖Cjλj − µe‖2

)
.

Let us denote by K ′
4 a positive constant such that ‖∇c(x)‖ ≤ K ′

4 for all x ∈ LPD
1 . By

using (2.3), (1.5), and the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

‖∇ψµ(zj)‖2
= ‖∇xψµ(zj)‖2 + ‖∇λψµ(zj)‖2
= ‖ − (Mj +∇cjC−1

j Λj∇c�j )dxj + ∇cj(λj − µC−1
j e)‖2 + ‖cj − µΛ−1

j e‖2

≤
(
‖Mjd

x
j ‖+K−1

1 K2K
′
4
2‖dxj ‖+K−1

1 K ′
4‖Cjλj − µe‖

)2

+K−2
1 ‖Cjλj − µe‖2

≤ 3

(
1 +

K−2
1 K2

2K
′
4
4

b22

)
‖Mjd

x
j ‖2 +K−2

1 (3K ′
4
2
+ 1)‖Cjλj − µe‖2

≤ K ′
3

(‖Mjd
x
j ‖2 + ‖Cjλj − µe‖2

)
and also, by (1.3),

‖dj‖2 = ‖dxj ‖2 + ‖dλj ‖2
= ‖dxj ‖2 + ‖µC−1

j e− λj − C−1
j Λj∇c�j dxj ‖2

≤ ‖dxj ‖2 + 2‖C−1
j Λj∇c�j dxj ‖2 + 2‖C−1

j (Cjλj − µe)‖2

≤ 1 + 2K−2
1 K2

2K
′
4
2

b22
‖Mjd

x
j ‖2 + 2K−2

1 ‖Cjλj − µe‖2

≤ K ′
5

(‖Mjd
x
j ‖2 + ‖Cjλj − µe‖2

)
.
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Combining these inequalities with (3.5) or (3.6) gives for some positive constant K ′
6

and for any j ∈ J
ψµ(zj+1) ≤ ψµ(zj)−K ′

6‖∇ψµ(zj)‖2.
The end of the proof is standard (see [41, 6]). Using Proposition 3.2, for j ∈ J ,

ψµ(zj+1)− ψµ(ẑµ) ≤ ψµ(zj)− ψµ(ẑµ)−K ′
6‖∇ψµ(zj)‖2

≤ τ 1
r (ψµ(zj)− ψµ(ẑµ)),

where τ := (1 − K ′
6a)

r ∈ [0, 1[. On the other hand, by the line-search, ψµ(zk+1) −
ψµ(ẑµ) ≤ ψµ(zk)− ψµ(ẑµ) for any k ≥ 1. By Lemma 3.3, |[1, k] ∩ J | ≥ �rk� ≥ rk, so
that the last inequality gives for any k ≥ 1

ψµ(zk+1)− ψµ(ẑµ) ≤ K ′
7τ
k,

where K ′
7 is the positive constant (ψµ(z1) − ψµ(ẑµ)). Now, using the inequality on

the left in (3.1), one has for all k ≥ 1

‖zk+1 − ẑµ‖ ≤ 1√
a
(ψµ(zk+1)− ψµ(ẑµ)) 1

2 ≤
(
K ′

7

a

) 1
2

τ
k
2 ,

from which the r-linear convergence of {zk} follows.
4. The q-superlinear convergence of Algorithm Aµ. With the r-linear con-

vergence result of the previous section, we are now ready to establish the q-superlinear
convergence of the sequence {zk} generated by Algorithm Aµ. By definition, {zk}
converges q-superlinearly to ẑµ if the following estimate holds:

zk+1 − ẑµ = o(‖zk − ẑµ‖),
which means that ‖zk+1 − ẑµ‖/‖zk − ẑµ‖ → 0 (assuming zk �= ẑµ). To get this result,
f and c have to be a little bit smoother, namely twice continuously differentiable near
x̂µ. We use the notation

M̂µ := ∇2
xx�(x̂µ, λ̂µ).

We start by showing that the unit step-size is accepted asymptotically by the line-
search condition (2.5), provided the updated matrixMk becomes good (or sufficiently
large) in a sense specified by inequality (4.1) below and provided the iterate zk is
sufficiently close to the solution ẑµ.

Given two sequences of vectors {uk} and {vk} in some normed spaces and a
positive number β, we write uk ≥ o(‖vk‖β), if there exists a sequence of {εk} ⊂ R

such that εk → 0 and uk ≥ εk‖vk‖β for all k.
Proposition 4.1. Suppose that Assumption 2.1 holds and that f and c are twice

continuously differentiable near x̂µ. Suppose also that the sequence {zk} generated by
Algorithm Aµ converges to ẑµ and that the positive definite matrices Mk satisfy the
estimate

(dxk)
�
(
Mk − M̂µ

)
dxk ≥ o(‖dxk‖2)(4.1)

when k →∞. Then the sufficient decrease condition (2.5) is satisfied with αk = 1 for
k sufficiently large provided that ω < 1

2 .
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Proof. Observe first that the positive definiteness of M̂µ with (4.1) implies that

(dxk)
�Mkd

x
k ≥ K ′‖dxk‖2(4.2)

for some positive constant K ′ and sufficiently large k. Observe also that dk → 0
(for dxk → 0, use (1.5), (4.2), and ∇ϕµ(xk) → 0). Therefore, for k large enough, zk
and zk + dk are near ẑµ and one can expand ψµ(zk + dk) about zk. A second order
expansion gives for the left-hand side of (2.5)

ψµ(zk + dk)− ψµ(zk)− ω∇ψµ(zk)�dk
= (1− ω)∇ψµ(zk)�dk + 1

2
d�k∇2ψµ(zk)dk + o(‖dk‖2)

=

(
1

2
− ω

)
∇ψµ(zk)�dk(4.3)

+
1

2

(∇ψµ(zk)�dk + d�k∇2ψµ(zk)dk
)
+ o(‖dk‖2).

We want to show that this quantity is negative for k large.
Our first aim is to show that

(∇ψµ(zk)�dk + d�k∇2ψµ(zk)dk
)
is smaller than a

term of order o(‖dk‖2). For this purpose, one computes

d�k∇2ψµ(zk)dk

= (dxk)
�∇2

xx�(xk, λ̃k)d
x
k + 2µ(dxk)

�∇ckC−2
k ∇c�kdxk

+ 2(dxk)
�∇ckdλk + µ(dλk)�Λ−2

k d
λ
k ,

where λ̃k = 2µC−1
k e− λk. On the other hand, using

C
−1/2
k Λ

−1/2
k (Ckλk − µe) = −C−1/2

k Λ
1/2
k ∇c�kdxk − C1/2

k Λ
−1/2
k dλk ,

one gets from Lemma 2.6

∇ψµ(zk)�dk
= −(dxk)�Mkd

x
k − (dxk)

�∇ckC−1
k Λk∇c�kdxk − ‖C−1/2

k Λ
−1/2
k (Ckλk − µe)‖2

= −(dxk)�Mkd
x
k − 2(dxk)

�∇ckC−1
k Λk∇c�kdxk − 2(dxk)

�∇ckdλk − (dλk)
�CkΛ−1

k d
λ
k .

With these estimates, (4.1), and the fact that ∇2
xx�(xk, λ̃k) → M̂µ and Ckλk → µe,

with Lemma 3.1 and the boundedness of {∇ck}, (4.3) becomes

ψµ(zk + dk)− ψµ(zk)− ω∇ψµ(zk)�dk
=

(
1

2
− ω

)
∇ψµ(zk)�dk

− 1

2
(dxk)

�
(
Mk −∇2

xx�(xk, λ̃k)
)
dxk + (dxk)

�∇ck
(
µC−2

k − C−1
k Λk

)∇c�kdxk
+

1

2
(dλk)

�(µΛ−2
k − CkΛ−1

k

)
dλk + o(‖dk‖2)

≤
(
1

2
− ω

)
∇ψµ(zk)�dk + o(‖dk‖2).(4.4)

Since ω < 1
2 , it is clear that the result will be proven if we show that, for some

positive constant K and k large, ∇ψµ(zk)�dk ≤ −K‖dk‖2. To show this, we use the
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last expression of ∇ψµ(zk)�dk and an upper bound of |(dxk)�∇ckdλk |, obtained by the
Cauchy–Schwartz inequality:

2
∣∣(dxk)�∇ckdλk∣∣ = 2

∣∣∣∣(C−1/2
k Λ

1/2
k ∇c�kdxk

)�(
C

1/2
k Λ

−1/2
k dλk

)∣∣∣∣
≤ 2

∥∥∥C−1/2
k Λ

1/2
k ∇c�kdxk

∥∥∥ ∥∥∥C1/2
k Λ

−1/2
k dλk

∥∥∥
≤ 3

2
(dxk)

�∇ckC−1
k Λk∇c�kdxk +

2

3
(dλk)

�CkΛ−1
k d

λ
k .

It follows that

∇ψµ(zk)�dk ≤ −(dxk)�Mkd
x
k −

1

2
(dxk)

�∇ckC−1
k Λk∇c�kdxk −

1

3
(dλk)

�CkΛ−1
k d

λ
k .

Therefore, using (4.2) and Lemma 3.1, one gets

∇ψµ(zk)�dk ≤ −K‖dk‖2

for some positive constant K and k large.
Proposition 4.1 shows in particular that the function V, which was added to ϕµ

to get the merit function ψµ, has the right curvature around ẑµ, so that the unit
step-size in both x and λ is accepted by the line-search.

In the following proposition, we establish a necessary and sufficient condition of
q-superlinear convergence of the Dennis and Moré [13] type. The analysis assumes
that the unit step-size is taken and that the updated matrix Mk is sufficiently good
asymptotically in a manner given by the estimate (4.5), which is slightly different
from (4.1).

Proposition 4.2. Suppose that Assumption 2.1 holds and that f and c are
twice differentiable at x̂µ. Suppose that the sequence {zk} generated by Algorithm Aµ
converges to ẑµ and that, for k sufficiently large, the unit step-size αk = 1 is accepted
by the line-search. Then {zk} converges q-superlinearly towards ẑµ if and only if

(Mk − M̂µ)d
x
k = o(‖dk‖).(4.5)

Proof. Let us denote by M the nonsingular Jacobian matrix of the perturbed
KKT conditions (1.2) at the solution ẑµ = (x̂µ, λ̂µ):

M =

(
M̂µ −∇c(x̂µ)

Λ̂µ∇c(x̂µ)� Ĉµ

)
.

A first order expansion of the right-hand side of (1.3) about ẑµ and the identities

∇f(x̂µ) = ∇c(x̂µ)λ̂µ and Ĉµλ̂µ = µe give(
Mk −∇ck

Λk∇c�k Ck

)(
dxk
dλk

)
= −M(zk − ẑµ) + o(‖zk − ẑµ‖).

SubtractingMdk from both sides and assuming a unit step-size, we obtain(
Mk − M̂µ −(∇ck −∇c(x̂µ))

Λk∇c�k − Λ̂µ∇c(x̂µ)� Ck − Ĉµ

)(
dxk
dλk

)
= −M(zk+1 − ẑµ) + o(‖zk − ẑµ‖).(4.6)
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Suppose now that {zk} converges q-superlinearly. Then, the right-hand side
of (4.6) is of order o(‖zk − ẑµ‖), so that

(Mk − M̂µ)d
x
k + o(‖dλk‖) = o(‖zk − ẑµ‖).

Then (4.5) follows from the fact that, by the q-superlinear convergence of {zk}, zk −
ẑµ = O(‖dk‖).

Let us now prove the converse. By (4.5), the left-hand side of (4.6) is an o(‖dk‖)
and due to the nonsingularity ofM, (4.6) gives zk+1 − ẑµ = o(‖zk − ẑµ‖) + o(‖dk‖).
With a unit step-size, dk = (zk+1− ẑµ)− (zk − ẑµ), so that we finally get zk+1− ẑµ =
o(‖zk − ẑµ‖).

For proving the q-superlinear convergence of the sequence {zk}, we need the
following result from the BFGS theory (see [40, Theorem 3] and [6]).

Lemma 4.3. Let {Mk} be a sequence of matrices generated by the BFGS for-
mula from a given symmetric positive definite matrix M1 and pairs (γk, δk) of vectors
verifying

γ�k δk > 0 for all k ≥ 1 and
∑
k≥1

‖γk −Mδk‖
‖δk‖ <∞,(4.7)

where M is a symmetric positive definite matrix. Then, the sequences {Mk} and
{M−1

k } are bounded and

(Mk −M)δk = o(‖δk‖).(4.8)

By using this lemma, we will see that the BFGS formula gives the estimate

(Mk − M̂µ)d
x
k = o(‖dxk‖).

Note that the above estimate implies (4.5), from which the q-superlinear convergence
of {zk} will follow.

A function φ, twice differentiable in a neighborhood of a point x ∈ R
n, is said to

have a locally radially Lipschitzian Hessian at x, if there exists a positive constant L
such that for x′ near x, one has

‖∇2φ(x)−∇2φ(x′)‖ ≤ L‖x− x′‖.
Theorem 4.4. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions, twice continuously differentiable near x̂µ with locally radially Lipschitzian
Hessians at x̂µ. Suppose that the line-search in Algorithm Aµ uses the constant ω <
1
2 . Then the sequence {zk} = {(xk, λk)} generated by this algorithm converges to

ẑµ = (x̂µ, λ̂µ) q-superlinearly and, for k sufficiently large, the unit step-size αk = 1 is
accepted by the line-search.

Proof. Let us start by showing that Lemma 4.3 with M = M̂µ can be applied.
First, γ�k δk > 0, as this was already discussed after Lemma 3.3. For the convergence
of the series in (4.7), we use a Taylor expansion, assuming that k is large enough (f
and c are C2 near x̂µ):

γk − M̂µδk =

∫ 1

0

(∇2
xx�(xk + tδk, λk+1)−∇2

xx�(x̂µ, λk+1)
)
δk dt

+
(
∇2
xx�(x̂µ, λk+1)− M̂µ

)
δk.
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With the local radial Lipschitz continuity of ∇2f and ∇2c at x̂µ and the boundedness
of {λk+1}, there exist positive constants K ′ and K ′′ such that

‖γk − M̂µ δk‖ ≤ K ′‖δk‖
(∫ 1

0

‖xk + t δk − x̂µ‖dt+ ‖λk+1 − λ̂µ‖
)

≤ K ′‖δk‖
(∫ 1

0

(
(1− t)‖xk − x̂µ‖+ t‖xk+1 − x̂µ‖

)
dt

+ ‖λk+1 − λ̂µ‖
)

≤ K ′′‖δk‖
(
‖xk − x̂µ‖+ ‖zk+1 − ẑµ‖

)
.

Hence the series in (4.7) converges by Theorem 3.4. Therefore, by (4.8) withM = M̂µ

and the fact that δk is parallel to dxk,

(Mk − M̂µ)d
x
k = o(‖dxk‖).(4.9)

By the estimate (4.9) and Proposition 4.1, the unit step-size is accepted when
k is large enough. The q-superlinear convergence of {zk} follows from Proposition
4.2.

5. The overall primal-dual algorithm. In this section, we consider an overall
algorithm for solving problem (1.1). Recall from Lemma 2.2 that the set of primal
solutions of this problem is nonempty and bounded. By the Slater condition (As-
sumption 2.1(ii)), the set of dual solutions is also nonempty and bounded. Let us

denote by ẑ = (x̂, λ̂) a primal-dual solution of problem (1.1), which is also a solution
of the necessary and sufficient conditions of optimality


∇f(x̂) −∇c(x̂)λ̂ = 0,

C(x̂)λ̂ = 0,

(c(x̂), λ̂) ≥ 0.

(5.1)

Our overall algorithm for solving (1.1) or (5.1), called Algorithm A, consists in
computing approximate solutions of the perturbed optimality conditions (1.2), for a
sequence of µ’s converging to zero. For each µ, the primal-dual Algorithm Aµ is used
to find an approximate solution of (1.2). This is done by so-called inner iterations.
Next µ is decreased and the process of solving (1.2) for the new value of µ is repeated.
We call an outer iteration the collection of inner iterations for solving (1.2) for a fixed
value of µ. We index the outer iterations by superscripts j ∈ N\{0}.

Algorithm A (for solving problem (1.1); one outer iteration).

0. At the beginning of the jth outer iteration, an approximation zj1 := (xj1, λ
j
1)

∈ Z of the solution ẑ of (5.1) is supposed available, as well as a positive
definite matrix M j

1 approximating the Hessian of the Lagrangian. A value
µj > 0 is given, as well as a precision threshold εj > 0.

1. Starting from zj1, use Algorithm Aµ until zj := (xj , λj) satisfies

‖∇f(xj)−∇c(xj)λj‖ ≤ εj and ‖C(xj)λj − µje‖ ≤ εj .(5.2)

2. Choose a new starting iterate zj+1
1 ∈ Z for the next outer iteration, as

well as a positive definite matrix M j+1
1 . Set the new parameters µj+1 > 0

and εj+1 > 0, such that {µj} and {εj} converge to zero when j →∞.
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To start the (j+1)th outer iteration, a possibility is to take zj+1
1 = zj andM j+1

1 =
M j , the updated matrix obtained at the end of the jth outer iteration.

As far as the global convergence is concerned, how zj ,M j , and µj are determined
is not important. Therefore, on that point, Algorithm A leaves the user much freedom
to maneuver, while Theorem 5.1 gives us a global convergence result for such a general
algorithm.

Theorem 5.1. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions. Then Algorithm A generates a bounded sequence {zj} and any limit point
of {zj} is a primal-dual solution of problem (1.1).

Proof. By Theorem 3.4, any outer iteration of Algorithm A terminates with an
iterate zj satisfying the stopping criteria in Step 1. Therefore Algorithm A generates
a sequence {zj}. Since the sequences {µj} and {εj} converge to zero, any limit point
of {zj} is a solution of problem (1.1). It remains to show that {zj} is bounded.

Let us first prove the boundedness of {xj}. The convexity of the Lagrangian
implies that

�(xj , λj) +∇x�(xj , λj)�(x1 − xj) ≤ �(x1, λj).

Using the positivity of λj and c(x1) and next the stopping criteria of Algorithm A, it
follows that

f(xj) ≤ f(x1) + (λj)�c(xj) +∇x�(xj , λj)�(xj − x1)

≤ f(x1) + o(1) + o(‖xj − x1‖).

If {xj} is unbounded, setting tj := ‖xj − x1‖ and yj := xj−x1

tj , one can choose a
subsequence J such that

lim
j→+∞
j∈J

tj = +∞ and lim
j→+∞
j∈J

yj = y �= 0.

From the last inequality we deduce that

f ′∞(y) := lim
j→+∞
j∈J

f(x1 + tjyj)− f(x1)

tj
≤ 0.

Moreover, since c(xj) > 0, we have (−c(i))′∞(y) ≤ 0 for i = 1, . . . ,m. It follows that
x̂+R+y ⊂ {x : c(x) ≥ 0, f(x) ≤ f(x̂)} (see, for example, [22, Proposition IV.3.2.5] or
[2, Formula (1)]). Therefore, the solution set of problem (1.1) would be unbounded,
which is in contradiction with what is claimed in Lemma 2.2.

To prove the boundedness of the multipliers, suppose that the algorithm generates
an unbounded sequence of positive vectors {λj}j∈J ′ for some subsequence J ′. The
sequence {(xj , λj/‖λj‖)}j∈J′ is bounded and thus has at least one limit point, say,
(x∗, ν∗). Dividing the two inequalities in (5.2) by ‖λj‖ and taking limits when j →∞,
j ∈ J ′, we deduce that ν∗ ≥ 0, ∇c(x∗)ν∗ = 0, and (ν∗)�c(x∗) = 0. Using the concavity
of the components c(i), one has

c(x∗) +∇c(x∗)�(x1 − x∗) ≥ c(x1) > 0,

where the inequality on the right follows from the strict feasibility of the first iterate.
Multiplying by ν∗, we deduce that (ν∗)�c(x1) = 0, and thus ν∗ = 0, a contradiction
with ‖ν∗‖ = 1.
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In the rest of this section, we give conditions under which the whole sequence
{zj} converges to a particular point called the analytic center of the primal-dual
optimal set. This actually occurs when the following two conditions hold: strict
complementarity and a proper choice of the forcing sequence εj in Algorithm A,
which has to satisfy the estimate

εj = o(µj),

meaning that εj/µj → 0 when j →∞.
Let us first recall the notion of analytic center of the optimal sets, which under

Assumption 2.1 is uniquely defined (see Monteiro and Zhou [37], for related results).
We denote by opt(P ) and opt(D) the sets of primal and dual solutions of problem
(1.1). The analytic center of opt(P ) is defined as follows. If opt(P ) is reduced to
a single point, its analytic center is precisely that point. Otherwise, opt(P ) is a
convex set with more than one point. In that case, f is not strongly convex and,
by Assumption 2.1(i), at least one of the constraint functions, −c(i0) say, is strongly
convex. It follows that the index set

B := {i : there exists x̂ ∈ opt(P ) such that c(i)(x̂) > 0}
is nonempty (it contains i0). The analytic center of opt(P ) is then defined as the
unique solution of the following problem:

max
x̂∈opt(P )
cB(x̂)>0

(∑
i∈B

log c(i)(x̂)

)
.(5.3)

The fact that this problem is well defined and has a unique solution is the matter of
Lemma 5.2 below. Similarly, if opt(D) is reduced to a single point, its analytic center
is that point. In case of multiple dual solutions, the index set

N := {i : there exists λ̂ ∈ opt(D) such that λ̂(i) > 0}
is nonempty (otherwise opt(D) would be reduced to {0}). The analytic center of
opt(D) is then defined as the unique solution of the following problem:

max
λ̂∈opt(D)

λ̂N>0

(∑
i∈N

log λ̂(i)

)
.(5.4)

Lemma 5.2. Suppose that Assumption 2.1 holds. If opt(P ) (resp., opt(D)) is not
reduced to a singleton, then problem (5.3) (resp., (5.4)) has a unique solution.

Proof. Consider first problem (5.3) and suppose that opt(P ) is not a singleton. We
have seen that B is nonempty. By the convexity of the set opt(P ) and the concavity
of the functions c(i), there exists x̂ ∈ opt(P ) such that cB(x̂) > 0. Therefore the
feasible set in (5.3) is nonempty. On the other hand, let x̂0 be a point satisfying the
constraints in (5.3). Then the set{

x̂ : x̂ ∈ opt(P ), cB(x̂) > 0, and
∑
i∈B

log ci(x̂) ≥
∑
i∈B

log ci(x̂0)

}

is nonempty, bounded (Lemma 2.2), and closed. Therefore, problem (5.3) has a
solution. Finally, by Assumption 2.1(i), we know that there is an index i0 ∈ B such
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that −c(i0) is strongly convex. It follows that the objective in (5.3) is strongly concave
and that problem (5.3) has a unique solution.

By similar arguments and the fact that the objective function in (5.4) is strictly
concave, it follows that problem (5.4) has a unique solution.

By complementarity (i.e., C(x̂)λ̂ = 0) and convexity of problem (1.1), the index
sets B and N do not intersect, but there may be indices that are neither in B nor
in N . It is said that problem (1.1) has the strict complementarity property if B∪N =
{1, . . . , n}. This is equivalent to the existence of a primal-dual solution satisfying strict
complementarity.

Theorem 5.3. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions. Suppose also that problem (1.1) has the strict complementarity property
and that the sequence {εj} in Algorithm A satisfies the estimate εj = o(µj). Then the

sequence {zj} generated by Algorithm A converges to the point ẑ0 := (x̂0, λ̂0), where

x̂0 is the analytic center of the primal optimal set and λ̂0 is the analytic center of the
dual optimal set.

Proof. Let (x̂, λ̂) be an arbitrary primal-dual solution of (1.1). Then x̂ minimizes

�(·, λ̂) and λ̂�c(x̂) = 0, so that

f(x̂) = �(x̂, λ̂) ≤ �(xj , λ̂) = f(xj)− λ̂�c(xj).
Using the convexity of �(·, λj) and the stopping criterion (5.2) of the inner iterations
in Algorithm A, one has

f(x̂)− (λj)�c(x̂) = �(x̂, λj)
≥ �(xj , λj) +∇x�(xj , λj)�(x̂− xj)
= f(xj)− (λj)�c(xj)− εj‖xj − x̂‖
≥ f(xj)−mµj −m 1

2 εj − εj‖xj − x̂‖,
because (λj)�c(xj) = mµj+e�(C(xj)λj−µje) ≤ mµj+m 1

2 εj . By Theorem 5.1, there

is a constant C1 such that m
1
2 +‖xj− x̂‖ ≤ C1. Then, adding the corresponding sides

of the two inequalities above leads to

λ̂�NcN (xj) + (λjB)
�cB(x̂) = λ̂�c(xj) + (λj)�c(x̂) ≤ mµj + C1ε

j .(5.5)

We pursue this by adapting an idea used by McLinden [34] to give properties of

the limit points of the path µ 
→ (x̂µ, λ̂µ). Let us define Γj := C(xj)λj − µje. One
has for all indices i

c(i)(x
j) =

µj + Γj(i)

λj(i)
and λj(i) =

µj + Γj(i)

c(i)(xj)
.

Substituting this in (5.5) and dividing by µj give

∑
i∈N

λ̂(i)

λj(i)

µj + Γj(i)

µj
+
∑
i∈B

c(i)(x̂)

c(i)(xj)

µj + Γj(i)

µj
≤ m+ C1

εj

µj
.

By assumptions, εj = o(µj), so that Γj(i) = o(µj). Now supposing that (x̂0, λ̂0) is a

limit point of {(xj , λj)} and taking the limit in the preceding estimate provide

∑
i∈N

λ̂(i)

(λ̂0)(i)
+
∑
i∈B

c(i)(x̂)

c(i)(x̂0)
≤ m.
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Necessarily, cB(x̂0) > 0 and (λ̂0)N > 0. Observe now that, by strict complementarity,
there are exactly m terms on the left-hand side of the preceding inequality. Hence,
by the arithmetic-geometric mean inequality(∏

i∈N

λ̂(i)

(λ̂0)(i)

)(∏
i∈B

c(i)(x̂)

c(i)(x̂0)

)
≤ 1

or (∏
i∈N

λ̂(i)

)(∏
i∈B

c(i)(x̂)

)
≤
(∏
i∈N

(λ̂0)(i)

)(∏
i∈B

c(i)(x̂0)

)
.

One can take λ̂N = (λ̂0)N > 0 or cB(x̂) = cB(x̂0) > 0 in this inequality, so that∏
i∈B

c(i)(x̂) ≤
∏
i∈B

c(i)(x̂0) and
∏
i∈N

λ̂(i) ≤
∏
i∈N

(λ̂0)(i).

This shows that x̂0 is a solution of (5.3) and that λ̂0 is a solution of (5.4). Since the
problems in (5.3) and (5.4) have unique solutions, all the sequence {xj} converges to
x̂0 and all the sequence {λj} converges to λ̂0.

6. Discussion. By way of conclusion, we discuss the results obtained in this
paper, give some remarks, and raise some open questions.

Problems with linear constraints. The algorithm is presented with convex
inequality constraints only, but it can also be used when linear constraints are present.
Consider the problem 


min f(x),
Ax = b,
c(x) ≥ 0,

(6.1)

obtained by adding linear constraints to problem (1.1). In (6.1), A is a p× n matrix
with p < n and b ∈ R

p is given in the range space of A.
Problem (6.1) can be reduced to problem (1.1) by using a basis of the null space

of the matrix A. Indeed, let x1 be the first iterate, which is supposed to be strictly
feasible in the sense that

Ax1 = b and c(x1) > 0.

Let us denote by Z an n × q matrix whose columns form a basis of the null space
of A. Then, any point satisfying the linear constraints of (6.1) can be written

x = x1 + Zu with u ∈ R
q.

With this notation, problem (6.1) can be rewritten as the problem in u ∈ R
q:{

min f(x1 + Zu),
c(x1 + Zu) ≥ 0,

(6.2)

which has the form (1.1).
Thanks to this transformation, we can deduce from Assumption 2.1 what are

the minimal assumptions under which our algorithm for solving problem (6.2) or,
equivalently, problem (6.1) will converge.
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Assumption 6.1. (i) The real-valued functions f and −c(i) (1 ≤ i ≤ m) are convex
and differentiable on the affine subspace X := {x : Ax = b} and at least one of the
functions f , −c(1), . . . , −c(m) is strongly convex on X. (ii) There exists an x ∈ R

n

such that Ax = b and c(x) > 0.
With these assumptions, all the previous results apply. In particular, Algo-

rithm Aµ converges r-linearly (if f and c are also C1,1) and q-superlinearly (if f
and c are also C1,1, twice continuously differentiable near x̂µ with locally radially
Lipschitzian Hessian at x̂µ). Similarly, the conclusions of Theorem 5.1 apply if f and
c are also C1,1.

Feasible algorithms and qN techniques. In the framework of qN methods,
the property of having to generate feasible iterates should not be only viewed as a
restriction limiting the applicability of a feasible algorithm. Indeed, in the case of
problem (6.2), if it is sometimes difficult to find a strictly feasible initial iterate, the
matrix to update for solving this problem is of order q only, instead of order n for
an infeasible algorithm solving problem (6.1) directly. When q � n, the qN updates
will approach the reduced Hessian of the Lagrangian Z�(∇2�)Z more rapidly than
the full Hessian ∇2�, so that a feasible algorithm is likely to converge more rapidly.

About the strong convexity hypothesis. Another issue concerns the exten-
sion of the present theory to convex problems, without the strong convexity assump-
tion (Assumption 2.1(i)).

Without this hypothesis, the class of problems to consider encompasses linear
programming (f and c are affine). It is clear that for dealing properly with linear
programs, our algorithm needs modifications, since then γk = 0 and the BFGS formula
is no longer defined. Of course, it would be very ineffective to solve linear programs
with the qN techniques proposed in this paper (Mk = 0 is the desired matrix), but
problems that are almost linear near the solution may be encountered, so that a
technique for dealing with a situation where ‖γk‖ � ‖δk‖ can be of interest.

To accept γk = 0, one can look at the limit of the BFGS formula (2.1) when
γk → 0. A possible update formula could be

Mk+1 :=Mk − Mkδkδ
�
kMk

δ�kMkδk
.

The updated matrix satisfies Mk+1δk = 0 and is positive semidefinite, provided Mk

is already positive semidefinite. The fact that Mk+1 may be singular raises some
difficulties, however. For example, the search direction dx may no longer be defined
(see formula (1.5), in which the matrix M +∇c(x)C(x)−1Λ∇c(x)� can be singular).
Therefore, the present theory cannot be extended in a straightforward manner.

On the other hand, the strong convexity assumption may not be viewed as an im-
portant restriction, because a fictive strongly convex constraint can always be added.
An obvious example of fictive constraint is “x�x ≤ K.” If the constant K is large
enough, the constraint is inactive at the solution, so that the solution of the original
problem is not altered by this new constraint and the present theory applies.

Better control of the outer iterations. Last but not least, the global conver-
gence result of section 5 is independent of the update rule of the parameters εj and
µj . In practice, however, the choice of the decreasing values εj and µj is essential for
the efficiency of the algorithm and would deserve a detailed numerical study.

From a theoretical viewpoint, it would be highly desirable to have an update rule
that would allow the outer iterates of Algorithm A to converge q-superlinearly. Along
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the same lines, an interesting problem is to design an algorithm in which the barrier
parameter would be updated at every step, while having q-superlinear convergence of
the iterates. Such extensions would involve more difficult issues.

The global convergence result proved in this paper gives us some reasons to believe
that it is not unreasonable to tackle these open questions.

Acknowledgments. We would like to thank the referees for their valuable com-
ments. One of them has shown us a direct argument for the last part of the proof of
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Abstract. Search directions for primal-dual path-following methods for semidefinite program-
ming (SDP) are proposed. These directions have the properties that (1) under certain nondegeneracy
and strict complementarity assumptions, the Jacobian matrix of the associated symmetrized Newton
equation has a bounded condition number along the central path in the limit as the barrier param-
eter µ tends to zero; and (2) the Schur complement matrix of the symmetrized Newton equation is
symmetric and the cost for computing this matrix is 2mn3 + 0.5m2n2 flops, where n and m are the
dimension of the matrix and vector variables of the semidefinite program, respectively. These two
properties imply that a path-following method using the proposed directions can achieve the high
accuracy typically attained by methods employing the direction proposed by Alizadeh, Haeberly,
and Overton (currently the best search direction in terms of accuracy), but each iteration requires
at most half the amount of flops (to leading order).

Key words. semidefinite programming, interior point methods, search directions
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1. Introduction. Let Sn be the vector space of n× n real symmetric matrices
endowed with the inner product A•B = Tr(AB). Let svec be an isometry identifying
Sn with R

n(n+1)/2 so that K • L = svec(K)tsvec(L) and let smat be the inverse of
svec. Given any two n × n matrices G and K, we define the linear map G©∗ K :
R
n(n+1)/2 −→ R

n(n+1)/2 by

(G©∗ K) svec(H) = svec((GHKt + KHGt)/2).

Consider the semidefinite program

minX C •X,
Ak •X = bk, k = 1, . . . ,m,

X � 0,
(1)

where b ∈ R
m, Ak, C ∈ Sn, and X � 0 means that X is positive semidefinite. The

dual of (1) is

max
y,S

bty,

m∑
k=1

ykAk + S = C,

S � 0.(2)

We consider primal-dual path-following methods for SDP in which the general
framework in each iteration is as follows (see [15], [17]): Given a current iterate
(X, y, S) and a barrier parameter µ, where X,S are symmetric positive definite, the
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methods find a search direction (∆X,∆y,∆S), so as to generate the next iterate, by
solving the following symmetrized Newton equation (with respect to a given nonsin-
gular matrix P ):

J ∆X = R,(3)

where

J =



0 At I
A 0 0

E 0 F


 , ∆X =



svec(∆X)

∆y

svec(∆S)


 , R =




rp

svec(Rd)

svec(Rc)


 ,(4)

I is the identity matrix of order n(n+ 1)/2, and
At = [svec(A1) · · · svec(Am)] , rp = b−A svec(X),

Rd = C − S −
m∑
k=1

ykAk, Rc = µI − HP (XS).

Here

E = P ©∗ P−TS, F = PX ©∗ P−T ,(5)

and HP : R
n×n −→ Sn is the symmetrization operator with respect to P , defined by

HP (M) = (PMP
−1 + P−tM tP t)/2.

The matrix P used in the symmetrization process HP is generally chosen to
be a function of X and S. For different choices of P (up to left-multiplication by
orthogonal matrices), the search direction generated will be different. Currently, the
most commonly considered search directions in practice are

1. Alizadeh–Haeberly–Overton (AHO) direction, corresponding to P = I [3];
2. Helmberg–Rendel–Vanderbei–Wolkowicz/Kojima–Shindoh–Hara/Monteiro (HKM)

direction, corresponding to P = S1/2 [8], [9], [10];
3. Nesterov–Todd (NT) direction, corresponding to P =W−1/2, where W is the

unique symmetric positive definite matrix satisfying WSW = X [15].
It is observed that a path-following method using the AHO direction (henceforth

called the AHO method) can usually produce a much more accurate solution than
methods using the HKM and NT directions (henceforth referred to as the HKM and
NT methods, respectively). Let κ(J ) be the 2-norm condition number of the matrix
J in (4) and ε be the machine epsilon. Typically, the AHO method can reduce
the duality gap to a level below O(εκ(J )), while the HKM and NT methods can
usually only achieve a level of max[O(√ε),O(εκ(J ))]. A heuristic explanation for
this difference is that the Jacobian matrix J for the AHO method typically has a
bounded condition in the limit as µ tends to zero along the central path, but not for
the other two methods. The AHO method is also observed to be the most efficient (in
terms of number of iterations) among the three. However, the AHO method has the
drawback that each of its iterations is at least two times as expensive as those for the
HKM and NT methods when the directions are computed via the Schur complement
equation. The reason that each iteration of the AHO method is more expensive is
partly because the Schur complement matrixM := AE−1FAt involved in the Schur
complement equation is nonsymmetric for the AHO method but symmetric for the
other two methods.
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Given the strengths and weaknesses of the AHO, HKM, and NT directions, it is
desirable for us to look for search directions that combine the strengths of all these
directions. In this paper, we propose search directions (equivalently, matrices P ) for
which the Jacobian matrices J are shown to have bounded condition numbers along
the central path in the limit as µ tends to zero, under the assumptions of primal and
dual nondegeneracy, and strict complementarity as defined in [2], [3], but the Schur
complement matrices for our directions are symmetric. The computational complexity
of our directions is 2mn3 + 0.5m2n2 flops if A is dense. This is comparable to those
for the HKM and NT directions. In contrast, the complexity for the AHO direction
is 4mn3 +m2n2 flops.

We conducted numerical experiments to compare the performance of a path-
following method using one of our proposed directions (for ease of discussion, this
direction will be called the GT direction) to path-following methods with the same
algorithmic framework but using the AHO, HKM, and NT directions. The numerical
results show that, just like the AHO method, the path-following method using the
GT direction can typically solve a semidefinite program to an accuracy better than
O(εκ(J )). However, just like the HKM and NT methods, each iteration of our method
requires less CPU time than the AHO method. Our method is almost as efficient (in
terms of the number of iterations required to gain a desired accuracy) as the AHO
method. Our method is also robust in that all the SDP problems considered in our
experiments, a total of 70 random instances from seven different classes of semidefinite
programs with n,m ≈ 100, are successfully solved.

An issue that is closely related to the implementation of a path-following algo-
rithm for SDP is the exploitation of possible sparsity of the data A. In this paper, we
also discuss this issue for algorithms employing the AHO, HKM, and NT directions
and the directions we proposed. An analogous discussion, but different from ours, for
the HKM and NT directions can also be found in [5].

Our paper is motivated by the work of Gu in [7]. In that paper, the author carried
out stability analysis of the Schur complement approach for computing the AHO and a
subfamily of the Monteiro–Zhang (MZ) directions [13] which he called the Todd–Toh–
Tütüncü (TTT) directions. (This subfamily is also called the commuting class in [13],
where the authors also give an explicit parameterization of these directions.) Based
on results from the stability analysis, Gu proposed a direction (henceforth called Gu’s
direction) in the TTT family that is able to achieve high accuracy solutions through
limited computational testing. However, there was no discussion of the conditioning
of the Jacobian matrix associated with this direction along the central path.

Our proposed directions also belong to the TTT family, and they include Gu’s
direction as a special case. To avoid possible confusion, we should mention that the
objective of this paper is different from that of [7]. Here, our objective is the derivation
of TTT directions that can achieve high accuracy solutions through the analysis of
the conditioning of the associated Jacobian matrices and the implementation and per-
formance of practical path-following methods employing these directions. In contrast,
the main objective of [7] is the stability analysis of the Schur complement approach
for computing the AHO and TTT directions. As a byproduct of the stability analysis,
Gu derived his direction based on the desire to minimize the condition number of the
matrices P in the TTT family.

Recently, Monteiro and Zanjácomo [12] also reported computational results on
the performance of a search direction (called the S-MT direction) that can achieve
solutions of high accuracy, but each iteration has roughly the same computational
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complexity as the AHO direction. By employing a hybrid strategy between the S-MT
direction and another direction known as the S-Ch-MT direction, they were able to
reduce the complexity to no less than 5

3mn
3 +m2n2. In their implementations, they

observed that the hybrid direction is comparable to the AHO, HKM, and NT direc-
tions in terms of efficiency, and the number of flops used per iteration falls between
that for the AHO direction and the HKM and NT directions. The CPU time spent per
iteration is not reported in their paper. However, it is not obvious that the reduction
in the number of flops for the hybrid direction will indeed translate into savings in
CPU time since the overhead involved in their implementation may be significant. We
add that in [12] there is no discussion of the conditioning of the associated Jacobian
matrices.

Theoretical properties such as primal-dual symmetry and scale invariance of
search directions for interior point methods in SDP are investigated by Todd [14].
Some 20 directions are considered, including the AHO, HKM, and NT directions,
Gu’s direction proposed in [7], the GT direction proposed in this paper, and the S-
MT and S-Ch-MT directions in [12]. Todd showed that the first five directions just
mentioned satisfy all but a small number of desirable theoretical properties. Based
on limited computational testing, he observed that path-following methods using the
first five directions also perform the best in terms of robustness and accuracy among
the 20 directions considered. Among these five directions, the computational perfor-
mance of the AHO direction is the best, followed by the GT direction, Gu’s direction,
and the HKM and NT directions. His computational results confirmed our finding
from the numerical experiments presented in this paper.

Throughout, we shall assume X and S to be symmetric positive definite, unless
stated otherwise. The 2-norm for vectors and matrices will be used throughout.

2. Search directions in the TTT family. The class of search directions gen-
erated by matrices P for which the matrices E−1F are symmetric is called the TTT
family in [7]. The set of nonsingular matrices P such that the associated matrix E−1F
is symmetric can be characterized as follows.

Lemma 2.1. The matrix E−1F is symmetric if and only if the matrix P (up
to left-multiplication by an orthogonal matrix) satisfies the condition that the matrix
PXSP−1 is symmetric.

Proof. For the proof, see [15].
Note that the TTT directions always exist if X and S are symmetric positive

definite. In contrast, the AHO direction does not always exist without imposing
further assumptions on X and S; see [15].

Now we shall derive our search directions. Note that our interest here is not to
give an explicit parameterization of the matrices P in the TTT family but merely on
specific search directions in this family. Readers who are interested in the explicit
parameterization of the TTT family can refer to [13] for the details.

Consider the SVD of X1/2S1/2

X1/2S1/2 = UΣV t.(6)

Suppose

U tX1/2 = ΨḠ, V tS1/2 = ΦH̄,(7)

where Ψ,Φ are positive diagonal scaling matrices chosen so that the rows of Ḡ and H̄
all have unit norms. Let D be the diagonal matrix defined by

D = Σ(ΦΨ)−1.(8)
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Then

ḠH̄t = D.(9)

In the rest of the paper, we shall consider matrices P of the form

P = Γ−1H̄ = Γ−1DḠ−t,(10)

where Γ = Diag(γ1, . . . , γn) is a positive diagonal matrix whose diagonal elements
are given real-valued functions of X and S. It is easy to check that PXSP−1 = Σ2

for matrices P of the form given in (10). Thus by Lemma 2.1, our search directions
are in the TTT family. For convenience, we shall call the class of search directions
generated by matrices P of the form given in (10) the TTT∗ subfamily.

It is clear that different choices of Γ would lead to different search directions. For
example, the choices Γ = Φ−1 and Γ = Φ−1Σ1/2 lead to the HKM and NT directions,
respectively. For Γ = I, we obtain the search direction proposed by Gu in [7]. In our
numerical experiments in section 6, we will consider the direction corresponding to
Γ = D1/2. For easy reference, we will refer to this direction as the GT direction.

For the choice of P in (10), the matrices E and F are given as follows.
Lemma 2.2. Suppose P is given by (10). Then the matrices E and F in (5)

become

E = (ΓΦ2 ©∗ Γ−1)(H̄ ©∗ H̄) = DE (Ḡ−t©∗ Ḡ−t),(11)

F = DF (Ḡ©∗ Ḡ),(12)

where

DE = ΓDΦ2 ©∗ Γ−1D, DF = Γ−1DΨ2 ©∗ ΓD−1.

Proof. Let B = Γ−1Φ−1. Then P = B(V tS1/2), and we have from (5) that

E = B(V tS1/2)©∗ B−1(V tS1/2), F = BΣ(U tX1/2)©∗ B−1Σ−1(U tX1/2).

By substituting B = Γ−1Φ−1 and (7), (8), (9) into the above equations, we get (11)
and (12).

Proposition 2.3. The direction corresponding to Γ = D1/2 is primal-dual sym-
metric in the sense defined in [14].

Proof. For the proof see [14].

3. Conditioning of the Jacobian along the central path. In this section,
we shall consider X = Xµ and S = Sµ on the central path, that is, XµSµ = µI with
µ > 0. We will denote the matrices D and Γ by Dµ and Γµ, respectively, to show
their dependence on µ explicitly.

Let Qµ be an orthogonal matrix that simultaneously diagonalizes Xµ and Sµ
so that

Xµ = Qµ Λ
X
µ Q

t
µ, Sµ = Qµ Λ

S
µ Q

t
µ,(13)

where the eigenvalue matrices

ΛXµ = Diag(λµ1 , . . . , λ
µ
n), ΛSµ = Diag(ωµ1 , . . . , ω

µ
n)
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satisfy λµi ω
µ
i = µ and the eigenvalues are ordered such that

λµ1 ≥ λµ2 ≥ · · · ≥ λµn, ωµ1 ≤ ωµ2 ≤ · · · ≤ ωµn.
Let the Jacobian matrix in (4) for the point (Xµ, Sµ) be denoted by Jµ and let
Qµ = Qµ©∗ Qµ. On the central path, Jµ can be expressed in terms of the eigenvector
matrix Qµ and the eigenvalue matrices ΛX and ΛS as follows.

Theorem 3.1. Suppose XµSµ = µI with µ > 0. Then Dµ = I and

Jµ = Diag(Qµ, I, I) J̃µ Diag(Qtµ, I,Qtµ),(14)

where Diag(G,H,K) denotes the block diagonal matrix with blocks G,H,K, and

J̃µ =




0 (AQµ)t I
AQµ 0 0

ΓµΛ
S
µ ©∗ Γ−1

µ 0 Γ−1
µ Λ

X
µ ©∗ Γµ


 .(15)

Proof. Given the decompositions of Xµ and Sµ in (13), we have

X1/2
µ = Qµ(Λ

X
µ )

1/2Qtµ, S1/2
µ = Qµ(Λ

S
µ)

1/2Qtµ,

and the resulting SVD of X
1/2
µ S

1/2
µ is

X1/2
µ S1/2

µ = Qµ(Λ
X
µ Λ

S
µ)

1/2Qtµ = QµΣQ
t
µ.

By our definitions, we have Ψ = (ΛXµ )
1/2 and Ḡ = Qtµ. Similarly, we have Φ = (Λ

S
µ)

1/2

and H̄ = Qtµ. Thus Dµ = Σ(ΦΨ)
−1 = I, and hence the matrices E and F in (11) and

(12) become

E = (ΓµΛ
S
µ ©∗ Γ−1

µ )Qtµ, F = (Γ−1
µ Λ

X
µ ©∗ Γµ)Qtµ.

With the above equations, (14) is readily verified.
Under the assumptions that there exist a primal feasible point X � 0 for (1)

and a dual feasible point (y, S) with S � 0 for (2), and that the set {A1, . . . , Am} is
linearly independent, it is known that the following limit exists [9]:

lim
µ→0

(Xµ, yµ, Sµ) = (X∗, y∗, S∗),(16)

and (X∗, y∗, S∗) is a solution of the primal and dual semidefinite programs. Let Q∗
be a limit point (not necessarily unique) of the set {Qµ : µ > 0}. Then Q∗ is an
orthogonal matrix that simultaneously diagonalizes X∗ and S∗, with

X∗ = Q∗ ΛX∗ Q
t
∗, S∗ = Q∗ ΛS∗ Q

t
∗,(17)

where

ΛX∗ = Diag(λ∗1, . . . , λ
∗
n), ΛS∗ = Diag(ω∗

1 , . . . , ω
∗
n)

satisfy λ∗iω
∗
i = 0 and

λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗n, ω∗
1 ≤ ω∗

2 ≤ · · · ≤ ω∗
n.
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We are now in the position to prove the main theorem of our paper.
Theorem 3.2. Suppose the solution (X∗, y∗, S∗) of (1) and (2) satisfies the

primal and dual nondegeneracy and the strict complementarity conditions defined in
[3]. Assume that limµ→0 Γµ = Γ∗ and the 2-norm condition number κ(Γ∗) < ∞.

Let Q∗ = Q∗ ©∗ Q∗ and J̃∗ be the matrix in (15) with µ replaced by ∗; then J̃∗ is
nonsingular and κ(Jµ) satisfies

lim
µ→0

κ(Jµ) = κ(J̃∗) < ∞.(18)

Hence there exists a δ > 0 such that κ(Jµ) ≤ 2κ(J̃∗) for all µ ≤ δ.
Proof. For readability, we divide the proof into three parts.
(a)Under the nondegeneracy and strict complementarity assumptions, andκ(Γ∗)<

∞, the matrix J̃∗ is nonsingular; a proof of this can be found in Theorem 1 of [3],
with slight modifications.

(b) It is easily shown that J̃µ → J̃∗ as µ→ 0. Since J̃∗ is nonsingular, the matrix
J̃µ is nonsingular and

‖J̃−1
µ − J̃−1

∗ ‖ ≤ ‖J̃−1
∗ ‖2 ‖J̃µ − J̃∗‖

1− ‖J̃−1∗ ‖ ‖J̃µ − J̃∗‖
for µ sufficiently small. (See [6, p. 58] for a proof of the above inequality.) This implies

that J̃−1
µ → J̃−1

∗ as µ→ 0.
(c) Noting that Qµ is orthogonal, we have

κ(Jµ) = ‖Jµ‖ ‖J−1
µ ‖ = ‖J̃µ‖ ‖J̃−1

µ ‖.

Since part (b) implies ‖J̃µ‖ ‖J̃−1
µ ‖ → ‖J̃∗‖ ‖J̃−1

∗ ‖ as µ→ 0, (18) is established.
To be precise in the above proof, we should actually present the proof as follows.

Given any sequence {µk} where µk → 0 as k →∞, extract a subsequence {µkj} such
that Qµkj

→ Q∗ as j →∞. Then prove (a)–(c) for that subsequence. Note that since
Q∗ is unique up to the signs of its columns, different Q∗’s still lead to the same limit
κ(J̃∗).

For the choice Γ = Dα where α ∈ R, in particular, Γ = I, Γ = D1/2, and Γ = D,
we have Γµ = I for (X,S) on the central path. Thus, the condition of Theorem 3.2 on
Γµ is satisfied, and hence the associated Jacobian matrices Jµ have bounded condition
numbers along the central path in the limit as µ→ 0.

4. Computation of the TTT∗ directions. The matrix P given in (10) de-
pends on the matrices D, Ḡ, and H̄. They in turn depend on the symmetric square
roots of X and S. But in practice, we can avoid the costly step of explicitly forming
these symmetric square roots. The mechanics are as follows. Suppose we have the
following Cholesky factorizations and SVD:

X = GtG, S = HtH, GHt = U1ΣV1.(19)

Then X1/2 = QXG and S
1/2 = QSH for some orthogonal matrices QX and QS . In

addition, the SVD of X1/2S1/2 is

X1/2S1/2 = QXGH
tQS = (QXU1)︸ ︷︷ ︸

U

Σ (QSV1)
t︸ ︷︷ ︸

V t

,



230 KIM-CHUAN TOH

and

ΨḠ := U tX1/2 = U t1G, ΦH̄ := V tS1/2 = V t1H.

Thus the matrices D, Ḡ, and H̄ can be computed by using the Cholesky factorizations
of X and S instead of their symmetric square roots.

Next we shall discuss the computation of the search direction (∆X,∆y,∆S) in a
path-following method via the Schur complement approach. In this approach, block
Gaussian elimination is applied to (3) to eliminate the unknowns ∆X and ∆S to
obtain an equation (known as the Schur complement equation) with unknown ∆y:

M∆y = h,

where

M = A (E−1FAt),(20a)

h = rp +AE−1Fsvec(Rd)−AE−1svec(Rc).(20b)

To compute the search direction (∆X,∆y,∆S), the unknown ∆y is first computed
from the above Schur complement equation, and then ∆X and ∆S are computed
from the equations

∆S = Rd − smat(At∆y),
∆X = smat(E−1svec(Rc)− E−1Fsvec(∆S)).

}
(20c)

For the TTT∗ directions, with the matrices E and F given as in Lemma 2.2,
substitution into (20a) and (20c) gives

M = A [(Ḡt©∗ Ḡt)DM (Ḡ©∗ Ḡ)At] ,(21a)

where DM is the diagonal matrix

DM = D−1
E DF = Diag

(
svec

(
d2i ψ

2
i γ

2
j + d

2
j ψ

2
jγ

2
i

d2i d
2
j [φ

2
i γ

2
i + φ

2
jγ

2
j ]

))
,

and

h = rp +A(Ḡt©∗ Ḡt)DM svec(ḠRdḠ
t)−A(Ḡt©∗ Ḡt)D−1

E svec(Rc),(21b)

∆S = Rd − smat(At∆y),
∆X = Ḡt smat

(D−1
E svec(Rc) − DM svec(Ḡ∆S Ḡt)

)
Ḡ.

}
(21c)

If we let Ã be the matrix defined by
Ã = A (Ḡt©∗ Ḡt) = [

svec(ḠA1Ḡ
t) · · · svec(ḠAmḠ

t)
]t
,(22)

then (21a)–(21b) can, respectively, be rewritten as

M = ÃDM Ãt,(23a)

h = rp + ÃDM svec(ḠRd Ḡ
t) − ÃD−1

E svec(Rc).(23b)

Thus the Schur complement matrix M can be computed via either (21a) or (23a).
Depending on the formula used to obtain M, a different computational complexity
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for the search direction (∆X,∆y,∆S) will result. This will be the subject of the next
few paragraphs.

In each iteration of a path-following method applied to a problem with dense data,
the computation of the Schur complement matrixM is by far the most expensive step,
with complexity that is O(min(n,m)) times more expensive than the rest. Thus, we
will concentrate our discussion just on the computational complexity of the Schur
complement matrixM.

For the TTT∗ directions, we will show in Appendix A that if M is computed
via (23a) by first computing and storing Ã, then the complexity of each iteration is
2mn3 + 0.5m2n2 (assuming that Ã is dense and ignoring lower order terms in m and

n), where the first term comes from computing Ã and the second from computingM
once Ã is obtained, with the symmetry ofM taken into account.

However, we should mention that by computingM via Ã from (23a), one cannot
take advantage of possible sparsity of A since Ã is usually dense even if A is sparse.
If one were to take advantage of possible sparsity of A, then (21a) should be used
instead, and this will give a complexity of 41

3mn
3 + 0.5m2n2 if the sparsity of A is

ignored. This complexity is also derived in Appendix A. Of course, when the sparsity
of A is taken into account, the complexity just given would be an overestimate, and it
is not immediately obvious which formula is cheaper for computingM. In practice,
one may carry out an a priori analysis similar to the analyses applied to the HKM
and NT directions in [5] to decide which way is best to compute M. However, as
the main purpose of this paper is not to investigate the issue of exploiting sparsity
of A in the computation of M, we shall not go into such an analysis in detail. The
reader is referred to Appendix B for a brief discussion of the issue of exploiting possible
sparsity of A when computing the Schur complement matrixM for the various search
directions.

Note that the HKM and NT directions, being members of the TTT∗ family, also
share the same complexities given in the previous paragraphs if they are computed
via (23a) or (21a). But for these two directions, (23a) and (21a) can be simplified,
and typically these two directions are computed via the simplified formulas where
different computational complexities are obtained; see Appendix A for details.

For the sake of comparison, Table 1 summarizes the computational complexities
of the AHO direction, the TTT∗ directions proposed in section 2, and the HKM and
NT directions. These complexities are derived in Appendix A.

Table 1
Computational complexity of various search directions. The second and third columns corre-

spond to the complexities obtained whenM is computed via (23a) and (20a), respectively. We count
one addition and one multiplication each as one flop. Note that all the search directions, except the
HKM direction, require an eigenvalue decomposition of a symmetric matrix in their computations.

Directions
Complexity by
using (23a)

Complexity by
using (20a)

AHO 4mn3 +m2n2 6 1
3
mn3 +m2n2

TTT∗ 2mn3 + 0.5m2n2 4 1
3
mn3 + 0.5m2n2

HKM 2mn3 +m2n2 4mn3 + 0.5m2n2

NT mn3 + 0.5m2n2 2mn3 + 0.5m2n2
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So far, we have concentrated our discussion only on the computational complex-
ities of various directions when computed via (23a) and (21a). However, the storage
requirement for each approach should also be taken into consideration. Although
computing the various directions using (23a) can lead to lower complexity compared
to using (21a), we should note that the former requires additional storage space to

store the matrix Ã, which is generally dense even if A is sparse. The storage space
required by (23a) is at least twice the amount required by (21a). In cases where

m and n are large, Ã is generally a large dense matrix; this implies that storing Ã
would require a huge amount of additional storage space. Therefore, if storage space
is limited, one should not use (23a).

5. Numerical stability of the Schur complement approach for comput-
ing the TTT∗ directions. In this section, we will briefly discuss the numerical
stability of the Schur complement approach for computing the TTT∗ directions. Our
intention here is not to repeat the detailed analysis already given in [7] on these topics
but to strengthen some of the results obtained in [7] for our search directions. In par-
ticular, we shall show that the achievable accuracy in the duality gap for our methods
satisfies X • S = O(εκ(J̃∗)) when κ(J̃∗) is finite.

Assume that the factorizations of X and S are computed by a backward stable
algorithm, and ∆y is computed from the Schur complement equation via Cholesky
factorization. With M, h, and ∆S, ∆X computed via the expressions presented in
section 4, it can be shown by adapting the error analysis for the TTT methods in [7]

that the computed search direction ∆̂X satisfies

(JS + δJS)∆̂X = RS + δRS ,

where S is a positive diagonal scaling matrix chosen such that the rows of JS := SJ
have unit norms. The perturbations δJS and δRS satisfy

‖δRS‖ = O(εκ(Σ) ‖X‖), ‖δJS‖ = O(εκ(Σ)[κ(X) + κ(S)]).(24)

Note that for (X,S) close to the central path, we have κ(Σ) = O(1).
Now, from standard perturbation analysis of solutions of linear systems of equa-

tions, the computed search direction ∆̂X must satisfy the inequality

‖∆̂X −∆X‖
‖∆X‖ ≤ κ(JS)

1− κ(JS) ‖δJS‖/‖JS‖
(‖δJS‖
‖JS‖ +

‖δRS‖
‖RS‖

)
.(25)

If ‖δJS‖ is so large that
κ(JS) ‖δJS‖/‖JS‖ = Ω(1),(26)

then the right-hand side of (25) becomes Ω(1) or even undefined, implying that the

computed search direction ∆̂X could be completely different from the actual direction
∆X , and consequently the algorithm will not make any progress. From (24) and (26),
we would expect an algorithm to stop making progress when

min(λmin(X), λmin(S)) = O(ε)κ(JS)
max(‖X‖, ‖S‖)

‖JS‖ = O(ε)κ(JS).(27)

Using a result of [4], namely,

κ(JS) ≤
√

m + n(n + 1) min{κ(DJ ) : D is a diagonal matrix} ≤
√

m + n(n + 1) κ(J ),
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(27) becomes

min(λmin(X), λmin(S)) = O(ε)κ(J ).(28)

Let µ = X • S/n. Under the assumption of nondegeneracy and strict comple-
mentarity, we have λmin(X) = Ω(µ) = λmin(S) if (X,S) is close to the central path.
By (28), we would expect the achievable accuracy of an algorithm that computes its
search direction via the Schur complement equation to be

µ = O(ε)κ(J ).
For the search directions corresponding to Γ = Dα where α ∈ R, Theorem 3.2 implies
that κ(J ) = O(κ(J̃∗)) for (X,S) close to the central path and when µ is small. In
this case, the achievable accuracy of an algorithm using these search directions is
µ = O(ε)κ(J̃∗).

We end this section with two numerical examples showing κ(J ) and κ(JS) for
various search directions with (X,S) that lie approximately on the central path. The
numerical values of κ(J ) and κ(JS) are given in Table 2. In the first example, (X,S)
come from a random semidefinite program with n = 20, m = 20 (generated from the
routine randsdp.m provided in [16]), and ‖XS−µI‖F = 2.2× 10−13 with µ = 10−10.
In the second example, (X,S) again come from a random semidefinite program, but
n = 20, m = 40, and ‖XS − µI‖F = 4.8 × 10−13 with µ = 10−10. Based on the
numerical results, we can see that the GT direction is distinctively different from
the HKM and NT directions in that the condition number of the Jacobian (scaled
Jacobian) associated with the former stays bounded when µ is very small while those
associated with the latter blow up.

Table 2
Condition number of the Jacobian and scaled Jacobian for various search directions.

Example 1 Example 2
Directions κ(J ) κ(JS) κ(J ) κ(JS)

AHO 1.18 × 104 1.45 × 103 3.67 × 103 1.29 × 103

GT 2.49 × 104 2.08 × 103 1.06 × 104 1.84 × 103

HKM 1.32 × 108 9.94 × 107 5.14 × 107 5.51 × 107

NT 3.31 × 1010 7.56 × 108 1.02 × 1010 2.12 × 109

6. Numerical experiments. In this section, we present numerical results show-
ing the performance of a path-following method using the search direction correspond-
ing to Γ = D1/2 (or P = D−1/2H̄), where the Cholesky factorizations X = GtG and
S = HtH are used to compute D, Ḡ, and Ḡ. We prefer this direction to those
corresponding to Γ = I (proposed by Gu in [7]) and Γ = D because the former is
primal-dual symmetric but the latter are not.

We compare our method to the AHO, HKM, and NT methods on seven classes
of SDP problems. For each class, we considered 10 random instances. All the com-
putations were done in Matlab. Here are the semidefinite programs we considered
(the reader is referred to [16] for a description of these problems):
1. Random semidefinite program (n = 100, m = 100).
2. Norm minimization problem (n = 200, m = 26).
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3. Chebyshev approximation of a matrix (n = 200, m = 26).
4. Maxcut problem (n = 100, m = 100).
5. Educational testing problem (n = 200, m = 100).
6. Lovász θ function for a graph (n = 50, m ≈ 610).
7. Logarithmic Chebyshev approximation problem (n = 900, m = 201).
All the methods used the algorithmic framework (with Mehrotra-corrector) of

Algorithm IPC in [16]. For the sake of completeness, we describe Algorithm IPC
in Appendix A. The reader is referred to [15] for implementation details on the
computation of the AHO, HKM, and NT directions. The computation of the Schur
complement matrix for the various search directions is based on the formulas given
in Appendix A. We have created Matlab C-MEX routines to compute the various
specialized matrix products given in Lemmas A.1 and A.2 in order to realize the
computational complexities given there. We used the default infeasible starting point
described in [16] for all the numerical experiments.

As discussed in section 4, there are two mathematically equivalent ways for com-
puting the Schur complement matrix for the search directions we consider in this
section. In our experiments, the Schur complement matrix for each search direction
is computed via the formula that gives a lower flops count. The reader is referred to
Appendix B for details.

Our numerical results are presented in Table 2. The results show the following:
1. The method employing the GT direction (henceforth called the GT method)

is generally slightly more efficient than the HKM and NT methods. It is less efficient
than the AHO method, but on the average, it takes about one iteration more, except
for the educational testing problem (ETP).

2. As shown in the last four columns of Table 3, the achievable accuracy in the
duality gap for the GT method is almost the same as that for the AHO method, and
the accuracies for both are much better than those for the HKM and NT methods.

3. The CPU time taken for the GT method to reduce the duality gap by a factor
of 1010 is smaller than the time taken by the AHO method. For problems where A is
dense and m ≈ n, namely, the random SDP problem, the norm minimization problem
and the Chebyshev approximation problem of a matrix, the savings in CPU time range
from about 10% to 30%. For the problems where A is sparse and m ≈ n, namely,
the maxcut and ETP problems, the savings in CPU time is about 40%. For problems
where A is sparse and m� n, namely, the Lovász theta function problem, the savings
in CPU time is about 10%. For problems with block diagonal structure consisting
of a large number of small blocks, namely, the logarithmic Chebyshev problem, the
savings in CPU time is about 20%. But compared to the HKM and NT methods, the
GT method is more expensive on all the problems tested.

7. Conclusion. We proposed search directions for path-following algorithms in
SDP that can achieve high accuracy solutions. The computational complexity per iter-
ation for these directions is half of that for the AHO direction. The condition numbers
of the Jacobian matrices associated with our directions are shown to be bounded in
the limit as the barrier parameter tends to zero, under suitable nondegeneracy and
strict complementarity conditions. The practical performance of one of our directions
(the GT direction) is demonstrated through extensive numerical experiments. The
efficiency of this direction is comparable to the AHO direction, currently the most
efficient. The CPU time required to reduce the duality gap by a fixed factor for the
GT direction is either comparable to or smaller than that for the AHO direction, with
savings ranging from about 10% to 40% on the SDP problems we tested.
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Table 3
Computational results on different classes of SDP for Algorithm IPC. Ten random instances are considered for each class. The computations were done in

Matlab on a DEC AlphaStation/500 (333MHz). The duality gap X • S is the gap delivered by the algorithm when no further progress can be made due to the
numerical stability problem. Note that the primal and dual infeasibilities were reduced to a level smaller than 10−13 for all the problems.

Average no. of iterations
to reduce the duality gap by 1010

Average CPU time (mins.)
to reduce the duality gap by 1010

Mean(| log10X • S|)

AHO GT HKM NT AHO GT HKM NT AHO GT HKM NT

Random
SDP

10.2 11.0 11.4 10.9 2.5 1.7 1.6 1.2 8.0 8.0 7.3 7.0

Norm min.
problem

9.3 10.9 11.1 12.1 4.2 3.7 2.4 2.9 10.2 12.0 9.5 8.8

Cheby. approx.
of a matrix

10.8 11.0 11.5 12.4 4.9 3.8 2.5 3.0 13.2 13.7 10.8 10.6

Maxcut 10.0 11.0 11.6 11.8 1.4 0.8 0.4 0.4 10.3 10.2 8.5 8.0

ETP 19.6 24.6 25.1 25.0 3.0 1.9 1.0 1.0 7.8 7.4 6.5 6.3

Lovász θ
function

11.6 12.1 12.3 12.2 3.5 3.1 2.3 2.0 11.2 11.2 10.2 10.0

Log. Cheby.
problem

15.0 16.7 16.7 16.6 4.0 3.1 2.3 2.3 8.8 8.7 8.9 8.8
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Appendix A. The complexities (without taking possible sparsity of A into ac-
count) in computing the Schur complement matrix M for various search directions
are presented in Table 1. Assuming that m and n are sufficiently large so that terms
with order lower than mn3 or n2m2 can be ignored, these complexities will now be
derived. We begin with two lemmas which will be useful for deriving the complexities.

Lemma A.1. Suppose A and B are real n× n matrices. Let C = AB and ω(C)
be the number of flops (to leading order) required to compute C. Then

ω(C) =




n3 if C is known a priori to be symmetric,

n3 if either A or B is a triangular matrix,

n3/3 if both A,B are upper triangular or both are lower triangular,

2n3/3 if A is upper triangular and B is lower triangular, or vice versa.

Proof. The proof is omitted.
Lemma A.2. Let A be a real n×n symmetric matrix. Suppose the Aasen decom-

position (which costs n3/3 flops to compute) of A is given, that is, A = P tLDLtP ,
where L is a unit lower triangular matrix, D is a symmetric tridiagonal matrix, and
P is a permutation matrix [1]. Then for any real n×n matrix M , the matrix product
MAM t can be computed in 2n3 flops to leading order.

Proof. We have MAM t = (MP tL)D (MP tL)t = N DN t, where N = MP tL.
The cost for computing N is n3 flops since MP t can be formed by permuting the
columns of M and L is lower triangular. With the matrix N , the matrix N DN t can
be computed with just n3 flops since D is tridiagonal and N DN t is symmetric. This
completes the proof.

For the search directions we consider in this paper, the Schur complement matrix
M can be computed via two mathematically equivalent expressions. The first is

M = Ã B̃t,(29)

where Ã =
[
svec(Ã1) · · · svec(Ãm)

]t
, B̃ =

[
svec(B̃1) · · · svec(B̃m)

]t
,

and the second is

M = A Bt,(30)

where B = [svec(B1) · · · svec(Bm)]
t
.

To compute M via the first expression (29), the matrix Ã is first computed and
stored (thus incurring additional storage); then the kth column of M is computed

from Ã svec(B̃k). The computation ofM via the second expression (30) is straight-
forward and does not incur additional storage. In this case, the kth column ofM is
computed simply from A svec(Bk).

The matrices Ãk, B̃k, and Bk for the various directions and the complexity in
computingM from (29) and (30) are given as follows. Throughout, we assume that
the Aasen decomposition of Ak is computed a priori.

TTT∗ directions. Referring to (7), (8), and (9) for the meaning of various
variables, we have

Ãk = ḠAk Ḡ
t, B̃k =D©· Ãk,

Bk = Ḡt B̃k Ḡ,
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where ©· denotes the Hadamard product (elementwise product) and

D =

(
d2i ψ

2
i γ

2
j + d

2
j ψ

2
jγ

2
i

d2i d
2
j [φ

2
i γ

2
i + φ

2
jγ

2
j ]

)
.

By Lemma A.2, Ãk can be computed with 2n
3 flops given the Aasen decomposition

of Ak. The matrix B̃k is obtained simultaneously since it is just a scaling of Ãk. Now,
given B̃k, the matrixBk can be computed with 2

1
3n

3 flops via the Aasen decomposition

of B̃k. Thus forming Ã and B̃ takes a total of 2mn3 flops, and forming B takes 4 1
3mn

3

flops. With the matrices Ã and B̃, or B computed, forming M from either (29) or
(30) would take another 0.5m2n2 flops, with the symmetry ofM taken into account.
This completes the derivation of computational complexity presented in Table 1 for
the TTT∗ directions.

AHO direction. Let S = QDQt be an eigenvalue decomposition of S, where Q
is orthogonal and D is diagonal. Let X̃ = QtXQ. Then

Ãk = QtAkQ, B̃k =
1

2
D©·

[
X̃Ãk + ÃkX̃

]
,

Bk = QB̃kQ
t,

where

D =

(
2

di + dj

)
.

As before, Lemma A.2 implies that Ãk can be computed with 2n
3 flops. Given Ãk,

the matrix B̃k can be computed with another 2n
3 flops and, in turn, Bk can be formed

with an additional 21
3n

3 flops from B̃k. Thus the computation of Ã and B̃ takes a total
of 4mn3 flops and the computation of B takes 6 1

3mn
3 flops. Finally, formingM from

either B or Ã and B̃ would take another m2n2 flops. This explains the complexity for
the AHO direction presented in Table 1.

HKM direction. Suppose X = GtG and S = HtH are the Cholesky factoriza-
tions of X and S, respectively. Then

Ãk = GAkH
−1, B̃k = Ãk,

Bk =
1

2

[
S−1AkX + (S

−1AkX)
t
]
.

By Lemma A.1, Ãk can be obtained with 2n
3 flops since G and H−1 are triangular

matrices. The matrix B̃k is obtained at the same time for free. Thus computing Ã
and B̃ takes a total of 2mn3 flops. But note that Ãk is not a symmetric matrix. This
implies that forming each entry of M from Ã and B̃ takes 2n2 flops rather than n2

flops. Hence given Ã and B̃, computingM from (29) would take m2n2 flops. To be
mathematically precise, the notation svec in (29) should be replaced by an isometry
between n× n matrices and column vectors of length n2.

The computation of Bk involves two ordinary matrix products, thus taking 4n
3

flops, and forming B would take 4mn3 flops. Note that Bk is symmetric in this case.
Hence, given B, formingM from (30) would take 0.5m2n2 flops.

Notice that to computeM for the HKM direction, no SVD or eigenvalue decom-
position is necessary.



238 KIM-CHUAN TOH

NT direction. Let Ak = Rk +R
t
k, where Rk is upper triangular. Let W be the

symmetric positive definite matrix that satisfies the equation WSW = X. Suppose
W = U tU is the Cholesky factorization of W . Then

Ãk = UAkU
t = URkU

t + (URkU
t)t, B̃k = Ãk,

Bk = WAkW.

By Lemma A.1, Ãk can be obtained with n
3 flops since URk can be computed with

n3/3 flops and (URk)U
t with 2n3/3 flops. Of course, there is no extra cost in getting

B̃k. Thus Ã and B̃ can be computed with just mn3 flops, and M is formed with
another 0.5m2n2 flops from (29).

On the other hand, the matrix Bk can be computed with at most 2n
3 flops.

Therefore, forming B takes at most 2mn3 flops. Again, forming M would take an
additional 0.5m2n2 flops.

So far as we are aware, the computational complexities given here for the TTT∗

directions and the AHO direction are new. But some of those for the HKM and NT
directions are adapted from [12]. After this paper was submitted for publication,
Monteiro and Zanjácomo revised [12] and showed that the HKM and NT directions
can be computed, respectively, in 4mn3/3 + m2n2 and 2mn3/3 + m2n2/2 flops if
(23a) is used and, respectively, in 10mn3/3 +m2n2/2 and 5mn3/3 +m2n2/2 flops if
(20a) is used. Thus, there is a reduction of mn3/3 or 2mn3/3 flops compared to the
complexities derived in this appendix. However, this reduction in the number of flops
may not translate into savings in CPU time because of the extra overhead incurred
in obtaining better complexities. As such, we prefer to use the procedures described
in this appendix to compute the HKM and NT directions.

Appendix B. In this appendix, we compare the computational complexities of
the Schur complement matrix M for the AHO, HKM, NT, and TTT∗ directions
when computed via (29) and (30), with possible sparsity of A taken into account.
Throughout, we assume that X and S are dense matrices. We shall also assume that
storage space is abundant so that Ã can be stored without difficulty ifM is computed
via (29).

Let ρk be the fraction of nonzero elements of Ak. We will first derive a condition
to decide whether (29) or (30) should be used to compute the TTT∗ directions.

TTT∗ directions. Let ω(Ãk) be the number of flops required to form Ãk. Noting
that each Ãk is generally dense even if Ak is sparse when X and S are dense matrices,
the number of flops ω(ÃB̃t) required to formM = ÃB̃t is then given by

ω(ÃB̃t) =
m∑
k=1

ω(Ãk) +
1

2
n2m2,(31)

where the first term on the right-hand side comes from computing Ãk for each k and
the second comes from the dense matrix-matrix multiplication ÃB̃t. On the other
hand, the number of flops required to formM = ABt is given by

ω(ABt) =
m∑
k=1

ω(Ãk) +
7

3
mn3 +

(
m∑
k=1

k∑
i=1

ρi

)
n2,(32)

where the first and second terms on the right-hand side come from computing Ãk
and Bk, respectively, for each k, and the third term comes from the matrix-matrix
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multiplication ABt where A is possibly sparse. Comparing (31) and (32), it is readily
seen that ω(ÃB̃t) is larger than ω(ABt) when

7

3

n

m
+

1

m2

m∑
k=1

k∑
i=1

ρi <∼
1

2
.(33)

Thus, for the special case where each ρk = ρ, ω(ÃB̃t) is larger than ω(ABt) when
n

m
<∼

3

14
(1− ρ).

AHO direction. Let ω(Ãk) be the number of flops required to form Ãk. An
analysis similar to what we had just given for the TTT∗ directions will give

ω(ÃB̃t) =
m∑
k=1

ω(Ãk) + 2mn
3 + n2m2,

and

ω(ABt) =
m∑
k=1

ω(Ãk) +
13

3
mn3 +mn2

m∑
k=1

ρk.

Hence ω(ÃB̃t) is larger than ω(ABt) when
7

3

n

m
+
1

m

m∑
k=1

ρk <∼ 1,(34)

and for the special case where each ρk = ρ, ω(ÃB̃t) is larger than ω(ABt) when
n

m
<∼

3

7
(1− ρ).

HKM direction. With reference to the notation used in Appendix A for the
HKM direction, let ω(S−1AkX) and ω(GAkH

−1) be the number of flops required to
compute S−1AkX and GAkH

−1, respectively. Note that since G and H are triangular
matrices, we have ω(GAkH

−1) ≈ ω(S−1AkX)/2. It is readily shown that the number

of flops ω(ÃB̃t) and ω(ABt) required to formM via (29) and (30) are, respectively,
given by

ω(ÃB̃t) =
m∑
k=1

ω(GAkH
−1) + m2n2

≈ 1

2

m∑
k=1

ω(S−1AkX) + m
2n2

and

ω(ABt) =
m∑
k=1

ω(S−1AkX) +

(
m∑
k=1

k∑
i=1

ρi

)
n2.

Thus ω(ÃB̃t) is larger than ω(ABt) when
n

m

m∑
k=1

ω(S−1AkX)

mn3
+

2

m2

m∑
k=1

k∑
i=1

ρi <∼ 2.

Notice that to decide whether (29) or (30) should be used, we need to know
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ω(S−1AkX) for each k. But these quantities can always be estimated a priori by
replacing S−1 and X with any random dense matrices.

NT direction. Again, with reference to the notation used in Appendix A for
the NT direction, let ω(WAkW ) and ω(URkU

t) be the number of flops required to
compute WAkW and UAkU

t, respectively. By taking into account the structures of
the matrix products, it can be shown that ω(UAkU

t) ≈ ω(WAkW )/2. Just like the
case of the HKM direction, it is easily shown that for the NT direction, we have

ω(ÃB̃t) ≈ 1

2

m∑
k=1

ω(WAkW ) +
1

2
m2n2

and

ω(ABt) =
m∑
k=1

ω(WAkW ) +

(
m∑
k=1

k∑
i=1

ρi

)
n2.

Therefore, ω(ÃB̃t) is larger than ω(ABt) when

n

m

m∑
k=1

ω(WAkW )

mn3
+

2

m2

m∑
k=1

k∑
i=1

ρi <∼ 1.

We believe that our analysis given here for the AHO and TTT∗ directions is new.
As for the HKM and NT directions, a detailed analysis of how to exploit possible
sparsity of A for computing M via (30) is given in [5]. For these two directions,
our analysis here is somewhat different from that given in [5] since we are comparing
the computational complexities produced by (29) and (30) instead of focusing our
attention solely on (30).

Appendix C. In this appendix, we give the algorithmic framework of the Mehro-
tra predictor-corrector variant of a path-following algorithm.

Algorithm IPC. Suppose we are given an initial iterate (X0, y0, S0) withX0, S0

positive definite. Decide the type of symmetrization operator HP (·) to use. Set
α = β = 0. Choose the exponent expon.

For k = 0, 1, . . .

(Let the current and the next iterate be (X, y, S) and (X+, y+, S+), respectively.)

• Let µ = X • S/n.
• (Predictor step)
Solve the linear system (3) via the Schur complement approach with σ = 0,
i.e., with Rc = −HP (XS) in (4). Denote the solution by (δX, δy, δS).

• Let αp and βp be γp times the maximum step-lengths α̂p and β̂p that can be
taken so that X + α̂pδX and S + β̂pδS remain positive definite, where

γp = 0.9 + 0.09min(α, β).

Take σ to be

σ =

[
(X + αp δX) • (S + βp δS)

X • S
]expon

.
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• (Corrector step)
Compute the search direction (∆X,∆y,∆S) from the same linear system (3),
but with Rc in (4) replaced with

Rq = σµI −HP (XS)−HP (δXδS).

• Let α and β be γ times the maximum step-lengths α̂ and β̂ that can be taken
so that X + α̂∆X and S + β̂∆S remain positive definite, where

γ = 0.9 + 0.09min(αp, βp).

Update (X, y, S) to (X+, y+, S+) by

X+ = X + α∆X, y+ = y + β∆y, S+ = S + β∆S.

In our experiments, the exponent expon used in updating the parameter σ for the
corrector step is set to expon = 3 for the AHO direction, whereas for the others, expon
is chosen adaptively based on the step-lengths taken in the predictor step, specifically,

expon =

{
max[1, 3min(αp, βp)

2] if µ > 10−6,

1 if µ ≤ 10−6.
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[12] R. D. C. Monteiro and P. R. Zanjácomo, Implementation of primal-dual methods for
semidefinite programming based on Monteiro and Tsuchiya Newton directions and their
variants, Optim. Methods Software, 11 (1999), pp. 91–140.



242 KIM-CHUAN TOH

[13] R. D. C. Monteiro and Y. Zhang, A unified analysis for a class of path-following primal-dual
interior-point algorithms for semidefinite programming, Math. Programming, 81 (1998),
pp. 281–299.

[14] M. J. Todd, On search directions in interior-point methods for semidefinite programming,
Optim. Methods Software, 11 (1999), pp. 1–46.
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Abstract. Certain matrix relationships play an important role in optimality conditions and
algorithms for nonlinear and semidefinite programming. Let H be an n × n symmetric matrix, A
an m × n matrix, and Z a basis for the null space of A. (In a typical optimization context, H is
the Hessian of a smooth function and A is the Jacobian of a set of constraints.) When the reduced
Hessian ZTHZ is positive definite, augmented Lagrangian methods rely on the known existence of
a finite ρ̄ ≥ 0 such that, for all ρ > ρ̄, the augmented Hessian H + ρATA is positive definite. In
this note we analyze the case when ZTHZ is positive semidefinite, i.e., singularity is allowed, and
show that the situation is more complicated. In particular, we give a simple necessary and sufficient
condition for the existence of a finite ρ̄ so that H + ρATA is positive semidefinite for ρ ≥ ρ̄. A
corollary of our result is that if H is nonsingular and indefinite while ZTHZ is positive semidefinite
and singular, no such ρ̄ exists.

Key words. augmented Hessian, reduced Hessian, inertia, augmented Lagrangian methods
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1. Introduction. Augmented Lagrangian methods, proposed independently in
the late 1960s by Hestenes [12] and Powell [18], convert a constrained optimization
problem into an unconstrained problem by adding a quadratic penalty term to the
Lagrangian function. In contrast to classical quadratic penalty methods, the penalty
parameter need not become infinite if the solution of the constrained problem satisfies
standard sufficient optimality conditions. This crucial property is a consequence of
the following well-known theorem, first quoted by Finsler in 1937 [8].

Theorem 1.1. Let H be an n × n symmetric matrix and A an m × n matrix
of rank m, where m < n. Let Z denote a basis for the null space of A. Then ZTHZ
is positive definite if and only if there exists a finite ρ̄ ≥ 0 such that, for all ρ > ρ̄,
H + ρATA is positive definite.

Proofs can be found in many textbooks; see, for example, [9, 10, 17]. (We also
prove this result as part of Theorem 4.2, below.) In the context of constrained opti-
mization, H is the Hessian of a smooth function and A is the Jacobian matrix of a
set of constraints. The matrix ZTHZ is usually referred to as the reduced Hessian; we
shall call H + ρATA the augmented Hessian.

In this note we consider the augmented Hessian when ZTHZ is positive semidef-
inite and thus is allowed to be singular. It is natural to conjecture that in this case
there always exists a finite ρ̄ such that for all ρ ≥ ρ̄, H+ρATA is positive semidefinite,
but we show by example that this is not true. We also give a precise characterization
of when such a finite ρ̄ exists. A corollary of our result is that when H is nonsingular
and indefinite but ZTHZ is positive semidefinite and singular, no such ρ̄ exists.

The results in this paper are closely connected with the theory of augmented La-
grangian methods for constrained nonlinear programming, and are of interest in other
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areas of optimization as well. In particular, recent work on semidefinite program-
ming (SDP) has made it possible to directly solve optimization problems involving
a semidefiniteness condition on a matrix H(x) which is itself a linear function of a
vector x of real variables. Such problems are relevant in systems theory, structural
optimization, eigenvalue optimization, and combinatorial optimization; see, for exam-
ple, [2] and [19]. The constraint that H(x) is semidefinite on the null space of a given
matrix A can arise in SDP formulations, and in such a case it might be tempting
to “reformulate” the constraint as semidefiniteness of H(x) + ρATA, where ρ is an
additional variable. Our result shows that this reformulation is not in general valid.
In fact, our interest in the topic arose from an SDP application of this type; see [3].

2. Related work and applications. In continuous optimization, necessary
conditions for optimality typically involve semidefiniteness of certain symmetric ma-
trices. In particular, positive semidefiniteness of ZTHZ is necessary for existence of
a minimizer of the quadratic form 1

2x
THx+ gTx in the null space of A. Definiteness

and semidefiniteness of ZTHZ are also important in studying generalized convexity of
twice-differentiable functions on affine subspaces; see [7].

Conditions characterizing semidefiniteness have been studied in linear algebra
and matrix theory for decades; see [5] for a selection of references. In analyzing the
quadratic form xTHx restricted to the null space of A, [6] shows how the inertia of
ZTHZ is related to that of the bordered matrix

(
H AT

A 0

)

(usually called the “KKT matrix” in optimization) and various Schur complements.
In [5], positive semidefiniteness of ZTHZ is shown to be equivalent to four different
criteria involving (i) the inertia of the bordered matrix, (ii) “augmentability” (that
the number of negative eigenvalues of H − γATA is exactly equal to rank(A) for
all sufficiently large positive γ), (iii) determinants, and (iv) roots of a polynomial
equation.

A complete analysis of the properties of the quadratic form xTHx restricted to
a general subspace is given in the unifying paper of Maddocks [15], which presents a
wide array of inertia theorems that specialize results originally proved in an infinite-
dimensional setting [14]. In analyzing stability of KdV multisolitons, where the
infinite-dimensional analogues of A and H have the special property that the null
space of A contains the null space of H, Lemma 2.3 of [14] gives a sharp lower bound
for a penalty parameter that ensures positive semidefiniteness of the augmented Hes-
sian when the reduced Hessian is positive semidefinite.

3. Notation and background. We consider only real matrices throughout.
For a symmetric matrix K we use λmin(K) and λmax(K) to denote the minimal and
maximal eigenvalues of K, and ‖K‖ to denote the spectral norm. For symmetric
matrices J and K, K � J means that K − J is positive semidefinite, and K � J
means that K − J is positive definite. We use N (A) to denote the null space of
a matrix A. When K is symmetric, In(K) denotes the inertia of K, a triple of
nonnegative integers (k+, k−, k0) representing the numbers of positive, negative, and
zero eigenvalues of K.

We shall invoke several known properties of symmetric matrices K and J , where
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K is sometimes symmetrically partitioned as

K =

(
K11 K12

KT
12 K22

)
.(3.1)

The following theorem, first proved in [1] (see also [4]), plays a central role in our
analysis.

Theorem 3.1. The symmetric matrix K, partitioned as in (3.1), is positive
semidefinite if and only if the following three conditions hold:

(i) K11 � 0, (ii) N (K11) ⊆ N (KT
12), and (iii) K22 −KT

12K
†
11K12 � 0,

where K†
11 is the Moore–Penrose pseudoinverse of K11.

In addition to Theorem 3.1, we use the following well-known results.
Result 1. λmax(K)I � K � λmin(K)I.
Result 2 [13, Observation 7.7.7]. K � J implies BTKB � BTJB for any ma-

trix B.
Result 3 [13, Corollary 7.7.4]. If K and J are positive definite, then K � J if

and only if J−1 � K−1.
Result 4 [13, Theorem 7.7.6]. When K is partitioned as in (3.1), K is positive

definite if and only if both K11 and the Schur complement K22 − KT
12K

−1
11 K12 are

positive definite.
Following common practice in optimization, Z denotes a generic basis for the null

space of A, i.e., an n× (n−m) matrix with full column rank such that AZ = 0. Any
vector y satisfying Ay = 0 can be written as a linear combination of the columns of
Z, and the columns of AT and Z together span all of Rn. If Z1 and Z2 are two bases
for the null space of A, then Z1 = Z2F for some nonsingular matrix F ; this implies,
among other things, that the inertia of ZTHZ does not depend on the choice of Z. For
any condition stated in terms of Z, there is an obvious equivalent condition involving
A. For example, “ZTHZ is positive definite” is equivalent to “xTHx > 0 for all x
satisfying Ax = 0.”

4. A general characterization. To begin, we show by example that the obvi-
ous generalization of Theorem 1.1, with “semidefinite” replacing “definite” through-
out, is not valid. Consider

H =

(
1 0
0 −1

)
and A =

(
1 1

)
, with Z taken as

(
1
−1
)
.(4.1)

Observe that ZTHZ = 0 and so is positive semidefinite; note also that AHAT = 0.
The augmented Hessian H + ρATA is

H + ρATA =

(
1 0
0 −1

)
+ ρ

(
1 1
1 1

)
=

(
ρ+ 1 ρ
ρ ρ− 1

)
,

with eigenvalues ρ±
√
ρ2 + 1. Hence H + ρATA is indefinite for any finite value of ρ.

In the next two subsections, we develop a general approach that leads to a theorem
covering both the positive semidefinite case and the (known) positive definite case.

4.1. Preliminaries. To simplify the analysis, we assume that A has full rank,
but analogous results can be obtained without this restriction; see the end of sec-
tion 4.2. By definition of Z and our assumption that A has full rank, the matrix
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(AT , Z) is nonsingular. Let H̃ρ be defined as

H̃ρ :=

(
ZT

A

)(
H + ρATA

) (
Z, AT

)
=

(
ZTHZ ZTHAT

AHZ AHAT + ρ(AAT )2

)
.(4.2)

We write the eigensystem of ZTHZ as

ZTHZ = (V, U)

(
Φ 0
0 0

)(
V T

UT

)
,

where Φ = V TZTHZV is a positive diagonal matrix whose dimension is the number
of positive eigenvalues of ZTHZ, (V, U) is orthogonal, and ZTHZU = 0. Let nV and
nU denote the numbers of columns of V and U . If ZTHZ is positive definite, U is
empty and nU = 0; if ZTHZ is positive semidefinite and singular, then nU ≥ 1; and if
Φ is empty, then ZTHZ must be the zero matrix. The columns of U form a basis for
the null space of ZTHZ, so that every nonzero vector y satisfying ZTHZy = 0 can be
written as y = Uv for some nonzero v.

By analogy with (4.2), we define H̄ρ as

H̄ρ :=


V T 0
UT 0
0 I


 H̃ρ

(
V U 0
0 0 I

)

=


 Φ 0 V TZTHAT

0 0 UTZTHAT

AHZV AHZU AHAT + ρ(AAT )2


 .(4.3)

Using Sylvester’s Law of Inertia (see, for example, [13, Theorem 4.5.8]) twice, ob-
serve that

In(H + ρATA) = In(H̃ρ) = In(H̄ρ).(4.4)

We shall obtain conditions under which there is a finite ρ such that the augmented
Hessian H + ρATA is positive semidefinite (or positive definite) by examining the
structure of H̄ρ. It is clear from the form of the matrix in (4.3) that if nU > 0, then
H̄ρ cannot be positive semidefinite if AHZU �= 0. We show below that when ZTHZ is
positive semidefinite and singular, the condition AHZU = 0 is in fact necessary and
sufficient for the existence of ρ̄ such that H + ρATA � 0 for all ρ ≥ ρ̄. First, however,
we describe other conditions that are equivalent to the condition AHZU = 0.

Lemma 4.1. Let H be an n×n symmetric matrix and A an m×n matrix of rank
m, where m < n. Let Z denote a basis for the null space of A. Assume that ZTHZ is
positive semidefinite and singular, and let U be a matrix whose columns are a basis
for N (ZTHZ). Then the following three conditions are equivalent:

(a) AHZU = 0
(b) HZU = 0
(c) N (ZTHZ) = N (ZTH2Z).
Proof. We first show that (a) and (b) are equivalent. Obviously (b) implies (a).

For the converse, assume that tU is any vector for which HZUtU �= 0. By definition of
U as a basis for the null space of ZTHZ, it must be true that ZTHZUtU = 0. Since Z
is a basis for the null space of A, every nonzero vector ζ such that ZT ζ = 0 must have
the form ζ = AT ζA for a nonzero ζA. Therefore there is a nonzero vector ξ such that
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HZUtU = AT ξ. Since A has full row rank, AAT is positive definite, and multiplication
by A gives AHZUtU = AAT ξ �= 0. It follows that HZU �= 0 =⇒ AHZU �= 0.

Next we show that (b) and (c) are equivalent. First, symmetry of H implies that
ZTH2Z = ZTHTHZ, so that ZTH2Zy = 0 only if HZy = 0, i.e., N (ZTH2Z) =

N (HZ). Thus any y in N (ZTH2Z) also satisfies ZTHZy = 0, which means that

N (ZTH2Z) ⊆ N (ZTHZ).(4.5)

Suppose now that (b) holds. Then, since any nonzero y satisfying ZTHZy = 0
has the form y = Uv, it must hold that HZy = 0, which implies that ZTH2Zy = 0
and so N (ZTHZ) ⊆ N (ZTH2Z). Combining this result with (4.5), (b) implies (c).

On the other hand, assume that (b) does not hold, so that HZU �= 0. Then there
is a vector y ∈ N (ZTHZ) for which HZy �= 0. It follows that yTZTH2Zy �= 0,
which means that ZTH2Zy �= 0, so that y /∈ N (ZTH2Z). Thus N (ZTHZ) �=
N (ZTH2Z).

4.2. The main theorem. We are now ready for our main result. Condition (c)
from Lemma 4.1 appears in the theorem, but condition (a) or (b) from that lemma
could be used instead. For completeness we also restate and prove Theorem 1.1.

Theorem 4.2. Let H be an n× n symmetric matrix and A an m× n matrix of
rank m, where m < n. Let Z denote a basis for the null space of A.

(a) If ZTHZ is positive semidefinite and singular, then there exists a finite ρ̄ ≥ 0
such that H + ρATA is positive semidefinite for all ρ ≥ ρ̄, if and only if N (ZTHZ) =

N (ZTH2Z). In this case, H + ρATA is singular for all ρ.
(b) ZTHZ is positive definite if and only if there exists a finite ρ̄ ≥ 0 such that

H + ρATA is positive definite for all ρ > ρ̄.
Proof. According to (4.4), positive semidefiniteness of the augmented Hessian

follows from that of H̄ρ of (4.3). To determine whether H̄ρ is positive semidefinite, we
need to check the three necessary and sufficient conditions of Theorem 3.1, where

K11 =

(
Φ 0
0 0

)
, KT

12 = (AHZV, AHZU), and K22 = AHAT + ρ(AAT )2.

Condition (i), that K11 � 0, is obviously satisfied because Φ is positive definite or
empty.

To check condition (ii), we observe that the null space ofK11 consists of all vectors
u satisfying(
Φ 0
0 0

) (
u1

u2

)
=

(
0
0

)
, so that, since Φ � 0, N (K11) =

{(
0
u2

)}
for any u2,

where u1 has dimension nV and u2 has dimension nU . All vectors in the null space of
KT

12 satisfy

(AHZV, AHZU)

(
u1

u2

)
= AHZV u1 +AHZUu2 = 0.(4.6)

Clearly, an arbitrary vector (0, u2)
T from the null space of K11 will not lie in the null

space of KT
12 if AHZU �= 0. The condition that N (K11) ⊆ N (KT

12) thus holds only if
AHZU = 0 or if U is empty. Since condition (ii) of Theorem 3.1 fails independently
of ρ when AHZU �= 0, we conclude that H + ρATA is not positive semidefinite in
this case.
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If, on the other hand, AHZU = 0, condition (ii) of Theorem 3.1 holds, since any
vector (0, u2)

T from the null space of K11 satisfies (4.6).
To satisfy condition (iii) of Theorem 3.1, we need to show that the generalized

Schur complement

K̃ = K22 −KT
12K

†
11K12

is positive semidefinite. If Φ is nonempty, K̃ is given by

K̃ = AHAT + ρ(AAT )2 − (AHZV, 0)

(
Φ 0
0 0

)†(
V TZTHAT

0

)
(4.7)

= AHAT + ρ(AAT )2 − (AHZV, 0)

(
Φ−1 0
0 0

)(
V TZTHAT

0

)
(4.8)

= AHAT + ρ(AAT )2 −AHZV Φ−1V TZTHAT ,(4.9)

where (4.8) includes the Moore–Penrose pseudoinverse of K11. Let

χ = λmin(H), α = λmin(AA
T ), and φ = λmin(Φ),

where α > 0 because A has independent rows and φ > 0 because Φ is positive definite.
Applying Results 1, 2, and 3 to (4.9), we obtain

K̃ � A

[
(χ+ ρα)I − 1

φ
HZZTH

]
AT ,(4.10)

where we use the fact that V V T � I because V has orthonormal columns. It follows
that K̃ � 0 for all ρ ≥ ρ̄, where

ρ̄ = max(0, ρ̃), with ρ̃ =
1

α

(‖HZZTH‖
φ

− χ

)
.(4.11)

When Φ is empty, i.e. ZTHZ is the zero matrix, the last term in (4.7) is zero,
and the generalized Schur complement in condition (iii) of Theorem 3.1 is simply
AHAT + ρ(AAT )2. Using Results 1 and 2, this matrix is positive semidefinite for
ρ ≥ ρ̄, where ρ̄ = max(0,−χ/α).

Thus, when AHZU = 0 and ρ ≥ ρ̄, we conclude from Theorem 3.1 that H̄ρ
is positive semidefinite and, applying (4.4), that the augmented Hessian is positive
semidefinite. Because we have previously shown that H + ρATA cannot be positive
semidefinite when AHZU �= 0, the first statement in (a) now follows from Lemma 4.1.

The second statement in (a) follows because, when ZTHZ is positive semidefi-
nite and singular, there must be a nonzero vector y satisfying ZTHZy = 0. Since

N (ZTHZ) = N (ZTH2Z), it must also hold that HZy = 0, so that

(H + ρATA)Zy = HZy = 0,

showing that the augmented Hessian is singular for any value of ρ.
To prove (b), note that positive-definiteness of ZTHZ means that V is square

and U is empty, so that K11 = Φ � 0. It follows directly from (4.10) that the Schur
complement K22 −KT

12K
−1
11 K12 satisfies

AHAT + ρ(AAT )2 −AHZΦ−1ZTHAT � 0 when ρ > ρ̄,
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where ρ̄ is given in (4.11). Applying Result 4, we obtain that H + ρATA is positive
definite for sufficiently large ρ when ZTHZ is positive definite. Finally, if H + ρATA
is positive definite, then yTZT (H + ρATA)Zy = yTZTHZy > 0 for all y �= 0, and
therefore ZTHZ is positive definite.

Although we use properties of H̄ρ to obtain all the results in Theorem 4.2,
there is a simple alternative proof for the “only if” part of (a). It always holds
that N (ZTH2Z) ⊆ N (ZTHZ) (see (4.5) in the proof of Lemma 4.1). Suppose that

N (ZTHZ) contains a vector that does not lie in N (ZTH2Z), i.e., that there is a vec-
tor y such that ZTHZy = 0 and HZy �= 0. Let L denote the augmented Hessian,
L = H + ρATA, and let x = Zy. Then Lx = HZy �= 0 and xTLx = yTZTHZy = 0.
But if the symmetric matrix L is positive semidefinite, xTLx can be zero only if Lx = 0
[13, page 400], so that existence of such a y contradicts positive semidefiniteness of
L, as desired.

Regarding the lower bound ρ̄ of (4.11), note that if the columns of Z are orthonor-
mal, then ‖HZZTH‖ ≤ ‖H‖2 because ZZT � I. In this case it is also easy to see
that the value of φ = λmin(Φ) is independent of the choice of orthonormal basis Z.

Finally, it is unnecessary to assume that the rows of A are independent. Suppose
that A has rank r, with r < m. Let Â consist of r linearly independent rows of
A, so that AT = (ÂT , R), where R is n × (m − r), and assume that ρ ≥ 0. Then
H + ρATA = H + ρÂTÂ+ ρRRT , which shows that

H + ρÂTÂ � 0 =⇒ H + ρATA � 0 and H + ρÂTÂ � 0 =⇒ H + ρATA � 0.

Furthermore, there is an m × r matrix S of rank r such that A = SÂ. Applying
Result 1, we have

H + ρATA = H + ρÂTSTSÂ � H + ρ ‖STS‖ ÂTÂ,
from which it follows, letting ρ̂ = ρ ‖STS‖, that
H + ρATA � 0 =⇒ H + ρ̂ ÂTÂ � 0 and H + ρATA � 0 =⇒ H + ρ̂ ÂTÂ � 0.

Since the null spaces of A and Â coincide, it follows easily that Theorem 4.2 holds
without assuming independence of the rows of A.

4.3. Special cases. It is interesting to consider the consequences of Theorem 4.2
in two special cases.

First, assume thatH is nonsingular, in which case ZTH2Z is positive definite, with
an empty null space. Consequently, if ZTHZ is positive semidefinite and singular, then

N (ZTHZ) �= N (ZTH2Z), and Theorem 4.2(a) shows that the augmented Hessian is
not positive semidefinite for any finite ρ. Thus the augmented Hessian can be positive
semidefinite only if ZTHZ is positive definite, but in this case Theorem 4.2(b) implies
that the augmented Hessian is strictly positive definite for all sufficiently large ρ.
Unless H is positive definite, it follows from continuity of the eigenvalues with respect
to ρ [13, p. 540] that there must be a positive value of ρ for which the augmented
Hessian is positive semidefinite and singular. These observations are summarized in
the following corollary.

Corollary 4.3. Let H be a nonsingular symmetric n × n matrix with at least
one negative eigenvalue, and let A be an m× n matrix. Let Z denote a basis for the
null space of A. Then

(a) if ZTHZ is positive semidefinite and singular, H + ρATA is not positive
semidefinite for any finite ρ;
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(b) if ZTHZ is positive definite, then H + ρ̄ATA is positive semidefinite and
singular for some ρ̄ > 0, and H + ρATA is positive definite for all ρ > ρ̄.

A second result involves the case when H itself is positive semidefinite.
Lemma 4.4. Let H be a symmetric positive semidefinite n× n matrix and A an

m×n matrix. Let Z denote a basis for the null space of A. If ZTHZ is singular, then

N (ZTHZ) = N (ZTH2Z).
Proof. Since H is symmetric and positive semidefinite, it follows immediately

that H + ρATA � 0 for ρ ≥ 0 and ZTHZ � 0, and that H has a symmetric square
root H1/2. Because ZTHZ is singular, there exists a nonzero vector y such that
ZTHZy = 0. For any such y, we have

ZTH1/2H1/2Zy = 0 =⇒ H1/2Zy = 0 =⇒ HZy = 0 =⇒ ZTH2Zy = 0,

and therefore N (ZTHZ) ⊆ N (ZTH2Z). As previously observed (see (4.5) in the proof
of Lemma 4.1), N (ZTH2Z) is always a subset of N (ZTHZ), so we have N (ZTHZ) =

N (ZTH2Z), as required.

4.4. Examples. Example (4.1) shows that the augmented Hessian is not positive
semidefinite when H is nonsingular and ZTHZ is positive semidefinite and singular
(case (a) of Corollary 4.3). The condition that HZU �= 0 (which disallows a positive
semidefinite augmented Hessian) can also occur when H is singular. Consider

H =


1 0 0
0 0 0
0 0 −1


 and A =

(
0 1 0
1 0 −1

)
, with Z taken as


1
0
1


 .(4.12)

Then

ATA =


 1 0 −1

0 1 0
−1 0 1


 , ZTHZ = 0, and U = 1, so HZU =


 1

0
−1


 .

The augmented Hessian is given by

H + ρATA =


ρ+ 1 0 −ρ

0 ρ 0
−ρ 0 ρ− 1




and has a negative eigenvalue for any finite ρ.
An instance in which HZU = 0 but H is not positive semidefinite is

H =


1 0 0
0 0 0
0 0 −1


 and A =

(
0 0 1

)
, with Z taken as


1 0
0 1
0 0


 .(4.13)

Then

ATA =


0 0 0
0 0 0
0 0 1


 , ZTHZ =

(
1 0
0 0

)
, and U =

(
0
1

)
.

The augmented Hessian is

H + ρATA =


1 0 0
0 0 0
0 0 ρ− 1


(4.14)
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and is obviously positive semidefinite for ρ ≥ 1. Note that, as indicated in Theo-
rem 4.2(a), the augmented Hessian (4.14) is always singular.

To illustrate situation (b) of Corollary 4.3, whereH is nonsingular but not positive
definite and ZTHZ is positive definite, consider H from (4.1) with a different A:

H =

(
1 0
0 −1

)
and A =

(
0 1,

)
with Z taken as

(
1
0

)
.

Then ZTHZ = 1 and the augmented Hessian is

H + ρATA =

(
1 0
0 ρ− 1

)
,

so that the augmented Hessian is positive semidefinite and singular for ρ = 1 and
positive definite for ρ > 1.

4.5. A limiting property. A final general property is suggested by examples
(4.1) and (4.12), where the smallest eigenvalue of H + ρATA is negative for any finite
ρ but converges to zero as ρ→∞. In the next lemma we show that this is always the
case when HZU �= 0 and ZTHZ is positive semidefinite and singular.

Lemma 4.5. Let H be an n× n symmetric matrix and A an m× n matrix. Let
Z denote a basis for the null space of A. Assume that ZTHZ is positive semidefinite
and singular and that HZU �= 0, where U is a matrix whose columns are a basis for
the null space of ZTHZ. Then λmin(H + ρATA)→ 0 as ρ→∞.

Proof. Let {ρk} be a sequence of monotonically increasing positive scalars with
ρk →∞. Since HZU �= 0, we know from Theorem 4.2 that H + ρATA has a negative
eigenvalue for any finite ρ, so that λmin(H+ρkA

TA) < 0 for all k. If λmin(H+ρkA
TA)

does not converge to zero as ρk →∞, then there must exist a scalar β > 0 and vectors
xk, with ‖xk‖ = 1, such that for all k,

xTk (H + ρkA
TA)xk = xTkHxk + ρk‖Axk‖2 ≤ −β.(4.15)

Letting x̄ denote any accumulation point of {xk}, (4.15) cannot hold as ρk → ∞
unless Ax̄ = 0 and x̄THx̄ < 0, which contradicts the assumption that ZTHZ is
positive semidefinite.

5. Relationship to optimality conditions. Consider the equality-constrained
quadratic program (QP) of minimizing 1

2x
THx + xT g subject to Ax = b, where A

has full rank. Let xA satisfy AATxA = b. As discussed in [11], if ZTHZ is positive
semidefinite and singular, then the QP has weak minimizers if and only if the linear
system

ZTHZxZ = −ZTg − ZTHATxA(5.1)

is compatible. It is interesting that there is no direct correspondence between com-
patibility of (5.1) and positive semidefiniteness of the augmented Hessian.

When AHZ = 0, we know from Lemma 4.1 and Theorem 4.2 that H + ρATA is
positive semidefinite for sufficiently large finite ρ. However, the system (5.1), which
reduces in this case to ZTHZxZ = −ZTg, need not be compatible. In example (4.13),
the QP is

minimize 1
2 (x

2
1 − x2

3) + x1g1 + x2g2 + x3g3

subject to x3 = b.
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Using Z from (4.13), we have

ZTg =

(
g1
g2

)
and ZTHZ =

(
1 0
0 0

)
.

Thus (5.1) is compatible if and only if g2 = 0, which means that x2 does not appear
in the objective function. If g2 �= 0, the system (5.1) is not compatible and no weak
minimizers exist, although H + ρATA is positive semidefinite for sufficiently large ρ.

When AHZU �= 0, there is no finite ρ for which H+ρATA is positive semidefinite.
Even so, there are associated QPs with weak minimizers. The QP problem associated
with (4.1) is

minimize 1
2 (x

2
1 − x2

2) + g1x1 + g2x2

subject to x1 + x2 = b.

Since ZTHZ = 0, the system (5.1) is compatible when ZTg + ZTHATxA = 0, for
example, when

g =

(−1
0

)
and b = 1,

and the QP has weak minimizers of the form (1
2 + β, 1

2 − β)T for any scalar β.
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FOR THE QUADRATIC ASSIGNMENT PROBLEM∗
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Abstract. It was recently demonstrated that a well-known eigenvalue bound for the quadratic
assignment problem (QAP) actually corresponds to a semidefinite programming (SDP) relaxation.
However, for this bound to be computationally useful, the assignment constraints of the QAP must
first be eliminated and the bound then applied to a lower-dimensional problem. The resulting
“projected eigenvalue bound” is one of the best available bounds for the QAP, especially when
considering the quality of bounds relative to the complexity of obtaining them. In this paper we
show that the projected eigenvalue bound is also related to an SDP relaxation of the original QAP.
This “implicit” SDP relaxation is similar to SDP relaxations of the QAP proposed by Lin and
Saigal [On Solving Large-scale Semidefinite Programming Problems—A Case Study of Quadratic
Assignment Problem, Department of Industrial Engineering and Operations Research, University of
Michigan, 1997] and Zhao et al. [J. Combin. Optim., 2 (1998), pp. 71-109].
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1. Introduction. The quadratic assignment problem (QAP) is a well-studied
problem in discrete optimization. For recent surveys see, for example, [6], [8], and [18].
In this paper we consider the “Koopmans–Beckmann” form of the problem, which can
be written

QAP(A,B,C) : min tr(AXB + C)XT

subject to (s.t.) X ∈ Π ,

where A, B, and C are n×n matrices, tr denotes the trace of a matrix, and Π is the set
of n× n permutation matrices. Throughout we assume that A and B are symmetric.
We write QAP(A,B) for the “homogenous” problem with C = 0. QAP(A,B,C)
arises naturally in facility planning and can also be used to model certain other
well-known combinatorial optimization problems, such as graph partitioning and the
traveling salesman problem. The problem is of interest both for its applicability and
its difficulty; several problems of dimension n = 30 have remained open for many
years [7].

Algorithms that attempt to solve the QAP to optimality must incorporate both
primal heuristics that obtain good feasible solutions and lower-bounding methods, in
a branch-and-bound structure. At present the greatest obstacle to obtaining provably
optimal solutions for QAP problems is the lack of an efficient lower-bounding method
that produces reasonably tight bounds. There are a number of different classes of
lower-bounding methods for the QAP, including

1. the Gilmore–Lawler bound (GLB), and related bounds;
2. bounds based on linear programming (LP) relaxations;
3. eigenvalue-based bounds;
4. bounds based on semidefinite programming (SDP).
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2000; published electronically August 24, 2000.
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Research is active in all four of these areas. In this paper we will concentrate on
eigenvalue bounds and their relationship to SDP. See, for example, [12], [14], [17], [20]
and references therein for recent work on variants of the GLB and LP relaxations.

SDP refers to optimization over matrices that are constrained to be positive
semidefinite. Although the potential applicability of SDP has been known for some
time, it is only recently that interior-point algorithms have provided a practical so-
lution approach. See [1] and [21] for descriptions of different types of problems that
can be formulated as SDPs. SDP-based approaches to the QAP have been consid-
ered by [15] and [22]. Bounds for the QAP developed in these two papers are highly
competitive, but the solution times required on modest-sized problems exceed what
could realistically be expended at each node in a branch-and-bound tree.

The basic eigenvalue bound for QAP was introduced in [9] and has been modified
in a variety of ways; see, for example, [11] and [19]. It was recently demonstrated [4]
that the simplest eigenvalue bound for QAP(A,B) actually corresponds to a semidef-
inite relaxation of the problem. This result is potentially interesting because the work
to obtain the eigenvalue bound is far less than that required to solve a general SDP.
Unfortunately, the basic eigenvalue bound for the QAP is known to be too weak to
be computationally useful. One technique for strengthening the bound, from [11], is
to implicitly enforce the assignment constraints of the QAP by first projecting out,
or eliminating, these constraints before applying the eigenvalue bound. The resulting
“projected eigenvalue bound” is a competitive bound for many problems, especially
considering the quality of the bound versus the computational effort required to ob-
tain it.

In the next section we review eigenvalue bounds for the QAP, including the pro-
jected eigenvalue bound PB(A,B,C). In section 3 we consider the SDP interpretation
of the basic eigenvalue bound proved in [4] and use this interpretation to derive a new
semidefinite programming problem, SDP+(A,B). Our main result, Theorem 3.5,
shows that PB(A,B,C) corresponds to first applying a simple transformation to the
QAP and then using SDP+(·, ·) to bound the quadratic term. (The linear term is
bounded separately by solving a linear assignment problem.) We also demonstrate
that the “implicit” semidefinite program SDP+(A,B) is closely related to SDP relax-
ations for the QAP proposed in [15] and [22].

Notation. We use trA to denote the trace of a square matrix A, and A • B =
trABT . For symmetric matrices A and B we use B � A to denote that B − A is
positive semidefinite and B � A to denote that B − A is positive definite. We use
e to denote a vector of arbitrary dimension with each component equal to one, and
E = eeT . The Kronecker product of matrices A and B is denoted A ⊗ B. See [10]
or [13] for basic properties of Kronecker products. We sometimes abuse notation by

writing, for example, e = (e⊗ e), where e on the left side is a vector in 	n2

, and each
e on the right is a vector in 	n. For an n×n symmetric matrix A, λ(A) ∈ 	n denotes
the vector of eigenvalues of A. For a vector x, Diag(x) is the diagonal matrix with
diagonal entries equal to the components of x, and for a square matrix X, diag(X) is
the vector whose components are the diagonal entries of X.

We use O to denote the set of orthogonal matrices (XXT = XTX = I), E to
denote the set of matrices with row and column sums equal to one (Xe = XT e = e),
and Π to denote the set of permutation matrices. The “minimal product” of two
vectors x and y in 	n is denoted 〈x, y〉−, and is defined by

〈x, y〉− = min
π

n∏
i=1

xiyπ(i),
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where π(·) is a permutation of 1, 2, . . . , n. It is easy to show that if x1 ≤ x2 ≤ · · · ≤ xn,
and y1 ≥ y2 ≥ · · · ≥ yn, then 〈x, y〉− = xT y. We sometimes use r(A) to denote the
vector of row sums of a matrix A, r(A) = Ae, and we use s(A) to denote the sum of
the entries of A, s(A) = eTAe = eT r(A).

Throughout the paper we use the convention of letting the name of an optimiza-
tion problem, such as QAP(A,B,C), also refer to the solution value of the problem.

2. Eigenvalue bounds for the QAP. One well-known relaxation for the QAP
is based on relaxing X ∈ Π to X ∈ O and further separating the linear and quadratic
terms in the objective. The result is

min
X∈O

trAXBXT + LAP(C),(2.1)

where LAP(C) is a linear assignment problem with cost matrix C. The relaxation
(2.1) is potentially useful because a closed-form expression exists for the quadratic
term. Specifically, it is known [9], [19] that

min
X∈O

trAXBXT = 〈λ(A), λ(B)〉−,(2.2)

and therefore (2.1) can be computed by performing spectral decompositions of A and
B and solving LAP(C). Unfortunately, however, the basic eigenvalue bound from
(2.1) is generally a very weak bound for QAP(A,B,C), even when C = 0.

There are several ways to improve (2.1). One approach is based on first applying
perturbations to A, B, and C that leave the objective invariant for X ∈ Π and then
evaluating the bound from (2.1) using the perturbed data. Specifically, let

A′ = A+ egT + geT + Diag(r),(2.3a)

B′ = B + ehT + heT + Diag(s),(2.3b)

C ′ = C − 2[AehT + geTB + gsT + rhT + nghT + (eT g)ehT ](2.3c)

−[asT + rbT + rsT ],

where a = diag(A), b = diag(B), and g, h, r, and s are all in 	n. It is then easy to
show that QAP(A′, B′, C ′) = QAP(A,B,C).1 One choice for the perturbation vectors
g, h, r, and s, described in [9], [19] is based on minimizing the spectral variance of A′

and B′. Another possibility [19], which we will refer to as the parametric eigenvalue
bound, is obtained by approximately maximizing the eigenvalue bound

〈λ(A′), λ(B′)〉− + LAP(C ′)

over the perturbation vectors g, h, r, and s. The result is one of the strongest known
bounds for the QAP, but performing the approximate maximization is difficult due
to the fact that as a function of the perturbations the bound is a nondifferentiable,
nonconcave function.

A different approach to improving the basic eigenvalue bound (2.1) was introduced
in [11]. The idea of this improvement is to continue to work with an orthogonal
relaxation of the quadratic term, but to enforce the assignment constraints X ∈ E
that are ignored in (2.1). The mechanism to do so is provided by the following result.

1Formulas similar to those in (2.3) appear with sign errors in a number of standard references
on the QAP, including [11] and [18].
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Proposition 2.1 (see [11, Lemma 3.1]). Let X be an n × n matrix with X ∈
O ∩ E. Then there is an (n − 1) × (n − 1) orthogonal matrix X̂ such that X =
V X̂V T +(1/n)E, where V is an n×(n−1) matrix whose columns are an orthonormal
basis for the nullspace of eT . Conversely, if X̂ is an (n−1)×(n−1) orthogonal matrix,
then X = V X̂V T + (1/n)E ∈ O ∩ E.

In [11], Proposition 2.1 is used to obtain the projected eigenvalue bound
PB(A,B,C) for the QAP described in the following theorem.

Theorem 2.2. Let V be an n × (n − 1) matrix whose columns are an or-
thonormal basis for the nullspace of eT , and define Â = V TAV , B̂ = V TBV , D =
C + (2/n)r(A)r(B)T . Let PB(A,B,C) = 〈λ(Â), λ(B̂)〉− + LAP(D) − s(A)s(B)/n2.
Then

1. QAP(A,B,C) ≥ PB(A,B,C);
2. PB(A,B) = 〈λ(Â), λ(B̂)〉− + (2/n)〈r(A), r(B)〉− − s(A)s(B)/n2;
3. if e is an eigenvector of A or B, PB(A,B) = 〈λ(Â), λ(B̂)〉− + s(A)s(B)/n2.

Proof. Part 1 is [11, Theorem 4.1]. Parts 2 and 3 are proved in Corollaries 4.1 and
4.2 of [11], but we describe the arguments here also. In the case that C = 0 we have
D = (2/n)r(A)r(B)T , and it is then easy to show that LAP(D) = (2/n)〈r(A), r(B)〉−,
which gives part 2. To show part 3, assume that Ae = r(A) = µe, from which it follows
that µ = s(A)/n. Then 〈r(A), r(B)〉− = µeT r(B) = s(A)s(B)/n, and part 2 implies
part 3. The argument when e is an eigenvector of B is similar.

Computational results reported in [11] show that the projected eigenvalue bound
is often close to the parametric eigenvalue bound but is much more practical to com-
pute.

3. SDP relaxations. A new interpretation of the basic eigenvalue bound (2.1)
in terms of SDP was recently given in [4]. For an n2 × n2 matrix Y , let Y[ij] denote
the n× n matrix which is the ij “block” of Y , i, j = 1, . . . , n. In other words,

Y =



Y[11] . . . Y[1n]

...
. . .

...
Y[n1] . . . Y[nn]


 .

Define [22] the linear operators from 	n2×n2

to 	n×n:

bdiag(Y ) =
n∑
i=1

Y[ii]

(odiag(Y ))ij = trY[ij], i, j = 1, . . . , n.

It is then easy to show that bdiag(·) and odiag(·) are the adjoints of the operators

S → I⊗S and T → T ⊗I, from 	n×n to 	n2×n2

, respectively. Consider the following
pair of SDP problems:

SDP(A,B) : min (B ⊗A) • Y
s.t. bdiag(Y ) = I,

odiag(Y ) = I,

Y � 0,

SDD(A,B) : max trS + trT

s.t. (I ⊗ S) + (T ⊗ I) � (B ⊗A),

S = ST , T = TT .
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Theorem 3.1. SDP(A,B) = SDD(A,B) = 〈λ(A), λ(B)〉−.

Proof. SDD(A,B) = 〈λ(A), λ(B)〉− is proved in [4, Theorem 3.2]. SDP(A,B) =
SDD(A,B) follows from the fact that these are dual semidefinite programming prob-
lems, both of which have strictly feasible solutions; see, for example, [16, Theorem
4.2.1].

The problem SDP(A,B) can be viewed as a semidefinite relaxation of QAP(A,B).
Note that trAXBXT = vec(X)T (B ⊗A)vec(X) = (B ⊗A) • vec(X)vec(X)T , and
clearly vec(X)vec(X)T � 0. The equality constraints of SDP(A,B) are relaxations
of the orthogonality condition on the matrix X. Specifically, if Y = vec(X)vec(X)T ,
then Y[ij] = XiX

T
j , where Xi is the ith column of X. It follows that for such a Y ,

bdiag(Y ) = XXT , odiag(Y ) = XTX.

The fact that 〈λ(A), λ(B)〉− = SDD(A,B) can be viewed as a rather surpris-
ing Lagrangian strong duality result for a nonconvex problem [4]. It is particularly
interesting that this result holds only with both of the conditions bdiag(Y ) = I,
odiag(Y ) = I enforced in SDP(A,B), despite the fact that the original constraints
XXT = I and XTX = I are completely equivalent. See [3] for an analogue of Theo-
rem 3.1 for a relaxation of QAP(A,B) with the semidefinite inequality XXT � I in
place of the orthogonality condition XXT = I.

Theorem 3.1 shows that the original eigenvalue bound from (2.1) corresponds
to using the SDP relaxation SDP(A,B) in place of the quadratic term of the QAP.
Unfortunately, as noted above, it is known that this bound is in general too weak to be
of computational use. However, it is obvious that Theorem 3.1 can also be applied to
obtain an SDP representation for the term 〈λ(Â), λ(B̂)〉− in the projected eigenvalue
bound of Theorem 2.2. Our goal now is to show that this SDP representation of
the “projected” problem can be lifted back to the original problem to obtain a new,
stronger SDP relaxation of the original QAP.

From Theorem 3.1, 〈λ(Â), λ(B̂)〉− = SDD(Â, B̂), which can be written as

SDD(Â, B̂) : max tr Ŝ + tr T̂

s.t. (I ⊗ Ŝ) + (T̂ ⊗ I) � B̂ ⊗ Â,

where Â = V TAV , B̂ = V TBV . (Henceforth we consider the symmetry constraints
on Ŝ and T̂ to be implicit.) But any Ŝ and T̂ can be written in the form Ŝ = V TSV ,
T̂ = V TTV for n × n symmetric matrices S and T . Since V TV = I, SDD(Â, B̂) is
then equivalent to the problem

max trV TSV + trV TTV
s.t. (V T ⊗ V T )

[
(B ⊗A)− (I ⊗ S)− (T ⊗ I)

]
(V ⊗ V ) � 0.

(3.1)

The following proposition is well known from the theory of augmented Lagrangian
methods; see, for example, [2, Corollary 12.9].

Proposition 3.2. Let H be a k × k symmetric matrix, and let F be an m × k
matrix. Let Z be a matrix whose columns are a basis for the nullspace of F . Then
the following three conditions are equivalent:

1. xTHx > 0 for all x �= 0 having Fx = 0.
2. ZTHZ � 0.
3. H + ρFTF � 0 for all sufficiently large ρ.
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(In our application it would be convenient if a “semidefinite” version of Proposition
3.2, with “≥” replacing “>” in part 1, and “�” replacing “�” in parts 2 and 3, were
true. Unfortunately this is not the case; see [5].) Let F be the 2n× n2 matrix

F =

(
eT ⊗ I
I ⊗ eT

)
.

The matrix F arises naturally in the representation of the assignment constraints
of the QAP when the matrix X is written as a vector vec(X). Specifically, the
constraints Xe = e, XT e = e are exactly equivalent to F vec(X) = e.

Lemma 3.3. The columns of V ⊗ V are a basis for the nullspace of F .
Proof. The columns of V ⊗ V are certainly in the nullspace of F , since (eT ⊗

I)(V ⊗ V ) = eTV ⊗ V = 0, and (I ⊗ eT )(V ⊗ V ) = V ⊗ eTV = 0. Moreover, it
follows from the fact that (V, e)⊗ (V, e) is a nonsingular matrix that the columns of
V ⊗ V are independent. Finally, it is very well known that the rank of F is 2n − 1,
and therefore the dimension of the nullspace of F is n2 − (2n − 1) = (n − 1)2 which
is exactly the number of columns of V ⊗ V .

Motivated by Proposition 3.2 and Lemma 3.3, we define the semidefinite program

ŜDD(A,B) : sup V V T • S + V V T • T
s.t. (I ⊗ S) + (T ⊗ I)− ρFTF � B ⊗A.

In the next lemma we demonstrate that SDD(Â, B̂) and ŜDD(A,B) are equivalent.

Lemma 3.4. If S, T, ρ are feasible in ŜDD(A,B), then Ŝ = V TSV , T̂ = V TTV
are feasible in SDD(Â, B̂), and tr Ŝ + tr T̂ = V V T • S + V V T • T . Conversely, if Ŝ
and T̂ are feasible in SDD(Â, B̂), then for every ε > 0 there are Sε, Tε, ρε feasible in

ŜDD(A,B) such that V V T • Sε + V V T • Tε = tr Ŝ + tr T̂ − ε.
Proof. Assume that S, T, ρ are feasible in ŜDD(A,B), and let H = B ⊗A− (I ⊗

S)− (T ⊗ I). If x ∈ 	n2

is in the nullspace of F , then xTHx = xT (H + ρFTF )x ≥ 0,
since H + ρFTF � 0. Using Lemma 3.3, it follows that (V T ⊗ V T )H(V ⊗ V ) � 0,
so S and T are feasible in (3.1). Therefore Ŝ and T̂ are feasible in SDD(Â, B̂), and
tr Ŝ = V V T • S, tr T̂ = V V T • T .

Next assume that Ŝ, T̂ are feasible in SDD(Â, B̂). Then S = V ŜV T , T = V T̂V T

are feasible in (3.1). For ε > 0 let Sε = S− [ε/(n− 1)]I, and Hε = B⊗A− (I ⊗Sε)−
(T ⊗ I). Then trV TSεV + trV TTV = tr Ŝ+ tr T̂ − ε, and (V T ⊗V T )Hε(V ⊗V ) � 0.
Applying Proposition 3.2 and Lemma 3.3, there is a ρε so that Hε + ρεF

TF � 0, and

therefore Sε, T, ρε is feasible in ŜDD(A,B).

The dual of ŜDD(A,B) is the semidefinite program

ŜDP(A,B) : min (B ⊗A) • Ȳ
s.t. bdiag(Ȳ ) = V V T ,

odiag(Ȳ ) = V V T ,

Ȳ • FTF = 0,

Ȳ � 0.

Lemma 3.4 and Theorem 3.1 imply that ŜDD(A,B) = SDD(Â, B̂) = 〈λ(Â), λ(B̂)〉−.

Since ŜDD(A,B) is strictly feasible (for example, take T = 0, ρ = 0, and S = −αI for

sufficiently large α) [16, Theorem 4.2.1] then implies that ŜDP(A,B) = ŜDD(A,B)

and also that the solution value in ŜDP(A,B) is attained.
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The problem ŜDP(A,B) can be viewed as an SDP relaxation of QAP(A,B), but

this can be seen more clearly by reformulating ŜDP(A,B) in terms of the matrix
Y = Ȳ + (1/n2)E. It is straightforward to compute that for an n2 × n2 matrix E,

bdiag(E) = nE,(3.2a)

odiag(E) = nE,(3.2b)

E • FTF = 2n3.(3.2c)

In addition, note that (V, v)(V, v)T = I, where v = (1/
√
n)e, and therefore V V T =

I − vvT = I − (1/n)E. It follows that Ȳ being feasible in ŜDP(A,B) is equivalent to
Y = Ȳ + (1/n2)E being feasible in the SDP problem

SDP+(A,B) : min (B ⊗A) • Y
s.t. bdiag(Y ) = I,

odiag(Y ) = I,

Y • FTF = 2n,

Y � (1/n2)E.

Finally,

(B ⊗A) • E = tr(B ⊗A)(eeT ⊗ eeT )

= tr(B ⊗A)(e⊗ e)(eT ⊗ eT )

= tr(eT ⊗ eT )(B ⊗A)(e⊗ e)
= s(A)s(B),(3.3)

so Y = Ȳ + (1/n2)E implies that

SDP+(A,B) = ŜDP(A,B) +
s(A)s(B)

n2
= 〈λ(Â), λ(B̂)〉− +

s(A)s(B)

n2
.(3.4)

The problem SDP+(A,B) is a stronger semidefinite relaxation of QAP(A,B)
than SDP(A,B). The additional equality constraint Y • FTF = 2n corresponds to
a relaxation of the assignment constraints Xe = XT e = e. Note that trY FTF =

trFY FT , so the constraint Ȳ •FTF = 0 of ŜDP(A,B) is equivalent to trFȲ FT = 0.
However, FȲ FT � 0, and therefore trFȲ FT = 0 is equivalent to FȲ FT = 0.
For Y = Ȳ + (1/n2E), the latter is equivalent to FY FT = E. Finally, if Y =
vec(X)vec(X)T , then

FY FT =

(
eT ⊗ I
I ⊗ eT

)
vec(X)vec(X)T

(
eT ⊗ I
I ⊗ eT

)T

=

(
vec(Xe)
vec(eTX)

)(
vec(Xe)
vec(eTX)

)T

=

(
Xe
XT e

)(
Xe
XT e

)T
,

so Xe = XT e = e implies that FY FT = E.
Comparing (3.4) with part 3 of Theorem 2.2, it is clear that SDP+(A,B) =

PB(A,B) when e is an eigenvector of either A or B. In the next theorem we show that
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in all cases PB(A,B,C), as defined in Theorem 2.2, corresponds to applying SDP+(·, ·)
to bound the quadratic term of QAP(A,B,C), after a preliminary transformation
(2.3) that makes e an eigenvector of A.

Theorem 3.5. Let A′ = A+ egT + geT , where g = (−1/n)Ae, and let C ′ = C +
(2/n)AeeTB = C+(2/n)r(A)r(B)T . Then PB(A,B,C) = SDP+(A′, B)+LAP(C ′).

Proof. Note that

A′e = Ae+ (gT e)e+ (eT e)g = − s(A)

n
e,

so e is an eigenvector of A′, and s(A′) = −s(A). From (3.4), and the fact that
V TA′V = V TAV = Â, we then have

SDP+(A′, B) = 〈λ(Â), λ(B̂)〉− +
s(A′)s(B)

n2
= 〈λ(Â), λ(B̂)〉− − s(A)s(B)

n2
.

That PB(A,B,C) = SDP+(A′, B) + LAP(C ′) then follows from the definition of
PB(A,B,C).

Theorem 3.5 uses a transformation of A that makes e an eigenvector of A′, but
it is easy to see that a similar result holds if an analogous transformation is applied
to B instead. As mentioned above, the problem SDP+(A,B) can be interpreted
as a strengthened semidefinite relaxation of QAP(A,B). In particular, note that if
X ∈ O ∩ E , then Y = vec(X)vec(X)T is feasible for all of the equality constraints
in SDP+(A,B) and also has (B ⊗ A) • Y = vec(X)T (B ⊗ A)vec(X) = trAXBXT .
However, such a Y will not in general be feasible for the constraint Y � (1/n2)E. In
the next theorem we show that when e is an eigenvector of A or B, SDP+(A,B) is
in fact a valid relaxation of QAP(A,B).

Theorem 3.6. Assume that X ∈ O ∩ E, and let Y = vec(X)vec(X)T , Y ′ =
Y − (1/n2)[Y E + EY ] + (2/n2)E. Then Y ′ is feasible in SDP+(A,B). Moreover, if
e is an eigenvector of A or B, then (B ⊗A) • Y ′ = (B ⊗A) • Y .

Proof. To begin, we will show that

bdiag(Y E) = bdiag(EY ) = nE,(3.5a)

odiag(Y E) = odiag(EY ) = nE,(3.5b)

(Y E) • FTF = (EY ) • FTF = 2n3.(3.5c)

By inspection, using the fact that Xe = XT e = e, we have

(Y E)[ij] = nXie
T , (EY )[ij] = neXT

j ,

for i, j = 1, . . . , n, where Xi is the ith column of X. Then

bdiag(Y E) =
n∑
i=1

(Y E)[ii] = n(Xe)eT = nE.

The argument that bdiag(EY ) = nE is similar, proving (3.5a). Next,

tr(Y E)[ij] = n trXie
T = neTXi = n

for all i, j, so odiag(Y E) = nE. The argument that odiag(EY ) = nE is similar,
proving (3.5b). Finally Y E = vec(X)vec(X)T eeT = nvec(X)eT = nvec(X)(eT ⊗
eT ), and FTF = (E ⊗ I) + (I ⊗ E), so

(Y E) • FTF = 2n2 tr
(
vec(X)(eT ⊗ eT )

)
= 2n2eT vec(X) = 2n3,
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and (EY ) • FTF = (Y E) • FTF , proving (3.5c). Since Y is feasible for the equality
constraints in SDP+(A,B), (3.2) and (3.5) together imply that Y ′ is also feasible for
the equality constraints in SDP+(A,B).

Since X ∈ O ∩ E , Proposition 2.1 implies that there is an (n − 1) × (n − 1)
orthogonal matrix X̂ such that X = V X̂V T + (1/n)E, and therefore

vec(X) = (V ⊗ V )vec(X̂) +
1

n
e.(3.6)

It follows that Y = vec(X)vec(X)T can be represented in the form

Y = (V ⊗ V )vec(X̂)vec(X̂)T (V T ⊗ V T ) +
1

n
evec(X̂)T (V T ⊗ V T )

+
1

n
(V ⊗ V )vec(X̂)eT +

1

n2
eeT .

(3.7)

Using (3.6), and writing Ŷ = vec(X̂)vec(X̂)T , (3.7) implies that

Y = (V ⊗ V )Ŷ (V T ⊗ V T ) +
1

n

[
vec(X)eT + evec(X)T

]− 1

n2
eeT

= (V ⊗ V )Ŷ (V T ⊗ V T ) +
1

n2
[Y E + EY ]− 1

n2
E.

It follows that

Y ′ = Y − 1

n2
[Y E + EY ] +

2

n2
E = (V ⊗ V )Ŷ (V T ⊗ V T ) +

1

n2
E � 1

n2
E,

so Y ′ is feasible for the semidefinite inequality constraint of SDP+(A,B) as well.
Assume now that e is an eigenvector of A. Then Ae = (s(A)/n)e, and

(B ⊗A)EY = (B ⊗A)(e⊗ e)eTY
= n(Be⊗Ae)vec(X)T

= s(A)(Be⊗ e)vec(X)T

= s(A)(B ⊗ I)(e⊗ e)vec(X)T .

It follows that

tr(B ⊗A)EY = s(A)(eT ⊗ eT )(B ⊗ I)vec(X)

= s(A)(eT ⊗ eT )vec(XB)

= s(A)(eTXBe)

= s(A)s(B).(3.8)

Combining (3.3), (3.8), and the fact that (B ⊗ A) • EY = (B ⊗ A) • Y E, we obtain
(B⊗A) • Y = (B⊗A) • Y ′. The proof when e is an eigenvector of B is similar.

When e is an eigenvector of A or B, the form of SDP+(A,B) provides an easy
proof that the projected eigenvalue bound PB(A,B,C) cannot be lower than the
basic eigenvalue bound 〈λ(A), λ(B)〉− + LAP(C). The following lemma generalizes
[11, Theorem 4.2].

Lemma 3.7. Assume that e is an eigenvector of A or B. Then PB(A,B,C) ≥
〈λ(A), λ(B)〉− + LAP(C).
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Proof. When e is an eigenvector of A or B it is easy to show (using an argument
similar to that used to prove part 3 of Theorem 2.2) that

PB(A,B,C) = 〈λ(Â), λ(B̂)〉− + s(A)s(B)/n2 + LAP(C)

= SDP+(A,B) + LAP(C),

where the second equality uses (3.4). But clearly SDP+(A,B) ≥ SDP(A,B), and
SDP(A,B) = 〈λ(A), λ(B)〉−, from Theorem 3.1.

It is quite interesting to compare the semidefinite relaxation SDP+(A,B) with
SDP relaxations of the QAP devised in [15] and [22]. The basic relaxation of [15] is

min (B ⊗A) • Y
s.t. Y • FTF = 2n,

Y • E = n2,
Y − diag(Y ) diag(Y )T � 0.

(3.9)

It is well known that the nonlinear semidefinite inequality Y − diag(Y ) diag(Y )T � 0
can be expressed as a linear semidefinite constraint, for example by writing A(Y ) �
−e0eT0 , where

A(Y ) =

(
0 diag(Y )T

diag(Y ) Y

)
,

and e0 is the unit vector in 	n2+1 with a one in the zeroth position. Note that (3.9)
does not impose the constraints bdiag(Y ) = I, odiag(Y ) = I of SDP+(A,B). In

addition, it is easy to see that the constraint Ȳ •FTF = 0 of ŜDP(A,B) implies that
eTFȲ FT e = 0 (see the discussion following (3.4)), which is equivalent to Ȳ • E = 0.
As a result the constraint Ȳ • E = n2 would be redundant in SDP+(A,B). These
observations suggest that the bound from (3.9) could be inferior to PB(A,B) in some
cases, as can be verified by comparing the bounds in Table 1 of [15] with the projected
eigenvalue bounds for the same problems (see, for example, Table 3 of [22]).

For a homogenous problem (C = 0) the basic SDP bound of [22] is very similar
to SDP+(A,B), the main difference being the representation of the assignment con-
straints. (The general construction of [22] also provides an SDP bound for problems
with C �= 0, but we omit the details here.) Since the original assignment constraints
of the QAP can be written F vec(X)− e = 0, where e ∈ 	2n, it is certainly true that

vec(X)TFTF vec(X)− 2eTF vec(X) + 2n = 0.(3.10)

For X ∈ Π and Y = vec(X)vec(X)T we have vec(X) = diag(Y ) and eTF = 2eT , so
(3.10) can be written

Y • FTF − 4eT diag(Y ) + 2n = 0.

The basic SDP relaxation for QAP(A,B) from [22] is

min (B ⊗A) • Y
s.t. bdiag(Y ) = I,

odiag(Y ) = I,
Y • FTF − 4eT diag(Y ) = −2n,
Y − diag(Y ) diag(Y )T � 0.

(3.11)
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Note, however, that bdiag(Y ) = I implies that eT diag(Y ) = n, so the constraint
Y • FTF − 4eT diag(Y ) = −2n of (3.11) is actually equivalent to Y • FTF = 2n. In
the computational results reported in [22], the bound from (3.11) is never worse than
PB(A,B). However, it is interesting to note that there are several problems for which
these two bounds coincide (see Tables 1 and 3 of [22]).

Both [15] and [22] consider strengthenings of the basic SDP bounds in (3.9) and
(3.11), respectively. These improved bounds are based on two classes of constraints
that are valid for Y = vec(X)vec(X)T , X ∈ Π:

1. all components of Y should be nonnegative;
2. certain components of Y should be zero.

By imposing additional constraints of one or both of the above types, [15] and [22]
obtain substantial improvements over the basic SDP bounds from (3.9) and (3.11).
Unfortunately, however, the computational cost of obtaining these improved bounds
is considerable.

4. Conclusion. We have shown that the well-known projected eigenvalue bound
for the QAP corresponds to first applying a simple transformation to the problem
and then using a semidefinite relaxation to bound the quadratic term. The implicit
semidefinite relaxation is closely related to SDP relaxations for the QAP proposed
in [15] and [22]. In addition to its purely theoretical interest, there are several possible
applications for this result. For example, because the projected eigenvalue bound
corresponds to a particular X ∈ O ∩ E , this “solution” might be useful for warm-
starting a stronger SDP relaxation of the QAP. In addition, the knowledge that the
bound corresponds to implicitly solving a convex optimization problem may make it
possible to derive stronger bounds for the QAP that do not require explicit solution
of an SDP.
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Abstract. We analyze the multiple cut generation scheme in the analytic center cutting plane
method. We propose an optimal primal and dual updating direction when the cuts are central. The
direction is optimal in the sense that it maximizes the product of the new dual slacks and of the
new primal variables within the trust regions defined by Dikin’s primal and dual ellipsoids. The new
primal and dual directions use the variance-covariance matrix of the normals to the new cuts in the
metric given by Dikin’s ellipsoid.

We prove that the recovery of a new analytic center from the optimal restoration direction can
be done in O(p log(p + 1)) damped Newton steps, where p is the number of new cuts added by the
oracle, which may vary with the iteration. The results and the proofs are independent of the specific
scaling matrix—primal, dual, or primal-dual—that is used in the computations.

The computation of the optimal direction uses Newton’s method applied to a self-concordant
function of p variables.

The convergence result of [Ye, Math. Programming, 78 (1997), pp. 85–104] holds here also: the

algorithm stops after O∗( p̄
2n2

ε2
) cutting planes have been generated, where p̄ is the maximum number

of cuts generated at any given iteration.

Key words. primal Newton algorithm, analytic center, cutting plane method, multiple cuts,
interior-point methods, self-concordance
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1. Introduction. The analytic center cutting plane (ACCPM) algorithm [5, 18]
is an efficient algorithm in practice [2, 4]. The complexity of related algorithms was
given in [1, 13] and subsequently in [6]. Extensions to deep cuts were given in [7]
and to very deep cuts in [8]. The method studied in [8] corresponds to the practical
implementation of ACCPM [11] with a single cut.

In practice, it often occurs that the oracle in the cutting plane scheme generates
multiple cuts. The paper by Ye [19] shows that it is possible to handle several cuts at
a time provided they are central; the direction used is the primal direction suggested
by Mitchell and Todd [12]. Although this analysis shows how one can recover feasi-
bility after introducing multiple cuts, there is no clear argument as to the choice of a
feasibility restoration direction. Intuitive, but well justified, arguments about how to
introduce multiple cuts were given in [2] in the context of a primal projective algo-
rithm and two cuts (one shallow, one deep) and in [10] with an infeasible primal-dual
approach to the introduction of several cuts in general position.

The case of two central cuts was analyzed in [9]. It was shown that there exist ex-
plicit primal-dual directions which allow a best move towards primal-dual feasibility.
An argument using the primal, dual, and primal-dual potentials at this new optimal
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primal-dual point proves that O(1) damped Newton steps are enough to recover cen-
trality. The updating direction depends on the cosine in the metric of Dikin’s ellipsoid
of the normals to the cuts.

In this paper, we analyze the multiple central cut generation scheme in the an-
alytic center cutting plane method. An approach based upon weighted potentials
applied to the primal direction proposed in [12] and studied in [19] leads to a number
of recentering steps that depends upon the total number of cuts and on the data.

We propose an optimal updating direction when the cuts are central. The direc-
tion is optimal in the sense that it maximizes the product of the new slacks within
the trust region defined by Dikin’s ellipsoid. The new primal-dual directions use the
variance-covariance matrix of the normals to the new cuts in the metric given by
Dikin’s ellipsoid.

We prove that the recovery of a new analytic center from the optimal restoration
point can be done in O(p log(p + 1)) damped Newton steps, where p is the number
of new cuts added by the oracle; the number of cuts may vary at each iteration. The
number of damped Newton steps does not depend upon the data, i.e., it is strongly
polynomial.

The results and the proofs are independent of the specific scaling matrix—primal,
dual, or primal-dual—that is used in the computations. The proof of a complexity
that does not depend on the data of the problem relies on the use of the primal-dual
potential function as a proximity measure.

The computation of the optimal direction uses Newton’s method applied to a self-
concordant function of p variables. The number of iterations needed is polynomial in
the problem data; but this could be very advantageous in practice if the number of
cuts p is small with respect to n, the dimension of the space, as Newton’s method
takes place in a p-dimensional space.

The argument made here is very classical in nonlinear optimization and involves
computing an optimal direction within a trust region, here defined by Dikin’s ellipsoid,
and only then searching for the new center.

The convergence result of [19] holds here also: the algorithm stops after O∗( p̄
2n2

ε2 )
cutting planes have been generated, where p̄ is the maximum number of cuts generated
by the oracle at any iteration. No improvement on this result can be offered here, as
the worst case answer from the oracle is p copies of the same cutting plane, in which
case the optimal direction proposed here is the same as the one studied in [19]. The
long-step analysis given in [19] shows an average number of Newton steps of O(p̄).

2. Analytic center cutting plane method.

2.1. Cutting planes. The problem of interest is that of finding a point in a
convex set C ⊂ R

n. We make the following assumptions.
Assumption 2.1. The set C is convex, contains a ball of radius ε > 0, and is

contained in the cube 0 ≤ y ≤ e.
Assumption 2.2. The set C is described by an oracle. That is, the oracle either

confirms that y ∈ C, or answers at least one cutting plane that contains C and does
not contain y in its interior.

A cut at ȳ �∈ C takes the form

aT y ≤ aT ȳ − γ̄.

If γ̄ > 0, the cut is deep; if γ̄ < 0, the cut is shallow; if γ̄ = 0, the cut passes through
ȳ, and we will refer to this as a central cut.
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The algorithm may generate multiple cuts at a time. They take the form

aTj y ≤ aTj ȳ − γ̄j , j = 1, . . . , p ∀y ∈ C.
We define the matrix B by

B = (a1, a2, . . . , ap);

p may vary at each iteration and, when necessary, this shall be denoted as pk.
Assumption 2.3. All the cutting planes generated have been scaled so that ‖a‖ =

1 (wlog). We also assume that γ̄ = 0, and thus that all cuts go through ȳ.
A cutting plane algorithm constructs a sequence of query points {yk}. The an-

swers of the oracle to the queries, together with the cube 0 ≤ y ≤ e, define a polyhedral
outer approximation

FD = {y : AT y ≤ c}
of C. Since A contains the identity matrix associated with the cube, A has full row
rank. Therefore there is a one-to-one correspondence between points y ∈ FD and the
slack s = c−AT y, leading to the equivalent definition of FD

FD = {s ≥ 0 : AT y + s = c}.
The number of columns in A is denoted as m (or mk) and is equal to 2n plus the

number of cutting planes generated until the kth iteration; i.e., mk = 2n+
∑k−1
j=0 pj ≤

2n+ k ∗ p̄.
The analytic center cutting plane method chooses as a query point an approximate

analytic center of FD.
2.2. Analytic center. The analytic center of FD is the unique point maximizing

the dual potential

ϕD(s) =

m∑
i=1

log si

with s = c−AT y > 0. We formally introduce the optimization problem

max
{
ϕD(s) : s = c−AT y > 0

}
(1)

and the associated first-order optimality conditions

xs = e,

AT y + s = c, s > 0,

Ax = 0, x > 0,

where x is a vector in Rm. The notation xs indicates the Hadamard or componentwise
product of the two vectors x and s.

The analytic center can alternatively be defined as the optimal solution of

max {ϕP (x) : Ax = 0, x > 0} ,(2)

where

ϕP (x) = −cTx+

m∑
i=1

log xi
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denotes the primal potential. One easily checks that problem (2) shares with (1) the
same first order optimality conditions.

At this stage, it is convenient to introduce the primal-dual potential

ϕPD(x, s) = ϕP (x) + ϕD(s)

and an associated duality relationship.
Lemma 2.4. Let x ∈ intFP and s ∈ intFD. Then ϕPD(x, s) ≤ −m, with equality

if and only if xs = e.
Proof. Consider the simple inequality

log t ≤ t− 1, ∀t > 0,(3)

with equality if and only if t = 1. Let x ∈ intFP and s ∈ intFD. Apply (3) with
t = xisi. By summing the resulting inequalities, one gets

m∑
i=1

log xi +

m∑
i=1

log si ≤ xT s−m = cTx−m,

with equality if and only if xs = e. Therefore,

ϕP (x) + ϕD(s) ≤ −m,(4)

with equality if and only if xs = e.
Finally, we define approximate centers by relaxing the condition xs = e in the

first order optimality conditions. Formally, any solution (x, s) of

‖e− xs‖ ≤ θ < 1,(5)

AT y + s = c, s > 0,(6)

Ax = 0, x > 0,(7)

defines a pair of θ-approximate centers, or θ-centers in short.

2.3. Analytic center cutting plane method. ACCPM can be briefly stated
as follows.
Initialization. Let F0

D = {y ≥ 0 : y ≤ e} be the unit cube and y0 = 1
2e be its

center. The centering parameter is 0 < θ < 1.
Basic step. yk is a θ-center of FkD; mk = 2n+

∑k−1
j=0 pj the total number of hyper-

planes describing FkD.
(1) The oracle returns the cuts amk+j , j = 1, . . . , pk, at y

k.
(2) Update
Fk+1
D = FkD ∩ {y : aTmk+j(y − yk) ≤ 0, j = 1, . . . , pk}.

(3) Compute a θ-center of Fk+1
D .

The computation of a new θ-center after adding new cuts will be discussed in a
later section.

3. Some useful properties. The literature on interior point methods essen-
tially proposes three approaches for computing analytic centers. All of them are
based on Newton’s method. The primal (resp., dual) Newton direction is initiated at
an interior primal (resp., dual) feasible point; it involves the scaling matrix D = X
(resp., D = S−1). (We recall the standard notation X which denotes the diagonal ma-
trix diag(x).) The primal-dual direction is initiated at an interior primal-dual feasible
pair, i.e., (x, s) ∈ intFP × intFD; it involves the scaling matrix D = (XS−1)1/2.



270 JEAN-LOUIS GOFFIN AND JEAN-PHILIPPE VIAL

Let us briefly recall the formulas. The primal direction is given by ∆x = xp(x)
with p(x) = e− xs(x), s(x) = c−AT (AD2AT )−1AX2c, and D = X. The dual direc-
tion is given by ∆s = sq(s) with q(s) = e−sx(s), x(s) = (I−DAT (AD2AT )−1AD)e,
and D = S−1. Finally the primal-dual direction is ∆s = AT (AD2AT )−1As−1,
∆x = −x+ s−1 −D2∆s, and D = (XS−1)1/2.

3.1. Properties of the Newton step. There are two basic properties, a local
one in the vicinity of the analytic center, and a global one. Since the results are well
known we state them without proofs. Missing proofs can be found in the books [17]
or [20].

Let us start with the local properties. Proximity to analytic center is measured
with the quantity ‖e− sx‖. In this definition, either

(i) x ∈ intFP and s = s(x) (primal case),
(ii) s ∈ intFD and x = x(s) (dual case),
(iii) x ∈ intFP and s ∈ intFD (primal-dual case).
Note that if ‖e− sx‖ ≤ θ < 1, then s(x) > 0 and thus s(x) ∈ FD (primal case),

and x(s) > 0 and thus x(s) ∈ FP (dual case). The Newton step defines a pair (x+, s+)
as follows:

(i) x+ = x+∆x and s+ = s(x+) (primal case),
(ii) s+ = s+∆s and x+ = x(s+) (dual case),
(iii) x+ = x+∆x and s+ = s+∆s (primal-dual case).
Theorem 3.1. Assume ‖e− sx‖ ≤ θ < 2

3 . Let (x+, s+) be the point resulting
from a Newton step (primal, dual, or primal-dual). Then, (s+, x+) ∈ intFD × intFP .
In the primal and dual cases, the theorem holds with any 0 < θ < 1.

One can derive from the above theorem a useful corollary that yields lower bounds
on the potentials near the analytic center. Let (xc, yc) be the pair of exact analytic
centers. Denote ϕcP = ϕP (x

c) and ϕcD = ϕD(s
c).

Corollary 3.2. Assume (5)–(7) at (x, s). Then

(1) ϕcP ≥ ϕP (x) ≥ ϕcP − θ2

1−θ2 ;

(2) ϕcD ≥ ϕD(s) ≥ ϕcD − θ2

1−θ2 ;

(3) −m ≥ ϕPD(x, s) ≥ −m− 2 θ2

1−θ2 .
Now let us consider the global properties of a damped Newton step. The proper-

ties are consequences of the well-known inequality on the logarithm function [17, p.
439].

Lemma 3.3. Let h be any point in Rm such that ‖h‖ < 1. Then,

m∑
i=1

log(1 + hi) ≥ eTh+ ‖h‖+ log(1− ‖h‖).

The main result bounds the variation of the potentials after a damped Newton step.
Theorem 3.4. Assume ‖e− xs‖ ≥ θ > 0. Define x(α) = x + α∆x and s(α) =

s + α∆s. (∆x and ∆s may be the primal, dual, or primal-dual directions.) Then,
there exists a step size α > 0 and constants σP , σD, and σPD such that

(1) ϕP (x(α)) ≥ ϕP (x) + σP ;
(2) ϕD(x(α)) ≥ ϕD(s) + σD;
(3) ϕPD(x(α), s(α)) ≥ ϕPD(x, s) + σPD.
In the primal and dual cases the constants are σP = σD = θ − log(1 + θ), while

in the primal-dual case σPD = θ
2(1+θ) − log(1 + θ

2(1+θ) ). The above result allows for

the design of a potential increase algorithm based on damped Newton steps. The
convergence estimate is given by the following theorem.
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Theorem 3.5. Let x0 ∈ intFP and s0 ∈ intFD. Any potential increase algorithm
(primal, dual, primal-dual) produces an interior feasible pair such that ‖e− xs‖ ≤ θ <
1 in a number of iterations not greater than⌈

ϕPD(x
0, s0) +m

σ

⌉
,

with σ = σP , σD, or σPD, depending on which approach (primal, dual, or primal-
dual) is taken.

3.2. Dikin’s ellipsoids. Let x ∈ intFP . From the observation that x+∆x > 0,
for all ∆x such that

∥∥x−1∆x
∥∥ < 1, we can define an ellipsoidal neighborhood of x

that is entirely contained in FP . Formally,

EP =
{
∆x : A∆x = 0,

∥∥X−1∆x
∥∥ ≤ 1

}
.

We shall be particularly concerned with ellipsoids around a θ-center.
We can extend the definition of Dikin ellipsoid to include a different scaling.
Lemma 3.6. Let (x, s) be a pair of θ-centers.
(1) If D = S−1 (dual scaling),

(1− θ)EP ⊂
{
∆x : A∆x = 0,

∥∥D−1∆x
∥∥ ≤ 1

} ⊂ (1 + θ)EP .

(2) If D = X1/2S−1/2 (primal-dual scaling),

√
1− θEP ⊂

{
∆x : A∆x = 0,

∥∥D−1∆x
∥∥ ≤ 1

} ⊂ √1 + θEP .

Proof. For the dual scaling the proof follows from

∥∥X−1∆x
∥∥ =

∥∥DX−1D−1∆x
∥∥ ≤ ∥∥(XS)−1

∥∥
∞
∥∥D−1∆x

∥∥ ≤ 1

1− θ
and ∥∥D−1∆x

∥∥ =
∥∥D−1XX−1∆x

∥∥ ≤ ‖XS‖∞ ∥∥X−1∆x
∥∥ ≤ 1 + θ.

For the primal-dual scaling the proof follows from

∥∥X−1∆x
∥∥ =

∥∥DX−1D−1∆x
∥∥ ≤ ∥∥∥(XS)−1/2

∥∥∥
∞

∥∥D−1∆x
∥∥ ≤ 1√

1− θ
and ∥∥D−1∆x

∥∥ =
∥∥D−1XX−1∆x

∥∥ ≤ ∥∥∥(XS)1/2∥∥∥
∞

∥∥X−1∆x
∥∥ ≤ √1 + θ.

We can similarly define Dikin’s ellipsoids in the dual. Let s ∈ intFD. The dual
ellipsoid is

ED =
{
∆s : ∆s = −AT∆y,∥∥S−1∆s

∥∥ ≤ 1
}
.

The extension of Dikin’s ellipsoid to a different scaling at a θ-center is given by the
following lemma.
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Lemma 3.7.
(1) If D = X (primal scaling),

(1− θ)ED ⊂
{
∆s : ∆s = −AT∆y, ‖D∆s‖ ≤ 1

} ⊂ (1 + θ)ED.

(2) If D = X1/2S−1/2 (primal-dual scaling),√
(1− θ)ED ⊂

{
∆s : ∆s = −AT∆y, ‖D∆s‖ ≤ 1

} ⊂√(1 + θ)ED.

The proof is the same as for Lemma 3.6.
It is well known that an homothety of Dikin’s ellipsoid contains the feasible set.

We shall use this property in the restricted context of the set FD.
Lemma 3.8. Let (x, s) be a θ-centered feasible pair. Then

FD ⊂
{
∆s : ∆s = −AT∆y, ‖D∆s‖ ≤ 1 + θ

1− θ (m+ 1)

}
.

Proof. Let (x, s) be a θ-centered feasible pair and s̃ = c−AT ỹ > 0 be any interior
point of FD. Since x(s̃− s) and e are orthogonal,

‖x(s̃− s)‖2 +m = ‖xs̃+ (e− xs)‖2 ,
≤ (‖xs̃‖+ ‖e− xs‖)2.

Since s̃ > 0, then ‖xs̃‖ ≤ xT s̃ = xT s. From ‖e− xs‖ ≤ θ, one has xT s ≤ (1 + θ)m.
We thus obtain the weak bound

‖x(s̃− s)‖ ≤ (1 + θ)m+ θ ≤ (1 + θ)(m+ 1).

Finally, from ‖D(s̃− s)‖ ≤ ∥∥Dx−1
∥∥
∞ ‖x(s̃− s)‖, one gets

‖D(s̃− s)‖ ≤ 1 + θ

1− θ (m+ 1).

Hence,

FD ⊂
{
∆s : ∆s = −AT∆y, ‖D∆s‖ ≤ 1 + θ

1− θ (m+ 1)

}
.

4. Multiple central cuts. We assume now that a θ-center (x; s, y) has been
computed, i.e.,

‖e− xs‖ ≤ θ < 1,(8)

AT y + s = c, s > 0,(9)

Ax = 0, x > 0.(10)

The cuts are

aTm+j ỹ ≤ aTm+jy, j = 1, . . . , p, ∀y ∈ C.

We define

B = (am+1, am+2, . . . , am+p).
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The new cuts lead to two new sets:

F̃D =
{
ỹ : AT ỹ ≤ c,BT ỹ ≤ BT y

}
or

F̃D =
{
s̃ = (ŝ, γ) ≥ 0 : AT ỹ + ŝ = c,BT ỹ + γ = BT y

}
,

and

F̃P = {x̃ = (x̂, β) ≥ 0 : Ax̂+Bβ = 0} .

We shall use the notation

∆y = (ỹ − y),

so

γ = −BT∆y.

After adding the cuts, one has

s̃ =

(
s

γ = 0

)
∈ F̃D

and

x̃ =

(
x

β = 0

)
∈ F̃P .

Let us introduce the notation

c̃ =

(
c

BT y

)
.

The primal-dual potentials at the new points (x̂, β) and (ŝ, γ) are

ϕ̃D(s̃) =

m∑
i=1

log ŝi +

p∑
i=1

log γi = ϕD(ŝ) +

p∑
i=1

log γi

and

ϕ̃P (x̃) = −cT x̂+

m∑
i=1

log x̂i − yTBβ +

p∑
i=1

log βi,

= ϕP (x̂)− yTBβ +

p∑
i=1

log βi.

The points x̃ and s̃ (or ỹ) lie on the boundary of the new primal and dual sets,
respectively. To recover the new analytic center, one has to increase the components
β and γ. Since the terms

∑p
i=1 log βi and

∑p
i=1 log γi are dominant near β = 0 and

γ = 0, maximizing those terms while limiting the variation on ϕP and ϕD is likely to
produce a good step towards the solution.
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This approach requires the knowledge of the level sets of the potential, something
that we don’t have, but that can be approximated by Dikin’s ellipsoids. Therefore,
we are interested in solving the following problems:

max

{
p∑
i=1

log βi : β ≥ 0, A∆x+Bβ = 0,
∥∥D−1∆x

∥∥ ≤ 1

}
(11)

and

max

{
p∑
i=1

log γi : γ ≥ 0, BT∆y + γ = 0,
∥∥DAT∆y∥∥ ≤ 1

}
.(12)

Here D is one of the scaling matrices X, S−1, or (XS−1)
1
2 , depending on whether

the computations are done with the primal, the dual, or the primal-dual algorithm.
Let us show here that the above problems are well defined and have a finite

optimum.
Lemma 4.1. Under Assumptions 2.1 and 2.2, Problems (11) and (12) are well

defined and have a finite optimum that is uniquely defined by the first-order optimality
conditions.

Proof. Both problems have a strictly concave objective. Their optimum, if it
exists, is unique in β (resp., γ).

By Assumptions 2.1 and 2.2, there exists a γ̄ > 0 and a ∆̄y such that BT ∆̄y+ γ̄ =
0. Problem (12) is well defined. Since ∆y is bounded, γ is bounded and the feasible set
is compact. Since the objective tends to −∞ close to the boundary, the problem has a
finite solution that is uniquely defined by the set of first order optimality conditions.

To show that Problem (11) is also well defined, we note that the equation A∆x+
Bβ = 0 has a solution for any β > 0 since A has full row rank. Let us show that the
feasible set is bounded. Indeed, let β ≥ 0 and Bβ = 0; then

0 = βT (BT ∆̄y + γ̄) = βT γ̄.

Since β ≥ 0 and γ̄ > 0, then β = 0. Recalling that A has full row rank, we conclude
from A∆x + Bβ = 0 that ∆x �= 0 whenever β ≥ 0, β �= 0; thus β is bounded, since
∆x is bounded by

∥∥D−1∆x
∥∥ ≤ 1. Problem (11) is thus well defined and has a finite

optimum.
The solutions of problems (11) and (12) define the primal-dual pair of rays

x̃(α) =

(
x+ α∆x

αβ

)

and

s̃(α) =

(
s+ α∆s
αγ

)
=

(
s− αAT∆y

αγ

)

for α > 0.
If ‖e− xs‖ ≤ θ < 1, then for α < 1− θ

x̃(α) ∈ intF̃P and s̃(α) ∈ intF̃D.
The following positive semidefinite matrix

V = BT (AD2AT )−1B
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plays a fundamental role in the analysis. V can be interpreted as the variance-
covariance matrix between the vectors (am+j), j = 1, . . . , p, in the metric induced
by the matrix (AD2AT )−1, i.e., Dikin’s metric.

Theorem 4.2. The solution of problems (11) and (12) is given by

∆x = −D2AT (AD2AT )−1Bβ

and

∆y = −(AD2AT )−1Bβ,

with β defined as the unique solution of

max

{
−p
2
βTV β +

p∑
i=1

log βi

}
,(13)

and

γ = V β.

Proof. Let λ ∈ Rn and σ2 be the multipliers associated with the constraints of
Problem (11). The optimality conditions are

β−1 +BTλ = 0,

ATλ− σ2D−2∆x = 0,

A∆x+Bβ = 0,

σ2(1− ∥∥D−1∆x
∥∥) = 0.

From the definition of ∆x, one immediately sees that A∆x + Bβ = 0. Letting λ =
−p(AD2AT )−1Bβ and σ2 = p, we have

ATλ = −pAT (AD2AT )−1Bβ = σ2D−2∆x.

This proves the second relation. To prove the first relation, we shall use the optimality
condition for Problem (13). However, we must check first that (13) has a bounded
optimum. In Lemma 4.1 we proved that Bβ = 0 has no nonzero nonnegative solution.
Thus, for all β ≥ 0, β �= 0, one has

βTV β = βTBT (AD2AT )−1Bβ > 0.

This proves that the objective −p2βTV β +
∑p
i=1 log βi is bounded above and Prob-

lem (13) has a unique optimum.
The optimality condition for Problem (13) is

−pV β + β−1 = 0.

Replacing β−1 by pV β we get the identity

pV β +BTλ = pBT (AD2AT )−1Bβ − pBT (AD2AT )−1Bβ ≡ 0.

It remains to check that
∥∥D−1∆x

∥∥ = 1. Indeed,

∥∥D−1∆x
∥∥2

= βTBT (AD2AT )−1Bβ = βTV β
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and

βTV β =
1

p
βTβ−1 = 1.

Now let us consider Problem (12). The optimality conditions are

γ−1 − µ = 0,

γ +BT∆y = 0,

Bµ+ σ2(AD2AT )∆y = 0,

σ2(1− ∥∥DAT∆y∥∥) = 0,

where µ ∈ Rp and σ2 ∈ R+ are the multipliers associated with the two constraints.
We want to show that µ = pβ and σ2 = p are the optimal multipliers, where β is

the optimal solution of Problem (13). Solving for ∆y, one gets

∆y = − 1

σ2
(AD2AT )−1Bµ = −(AD2AT )−1Bβ.

Now

0 = γ +BT∆y = γ −BT (AD2AT )−1Bβ = γ − V β.
Remembering the optimality condition for β, one may replace γ = V β by (pβ)−1, and
thus check that the first optimality condition γ−1 = pβ = µ holds.

Finally,

1 = ∆yT (AD2AT )∆y = βTV β =
∥∥DAT∆y∥∥

proves that with our choice of multipliers, the last optimality condition also
holds.

Remark 4.1. If V is nonsingular, γ is also the unique solution of

max

{
−1

2
pγTV −1γ +

p∑
i=1

log γi

}
.(14)

We can now give an explicit formula for the restoration direction. Noting that

∆s = −1

p
AT∆y = AT (AD2AT )−1Bβ,

we have the new primal-dual pair

x̃(α) =

(
x+ α∆x

αβ

)
=

(
x− αD2AT (AD2AT )−1Bβ

αβ

)
,(15)

s̃(α) =

(
s+ α∆s
αγ

)
=

(
s+ αAT (AD2AT )−1Bβ

αV β

)
,(16)

and

ỹ(α) =
(
y + α∆y

)
=
(
y − α(AD2AT )−1Bβ

)
.(17)

Remark 4.2. We note a significant dissymmetry between the primal and dual
directions:
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(1) any positive value of β, say β = e, gives a primal feasible direction, but
(2) β > 0 does not guarantee γ = V β > 0; however, if V is nonsingular, then

taking β = pV −1γ̂, with γ̂ > 0, gives a feasible dual direction.
Different stepsizes (αP , αD) could be used in the primal-dual space.
Note that, by construction,

∥∥D−1∆x
∥∥ = 1 and ‖D∆s‖ = 1, and that if λ = pβ,

then D−1∆x = D∆s. At the optimum direction, one has pγβ = e.
The computation of β requires solving the nonlinear optimization problem (13).

Since the function F (β) = −∑p
i=1 log βi+

p
2β

TV β is self-concordant, it can easily be
minimized by classical Newton schemes. We postpone to a later section the discussion
on the complexity estimate for getting approximate solutions.

For the sake of a simpler presentation we shall assume in our analysis of ACCPM
that the minimizers are exact. However, this is not the case in practice and we must
be concerned with the impact of errors on β and γ on the performance of ACCPM.
This discussion is also postponed to a later section. Below, we sketch the result that
enables an easy extension of our analysis of ACCPM with multiple cuts in the case
of inexact computations of β and γ.

The convergence analysis of section 5 relies on the following properties:
(i)

∥∥D−1∆x
∥∥ = βTV β = 1,

(ii) ‖D∆s‖ = 1
p2 γ

−TV γ−1 = 1,

(iii) pβγ = e.
If we can guarantee that the solutions satisfy pβγ ≈ e and 1

p2 γ
−TV γ−1 ≈ 1 ≈

βTV β, then the convergence result on ACCPM is essentially unaffected, while the
proofs need only minor adjustments.

We give here a theorem that stipulates the condition that must be met by β and
γ to carry the analysis with inexact minimizers. In a later section we shall show that
classical interior point schemes make it possible to meet the condition.

Lemma 4.3. Assume β > 0 and ‖pβ(V β)− e‖ ≤ η. Let γ = V β. Then

(1− η)e ≤ pβγ ≤ (1 + η)e

and

1− η ≤ βTV β = βT γ ≤ 1 + η.

In particular, γ = V β > 0 if η < 1.
Proof. The first set of inequalities follows directly from the assumption and the

definition of γ. These inequalities also imply that γ = V β > 0 if η < 1.
Multiplying these inequalities by eT one gets

p(1− η) ≤ pβTV β ≤ p(1 + η).

5. Convergence analysis. We now assume that (x, s) is a pair of θ-centers and
that ∆x and ∆s are computed as in section 4 with β and γ being the exact minimizers
of problems (13) and (14). We assume that the computations are done with either
the primal, the dual, or the primal-dual scaling.

Lemma 5.1. Independently of the specific scaling matrix D (primal, dual, or
primal-dual), one has, for any α < 1− θ, ∥∥αX−1∆x

∥∥ < 1 and
∥∥αS−1∆s

∥∥ < 1.

Proof. By construction
∥∥D−1∆x

∥∥ = ‖D∆s‖ = 1. From Lemma 3.6, for any

primal, dual, or primal-dual scaling D, we have
∥∥X−1∆x

∥∥ ≤ 1
1−θ

∥∥D−1∆x
∥∥ = α

1−θ <
1. The proof is the same in the dual case.
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Remark 5.1. The above result can be sharpened by considering separately the
three different scaling matrices D. However, we prefer the weaker result since it allows
a single formulation for the three cases.

Lemma 5.2. The following inequalities hold:

|cT∆x+ yTBβ − eTX−1∆x| ≤ θ

1− θ
and

|eTS−1∆s| ≤ θ

1− θ .

Proof. From Bβ = −A∆x, one has

cT∆x+ yTBβ = cT∆x− yTA∆x = eT (S∆x).

Thus,

|cT∆x+ yTBβ − eTX−1∆x| = |eT (S −X−1)∆x|
= |(sx− e)TX−1∆x|
≤ ‖e− sx‖∥∥X−1∆x

∥∥
≤ θ

1− θ .

To prove the second statement, we note that xT∆s = 0 since Ax = 0. Thus

|eTS−1∆s| = |eT (S−1 −X)∆s|
= |(sx− e)TS−1∆s|
≤ ‖e− sx‖∥∥S−1∆s

∥∥
≤ θ

1− θ .

In view of the above lemmas, we can bound the potentials ϕ̃P and ϕ̃D at the new
pair of points (x̃(α), s̃(α)).

Lemma 5.3. For any 0 < α < 1− θ, the new potentials satisfy

ϕ̃P (x̃(α)) ≥ ϕP (x) + p logα+ α+ log

(
1− α

1− θ
)
+

p∑
i=1

log βi,(18)

ϕ̃D(s̃(α)) ≥ ϕD(s) + p logα+ α+ log

(
1− α

1− θ
)
+

p∑
i=1

log γi,(19)

and

ϕ̃PD(x̃(α), s̃(α)) ≥ ϕPD(x, s) + 2p logα+ 2α+ 2 log

(
1− α

1− θ
)
− p log p.(20)



MULTIPLE CUTS IN ACCPM 279

Proof. Let us prove first the inequality on the primal potential. At the updated
point x̃(α) the potential is

ϕ̃P (x̃(α)) = −c̃T x̃(α) +
m∑
i=1

log xi(α) +

p∑
i=1

logαβi

= −cTx− αcT∆x− αyTBβ +

m∑
i=1

log xi(α) +

p∑
i=1

logαβi

= ϕP (x)− αcT∆x+

m∑
i=1

log(1 + αx−1
i (∆x)i)− αyTBβ +

p∑
i=1

logαβi.

Let hP = αx−1∆x. By Lemma 5.1 ‖hP ‖ < 1. We can apply Lemma 3.3 to get

m∑
i=1

log(1 + αx−1
i (∆x)i) ≥ αeTx−1∆x+ ‖hP ‖+ log(1− ‖hP ‖).

Then, by Lemma 5.2,

αeTx−1∆x− αcT∆x− αyTBβ ≥ − αθ

1− θ .

Since t+log(1− t) is decreasing, we can bound ‖hP ‖+log(1−‖hP ‖) by α
1−θ +log(1−

α
1−θ ) and get

ϕ̃P (x̃(α)) ≥ ϕP (x) + α+ log

(
1− α

1− θ
)
+

p∑
i=1

logαβi.

Now let us prove the dual case. We have

ϕ̃D(s̃(α)) =

m∑
i=1

log si(α) +

p∑
i=1

logαγi

= ϕD(s) +

m∑
i=1

log(1 + αs−1
i (∆s)i) +

p∑
i=1

logαγi.

Let hD = αS−1∆s. By Lemma 5.1 ‖hD‖ < 1. We can apply Lemma 3.3 to get

m∑
i=1

log(1 + αs−1
i (∆s)i) ≥ αeT s−1∆s+ ‖hD‖+ log(1− ‖hD‖).

Since by Lemma 5.2

αeT s−1∆s ≥ − αθ

1− θ
we obtain, by putting the inequalities together, the same result as in the primal case

ϕ̃D(s̃(α)) ≥ ϕD(s) + α+ log

(
1− α

1− θ
)
+

p∑
i=1

logαγi.

To conclude the proof of the theorem, we just sum the inequalities on ϕ̃P and ϕ̃D
and use βγ = 1

pe to get

ϕ̃PD(x̃(α), s̃(α)) ≥ ϕPD(x, s) + 2p logα+ 2α+ 2 log

(
1− α

1− θ
)
− p log p.
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5.1. Recovering the new analytic center. The complexity of the restoration
procedure is given by the next theorem.

Theorem 5.4. The number of Newton steps to compute the updated θ-analytic
center is bounded by

ν =
−p− ρ
σ

= O(p log(p+ 1)),

where

ρ =
2θ2

1− θ2
+ 2α+ 2p logα+ 2 log

(
1− α

1− θ
)
− p log p,

and, depending on the Newton scheme,

σ = σP , σD, or σPD.

Proof. To bound the number of Newton steps, we compute the optimality gap

∆ϕ̃PD = (ϕ̃cP + ϕ̃cD)− ϕ̃PD(x̃(α), s̃(α))

for the sum of the primal-dual potentials. On the one hand,

ϕ̃cP + ϕ̃cD = −(m+ p).

On the other hand, we can write

ϕ̃PD(x̃(α), s̃(α)) ≥ ϕPD(x, s) + 2α+ 2p logα+ 2 log

(
1− α

1− θ
)
− p log p.

Finally,

ϕPD(x, s) ≥ ϕP (x
c) + ϕD(s

c)− 2θ2

1− θ2
= −m− 2θ2

1− θ2
.

Hence,

ϕ̃PD(x̃(α), s̃(α))

≥ −m+
2θ2

1− θ2
+ 2α+ 2p logα+ 2 log

(
1− α

1− θ
)
− p log p.

Thus

∆ϕ̃PD ≤ −p− ρ.

Using Theorem 3.4 and the above bound on the potential variation we conclude the
proof of the theorem.

5.2. Convergence of ACCPM with multiple cuts. The next lemma is a
first step on bounding the number of calls to the oracle.

Theorem 5.5. For all 0 < α < 1− θ

ϕ̃cD ≤ ϕcD +

p∑
i=1

log τi + κ(θ, α, p),
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with

κ(α, θ, p) =
θ2

1− θ2
− α− log

(
1− α

1− θ
)
− p logα− p+ p log p,

and τ is the vector whose components are the square roots of the diagonal elements of
V .

Proof. The first inequality uses ϕ̃cP ≥ ϕ̃P (x̃(α)), the duality on potential, and
Lemma 2.4 to yield

−ϕ̃cD = (m+ p) + ϕ̃cP

≥ (m+ p) + ϕ̃P (x̃(α))

≥ m+ p+ ϕP (x) + p logα+ α+ log

(
1− α

1− θ
)
+

p∑
i=1

log βi.(21)

We now need to deal with the contribution of the new variables

p∑
i=1

log βi.

Since β solves (13), we have βTV β = 1 and

p∑
i=1

log βi − p

2
= max

β′

{
p∑
i=1

log β′
i −

p

2
β′TV β′

}
,

≥
p∑
i=1

log β′
i −

p

2
β′TV β′,

for any arbitrary β′.
Let us define the vector τ by

τi =
√
aTm+i(AX

2AT )−1am+i.

Note that τ2 = diagV while the off-diagonal terms of V are

τij = aTm+i(AX
2AT )−1am+j .

The off-diagonal elements satisfy

|τij | ≤ τiτj .

Those properties are typical of a variance-covariance matrix. Let us choose

β′ =
τ−1

√
τ−TV τ−1

.

Then

β′TV β′ = 1.

The matrix R = diag(τ−1)V diag(τ−1) is a correlation matrix: its coefficients are
bounded in absolute value by 1, and

τ−TV τ−1 = eTRe ≤ p2.
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Thus

p∑
i=1

log βi ≥
p∑
i=1

log β′
i

= −
p∑
i=1

log τi − p log
√
τ−TV τ−1

≥ −
p∑
i=1

log τi − p log p.(22)

Using Corollary 3.2 we have

ϕP (x) ≥ ϕcP −
θ2

1− θ2
= −ϕcD −m−

θ2

1− θ2
.(23)

Putting together (21), (22), and (23) yields

ϕ̃cD ≤ ϕcD +
θ2

1− θ2
− p− α− log

(
1− α

1− θ
)
+ p log

p

α
+

p∑
i=1

log τi.

The bound

κ(α, θ, p) =
θ2

1− θ2
− p− α− log

(
1− α

1− θ
)
+ p log

p

α

can be analyzed by selecting, somewhat arbitrarily, α = 1/
√
2 and θ = .25, guaran-

teeing α ≤ 1− θ but also

κ(α, θ, p) =
θ2

1− θ2
− p− α− log

(
1− α

1− θ
)
+ p log

p

α

≤ p log(p+ 1);(24)

this is exactly the same result as in [19], but with a rather different derivation, as we
show that this inequality is actually achieved at the iterate obtained by the restoration
step.

Remark 5.2. If the p cuts generated are identical, then the correlation matrix R
is the rank-one matrix eeT . Otherwise for the optimal β∗

p∑
i=1

log β∗
i +

p∑
i=1

log τi + p log p(25)

may be significantly greater than 0 and speed the convergence in practice, even though
this does not appear to affect the worst case complexity bound.

5.3. Convergence of ACCPM. The convergence analysis uses the proof given
in [19], for the case of multiple cuts.

Denote

P = ϕD(s
c) = max {ϕD(s) : s ∈ FD}
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and let P k be the same value after k calls to the oracle, that is, after adding mk −
2n =

∑k−1
j=0 pj cuts, where pj denotes the number of cuts added at iteration j. By

Theorem 5.5 and the observation (24) the following inequality holds:

P k+1 ≤ P 0 +

k∑
j=0

pj∑
i=1

log τ ji +

k∑
j=0

pj log(pj + 1).

Theorem 10 of [19] can be used here, where p̄ ≤ n denotes the maximum number
of cuts generated by any call to the oracle.

Theorem 5.6. The algorithm stops with a solution as soon as k satisfies

ε2

(p̄+ 1)2
≥

n
2 + 18n2

15 log(1 + mk+1

8n2 )

mk+1
.

Furthermore the number of damped Newton steps per call to the oracle is O(p̄ log(p̄+

1)). The number of cutting planes generated is at most O∗( p̄
2n2

ε2 ).1

The assumption that p̄ ≤ n is not required in the proof of [19], and in fact

p̄ = O(n) would still lead to O∗( p̄
2n2

ε2 ) cutting planes. (This would only impact the
constant.)

6. Computing the optimal direction of restoration. The restoration direc-
tion requires the solution of the concave problem

max

{
F (β) = −1

2
pβTV β +

p∑
i=1

log βi

}
.

We note that in the computation of the restoration direction a significant absence
of symmetry occurs: it is easy to give a feasible value for β, say β = e√

eTV e
or

β = τ−1√
τ−TV τ−1

, that gives a feasible solution to the problem of finding a feasible

direction, but, in general, this is not the case for the dual side. τ is the vector whose
components are the square roots of the diagonal elements of V .

If V is invertible, then the dual direction could also be computed by maximizing

G(γ) = −p
2
γTV −1γ +

p∑
i=1

log γi.

A good starting value for γ could also be given, say γ = e√
eTV −1e

or γ =
τ−1
D√

τ−T
D

V −1τ−1
D

,

where τD is the vector whose components are the square roots of the diagonal elements
of V −1.

The following bounds on F (β) will be useful in the computation of complexity
estimate of a Newton method to solve (13).

Theorem 6.1. For

β0 =
τ−1

√
τ−TV τ−1

,

F (β0) ≥ −
p∑
i=1

log τi − p log p− p

2
,

1The notation O∗ indicates that lower-order terms are ignored.
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and

max
β>0

F (β)− p log p− p/2− p log
(

ε(1− θ)
(m+ 1)(1 + θ)

)
.

Proof. The inequality on F (β0) was derived in the proof of Theorem 5.5. See
(22).

Let us construct an upper bound on F (β∗), where β∗ denotes the optimal solution
of problem (13), and γ∗ = V β∗. From the optimality condition

F (β∗) +
p∑
i=1

log γ∗i =

p∑
i=1

log(β∗
i γ

∗
i )− (p/2)β∗TV β∗ = −p log p− p/2.

Hence,

F (β∗) = −p log p− p/2−max

{
p∑
i=1

log γi : B
T∆y + γ = 0,

∥∥DAT∆y ≤ 1
∥∥} .

By Lemma 3.8, an homothety of Dikin’s ellipsoid contains the current set of
localization, i.e.,

FD ⊂
{
∆s : ∆s = −AT∆y, ‖D∆s‖ ≤ 1 + θ

1− θ (m+ 1)

}
.

By assumption (2.1) and the fact that the algorithm has not terminated, a sphere
of radius ε is contained in FD. Then perfroming an homothety in the y-space, with
as a center the current approximate analytic center, and with ratio 1−θ

(m+1)(1+θ) , we

conclude that {
∆s : ∆s = −AT∆y, ‖D∆s‖ ≤ 1

} ∩ FD
contains a sphere of radius ε(1−θ)

(m+1)(1+θ) . Denoting by yc the center of this sphere, and

selecting γ = −BT (yc − y) one has

−
p∑
i=1

log γi ≤ −p log
(

ε(1− θ)
(m+ 1)(1 + θ)

)

with
∥∥DAT (yc − y)∥∥ ≤ 1.
And thus

F (β∗) ≤ −p log p− p/2− p log
(

ε(1− θ)
(m+ 1)(1 + θ)

)
.

If V is invertible, one can derive alternative upper bounds on F (β∗) as follows:
Using

F (β) +G(γ) ≤ F (β∗) +G(γ∗) = −p log p− p,
we have

F (β∗) ≤ −p log p− p−G(γ), (∀γ > 0)

= −p log p− p−
p∑
i=1

log γi + (p/2)γTV −1γ

≤ −p log p− p/2 + (p/2) log(eTV −1e) (setting γ = e/
√
eTV −1e).



MULTIPLE CUTS IN ACCPM 285

If instead of γ = e we set γ =
τ−1
D√

τ−T
D

V −1τ−1
D

, then

F (β∗) ≤ p log p− p/2 +
p∑
j=1

log(τD)j + (p/2) log(τ−TD V −1τ−1
D ).

The bounds on F (β0) and F (β∗) are used to derive a complexity estimate for the
computation of an approximate optimal solution. Using the fact that the function F
is self-concordant [15], we can resort to a potential increase scheme. The scheme uses
the Newton direction

−[F ′′(β)]−1F ′(β).

Let us denote ‖u‖H =
√−uTHu the norm of an arbitrary vector u in the metric

induced by the negative definite matrix H. The norm ‖F ′(β)‖[F ′′(β)]−1 plays a crit-
ical role in the analysis. The potential increase scheme is based on an extension of
Lemma 3.3. The proof can be found in the unpublished lecture notes [14]. (The proof
is also made available in [16].)

Lemma 6.2. Let ∆β be such that ‖∆β‖[F ′′(β)]−1 < 1. Then,

F (β +∆β) ≤ F (β) + ∆βTF ′(β)− t− log(1− t)

with t = ‖∆β‖[F ′′(β)]−1 .

Assume now ‖F ′(β)‖[F ′′(β)]−1 ≥ η, for a fixed 0 < η < 1. Let

∆β = −[F ′′(β)]−1F ′(β)

and α = (1 + ‖F ′(β)‖[F ′′(β)]−1)−1. Then α∆β satisfies the condition of the above
lemma. Thus,

F (β+α∆β) ≤ F (β)+α∆βTF ′(β)−α ‖F ′(β)‖[F ′′(β)]−1 +log
(
1 + ‖F ′(β)‖[F ′′(β)]−1

)
.

Since ∆βTF ′(β) = −α ‖F ′(β)‖2[F ′′(β)]−1 , we have

F (β + α∆β) ≤ F (β)− σ,

where σ = ‖F ′(β)‖[F ′′(β)]−1 − log(1 + ‖F ′(β)‖[F ′′(β)]−1). One easily shows that σ ≥
η − log(1 + η) is bounded from below by an absolute constant.

The complexity estimate for the potential increase scheme follows directly from
the above analysis and a bound on the achievable potential increase (F (β∗)−F (β0)).

Theorem 6.3. Let β0 = τ−1√
τ−TV τ−1

. The potential increase algorithm applied to

the maximization of F produces a point β such that ‖F ′(β)‖[F ′′(β)]−1 ≤ η < 1 in a
number of iterations not greater than


∑p
i=1 log τi − p log

(
ε(1−θ)

(m+1)(1+θ)

)
− p+ p log p

η − log(1 + η)


 .

Formula (26) involves the unknown quantity τj and does not provide a workable
bound on the number of iterations needed to compute the optimal restoration direction
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after each call to the oracle. However using the long step argument of [19], we can
bound the cumulative number of such steps by mk∗ log(1/ε), where k

∗ is the number

of calls to the oracle at termination, and mk∗ = O∗(p
2n2

ε2 ).
Remark 6.1. Looking at every iteration individually, and using the fact that

AT y ≤ c contains the cutting planes 0 ≤ y ≤ e, we can assert that

(AS−2AT )−1 ≺ (Y −2 + (I − Y )−2)−1 ≺ (4I + 4I)−1 ≺ 1

8
I,

and hence

τ2
j = aTj (AS

−2AT )−1aj ≤ 1

8
‖a‖2 =

1

8
.

This indicates that, in practice, the number of iterations needed at each iteration to
compute the optimal β should not increase with the number of cutting planes.

Remark 6.2. The number of iterations needed to compute this approximate
optimal direction is polynomial in the data, as logm is polynomial in the data.

It remains to prove that the potential increase scheme yields a solution β that
meets the proximity condition ‖pβ(V β)− e‖ ≤ θ used in Theorem 4.3. In other
words, we must show that for η small enough the condition ‖F ′(β)‖[F ′′(β)]−1 ≤ η

implies ‖pβ(V β)− e‖ ≤ θ. To this end, we adapt some results and proofs of [3]
developed for quadratic programming.

We then relate a few critical norms.
Lemma 6.4. Let ∆β = −[F ′′(β)]−1F ′(β) = (diag(β−2) + pV )−1(β−1 − pV β).

The following inequality holds:∥∥β−1∆β
∥∥ ≤ ‖F ′(β)‖[F ′′(β)]−1 ≤ ‖pβ(V β)− e‖ .

Proof. Since

‖F ′(β)‖2[F ′′(β)]−1 = (pV β − β−1)T (diag(β−2) + V )−1(pV β − β−1)

= ∆βT
(
diag(β−2) + pV

)
∆β

≥ ∆βTdiag(β−2)∆β =
∥∥β−1∆β

∥∥2
.

This proves the left-hand side inequality.
As V is positive semidefinite, one has

(diag(β−2) + pV )−1 � (diag(β−2))−1 = diag(β2).

Therefore,

‖F ′(β)‖2[F ′′(β)]−1 ≤ (pV β − β−1)Tdiag(β2)(pV β − β−1)

= (pβ(V β)− e)T (pβ(V β)− e) = ‖(pβ(V β)− e)‖2 .
We can now prove the main result of the section.
Lemma 6.5. Assume ‖F ′(β)‖[F ′′(β)]−1 ≤ η < 1 and let

∆β = −F ′′(β)]−1F ′(β) = (diag(β)2 + pV )−1(β−1 − pV β);
Then β+ = β +∆β > 0. Besides,∥∥F ′(β+)

∥∥
[F ′′(β+)]−1 ≤

∥∥pβ+(V β+)− e∥∥ ≤ ‖F ′(β)‖2[F ′′(β)]−1 .
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Proof. Since
∥∥β−1∆β

∥∥ ≤ ‖F ′(β)‖[F ′′(β)]−1 < 1, then β+ = β(e + β−1∆β) > 0.
Moreover, ∥∥pβ+(V β+)− e∥∥ = ‖p(β +∆β)(V (β +∆β))− e‖ .

From (
diag(β−2) + pV

)
∆β = β−1 − pV β

we get

pV (β +∆β) = −diag(β−2)∆β + β−1.

We conclude that∥∥pβ+(V β+)− e∥∥ =
∥∥(β +∆β)(−diag(β−2)∆β + β−1)− e∥∥

=
∥∥(β−1∆β)2

∥∥ ≤ ∥∥β−1∆β
∥∥2
.

The above lemma shows that once the condition ‖F ′(β)‖[F ′′(β)]−1 ≤ η < 1 is met,
one more Newton step is enough to generate a point satisfying

∥∥p(β+)(V β+)− e∥∥ ≤ ∥∥β−1∆β
∥∥2 ≤ ‖F ′(β)‖2[F ′′(β)]−1 ≤ η2.

Thus, by Lemma 4.3, the point γ+ = V β+ > 0 satisfies

(1− η2)e ≤ pβ+γ+ ≤ (1 + η2)e.

7. Conclusion. In this paper, we define an efficient direction to restore primal
and dual feasibility and centrality after adding p new central cuts simultaneously. The
direction is efficient in the sense that it maximizes the product of the new variables
brought into the primal or the dual potentials, under the constraints that the other
variables remain within Dikin’s ellipsoid. The computation of the optimal direction
takes place in a space of dimension p equal to the number of cuts added at a given
iteration. If p is sufficiently smaller than n, then significant gains in efficiency can be
expected.

The analysis has been derived under the assumption that the cuts are central. If
deep cuts are present, which is to be expected in practice, primal feasibility can always
be recovered, but dual feasibility appears difficult to achieve in general, except by the
use of a primal Newton method. One could then extend the long step argument of
[8] in the case of one deep cut to multiple deep cuts.

The implementation of ACCPM [11] uses β = 1
pe. Other choices using the

variance-covariance matrix V , if it is invertible, have been proposed in [10], and the
analysis of this paper actually strengthens that line of thinking.

Both the heuristic and optimal choices for β and γ need to be tested in practice,
and extensions to multiple deep cuts deserve a more thorough study.
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Abstract. Contrary to conventional belief, it turns out that in some problem instances of
moderate size, fixed temperature simulated annealing algorithms based on a heuristic formula for
determining the optimal temperature can be superior to algorithms based on cooling. Such a heuristic
formula, however, often seems elusive. In practical cases considered we include instances of traveling
salesman, quadratic assignment, and graph partitioning problems, where we obtain results that
compare favorably to the ones known in the literature.
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1. Introduction. It has been seen, in Cohn and Fielding [6], that simulated an-
nealing with a suitably chosen fixed temperature performs well for many instances of
the traveling salesman problem (TSP). Investigated here is the existence of a (problem
dependent) optimal fixed temperature, Topt, and how this depends on the time avail-
able and the quality of solution required. We determine optimal fixed temperatures,
allowing a predetermined number of iterations, to yield near-optimal solutions, and
we compare the performance of fixed temperature simulated annealing against that
of Aarts’ algorithm [1] based on a cooling schedule.

Optimal fixed temperatures are experimentally determined for instances of the
TSP, quadratic assignment (QAP), and graph partitioning (GPP) problems. Pre-
dictability of the optimum fixed temperature is also considered in the given applica-
tions.

The potential usefulness of using a fixed temperature algorithm is mentioned in
Kirkpatrick [13], where it is considered suitable for small problem instances. We find
the performance of simulated annealing with a fixed temperature to deteriorate as the
size of problems increases, while for some problem instances it turns out to perform
better than a fast cooling schedule. It is shown in Connolly [7] that fixed temperature
schedules outperform fast cooling schedules for both small and large instances of the
QAP.

Let f(x) denote the value of the objective (cost) function associated with configu-
ration x (a feasible solution to the problem instance at hand). Let fmin be the value of
the objective function associated with global minima. Let S be the set of all feasible
solutions.

At each iteration of simulated annealing a random perturbation is made to the
current solution, x, giving rise to a set, N(x), of neighbors. A neighbor, y ∈ N(x), is
accepted as the next configuration, with probability exp(− (f(y)− f(x)) /T ), and x
is to otherwise remain.
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2. Selected applications.

2.1. The TSP. The TSP is commonly used in investigating the performance
and behavior of simulated annealing. The TSP is used in two founding papers on
simulated annealing, Kirkpatrick, Gellat, and Vecchi [12] and Černý [5] and is more
thoroughly followed up in Kirkpatrick [13] and Aarts, Korst, and van Laarhoven [3].

In the TSP we are given n cities and our task is to find the shortest path through
each and all of the cities, returning to the city where the path arbitrarily commenced.
Between each pair of cities is given a distance, although this could be, for example,
time or cost of travel. We will consider symmetric cases of the TSP, where the
distance from one city to another is equal to the distance in the reverse. Distances
may be, among others, Euclidean (calculated from Cartesian coordinates of the cities),
geographic (calculated from coordinates on the earth’s surface), or (specified) road
distances.

Let p(i) denote the ith city to be visited, and let dc1 c2 denote the distance between
cities c1 and c2. The objective function is the length of a given path and is given by

f =
n−1∑
i=1

dp(i)p(i+1) + dp(n)p(1).

2.1.1. Implementation details. In applying simulated annealing to the TSP,
the following method will be used. The cities are numbered 1, . . . , n arbitrarily. A fea-
sible solution is a given path and is stored as an n-entry array, representing the order
in which the cities are to be visited (with multiple array assignments corresponding
to the same path). The total number of possible paths is

|S| = (n− 1)!

2
.

An initial path is given by an arbitrary sequence of the numbers 1 to n, and for our
purposes it is chosen randomly.

A neighbor of a given path, for a symmetric TSP, is generated by choosing two
cities randomly, say, the ith and the jth city visited, and reversing the order in which
the cities i + 1 (modulo n) up to j are visited. This is called a 2-opt move.

The 2-opt move leads to a neighborhood size of

|N(x)| = n(n− 3)

2
,

if only neighbors that differ from the existing solution are allowed. (Choosing j
as following or preceding i would result in no change to the path.) The following
pseudocode gives a possible way of generating i and j:

k = integer(random()*n*(n-3));

i = (k mod n)+1;

j = ((i+1+(k div n)) mod n)+1;

it requires only one random number to generate each pair.
The distances, either explicitly given or calculated, are stored as a 2-dimensional

array and are assigned integer values as instructed in TSPLIB [18]. The change in
the objective function, resulting from a 2-opt move, is given by

∆f = −dp(i)p(i+1) − dp(j)p(j+1) + dp(i)p(j) + dp(i+1)p(j+1).
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Table 2.1
Selected instances of the TSP.

Instance n fmin Source
gr48 48 5046 [9], [19]
kt57 57 12955 [11]

eil76 76 538 [17], [19]
kroA100 100 21282 [14], [19]

gr120 120 6942 [8], [19]
pr152 152 73682 [17], [19]

kroA200 200 29368 [14], [19]
pr264 264 49135 [17], [19]

lin318 318 42029 [15], [19]
gr442 442 5069 [9], [19]

2.1.2. Selected TSP instances. Ten TSP instances have been selected, rang-
ing from 48 to 442 cities. Among the instances chosen are those examined in Aarts
and van Laarhoven [2]. The selected problem instances are shown in Table 2.1, along
with the source of each problem. Except for kt57, these instances are available from
the website TSPLIB [19]. Note that lin318 is treated as a TSP rather than a Hamil-
tonian circuit. Also, gr442 is taken in the form given in Grötschel and Holland [9]
rather than as it appears in TSPLIB as pcb442 (where it differs in scale and precision).

2.2. The QAP. The QAP occurs in many contexts, often considered as assign-
ing n facilities to n locations. Let p(i) denote the location to which facility i is to
be assigned. Between each pair of facilities, i and j, there is given a flow, aij , and
between each pair of locations, k and l, there is given a distance, bkl. The objective
function is given by

f =
∑
i

∑
j

aij bp(i)p(j).

There may also be considered an additional cost ci p(i) of assigning facility i to location
p(i). This cost shall not be considered here. We shall also restrict our attention to
symmetric cases of the QAP, that is, where the distance matrix is symmetric.

2.2.1. Implementation details. A feasible solution to the QAP is a given
allocation of facilities to locations. This is stored as an n-entry array where the ith
entry represents the location to which facility i is located, i.e., p(i). The flow between
facilities, and the distances between locations, are stored as 2-dimensional arrays. An
initial allocation of facilities may be arbitrarily chosen, and for our purposes it is
chosen randomly. The number of possible allocations totals

|S| = n!.

A neighbor, of a given solution x, is generated by randomly choosing two facilities,
i and j, and interchanging their locations. This yields a neighborhood size of

|N(x)| = n(n− 1)

2
.

The change in the objective function simplifies to

∆f = 2
∑
k �=i,j

(akj − aki) (bp(k)p(i) − bp(k)p(j)).
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Table 2.2
Selected instances of the QAP.

Instance n fmin Source
nug15 15 1150 [16], [4]
rou15 15 354210 [4]
nug20 20 2570 [16], [4]
nug30 30 (6124) [16],[4]

kra30a 30 (88900) [4]
wil50 50 (48816) [21],[4]

wil100 100 (273038) [21], [4]
sko100a 100 (152002) [20],[4]

2.2.2. Selected QAP instances. Eight QAP instances have been gained from
the website QAPLIB [4]. The instances are given in Table 2.2. The value given for
fmin is given in brackets when it is only the best found solution in the literature, not
a proven global minimum.

2.3. The GPP. In the GPP, a graph (V,E) is given, where V is a set of n
vertices and E is the set of edges. With each edge (i, j) is assigned a weight. The
aim is to allocate the vertices of the graph to a given number of equally sized groups
in such a way that the sum of the weights of all edges crossing between groups is
minimized.

A simple case of the GPP, considered here, is when a graph is to be partitioned
into two equally sized groups, V1 and V2, and the objective function is given by the
total number of edges crossing between the two groups.

In the application of simulated annealing to such GPPs, Johnson et al. [10] find it
advantageous to extend the set of feasible solutions to allow unequal partitions while
adding a penalty to the objective function to encourage equally sized groups. The
updated objective function is given by

f = |{(i, j) ∈ E : i ∈ V1 and j ∈ V2}|+ α(|V1| − |V2|)2,(2.1)

where α is a suitably chosen constant. This means that a solution which is near
optimal according to the updated objective function need not be a (true) feasible
solution. If the final solution is not feasible, then, repeatedly, a vertex in the larger
group is to be transferred to the smaller such that the true objective function increases
as little as possible, until the graph is equally partitioned.

Our investigation into the application of simulated annealing to the GPP shall
be regarding its ability to locate a partition, equal or otherwise, that minimizes the
updated objective function (2.1). We shall also fix α at 0.05, the value found suitable
in [10].

2.3.1. Implementation details. The vertices of a graph are arbitrarily num-
bered 1, . . . , n. We have stored a graph as a 2-dimensional array, where the ith row
lists the vertices that are connected by an edge to the ith vertex. The degree of a
vertex is the number of edges joined to it. A given configuration is represented by an
n-entry array with the ith entry denoting to which group vertex i has been allocated.
The number of possible configurations is

|S| = 2n,

which differs from the number of equally partitioned solutions.
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Table 2.3
Generated instances of the GPP.

Average degree
Instance n Expected Actual fmin

rand124 124 5 4.9 (58.8)
rand250 250 5 5.2 (126.0)
geom250 250 30 25.8 (248.8)
rand500 500 5 5.0 (223.0)

rand500b 500 10 10.2 (695.0)
geom500 500 20 19.0 (174.8)

geom500b 500 40 34.8 (578.8)
rand1000 1000 5 5.2 (483.0)

rand1000b 1000 20 20.3 (3410.0)
geom1000 1000 10 9.3 (30.0)

A neighbor of a given configuration is generated by randomly selecting a vertex,
and swapping to which group it belongs. This yields a neighborhood size of

|N(x)| = n.

The resulting change in the objective function, moving vertex i from V1 to V2, is given
by

∆f = |{j ∈ V1 : (i, j) ∈ E}| − |{j ∈ V2 : (i, j) ∈ E}|
− 4α (|V1| − |V2| − 1).

Note that ((|V1| − 1)− (|V2|+ 1))2 = (|V1| − |V2|)2 − 4(|V1| − |V2| − 1).

2.3.2. Selected GPP instances. Ten GPP instances have been generated ac-
cording to the method described in Johnson et al. [10], where two types of graphs
are considered, geometric and random. In the geometric case, points (vertices) are
randomly generated in a unit square, and any two distinct vertices within distance d
from each other are allocated an edge. In the random case, edges are added between
each pair of distinct vertices independently with probability p. In each case, d or p
are chosen to achieve a specified expected average degree D,

p =
D

n− 1
,

and

d =

√
D

nπ
.

The generated problems are listed in Table 2.3. For these instances the global
minima are not known, and the value for fmin for each problem instance is given in
brackets to show that it is merely the best solution obtained here.

3. Fast cooling schedules. In practice, cooling schedules tend to 0 too quickly
to allow reaching global minima solutions with probability even close to 1. Two
fast cooling schedules are utilized here, Aarts’ cooling schedule [1] and the geometric
cooling schedule [12]. Aarts’ cooling schedule is used to determine the number of
iterations appropriate for reaching near optimal solutions. The geometric schedule has
been selected as a simple, easy-to-implement cooling schedule, potentially to assist in
determining suitable fixed temperatures.
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Aarts [1]: Temperature is held fixed during each loop of R = |N(x)| iterations.
At the end of each loop the temperature is dropped according to the rule

Tk+1 = Tk

/(
1 +

Tk log(1 + δ)

3σk

)

for some small real number δ (δ = 0.1 is recommended in [1]). Also, σk is the
standard deviation of the values of the cost function observed during the kth loop of
the algorithm.

Geometric [12]: Temperature is again held fixed during each loop of R = |N(x)|
iterations. At the end of each loop the temperature is dropped according to the rule

Tk+1 = αTk

for some α < 1 (say, 0.8 ≤ α < 1). We found the number of iterations performed at
each loop had little effect on the algorithm’s performance, provided the value of α is
adjusted appropriately to give the same overall rate of cooling.

An initial temperature, T0, is typically determined to yield a specified acceptance
of proposed moves, say, 95%. In this paper, T0 is determined by trial and error and
is specified for each problem instance considered.

4. Determining N. The number of iterations to be allowed in the fixed tem-
perature algorithms is denoted by N.1 We wish to choose an N, as in [6], for each
problem instance, appropriately large for simulated annealing to find near optimal
solutions.

We have chosen Aarts’ algorithm to determine N, although alternative algorithms
could have been used. Aarts’ algorithm does not require the determining of the cooling
parameter δ for each individual problem instance. 100 runs of Aarts’ algorithm are
performed with the parameter setting (δ = 0.1) recommended by Aarts and others
[1, 2, 3]. In choosing N, we consider the number of iterations taken until first visiting
the best solution found in each run. The maximum of these is taken, after removing
outliers. An outlier is taken as a value more than 1.5 times the interquartile range
greater than the third quartile.

5. Searching for an optimal fixed temperature.

5.1. Which optimal fixed temperature? As discussed in [6], determining an
optimal temperature schedule may depend on which optimality criterion is adopted.
We discuss here various optimality criteria in determining an optimal fixed tempera-
ture schedule. The influence of these criteria is then investigated experimentally with
a 100-city TSP instance.

An optimal fixed temperature may be chosen experimentally, by running simu-
lated annealing a number of times at each of a number of fixed temperatures and
determining which temperature is best, according to an appropriate optimality crite-
rion.

If it is our goal to find a global minimum in the shortest possible time, then an
optimal fixed temperature might be considered one yielding a stopping time with

E[τ(Topt)] = min
T∈[0,∞]

E[τ(T )],(5.1)

1Note that N has been used in denoting the set of neighbors of x, N(x), so N is used here.
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where τ(T ) is the time until reaching a global minimum using a fixed temperature
T and a random initial state and [0,∞] is the set of nonnegative reals in union
with positive infinity. Note that T = 0 relates to iterative improvement, where only
transitions to improved solutions are accepted, yielding E[τ ] = ∞ (providing local
minima that are not global minima exist), and T =∞ is the case where all proposed
transitions are accepted.

If a global minimum is unlikely to be reached in a reasonable time frame, then
we may simply consider reaching near-optimal solutions. In such a case, τ in (5.1)
might represent the time until reaching a configuration x with objective function
f(x) ≤ fmin + ε. The temperature that is deemed optimal might then depend on ε.

In Connolly [7] is demonstrated the existence of optimal fixed temperatures for a
number of QAP instances. Such a temperature is identified by considering the best
solution in a given number of iterations, N, and taking the fixed temperature that on
average yields the best result. Connolly determines the fixed temperature to yield the
optimal value of

E [min{f(X1), . . . , f(XN)}] ,(5.2)

where Xt is the configuration visited in the tth iteration. The temperature deemed
optimal under such a scheme may then depend on the choice of N.

An optimal fixed temperature may alternatively be considered one which yields
the maximum probability of reaching a global (or near global) minimum within N
iterations. That is,

P (τ(Topt) ≤ N) = max
T∈[0,∞]

P (τ(T ) ≤ N).(5.3)

If after N iterations the temperature is to be set to zero, allowing the algorithm
to quickly settle in a local minimum, then this may also influence which temperature
is deemed optimal.

5.2. A 100-city TSP example. We now investigate the influence of the above-
mentioned criteria in determining an optimal fixed temperature for the 100-city TSP,
kroA100. We determine optimal fixed temperatures according to (5.1), with respect
to reaching global minima, and within 1 and 2 percent of global minima. We estimate
the three corresponding values for E[τ(Topt)]. With N set to each of these values
we then go on to determine optimal fixed temperatures according to (5.2) and (5.3).
These results are obtained by running 100 runs of simulated annealing at each of
a number of fixed temperatures, under each scheme. The range of temperatures to
be considered is determined experimentally, with temperatures outside this range
yielding increasingly inferior results. The results of these runs are shown graphically
in Figure 5.1.

In determining optimal fixed temperatures according to (5.1), the results are
summarized as follows:

Reaching global minimum,

Topt ∈ (38, 41), E[τ(Topt)] ≈ 100,000,000.

Reaching within 1% of global minimum:

Topt ∈ (45, 50), E[τ(Topt)] ≈ 2,000,000.
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Reaching global Reaching within 1% Reaching within 2%
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∗
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Fig. 5.1. Locating the optimal fixed temperature for kroA100 under various criteria, with
respect to times until reaching global minima and within 1% and 2% of global minima. Graphs
show estimates based on 100 runs (∗500 runs) of simulated annealing at each of the various fixed
temperatures.

Reaching within 2% of global minimum:

Topt ∈ (48, 53), E[τ(Topt)] ≈ 600,000.

It is apparent that the temperature found optimal according to (5.1) depends on
the required quality of solution.

In determining optimal fixed temperatures according to (5.2), the runs of simu-
lated annealing are repeated, each terminating after first setting the temperature to
zero after N iterations, for the respective values of N. The results are summarized as
follows:

For N = 100,000,000,

Topt ∈ (40, 43), E [min{f(X1), . . . , f(XN)}] ≈ 1.0005 fmin.

For N = 2,000,000,

Topt ∈ (43, 46), E [min{f(X1), . . . , f(XN)}] ≈ 1.009 fmin.

For N = 600,000,

Topt ∈ (45, 50), E [min{f(X1), . . . , f(XN)}] ≈ 1.018 fmin.
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It is apparent that the optimal temperature according to (5.2) depends on the
choice of N.

Figure 5.1 also shows estimates for P (τ(T ) < N), where τ(T ) is the time until
reaching the global minimum and within 1 and 2 percent of the global minimum,
for N set to 100,000,000, 2,000,000, and 600,000,000, respectively. The results are
summarized as follows:

For N = 100,000,000 and τ the time until reaching the global minimum,

Topt ∈ (36, 38), P (τ(Topt) ≤ N) ≈ 0.71.

For N = 2,000,000 and τ the time until reaching within 1% of the global minimum,

Topt ∈ (40, 44), P (τ(Topt) ≤ N) ≈ 0.77.

For N = 600,000 and τ the time until reaching within 2% of the global minimum,

Topt ∈ (45, 50), P (τ(Topt) ≤ N) ≈ 0.69.

It is apparent that the temperature found optimal according to (5.3) depends on
the required quality of solution.

6. Predicting the optimal fixed temperature.

6.1. The TSP. For the TSP, values for Topt are given in Table 6.1, along with
various parameters which may assist in predicting Topt. The optimal fixed tempera-
tures are determined experimentally by running 100 trials of simulated annealing at
each of a number of fixed temperatures, using a fixed number of iterations, N, and
noting, or interpolating to determine, the temperature which yields the best solution
on average. Aarts’ algorithm is used to determine N, as described in section 4, using
an initial temperature T0.

Table 6.1
Parameters to help predict Topt, for various instances of the TSP. Values for Topt are experi-

mentally determined allowing N iterations.

Instance T0 N Topt n fmin

gr48 2800 509760 20 48 5046
kt57 6000 857223 40 57 12955

eil76 200 1795441 1.4 76 538
kroA100 11700 4243750 46 100 21282

gr120 2900 7104240 11 120 6942
pr152 44500 14640064 75 152 73682

kroA200 11800 29509991 34 200 29368
pr264 32500 67095121 37.5 264 49135

lin318 11800 102173400 26 318 42029
gr442 2420 242935584 2.2 442 5069

ε% χ fbest Tbest
gr48 3.5 0.0104 5088 14.2
kt57 3.9 0.0082 13021 18.2

eil76 4.2 0.0040 559 0.8
kroA100 3.7 0.0043 21449 16.5

gr120 3.6 0.0030 7156 2.6
pr152 3.0 0.0031 74983 18.3

kroA200 4.6 0.0025 29890 7.7
pr264 2.4 0.0007 50156 15.6

lin318 4.4 0.0013 43220 3.2
gr442 3.8 0.0005 5223 1.0
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Fig. 6.1. Iterations until reaching the best solution in each run of 100 runs performed of fixed
temperature simulated annealing using Topt, for kroA100.

For each problem instance, estimates for the acceptance ratio, χ = χ(Topt), are
given at the optimal fixed temperature, along with ε%, the average value of the
objective function (as percentage above global minima) observed at this temperature.

There is some uncertainty as to how estimates for χ and ε% would best be gained.
If (quasi) equilibrium2 is not easily obtained at the optimal fixed temperature, then
differing methods may yield differing estimates. For example, running a cooling sched-
ule before continuing with a fixed temperature, and then observing average behavior,
may yield different results to a usual fixed-temperature algorithm. By looking at the
occurrences of the best solution found in each run it is seen that this is, roughly,
consistently likely to occur throughout the course of a fixed temperature algorithm,
suggesting that equilibrium at Topt is easily obtained. This is seen in Figure 6.1, with
a smoothed histogram of the iterations taken until reaching the best found solution
in each fixed temperature run for the problem instance kroA100, using T = Topt. A
peak at N = 4243750 iterations corresponds to the temperature being set to zero. It
is apparent that a burn-in period of up to 1 million iterations is required, to allow the
algorithm to exhibit equilibrium.

Results for ε% and χ are obtained after allowing a burn-in period of 1, 000 loops
of R = |N(x)| iterations. Upon reaching this many iterations the algorithms are con-
tinued for 1, 000 further loops in gaining estimates. These values are merely obtained
in order to investigate the potential for such parameters in determining an optimal
fixed temperature. In practice, more efficient means of estimation may be used.

From the 10 problem instances considered, the average value of the objective
function is 3.7% above the global minimum. The average acceptance ratio is 0.0038,
with the desirable value for χ tending to decrease as the size of the TSP instances
increases.

Also given in Table 6.1 is the temperature, Tbest, at which the best visited solu-
tion, fbest, occurred in one run of simulated annealing based on a geometric cooling
schedule, with cooling parameter α = 0.95 and initial temperature T0. It was deter-

2It is described in Černý [5] how, at a fixed temperature, simulated annealing will tend toward
an equilibrium, where the average of observed values of the objective function tends toward an
equilibrium value.
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Fig. 6.2. Relationship between Topt and Tbest, as well as between Topt and fmin, for the TSP.

mined by Connolly [7] that a suitable fixed temperature may be chosen by running
simulated annealing with a fast cooling schedule and observing the temperature at
which the best solution found first occurred. Indeed, while Connolly suggests using
his values for Tbest exactly, we find only that there exists a weak relationship between
Topt and Tbest (see Figure 6.2).

In using Tbest to make predictions of Topt, the results of the problem instances
yield on average

T̂opt = 3.4× Tbest.

A reliable way to predict the optimal fixed temperature in the TSP is by a formula
developed next (and noted in [6]). From Figure 6.2, it is apparent that a strong
relationship exists between Topt and the value of

fmin

n
.

The ratios between Topt and fmin/n are

0.190, 0.176, 0.198, 0.216, 0.190, 0.155, 0.232, 0.201, 0.197, 0.192,

and on average we have

T̂opt = 0.19× fmin

n
.(6.1)

In practice, the optimal solution to a given problem instance need not be known, and
Table 6.1 also yields on average

T̂opt = 0.19× fbest

n
.

It is interesting to note that the relationship in (6.1) describes a link between
the optimal fixed temperature and the average link length in the global minimum
solution, with

f =

n−1∑
i=1

dp(i)p(i+1) + dp(n)p(1).
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Table 6.2
Predictions of the optimal fixed temperature for various instances of the TSP.

Instance Topt by (6.1) by Tbest by ε% by χ

gr48 20 20 48 21 8
kt57 40 43 62 40 28

eil76 1.4 1.3 2.7 1.3 1.3
kroA100 46 40 56 47 42

gr120 11 11 8.8 11 12
pr152 75 92 62 85 85

kroA200 34 22 26 32 44
pr264 37.5 35 53 42 60

lin318 26 25 11 21 44
gr442 2.2 2.2 3.4 2.2 5.3

Note that the change in objective function due to a 2-opt move is given by the sub-
traction and addition of links,

∆f = −dp(i)p(i+1) − dp(j)p(j+1) + dp(i)p(j) + dp(i+1)p(j+1),

and the optimal fixed temperature appears proportional to the average link length in
the optimal path.

The transition probabilities between solutions depend on the ratio of the change
in path length to the temperature:

P (transition accepted) = exp(−∆f/T ).

The long-term probability of being found in particular configurations, by the theory of
Markov chains, is determined by such transition probabilities. This may give insight
into developing approximate formulae in determining suitable fixed temperatures in
other applications.

6.2. Performance of Topt predictions in the TSP. To assess the merits of
Topt predictions, given in Table 6.2, a χ2 goodness-of-fit test will be employed,

∑ (o− e)2

e

d
= χ2

k−1,

where o are the observed values of Topt and e are the expected values under a given
method of prediction. The value obtained is to be compared against a χ2 probability
distribution with k − 1 degrees of freedom, with k the number of values considered.
The parameters χ and ε are used to predict Topt by experimentally determining the
temperatures yielding the same values that were observed on average.

For the four methods of prediction considered, (6.1), and by Tbest, ε%, and χ, the
χ2 values obtained are 5.76, 58.6, 3.05, 44.7, respectively. The 5% upper tale of the
χ2

9 distribution occurs after 16.9, so that only (6.1), or by using ε%, yields satisfactory
results.

It is apparent that predictions based on χ tend to be too small for the smaller
instances while too large with the larger instances. The desirable value for χ is seen
to decrease as the size of problems increases, so that using only an average value for
χ would be expected to lead to such a result. Indeed, we shall see that different
applications, as well as different problem structures, have different desirable values
for χ. This will also be seen to be the case with ε%, which suggests that monitoring χ

and ε% would not generally be suitable in determining a suitable fixed temperature.
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Table 6.3
Performance of the optimal fixed temperature for various instances of the TSP, against Aarts’

algorithm. Percentage above global minimum of best solution on average in 100 runs of the algo-
rithms. Parentheses are used with repeated values due to accurate predictions.

% above global
Instance Aarts with Topt by (6.1)

gr48 0.93 0.20 (0.20)
kt57 0.99 0.59 0.68

eil76 2.26 0.39 0.39
kroA100 0.78 0.55 0.60

gr120 1.83 0.85 (0.85)
pr152 0.73 0.59 0.68

kroA200 1.40 1.58 1.66
pr264 1.11 0.84 0.86

lin318 1.73 2.20 2.28
gr442 1.66 1.99 (1.99)

We gauge the performance of of fixed-temperature simulated annealing, and (6.1),
against Aarts’ algorithm. Table 6.3 gives the results of 100 runs of each algorithm.
The fixed temperature algorithms are allowed N iterations, as determined with Aarts’
algorithm. The given values are subject to variation, and of interest is the difference
between using Topt and (6.1) compared with using Aarts’ algorithm.

It can be seen that as the size of problem instances increases, the relative per-
formance of fixed-temperature algorithms decreases. For the smaller instances, fixed-
temperature algorithms show to perform far better. Using (6.1) to predict values for
Topt yields consistently favorable results.

Although (6.1) closely describes the optimal temperatures for the given instances,
it need not perform as well for TSP instances in general. It is the experience of the
author, however, that (6.1) performs well in determining suitable fixed temperatures
for TSPs in general.

For the TSP, fixed-temperature simulated annealing shows to outperform fast
cooling in problems of less than 150 cities.

6.3. The QAP. For the QAP, values for Topt, along with various parameters to
assist in predicting Topt, are given in Table 6.4, as carried out with the TSP.

The average value for ε% is 3% and for χ is 0.03. Again, the value for χ tends to
decrease as the size of problems increases, but this tends to be the case here also with
ε%. Predictions of Topt based on ε% and χ will therefore not be further considered
for the QAP.

In Figure 6.3, a strong relationship between Topt and fmin/n is not found with the
QAP. We consider instead insight gained from the case with the TSP. For the QAP,
the objective function is given by

f =
∑
i

∑
j

aij bp(i)p(j),

which relates the average value of aij bp(i)p(j) times the square of the size of the prob-
lem instance. The change in objective function relates to the addition and subtraction
of terms aij bp(i)p(j), with, when interchanging facilities i and j,

∆f = 2
∑
k �=i,j

[−aki bp(k)p(i) − akj bp(k)p(j) + aki bp(k)p(j) + akj bp(k)p(i)
]
.
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Table 6.4
Parameters to help predict Topt, for various instances of the QAP. Values for Topt are experi-

mentally determined allowing N iterations.

Instance T0 N Topt n fmin

nug15 360 15691 8.0 15 1150
rou15 96000 13627 2700 15 354210
nug20 525 35360 9.5 20 2570
nug30 780 121313 10.5 30 (6124)

kra30a 16500 122621 300 30 (88900)
wil50 1550 568395 12 50 (48816)

wil100 2700 3894148 24 100 (273038)
sko100a 2550 3824669 18 100 (152002)

ε% χ fbest Tbest
nug15 4.1 0.048 1174 6.6
rou15 7.0 0.049 371986 999.2
nug20 3.3 0.033 2604 3.3
nug30 1.9 0.022 6180 4.2

kra30a 5.6 0.048 91000 126.2
wil50 0.5 0.015 49014 3.0

wil100 0.6 0.018 273674 6.0
sko100a 0.6 0.009 152532 1.6
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Fig. 6.3. Relationship between Topt and Tbest, as well as between Topt and the optimum value
of the objective function, for the QAP.
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Table 6.5
Predictions of the optimal fixed temperature for various instances of the QAP.

Instance Topt by (6.2) by Tbest
nug15 8.0 7.7 18.5
rou15 2700 2361 2798
nug20 9.5 9.6 9.2
nug30 10.5 10.2 11.8

kra30a 300 148 353
wil50 12 29 8.4

wil100 24 41 17
sko100a 18 23 4.5

We therefore examine, in analogy with the case for the TSP, Topt relating to

fmin

n2
.

Figure 6.3 considers graphically the relationship between Topt and fmin/n
2, as well

as those between Topt and fmin/n and between Topt and Tbest. There appears a
relationship between Topt and fmin/n

2, although it is not as strong as the analogous
relationship seen with the TSP. Only a weak relationship is seen between Topt and
Tbest.

Looking at the average ratio between Topt and fmin/n
2, we get

T̂opt = 1.5× fmin

n2
.(6.2)

Predictions may be gained by the average ratio between Topt and Tbest,

T̂opt = 2.8Tbest,

found after excluding (outlying) sko100a.

6.4. Performance of Topt predictions in the QAP. Table 6.5 shows predic-
tions for Topt that would result, with various methods of prediction.

Although a relationship is apparent between Topt and fmin/n
2, this does not lead

to a reliable method of predicting Topt. Predictions that would result give a χ2 value
of 222.9. Between log(Topt) and log(fmin/n

2), we have the ratios

1.275, 1.073, 1.210, 1.226, 1.242, 0.836, 0.961, 1.062,

with an average of 1.1. By this log-relationship we would get the predictions

6.0, 3287, 7.7, 8.2, 156, 26, 38, 20,

with a χ2 value of 252.4. Neither method gives a satisfactory explanation for the
variation in Topt, with a 5% critical value for a χ2

7 distribution of 14.1.

The relationship given with Tbest yields a χ2 value of 62.4, which is also deemed
not satisfactory.

With the QAP from Table 6.6, fixed-temperature simulated annealing appears to
outperform the fast cooling schedule for instances of size less than 50 facilities to be
allocated.
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Table 6.6
Performance of the optimal fixed temperature for various instances of the QAP, against Aarts’

algorithm. Percentage above global minimum of best solution on average in 100 runs of the algo-
rithms.

% above global
Instance Aarts with Topt

nug15 1.30 0.38
rou15 3.41 1.81
nug20 1.48 0.45
nug30 1.01 0.49

kra30a 2.46 1.94
wil50 0.18 0.27

wil100 0.12 0.28
sko100a 0.22 0.37

Table 6.7
Parameters to help predict Topt, for various instances of the GPP. Values for Topt are experi-

mentally determined allowing N iterations.

Instance T0 N Topt n degree fmin

rand124 22.0 489499 0.50 124 4.9 (58.8)
rand250 25.5 1440837 0.45 250 5.2 (126.0)
geom250 44.0 1028574 6.0 250 25.8 (248.8)
rand500 28.0 4229417 0.40 500 5.0 (223.0)

rand500b 33.5 4269441 0.50 500 10.2 (695.0)
geom500 43.0 3245665 5.0 500 19.0 (174.8)

geom500b 55.0 3104347 8.0 500 34.8 (578.8)
rand1000 31.0 12064888 0.35 1000 5.2 (483.0)

rand1000b 46.0 12460153 0.70 1000 20.3 (3410.0)
geom1000 36.0 10232663 2.0 1000 9.3 (30.0)

ε% χ fbest Tbest
rand124 10.0 0.10 63.0 0.23
rand250 6.7 0.08 136.0 0.11
geom250 84.2 0.16 248.8 2.25
rand500 6.0 0.05 250.0 0.17

rand500b 2.4 0.04 712.0 0.17
geom500 214.3 0.16 273.8 1.31

geom500b 82.9 0.13 585.8 1.12
rand1000 5.8 0.04 531.0 0.09

rand1000b 1.3 0.04 3461.2 0.22
geom1000 900.2 0.10 200.0 0.36

6.5. The graph partitioning problem. Table 6.7 shows values for Topt and
values for various parameters to help in its prediction (as previously described) for
the 10 GPP instances considered.

Figure 6.4 considers a possible relationship between Topt and fmin/n and a possible
relationship between Topt and Tbest. For the GPP instances considered, the average
ratio between Topt and Tbest gives

T̂opt = 3.8× Tbest.

The average acceptance ratio for the 10 problem instances is 0.09, though there is
a tendency for the geometric graph instances to relate to larger acceptance ratios, at
Topt, than the random instances. The acceptance ratio therefore will not be further
considered toward predicting Topt with the GPP.
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Fig. 6.4. Investigating possible relationships toward helping predict Topt with the GPP.

Table 6.8
Predictions of the optimal fixed temperature for various instances of the GPP.

Instance Topt by Tbest
rand124 0.50 0.87
rand250 0.45 0.42
geom250 6.0 8.6
rand500 0.40 0.65

rand500b 0.50 0.65
geom500 5.0 5.0

geom500b 8.0 4.3
rand1000 0.35 0.34

rand1000b 0.70 0.84
geom1000 2.0 1.4

Table 6.9
Performance of the optimal fixed temperature for various instances of the GPP, against Aarts’

algorithm. Best solution on average for 100 runs of each algorithm, given as the percentage above
the best found solution.

% above best
Instance Aarts with Topt
rand124 0.76 0.14
rand250 0.40 0.02
geom250 0.55 0.89
rand500 0.97 1.25

rand500b 0.53 0.50
geom500 1.11 7.88

geom500b 0.82 1.94
rand1000 1.58 2.05

rand1000b 0.16 0.56
geom1000 132.55 237.43

The average percentage above global minima, at Topt, varies greatly in the GPP
instances considered, with the geometric instances yielding far larger values than the
random graph instances, so that ε% is also not further considered in predicting Topt.

The variation in Topt for the GPP instances may largely be explained by classifying
the instances as geometric and random graphs, and the optimal fixed temperature with
GPP instances shows to depend largely on problem structure.

6.6. Performance of Topt predictions in the GPP. For predicting Topt by
Tbest, predictions that would result, for the instances considered, are given in Table
6.8. The χ2 goodness-of-fit value obtained is 62.4. With a critical χ2

9 value of 19.9,
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using Tbest does not give a satisfactory explanation for the observed variation in Topt.

Consider comparing the performance of fixed-temperature simulated annealing
against Aarts’ algorithm for the GPP instances considered. Again (see Table 6.9),
we see a tendency for fixed-temperature simulated annealing to outperform the fast
cooling schedule for smaller sized problems, while its relative performance deteriorates
as the size of problems increases.

For the GPP, the performance of fixed-temperature simulated annealing shows to
outperform fast cooling for problem instances with less than 500 vertices.

7. Concluding remarks. In using a fixed-temperature simulated annealing al-
gorithm, we have investigated the importance of determining a suitable fixed temper-
ature. We have seen that the temperature deemed most suitable depends on criteria
used. Optimal fixed temperatures have been determined experimentally, and investi-
gated also is the predictability of such a temperature.

A formula for fixed temperature prediction has been developed for the TSP. Such
did not show to follow directly with other applications considered, although insight
gained has also been seen to follow in the QAP, while not yielding satisfactory results.

We have seen that fixed-temperature simulated annealing tends to outperform
the use of a fast cooling schedule, for TSP instances of size less than 150 cities, for
QAP instances of size less than 50 facilities, and for GPP instances of size less than
500 vertices.
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Abstract. In the multiple subset sum problem (MSSP) items from a given ground set are
selected and packed into a given number of identical bins such that the sum of the item weights in
every bin does not exceed the bin capacity and the total sum of the weights of the items packed is
as large as possible.

This problem is a relevant special case of the multiple knapsack problem, for which the existence
of a polynomial-time approximation scheme (PTAS) is an important open question in the field of
knapsack problems. One main result of the present paper is the construction of a PTAS for MSSP.

For the bottleneck case of the problem, where the minimum total weight contained in any bin is
to be maximized, we describe a 2/3-approximation algorithm and show that this is the best possible
approximation ratio. Moreover, PTASs are derived for the special cases in which either the number
of bins or the number of different item weights is constant.

We finally show that, even for the case of only two bins, no fully PTAS exists for both versions
of the problem.

Key words. multiple subset sum problem, approximation scheme, knapsack problem

AMS subject classifications. 90C27, 90C10, 90C59
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1. Introduction. Knapsack problems are among the most widely studied prob-
lems in combinatorial optimization; see, e.g., the book by Martello and Toth [8] and
the recent survey by Pisinger and Toth [9]. For many problems of the knapsack fam-
ily, optimal and approximation algorithms have been studied in the literature. In
particular, the status of approximability, i.e., the existence of (fully) polynomial-time
approximation schemes (PTASs), is settled for most of these problems. A notable
exception is the multiple knapsack problem, which is the generalization of the clas-
sical 0-1 knapsack problem in which m knapsacks with different capacities are used
for packing the items. For this problem, the existence of a PTAS is one of the most
important open questions in the area, whereas the best known polynomial-time ap-
proximation algorithm has a worst-case performance ratio of 1/2. This algorithm
returns the better of the following two solutions: The first solution is computed by
considering the m knapsacks in decreasing order of capacities and packing in each
knapsack the largest unpacked item that fits into it, whereas the second solution is
obtained by setting to 0 the fractional variables in the solution of the continuous re-
laxation of the natural integer linear programming formulation of the problem (where
one forbids the assignment of items to knapsacks into which they do not fit).

The present contribution concerns themultiple subset sum problem (MSSP), which
is a generalization of the classical subset sum problem considering m instead of one
knapsack, and at the same time a relevant special case of the multiple knapsack
problem, where profits are equal to weights and all knapsacks have the same capacity.
Among our results is a PTAS for MSSP.
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MSSP is formally defined as follows. We are given a set N := {1, . . . , n} of items,
each item i having a positive integer weight wi, and a set M := {1, . . . ,m} of identical
bins with positive integer capacity c. The objective is to select a subset of items of
maximum total weight that can be packed in the bins. The problem can be formulated
as the following integer linear program:

maximize
∑
j∈M

∑
i∈N

wixij(1)

subject to
∑
i∈N

wixij ≤ c, j ∈M,(2)

∑
j∈M

xij ≤ 1, i ∈ N,(3)

xij ∈ {0, 1}, i ∈ N, j ∈M.(4)

Without loss of generality we assume wi ≤ c for all i = 1, . . . , n, and n ≥ m; otherwise
the problem is trivially solved. The load of a bin i will be denoted by i and represents
the overall weight of the items packed in the bin.

The problem is strongly NP-hard as it is an optimization version of the strongly
NP-complete 3-partitioning problem; see [5]. Note also that an optimal algorithm for
MSSP solves the decision versions of both the bin packing problem and the multipro-
cessor scheduling problem (also denoted by P ||Cmax) as defined in [5].

We will also consider the bottleneck version of MSSP, namely, B-MSSP, in which
the objective is to maximize the minimum load of a bin. Formally, the problem reads

maximize min
j∈M

∑
i∈N

wixij(5)

subject to (2)–(4). Clearly, also this version of the problem is strongly NP-hard by
reduction from the 3-partitioning problem; see again [5].

Obviously, MSSP and B-MSSP deal with tasks which may occur in many practical
applications, e.g., in logistics, cutting and packing, portfolio optimization, etc. In the
following we will briefly describe a real-world problem from a company producing
objects of marble, which was pointed out by Wirsching [10]. Every week a shipment
of m marble slabs from a quarry is received by the company. These slabs have
a uniform size and are much longer than they are wide. The company produces
different products, which first have to be cut from the marble slabs and are then
further processed. In particular, each product requires a piece with a specified length
from a marble slab. Depending on current stock, the company prepares a list of
products that it would be interested to produce. Out of this list, some products
should be selected and cut from the slabs so that the total amount of wasted marble
is minimized. Clearly, this problem can be formulated as an MSSP.

In this paper we consider polynomial-time approximation algorithms for
MSSP and B-MSSP, analyzing their worst-case approximation guarantee. Given an
instance of MSSP or B-MSSP, we will denote by z∗ the optimal solution value and
by zH the value of the solution returned by a heuristic algorithm H. Similarly, for
an item set S ⊂ N , z∗S and zHS will denote the optimal and heuristic solution values,
respectively, for the instance restricted to item set S. Consider a value ε ∈ (0, 1). We
say that H is a (1 − ε)-approximation algorithm if zH ≥ (1 − ε)z∗ for all instances.
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Note that it is rather easy to derive a 1/2-approximation algorithm for MSSP and
B-MSSP. For example, if the items are packed in decreasing order of weights in any
bin in which they fit, either all items will be packed in the end, or the load of every
bin will be at least 1/2 c.

A PTAS is an algorithm taking as input a problem instance and a value ε ∈ (0, 1),
delivering a solution of value zH ≥ (1− ε)z∗, and running in time polynomial in the
size of the encoded instance. If the running time is also polynomial in 1

ε , the algorithm
is called a fully polynomial-time approximation scheme (FPTAS). It is well known [5]
that no FPTAS can exist for a strongly NP-hard problem unless P = NP. Note
that after completion of this paper Chekuri and Khanna [2] presented a PTAS for the
multiple knapsack problem.

In section 2 we will show that MSSP has a PTAS. In the original technical report
[1] we also present a nontrivial 3/4-approximation algorithm with O(m2 +n) running
time.

As to B-MSSP, in section 3 we illustrate an O(n log n)-time 2/3-approximation
algorithm and show that this is the best approximation achievable in polynomial
time unless P = NP. For the special cases in which either the number of bins or
the number of distinct item weights is constant, B-MSSP has PTASs, as proved in
section 4. In that section we also show that, even if the number of the bins is 2,
neither MSSP nor B-MSSP can have an FPTAS unless P = NP.

2. A PTAS for MSSP. In this section we show that MSSP has a PTAS,
which is the best approximation scheme one could hope for, as the problem is NP-
hard in the strong sense. The scheme we propose uses the techniques of small item
elimination and item grouping, which have already been used in the context of bin
packing. Nevertheless, these two techniques are apparently not sufficient for the
derivation of a scheme, since in MSSP some items may clearly remain unpacked in
a solution, which is not the case for bin packing. In our PTAS we use in addition
a technique of item preprocessing, aimed at selecting only a (small) fraction of the
large items before applying item grouping. Below, we give a detailed description of
the PTAS we propose, hereafter called Hε.

Given the required accuracy ε ∈ (0, 1), define ε̃ := ε/3, and partition the item set
N into the set L := {i ∈ N : wi > ε̃c} of large items and S := {i ∈ N : wi ≤ ε̃c} of
small items. The next lemma shows that every polynomial-time (1−ε̃)-approximation
algorithm for MSSP restricted to large items can be extended to a polynomial-time
approximation algorithm for general MSSP with the same worst-case guarantee.

Lemma 1. Any polynomial-time (1 − ε̃)-approximation algorithm for MSSP re-
stricted to large items yields a polynomial-time (1 − ε̃)-approximation algorithm for
general MSSP.

Proof. Denote by H the (1− ε̃)-approximation algorithm for MSSP restricted to
large items. Consider an instance of MSSP, and apply algorithm H to the instance
corresponding to the set L of large items. Let z∗L denote the value of the optimal
solution for this instance, and by zHL the value of the solution found by H. By
assumption, zHL ≥ (1 − ε̃)z∗L. The construction of an approximate solution for all
items is straightforward: After applying H, simply assign the small items to the bins
in a greedy way, i.e., each small item is packed, if possible, into any bin in which it
fits.

If there are items of S which were not packed by this procedure, all bins have
load of more than (1− ε̃)c and we are finished. Hence assume that all small items are
packed into the bins, let zH denote the value of the heuristic solution obtained, and
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define s :=
∑
i∈S wi. We have z∗ ≤ z∗L + s, and therefore

zH = zHL + s ≥ (1− ε̃)z∗L + s ≥ (1− ε̃)(z∗ − s) + s ≥ (1− ε̃)z∗.

Lemma 1 allows one to initially get rid of the small items, which are reconsidered
only at the end of the algorithm. At the same time, one can consider only the large
items when the performance of an algorithm is analyzed. This is the so-called small
item elimination phase mentioned above. If |L| ≤ m, then the instance associated
with L is solved trivially, and we immediately get a PTAS. Therefore, in the remainder
of the section we will assume |L| > m.

After having (temporarily) removed the small items, we perform the following
item preprocessing phase, aimed at reducing the number of items from n to a value
in O(m). We partition item set L into subsets Ij , j = 1, . . . ,

⌈
1
ε̃

⌉− 1, each containing
the items whose weight is in (jε̃c, (j + 1)ε̃c]. Let

σj :=

⌈
1

jε̃

⌉
− 1.

If |Ij | ≤ 2mσj , we select all items in Ij ; otherwise we select only the mσj largest and
the mσj smallest. We will show that by neglecting the items which are not selected
the optimal solution value is not affected too much. Let R be the set of the items
selected in this phase, noting that

r := |R| ≤
� 1

ε̃�−1∑
j=1

2mσj =

� 1
ε̃�−1∑
j=1

2m

(⌈
1

jε̃

⌉
− 1

)
≤ 2m

1

ε̃

(
ln

1

ε̃
+ 1

)
,(6)

so r ∈ O(m) if ε̃ is fixed.
The following lemma allows us to consider only the items in R in our PTAS. Let

z∗L and z∗R denote the optimal solution value of MSSP for the instances corresponding
to L and R, respectively.

Lemma 2. z∗R ≥ (1− ε̃)z∗L.
Proof. Note that for j = 1, . . . ,

⌈
1
ε̃

⌉ − 1, (σj + 1)jε̃c ≥ c, i.e., each bin in every
solution contains at most σj items in Ij , as the weight of each item in Ij is strictly
larger than jε̃c. Consider an optimal solution for instance L with a bin k with load
k containing some item i ∈ Ij \R. Then there exists at least one item is among the
mσj smallest and one item ib among the mσj largest in Ij which are both unpacked in
the solution. If exchanging i with ib yields a feasible solution, perform this exchange,
without decreasing k. Otherwise, exchange i with is: As k − wi + wib > c, the new
load will be k − wi + wis = k − wi + wib − wib + wis > c − ε̃c, as wib − wis < ε̃c.
Applying this exchanges as long as items in L \R are packed clearly yields a solution
for instance R whose value is at least (1 − ε̃)z∗L, since, after each exchange, the load
of the bin involved is either not decreased or at least equal to (1− ε̃)c.

For technical reasons we now distinguish between two cases. If m ≤ 3/ε̃2, then
recalling (6) r is bounded by 6

ε̃3 (ln
1
ε̃ +1) which is a constant for fixed ε̃. Hence, there

is only a constant number of feasible packings for item set R, and the optimal one
can be found in constant time by complete enumeration. Considering Lemma 2, this
straightforward approach yields a PTAS.

There remains the more difficult case m > 3/ε̃2 to be considered. In this case we
now perform item grouping on set R. To group the items of R into subsets we define

k :=
⌊
mε̃2

⌋
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and let p and q be such that r = pk + q and 1 ≤ q ≤ k. Note that k ≥ 3. We next
show that

p ≤ 3
1

ε̃3

(
ln

1

ε̃
+ 1

)
.

Assume otherwise: Obviously, using the assumption p > 3 1
ε̃3

(
ln 1

ε̃ + 1
)
we would have

from (6)

mε̃2 − 1 ≤ ⌊mε̃2
⌋
= k ≤ r

p
<

2m 1
ε̃

(
ln 1

ε̃ + 1
)

3 1
ε̃3

(
ln 1

ε̃ + 1
) =

2

3
mε̃2.

This is a contradiction for mε̃2 > 3. Hence for fixed ε̃, p is bounded by a constant.
Denote by 1, . . . , r the items in R and assume they are sorted according to in-

creasing weights, i.e., w1 ≤ w2 ≤ · · · ≤ wr. Partition R into the p + 1 subsets
Ri := {ik + 1, . . . , (i + 1)k}, i = 0, . . . , p − 1, and Rp := {pk + 1, . . . , r}. Define the
MSSP instance I with r items where for every i = 0, . . . , p − 1 there are k items of
equal weight vi := w(i+1)k, and q items have weight vp := wr. This instance can be
solved to optimality in polynomial time for fixed ε̃ as the number of distinct item
weights is p+ 1 = O(1), as follows.

We call feasible bin type a vector t with p+1 nonnegative integer entries t0, . . . , tp,
such that ti ≤ k for i = 0, . . . , p− 1, tp ≤ q, and

∑p
i=0 tivi ≤ c. Let t(1), t(2), . . . , t(f)

be an enumeration of all feasible bin types and let t(j) = (t
(j)
0 , t

(j)
1 , . . . , t

(j)
p ) denote

the jth vector in this enumeration. Moreover, let λj :=
∑p
i=0 t

(j)
i vi denote the sum

of item weights which corresponds to feasible bin type t(j). Note that the capacity
constraint implies ti ≤

⌈
1
ε̃

⌉− 1 for each entry i of a feasible bin type, which yields

f ≤
(⌈

1

ε̃

⌉
− 1

)p+1

.

Hence, f is a constant for ε̃ fixed. This would be enough to show that instance I can
be solved in polynomial time. On the other hand, the (standard) considerations below
show that this instance I can be solved in O(m) time.

Consider the following integer linear program, which can be used to solve the
MSSP instance defined above.

maximize

f∑
j=1

λjxj(7)

subject to

f∑
j=1

t
(j)
i xj ≤ k, i = 0, . . . , p− 1,(8)

f∑
j=1

t(j)p xj ≤ q,(9)

f∑
j=1

xj ≤ m,(10)

xj ≥ 0 integer, j = 1, . . . , f.(11)

As the number f of variables is constant if ε̃ is fixed, this integer linear program can
be solved in time polynomial in the number of constraints by applying Lenstra’s algo-
rithm [7]. Note that the number of constraints is also constant, whereas the maximum
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size of a coefficient is in O(m). As the running time of Lenstra’s algorithm is polyno-
mial in the number of constraints and in the logarithm of the size of the coefficients,
we have that the overall running time of this algorithm is in O(m), although it is
doubly exponential in 1

ε̃ . We also note that the analogous approaches for bin packing
do not have to insist in solving to optimality the counterpart of the integer linear
program above but can resort to the solution of the associated linear programming
relaxation, requiring a time which is only singly exponential in 1

ε̃ . Apparently, the
same does not hold in this case, i.e., we have to stick to the integrality condition for
the variables.

The solution obtained for instance I is converted into a solution for item set R
(and hence item set L) by replacing, say, the si items of weight vi in the solution,
i = 0, . . . , p− 1, by items (i+ 1)k, (i+ 1)k − 1, . . . , (i+ 1)k − si + 1 and the sp items
of weight vp by items r, r − 1, . . . , r − sp + 1. The lemma below evaluates the quality
of the solution obtained, whose value is denoted by zHL .

Lemma 3. zHL ≥ (1− 2ε̃)z∗R.
Proof. Let t1 denote the value of the optimal solution of the MSSP instance

I with a fixed number of distinct item weights. The proof is divided into two parts.
In the first part we show that zHL is not too far from t1; in the second we prove that
t1 is close to z∗R.

Let s be the cardinality of this solution, and let y1, . . . , ys be the weights of the
items packed, in increasing order. Analogously, let x1, . . . , xs be the weights of the
items packed by the heuristic solution for item set R, again in increasing order. For
notational convenience, let v−1 := 0 throughout the proof.

Observe that xj+k ≥ yj for j = 1, . . . , s − k. This ensures that t1 − zHL is not
larger than k times the largest weight in the instance. Hence,

t1 − zHL ≤ kvp ≤ kc ≤ mε̃2c ≤ ε̃z∗R,

as z∗R ≥ mε̃c because the assumption that m ≤ |L| implies m ≤ |R|, and hence at
least m large items are packed in the optimal solution. This concludes the first part
of the proof.

Now consider the optimal solution for instance R, and let r∗i be the number of
items in Ri packed by this solution, i = 0, . . . , p. Furthermore, let t2 be the value
of the optimal solution of the instance in which there are exactly r∗i items of weight
vi−1 for i = 0, . . . , p. Observing that the weight of each item in Ri is not smaller than
vi−1 for i = 0, . . . , p, it follows that in this latter solution all the items are packed.
Moreover, by definition, t1 ≥ t2, as t1 is the solution of an instance defined by a wider
item set.

Let r :=
∑p
i=0 ri, and, as above, y1, . . . , yr and x1, . . . , xr denote the weights (in

decreasing order) of the items packed by the solutions of value t2 and z∗R, respectively.
One has yj+k ≥ xj for j = 1, . . . , r− k, as r∗i ≤ k for i = 0, . . . , p. Hence, by the same
considerations as above, the relation

z∗R − t2 ≤ ε̃z∗R

holds. Therefore we have

zHL ≥ t1 − ε̃z∗R ≥ t2 − ε̃z∗R ≥ (1− ε̃)z∗R − ε̃z∗R = (1− 2ε̃)z∗R,

and the proof is complete.
Finally, the solution obtained for item set L is completed by adding small items

in a greedy way. We summarize the various steps of Algorithm Hε in Figure 1.
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Algorithm Hε.

Initialization:
Given the required accuracy ε, compute ε̃ and partition the item set into
sets S and L.
If |L| ≤ m, then pack each item in L into an empty bin and goto Phase 3

Phase 1: Apply item preprocessing to set L obtaining set R

Phase 2:
If m ≤ 3/ε̃2, then

Compute the optimal solution for item set R by complete enumeration
Else

Apply item grouping to set R, solve to optimality the instance obtained
(with a fixed number of distinct item weights), and define a feasible
solution for item set R from the optimal solution obtained

Phase 3: Pack the items in S in a greedy way

Fig. 1. Outline of Algorithm Hε.

Theorem 4. Algorithm Hε is a PTAS for MSSP running in O(n+m) time.
Proof. The approximation guarantee follows from Lemmas 1–3 and the definition

of ε̃. In particular, for the case m > 3/ε̃2, after Phase 2 the solution for item set L
has value zH = zHL . From Lemmas 2 and 3,

zHL ≥ (1− 2ε̃)z∗R ≥ (1− 2ε̃)(1− ε̃)z∗L.

Hence, zHL ≥ (1− ε)z∗L as long as

(1− 2ε̃)(1− ε̃) ≥ (1− ε),

which is satisfied by the choice ε̃ := ε/3. Finally, as ε̃ ≤ ε, by Lemma 1 the (1 − ε)
approximation for item set L carries over to the overall instance after Phase 3.

The running time is polynomial; in particular the optimal solution for the items
with rounded weights can be solved in O(m) time for ε fixed, as described above. By
using standard techniques, in particular computing the k-largest element of a set in
linear time, it is easy to verify that the running time of Hε is linear in n and m for ε
fixed.

3. Approximation algorithms for B-MSSP. Whereas for MSSP one can
find a solution which is arbitrarily close to the optimum in polynomial time, as shown
in section 2, for the case of B-MSSP it is easy to see the following.

Theorem 5. There does not exist any polynomial-time (2/3 + δ)-approximation
algorithm for B-MSSP for any δ > 0 unless P = NP.

Proof. Consider the following well-known NP-complete problem, called 3-partition
(3-PART); see [5]. One is given 3p+ 1 numbers a1, . . . , a3p, b such that

∑3p
i=1 ai = pb

and b/4 < ai ≤ b/2 for i = 1, . . . , 3p. The objective is to partition {1, . . . , 3p} into sets
S1, . . . , Sp such that |Sj | = 3 and

∑
i∈Sj

ai = b for j = 1, . . . , p. Given an instance
of 3-PART, we can define a B-MSSP instance with 3p items and p bins, with item
weights ai+ γ, i = 1, . . . , 3p, and bin capacity 3γ + b. If γ > 3a, with a := max3p

i=1 ai,
at most three items can be packed into each bin. Then, if the original 3-PART
instance has a solution, the optimal value of the B-MSSP instance constructed is
3γ + b; otherwise its optimal value is at most 2γ + 2a ≤ 2γ + b. Hence, assuming
the existence of a polynomial-time (2/3 + δ)-approximation algorithm for B-MSSP,
by taking γ sufficiently large we get a polynomial-time algorithm for 3-PART.
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Algorithm H
2
3 .

Initialization:

Partition the item set N into L, N2, and S computing 	, n2, s
Pack each item in L into an empty bin, m1 := 	

Phase 1: Pack the items in N2 If n2 ≤ m − m1, pack each item in N2

into an empty bin and goto Phase 2
max2 := n2 − (m−m1) (upper bound on the number of pairs)
Let T contain the at most max2 smallest items in N2

Compute the maximum number m2 of pairs obtainable from items in T
and pack each pair into an empty bin
Pack each of the m−m1 −m2 largest items in N2 into an empty bin

Phase 2: Pack the small items While S �= ∅ do
Let i be the largest item in S
Let b be the bin with smallest load 	b
If 	b ≥ 2/3 c, stop
Pack item i in bin b

End while

Fig. 2. Algorithm H
2
3 .

We now illustrate a simple 2/3-approximation algorithm for B-MSSP called H
2
3 .

We partition the item set N into the set L := {i|wi ≥ 2/3 c} of large items, the set
N2 := {i|c/3 < wi < 2/3 c}, and the set S := {i|wi ≤ c/3} of small items. Let
 := |L|, n2 := |N2|, and s := |S|.

We start with an informal description of the algorithm. First of all, the items in
L are packed into m1 :=  bins. For the remaining m−m1 bins, the main principle is
to guarantee that as many bins as possible contain at least one item in N2. Subject to
this constraint, the algorithm packs as many pairs of items in N2 as possible into bins.
Accordingly, if n2 ≤ m−m1, then all the items in N2 are packed into separate bins.
Otherwise, the maximum number of pairs that one would pack is n2 − (m − m1).
The algorithm computes the number of pairs, say, m2, that can be obtained from
the 2(n2 − (m −m1)) smallest items in N2. Then the m2 pairs obtained, as well as
the m − m1 − m2 largest items in N2, are packed into separate bins. After having
packed the large items, the small ones are considered in decreasing order of weight
and each item is packed into the bin with smallest weight. This is the well-known
longest processing time (LPT) rule used in scheduling problems with identical parallel
machines. We stop as soon as each bin has a load not smaller than 2/3 c.

In Figure 2 we give a pseudocode description of our algorithm. In particular, the
computation of the maximum number of pairs for a given item set T can be performed
in O(|T | log |T |) time by standard techniques and will not be described in detail.

The following result was proved in [3] in the context of assigning a set of jobs to
m identical processors in order to maximize the earliest processor completion time.
We restate it in terms of B-MSSP.

Lemma 6. Suppose c = ∞. Then, by assigning the items in decreasing order of
weights, each to the bin with smallest load, the B-MSSP solution value obtained is at
least (3m− 1)/(4m− 2) times the optimal one.

Using this result we can prove that the approximation guarantee of Algorithm
H

2
3 is the best possible (unless P = NP).
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Theorem 7. Algorithm H
2
3 is a 2/3-approximation algorithm for B-MSSP.

Proof. If i ≥ 2/3 c for each bin i in the H
2
3 solution, the claim is clearly true.

We will assume that this is not the case, which implies in particular that all the items
in S are packed by H

2
3 . We will also assume L = ∅. Indeed, if L �= ∅, then for the

instance defined by item set N \ L and with m −  bins the optimal solution is not

worse than z∗ and the value of the solution returned by H
2
3 is unchanged.

Let zH denote the value of the H
2
3 solution, R be the set of bins in this solution

containing at most one item in N2, and r := |R|. By the assumption above and the
structure of Phase 2, all the items in S are packed in some bin in R. Let q be the
number of items in N2 packed in the bins in R, and denote by x1, . . . , xq the weights
of these items, in decreasing order.

We now claim that there exists a set R∗ of r bins in the optimal solution where
p ≤ q items in N2 are packed, and such that the weights of these items, say, y1, . . . , yp,
in decreasing order, satisfy yi ≤ xi for i = 1, . . . , p. If the number of pairs of items in
N2 packed by the optimal solution is not larger than m2, the number of pairs packed
by H

2
3 , then the claim follows immediately as the largest items in N2 are packed alone

in a bin by H
2
3 . Otherwise, if the optimal solution contains more pairs of items in

N2, say, m
∗
2 > m2, then it also contains at least m∗

2 −m2 more bins with no item in

N2 packed, as the number of pairs in H
2
3 is the maximum that guarantees that as

many bins as possible contain at least one item in N2.

Now, consider the B-MSSP instance in which the capacity is equal to ∞, the
number of bins is r, and the item set is given by the items packed by H

2
3 in the bins

in R, whose weights, in decreasing order, we denote by x1, . . . , xt. Let z̃ denote the
optimal solution value for this instance. Clearly, z̃ ≥ z∗, as the items packed by the
bins in R∗ by the optimal solution, whose weights are (in decreasing order) y1, . . . , ys,
satisfy s ≤ t and yi ≤ xi for i = 1, . . . , s. Moreover, the packing of the bins in R by
H

2
3 yields a solution zH ≥ (3r− 1)/(4r− 2) z̃ ≥ 3/4 z∗ by Lemma 6, which concludes

the proof.

Theorem 8. Algorithm H
2
3 runs in O(n log n) time and requires O(n) space.

Proof. The space complexity is clearly O(n). As to the time complexity, com-
puting the pairs requires sorting O(m) smallest items in N2, i.e., O(m logm) time.
Moreover, Phase 2 requires sorting the O(n) items in S, in O(n log n) time. As to
the determination of the bin with smallest load in every iteration, one may store the
bin loads in a heap data structure. The initialization of this data structure requires
O(m logm) time, whereas each of the O(n) iterations of the loop requires O(logm)
time. All the remaining operations can be performed in O(n) time.

4. PTASs for special cases of B-MSSP. In practical applications the number
of distinct item weights may happen to be small, and hence may be considered as a
constant. Also the number of bins m may be bounded by a constant. In this section
we will show that in both cases there exists a PTAS for B-MSSP. As the PTAS
presented in section 2, we expect the PTASs below to be rather impractical. However,
their existence gives motivation for finding practical approximation algorithms with
an approximation ratio better than the 2/3 one presented in the previous section for
general B-MSSP.

Given ε ∈ (0, 1) and c̃ ≤ c, partition the item set N into the set Lc̃ := {i ∈ N :
wi > εc̃} of c̃-large items and the set Sc̃ := {i ∈ N : wi ≤ εc̃} of c̃-small items. If
c̃ = c, then L := Lc is the set of large items and S := Sc is the set of small items.
Let sc̃ denote the total sum of the c̃-small item weights and set s := sc.
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For a given assignment of c̃-large items to the m bins the c̃-residual capacity , c̃RC
for short, is defined as

c̃RC :=

m∑
i=1

max{0, c̃− λi},

where λi is the overall weight of the c̃-large items packed in bin i.
The following lemma is the counterpart of Lemma 1 in section 2.
Lemma 9. Suppose a procedure PL(c̃) working on the c̃-large items is available,

which finds in polynomial time, for each c̃ ≤ z∗, an assignment of a subset of the c̃-
large items to the m bins such that c̃RC ≤ sc̃. Then, this procedure yields a polynomial-
time (1− ε)-approximation algorithm for B-MSSP.

Proof. Let P (c̃) be a procedure that first applies procedure PL(c̃) to the c̃-large
items, and then completes the solution by packing in arbitrary order the c̃-small items
into bins with load smaller than (1−ε)c̃. In the final solution, no bin containing small
items will have load greater than c̃. Moreover, as c̃RC ≤ sc̃, all bins will have load at
least (1 − ε)c̃. Accordingly, for each c̃ ∈ [0, c], if there is a solution of B-MSSP with
value at least c̃, then P (c̃) finds a solution of value at least (1−ε)c̃. This immediately
implies that applying binary search on c̃ between 0 and c, calling P (c̃) at each iteration,
yields a polynomial-time (1− ε)-approximation algorithm for B-MSSP.

Below we show that the PTASs for the special cases mentioned above follow from
this lemma in a straightforward way.

We first describe a PTAS, called Hε
1 , for the case in which the number m of

bins is constant. Algorithm Hε
1 performs binary search on c̃ between 0 and c. For

each value of c̃ note that in order to derive a procedure PL(c̃) as in Lemma 9, one
is not interested in packing in a bin a subset of items P such that

∑
j∈P\{i} wj ≥ c̃

for some i ∈ P . Hence, we define a c̃-feasible assignment to a bin b corresponding
to packing in b either no item, a single item, or an item subset P , |P | ≥ 2, such
that

∑
j∈P wj ≤ min{2c̃, c}. Note that each c̃-feasible assignment packs at most

⌊
2
ε

⌋
c̃-large items. Algorithm Hε

1 considers all O(n
2
εm) different possibilities to assign the

c̃-large items to the m bins yielding c̃-feasible assignments. If m is constant, this is
a polynomial number of possibilities. Moreover, if c̃ ≤ z∗, at least one of these will
satisfy c̃RC ≤ sc̃. The solution is then completed as illustrated in the proof of Lemma
9. The above discussion proves the following

Theorem 10. If the number of bins m is constant, Algorithm Hε
1 is a PTAS for

B-MSSP.
We will now show a PTAS, called Hε

2 , for the case in which the number of distinct
item weights is fixed. As is customary in this case, we formulate B-MSSP for c̃-large
items as an integer linear program with a constant number of integer variables.

Let c̃ ≤ c be given, and suppose we have p distinct weights w1, . . . , wp with
wi > εc̃ for i = 1, . . . , p. Let ni be the number of items with weight wi, 1 ≤ i ≤ p;
hence

∑p
i=1 ni ≤ n. We call c̃-feasible bin type a vector t with p nonnegative integer

entries t1, . . . , tp, such that either t has only one nonzero entry ti = 1 with wi ≥ c̃ or

p∑
i=1

tiwi ≤ min{2c̃, c}

holds. Let t(1), t(2), . . . , t(f) be an enumeration of all c̃-feasible bin types and let

t(j) := (t
(j)
1 , t

(j)
2 . . . , t

(j)
p ) denote the jth vector in this enumeration. Moreover, let
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λj :=
∑p
i=1 t

(j)
i wi denote the sum of item weights which corresponds to feasible bin

type t(j), and define δj := max{0, c̃− λj}. As in section 2, f is in O((p+ 2
ε )
p), as � 2ε�

is an upper bound on the sum of the entries of a c̃-feasible bin type.
The following system of linear inequalities in integer variables checks whether

there is an assignment of the c̃-large items such that c̃RC ≤ sc̃. It has a solution for
each c̃ ≤ z∗.

f∑
j=1

t
(j)
i xj ≤ ni, i = 1, . . . , p,(12)

f∑
j=1

xj ≤ m,(13)

f∑
j=1

δjxj ≤ sc̃,(14)

xj ≥ 0 integer, j = 1, . . . , q.(15)

As in section 2 the number of variables and constraints is constant, and hence a
solution, if any, to this system can be found in polynomial time by applying Lenstra’s
algorithm [7].

Accordingly, Hε
2 performs binary search on c̃, solving to optimality the

B-MSSP instance restricted to the c̃-large items, and then adds small items in a
greedy way. The theorem below follows immediately from Lemma 9.

Theorem 11. If the number of distinct item weights is constant, Algorithm Hε
2 is

a PTAS for B-MSSP.
We conclude this section with a negative result concerning the efficient approx-

imability of MSSP and B-MSSP when m is fixed.
Theorem 12. If the number of bins m is equal to 2, neither MSSP nor

B-MSSP admits an FPTAS unless P = NP.
Proof. Consider the following problem, called the equal cardinality partition

(E-PART), which is known to be NP-complete (cf. problem [SP12] in [5]). Given
a finite set I of even cardinality n containing positive integer numbers ai, 1 ≤ i ≤ n,
with

∑n
i=1 ai = 2A, determine if there exists a partitioning of I into two subsets I1,

I2 such that |I1| = |I2| = n/2 and
∑
i∈I1 ai =

∑
i∈I2 ai = A.

Given an instance of E-PART, define an instance of MSSP with two bins, n items,
the ith having weight wi = 2A + ai (i = 1, . . . , n), and bin capacity c = A(n + 1).
Clearly, E-PART has a solution if and only if the optimal solutions of MSSP and
B-MSSP pack all items in the bins, namely, n/2 per bin, and the overall load of the
bins is 2A(n + 1). Observe that n/2 is the maximum number of items that can be
packed in a bin. Any solution of MSSP or B-MSSP that is not optimal leaves at least
one item unpacked, and hence the overall load of the bins is at most 2An, and the
smallest load of a bin at most An. Hence, the approximation ratio of any nonoptimal
solution is at most

2An

2A(n+ 1)
= 1− 1

n+ 1

for MSSP and

An

A(n+ 1)
= 1− 1

n+ 1
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for B-MSSP. If an FPTAS existed for either problem, we would get a polynomial
(1 − ε)-approximation algorithm also for ε < 1

n+1 , which would yield an optimal
solution for the instance above whenever the original E-PART instance has a solution.
This is clearly impossible unless P = NP.
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TIBOR ILLÉS† , JIMING PENG‡ , CORNELIS ROOS‡ , AND TAMÁS TERLAKY§
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Abstract. We deal with linear complementarity problems (LCPs) with P∗(κ) matrices. First
we establish the convergence rate of the complementary variables along the central path. The central
path is parameterized by the barrier parameter µ, as usual. Our elementary proof reproduces the
known result that the variables on or close to the central path fall apart in three classes in which
these variables are O(1), O(µ), and O(

√
µ), respectively. The constants hidden in these bounds are

expressed in or bounded by the input data. All this is preparation for our main result: a strongly
polynomial rounding procedure. Given a point with sufficiently small complementarity gap and which
is close enough to the central path, the rounding procedure produces a maximally complementary
solution in at most O(n3) arithmetic operations.

The result implies that interior point methods (IPMs) not only converge to a complementary
solution of P∗(κ) LCPs, but, when furnished with our rounding procedure, they can also produce a
maximally complementary (exact) solution in polynomial time.
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1. Introduction. In this paper we deal with a class of linear complementarity
problems (LCPs),

(LCP ) s(x) := Mx+ q ≥ 0, x ≥ 0, xs(x) = 0,(1.1)

where M is an n × n real matrix, q ∈ R
n, and xs(x) denotes the coordinatewise

product of the vectors x and s(x). We say that an algorithm solves (LCP ) if either
it produces a vector x satisfying the constraints of (LCP ) or it provides a certificate
that no such vector exist. In the first case we say that x solves (LCP ).

The vector x is a strictly complementary solution of (LCP ) if it solves (LCP )
and x + s(x) > 0. Contrary to linear optimization (LO) [27], in general no strictly
complementary solution exists for (LCP ): there might exist pairs of complementary
variables xi and si(x) that are both zero in all solutions of the (LCP ). Complemen-
tary solutions with the maximal number of nonzero coordinates will be referred to
as maximally complementary solutions. The existence of maximally complementary
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solutions follows from the convexity of the solution set, proved by Cottle, Pang, and
Venkateswaran in [4]. Kojima et al. [18] under some additional assumptions showed
that solutions on the central path converge to a maximally complementary solution
of (LCP ).

All known algorithms for solving (LCP ) need some assumption on the matrix
M . So do interior point methods (IPMs) as well. IPMs for solving (LCP ) are widely
studied in the last decade. A survey on recent results is written by Yoshise [36].
Kojima, Mizuno, and Yoshise [15] presented a polynomial time algorithm that pro-
duces an exact solution for LCPs where M is positive semidefinite. The same authors
[16] established an O(√nL) iteration bound1 for a potential reduction algorithm. Ji,
Potra, and Huang [11] developed a polynomial, O(√nL) predictor-corrector method
for positive semidefinite LCPs under the assumption that the sequence of iterates
generated by their interior point algorithm converges to a strictly complementary
solution. Later, Ye and Anstreicher [34] proved the same iteration bound, O(√nL)
for predictor-corrector methods, removing the assumption given in [11]. In 1991, Ko-
jima et al. [18] extended all the previously known results to the wider class of so-called
P∗(κ) LCPs and unified the theory of LCPs from the viewpoint of interior point meth-
ods. Jansen, Roos, and Terlaky [9] introduced a family of primal-dual affine-scaling
algorithms for positive semidefinite LCPs. These results were recently extended to
LCPs with P∗(κ) matrices by Illés, Roos, and Terlaky [8]. The iteration bound of
those algorithms are O((1 + 4κ)n log xT0 s(x0)/ε), where x0 is the initial iterate and ε
is the complementarity gap xT s(x) at termination.

Interior point methods need an interior feasible point to start with. Among others,
Ji, Potra, and Sheng [12] studied the initialization problem and proposed a predictor-
corrector method for solving the P∗(κ) LCPs from infeasible starting points. Kojima,
Mizuwo, and Yoshise [17] and Kojima et al. [18] gave a big-M construction that allows
one to solve the problem in one phase.

The aim of this paper is twofold. First, we derive some bounds on the magnitude
of the variables in the vicinity of the central path,2 when the complementarity gap
is small enough. Second, a strongly polynomial rounding procedure is presented
that provides a maximally complementary (exact) solution from any interior point
solution that is in a certain neighborhood of the central path and for which the
complementarity gap is sufficiently small.

For deriving results on the magnitude of the variables in a given neighborhood
of the central path we use some known results from the theory of error bounds for
systems of linear inequalities [21]. The theory of error bounds goes back to the early
fifties [7]; for recent developments we refer to the survey paper [25] and the references
therein. For LCPs, a well-known local error bound is given by Robinson [26] which
says that there exists a constant ε > 0 and τ > 0 such that

dist(x,Γ∗) ≤ τ‖min (x, s(x)) ‖(1.2)

for all x satisfying ‖min (x, s(x)) ‖ ≤ ε, where Γ∗ denotes the solution set of (LCP ) in
R
n
+, dist(x,Γ

∗) = miny∈Γ∗ ‖y−x‖ and the minimum min(x, s(x)) is taken coordinate-
wise. By using the properties of the central path and some results on error bounds
of Cook et al. [3] and Mangasarian and Shiau [21], we derive some bounds on these
constants in terms of the input data if x is on or close to the central path. To the

1L is the binary input length of the problem [18].
2The central path is defined in the usual way. See section 2.
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best of our knowledge, this is the first result yielding easily to calculate bounds for
these constants in the study of LCPs.

The bounds on the magnitude of the variables along the central path depend on
the dimension n of the problem, on the parameter κ and the barrier parameter µ
that parameterizes the central path, and on two condition numbers σLCP and νLCP
of (LCP ). The condition number σLCP is closely related to that defined by Ye [35]
and studied by Vavasis and Ye [31] for polyhedra with real number data and slightly
modified by Roos, Terlaky, and Vial [27] for the case of LO problems. The second
condition number, νLCP , will be introduced later. Other condition numbers for LCP
are defined in [19, 32]. It will be shown in a quite elementary way that in a given
neighborhood of the central path the variables fall apart in three classes and their
magnitudes are O(1), O(µ), and O(√µ), respectively, provided the parameter µ is
sufficiently small.

The rounding procedure we describe for (LCP ) resembles the one presented in
the papers [33, 22] and in the book [27]. We show that IPMs with a rounding pro-
cedure terminate in a finite (polynomial) number of iterations and yield a maximally
complementary solution.

There are some other methods [15, 19, 10, 24, 29] in the literature that gener-
ate an exact solution to (LCP ) in O(n3L) iterations, but those are different from
ours. For example, Kojima, Mizuno, and Yoshise [15] in Appendix B of their paper
presented a method which leads to a basic solution of the LCPs, thus not providing
a maximally complementary solution. In [24], Monteiro and Wright considered the
local convergence of IPMs for monotone LCP. By using the error bound results in
[7, 21], they also obtained some estimates about the magnitude of the variables in
the neighborhood of the central path. When the updated point is sufficiently close to
the solution set, then an orthogonal projection is employed to get an exact solution.
If the iterate is “close enough” to the solution set, the projected point is maximally
complementary. Similar results were also reported by Ji and Potra [10]. However,
the complexity of the algorithms in [10, 24] depends on some constants which they do
not relate to the input data of the problem and thus, in the above-mentioned papers,
there is no proven guarantee that these methods yield a maximally complementary
solution in polynomial time.

Stoer, Wechs, and Mizuno in [29] modified their original algorithm to obtain an
exact solution in the following way: using asymptotically correct estimates of the
optimal partition of the variables they have introduced a linear system; the solution
of this system will be an exact solution if and only if the estimation is good enough.
They have no explicit criteria for the estimated partition to be good enough to get
an exact solution.

An explicit bound on the number of necessary iterations to produce the optimal
partition will be computed (Theorem 4.3) in our paper. Furthermore, we show that
the optimal partition can be identified from a less accurate solution, while we need to
have a solution with smaller duality gap when we want to compute an exact maximally
complementary solution (Theorem 5.1). Finally, we state the complexity of the Dikin
affine-scaling algorithm to produce an exact solution of the (LCP) (see Theorem
5.2). As we will see later, the bounds (i.e., the complexity estimate of computing a
maximally complementary solution) depend only on the input data of the problem.
We do not claim that the accuracy which is theoretically needed to start our rounding
procedure is practically reachable. However, from a theoretical point of view our
results improve all the previously known results related to rounding procedures. The
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first time an explicit polynomial bound is computed on the necessary accuracy when
a successful rounding procedure can be started. Similarly to the earlier results, for
rounding only the solution of a linear system is needed. Furthermore, our bounds
exhibit the difficulty of obtaining an exact solution for a sufficient (LCP), in general.

Our rounding procedure generates an exact maximally complementary solution,
while the procedure presented in [15] produces a complementary basic solution, which,
in general, is not maximally complementary. Having a maximally complementary
solution, a complementary basic solution can be computed in strongly polynomial time
by using the basis identification procedure presented by Berkelaar et al. [2]. However,
no strongly polynomial algorithm is known to generate a maximally complementary
solution from a complementary basic solution.

The paper is organized as follows. Some preliminary results are discussed in
section 2. In section 3 the optimal partition is defined and the related concept of
maximally complementary solutions. We introduce two condition numbers for (LCP )
and derive local bounds on the magnitude of the variables on the central path. The
main result in this section describes how the optimal partition can be determined if
the barrier parameter µ is small enough. In section 4 we generalize the results of
section 3 to points that are close to the central path, so-called approximate centers,
and we show that the optimal partition can be identified from x if x belongs to a certain
neighborhood of the central path and if xT s(x) is small enough; such a vector x can
be obtained in polynomial time by any interior point method. Section 5 presents
a strongly polynomial rounding procedure that yields a maximally complementary
solution. Some concluding remarks close the paper in section 6.

Throughout, we shall use ‖·‖p (p ∈ [1,∞]) to denote the p-norm on R
n, with ‖·‖

denoting the Euclidean norm ‖·‖2. E will denote the identity matrix, e will be used
to denote the vector which has all its components equal to 1. Given an n-dimensional
vector x, we denote by X the n × n diagonal matrix whose diagonal entries are the
coordinates xj of x. If x, s ∈ R

n, then xT s denotes the dot product of the two vectors.
Further, xs and xα for α ∈ R will denote the vectors resulting from coordinatewise
operations. For any matrix A ∈ R

m×n, Ai, A.j are the ith row and the jth column
of A, respectively. Furthermore,

π(A) :=

n∏
j=1

‖A.j‖.

For any index set J ⊂ {1, 2, . . . ,m}, |J | denotes the cardinality J and AJ ∈ R
|J|×n

the submatrix of A whose rows are indexed by elements in J . Moreover, if K ⊂
{1, 2, . . . , n}, AJK ∈ R

|J|×|K| denotes the submatrix of AJ whose columns are indexed
by elements in K.

2. Preliminaries. For further use we first recall some well-known results and
definitions. The reader may consult [5, 6, 18, 36] for proofs and details.

A matrix M ∈ R
n×n is a P∗(κ) matrix if

(1 + 4κ)
∑

i∈I+(x)

xi[Mx]i +
∑

i∈I−(x)

xi[Mx]i ≥ 0 for all x ∈ R
n,(2.1)

where

I+(x) := {1 ≤ i ≤ n : xi[Mx]i > 0}, I−(x) := {1 ≤ i ≤ n : xi[Mx]i < 0},
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and κ is a nonnegative real number. Note that the index sets I+(x) and I−(x) depend
not only on x but on the matrix M as well. Equivalently (2.1) can also be stated as

xTMx ≥ −4κ
∑

i∈I+(x)

xi[Mx]i.

The matrix M is a P∗ matrix if it is a P∗(κ) matrix for some nonnegative κ:

P∗ =
⋃
κ≥0

P∗(κ).

One easily verifies that M is a P∗(0) matrix if and only if M is positive semidefinite.
Furthermore, if M is P∗(κ) for some κ ≥ 0, then M is P∗(κ) for all κ ≥ κ.

The class of sufficient matrices (SU) was introduced by Cottle, Pang, and
Venkateswaran [4]. A matrix M ∈ R

n×n is column sufficient if for all x ∈ R
n,

X(Mx) ≤ 0 ⇒ X(Mx) = 0

and is row sufficient if MT is column sufficient. The matrix M is sufficient if it is
both row and column sufficient. Recently, Väliaho [30] proved that P∗ = SU .

The sets of feasible and positive feasible vectors are denoted, respectively, by

Γ = {x : x ≥ 0, s(x) ≥ 0} ,
Γ0 = {x : x > 0, s(x) > 0} ,

and the set of solutions of (LCP ) by

Γ∗ = {x : x ≥ 0, s(x) ≥ 0, xs(x) = 0} .
It is known (cf. [18], Theorem 4.6) that if M ∈ P∗ and Γ �= ∅, then Γ∗ �= ∅.

Further, if Γ0 �= ∅, then Γ∗ is compact;3 moreover for every µ > 0 there exists a
unique x ∈ Γ0 such that

xs(x) = µe.

In other words, assuming that Γ0 is nonempty the central path

C := {x ∈ Γ0 : xs(x) = µe for some µ > 0}
exists. Kojima et al. [18] showed that the assumption Γ0 �= ∅ can be made without
loss of generality. Hence we may assume that the central path C exists. The central
path C is a one-dimensional smooth curve that leads to a solution of (LCP ) when µ
approaches 0.4

We insert here the following technical lemma that will be used at several places
below.

Lemma 2.1. Let x be a solution of the equation Dx = d, where D is an integral
and nonzero m× n matrix and d is an integral vector. If J denotes the support of x
and the columns of D.J are linearly independent, then

1

∆(D)
≤ |xj | ≤ ∆(D) ‖d‖1 , j ∈ J.

3The key observation for this is Lemma 4.5 of Kojima et al. [18].
4For further details we refer to Chapters 2 and 4 in [18]. See also [23, 28].
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Here ∆(D) denotes the largest absolute value of the determinants of the square sub-
matrices of D. The right inequality holds also if d is not integral.

Proof. For completeness we include a proof here. Let x be as in the lemma
and let the index set K be such that DKJ is a nonsingular square submatrix of D;
such K exists because the columns in D.J are linearly independent. Now we have
DKJxJ = dK , and hence, by Cramer’s rule,5

xj =
det

(
D

(j)
KJ

)
det(DKJ)

for all j ∈ J,(2.2)

where D
(j)
KJ denotes the matrix arising when the jth column in DKJ is replaced by

dK . Since the denominator in the above quotient is at least 1 we obtain

|xj | ≤ det
(
D

(j)
KJ

)
, j ∈ J.(2.3)

When we evaluate the last determinant to its jth column, while using that each square
submatrix is also a square submatrix of D, the right-hand side inequality follows. For
the left inequality we use that d is integral; since xj �= 0 this implies that the numerator
in (2.2) is at least one.

Corollary 2.2. If D is integral and the columns of D are all nonzero, then,
under the assumptions of Lemma 2.1,

1

π(D)
≤ |xj | ≤ π(D) ‖d‖ , j ∈ J.

The right inequality holds also if d is not integral.
Proof. If the columns of D are all nonzero, then the left inequality in Lemma 2.1

remains valid if we replace ∆(D) by π(D). This is immediate from the well-known
Hadamard inequality for determinants and because D and d are integral. The in-
equality at the right follows by applying Hadamard’s inequality to (2.3).6

3. The optimal partition and two condition numbers. In the rest of this
paper we assume that M ∈ P∗(κ) for some κ ≥ 0. This implies that the matrix M is
sufficient.

3.1. Optimal partition. Let us denote the index set {1, 2, . . . , n} by I and
define the sets

B := {i ∈ I : xi > 0 for some x ∈ Γ∗},
N := {i ∈ I : si(x) > 0 for some x ∈ Γ∗},
T := {i ∈ I : xi = si(x) = 0 for all x ∈ Γ∗}.

We show that these index sets are disjoint and B ∪ N ∪ T = I, i.e., they form the
so-called optimal partition of the index set I with respect to (LCP ).

Lemma 3.1 (see [18]). The index sets B,N, and T form a partition of the index
set I.

Proof. From the definition of the sets B,N, and T it is obvious that B ∩ T = ∅,
N ∩ T = ∅, and I = B ∪ N ∪ T . Let us assume that B ∩ N �= ∅. Then there exist

5The idea of using Cramer’s rule in this way was applied first by Khachiyan in [13].
6The idea for deriving bounds from Hadamard’s inequality is due to Klafszky and Terlaky [14]

(in Hungarian).
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x′, x′′ ∈ Γ∗ such that x′
j > 0, sj(x

′) = 0, x′′
j = 0, and sj(x

′′) > 0 for some j ∈ I. Let
us denote x := x′ − x′′, s′ = s(x′), s′′ = s(x′′), s := s′ − s′′, and X := diag(x). It is
easy to see that

Xs = XMx ≤ 0

and

xjsj = xj(Mx)j = (x′
j − x′′

j )(s
′
j − s′′j ) = −x′

js
′′
j < 0,

which contradicts the column sufficiency of the matrix M .
Corollary 3.2. Let x′ and x′′ solve (LCP ), so x′, x′′ ∈ Γ∗. Then x′s(x′′) = 0

and x′′s(x′) = 0.
Proof. The definition of the classes B and N implies {i ∈ I : x′

i > 0} ⊂ B
and {i ∈ I : si(x

′′) > 0} ⊂ N . Since B ∩ N = ∅, it follows that x′ and s(x′′) are
complementary. The proof for x′′ and s(x′) is analogous.

Corollary 3.3. The solution set Γ∗ is convex.
Proof. Let x′, x′′ ∈ Γ∗ and λ ∈ [0, 1]. If x := λx′ + (1 − λ)x′′, then x ≥ 0 and

s(x) = λs(x′) + (1 − λ)s(x′′) ≥ 0. Thus x ∈ Γ. Further, Corollary 3.2 gives that
xs(x) = 0, from which x ∈ Γ∗.

A solution x ∈ Γ∗ is called maximally complementary if xB > 0 and sN (x) > 0.
Since Γ∗ is convex (and polyhedral) a maximally complementary solution exists.7

From now on we assume that Γ0 �= ∅. If the ith column of M is zero, then the P∗
property implies that the ith row is zero as well. Therefore si(x) = qi in that case,
for every x. Hence, if qi < 0, then (LCP ) is infeasible. If qi ≥ 0, then the constraint
si(x) is always satisfied and we may reduce the problem by removing the ith row and
column of M . Thus we will assume that all columns of M are nonzero. When q = 0,
then the (LCP ) has a trivial solution (x = 0). Therefore, without loss of generality,
we further assume that q �= 0.8

Our goal is to find the optimal partition of the index set and, finally, to round off
to a maximally complementary solution. In fact, we will show that given x(µ) we can
find the optimal partition provided µ is small enough. To this end we need to give
bounds for the size of the variables along the central path. In the next two sections
we obtain such bounds in terms of two condition numbers for (LCP ).

3.2. The first condition number for (LCP ). In this section we introduce
our first condition number of (LCP ).

This is done as in, e.g., Roos, Terlaky, and Vial [27] and Andersen and Ye [1]
for LO problems. Since Γ0 �= ∅, Γ∗ is nonempty and compact (see section 2), so the
following two numbers are well defined:

σxLCP := min
i∈B

max
x∈Γ∗
{xi}, σsLCP := min

i∈N
max
x∈Γ∗
{si(x)}.

By convention we take σxLCP =∞ if B is empty and σsLCP =∞ if N is empty; thus
both σxLCP and σsLCP are positive. If B is nonempty, then σxLCP is finite and if N

7The convexity of Γ∗ is proved in another way in [4, Theorems 5 and 6, pp. 240–241]. Furthermore
it is shown that Γ∗ is a polyhedron.

8It may be noted that in this paper we find a maximally complementary solution of (LCP ) under
the assumptions Γ0 �= ∅ and q �= 0. If q = 0, we have the trivial solution x = 0, but this solution will
in general not be maximally complementary. The case q = 0 is interesting in itself. For example, if
M is skew-symmetric, it covers LO and there exists a strictly complementary solution [27]; the other
extreme occurs if M is a positive definite matrix (e.g., if M is the identity matrix): then B = N = ∅
and T = I.
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is nonempty, then σsLCP is finite. Since q �= 0 it cannot happen that both B and N
are empty; thus under the interior point condition (Γ0 �= ∅), at least one of the two
numbers is finite. As a consequence, the number

σLCP := min{σxLCP , σsLCP }

is positive and finite. One can easily verify that σLCP can also be written as

σLCP := min
i∈B∪N

max
x∈Γ∗
{xi + si(x)}.

In general, we have to solve a problem without knowing its condition number σLCP .
In such cases there is a cheap way to get a lower bound for σLCP if the problem data
(M, q) are integral. We proceed by deriving such a lower bound.

Lemma 3.4. If M and q are integral, then σLCP ≥ 1
π(M) .

Proof. For any vector x ∈ Γ we have, with s = s(x),


 sB

sN
sT


 =


MBB MBN MBT

MNB MNN MNT

MTB MTN MTT




 xB

xN
xT


+


 qB

qN
qT


 .(3.1)

Further, x ∈ Γ∗ holds if and only if xN = 0, xT = sT = 0, sB = 0. This is equivalent
to 

MBB 0BN
MNB −ENN
MTB 0TN


(

xB
sN

)
=


−qB−qN
−qT


 , xB ≥ 0, sN ≥ 0.(3.2)

Any maximally complementary solution x yields a positive solution of this system.
In order to get a lower bound on σLCP we need to derive a lower bound on the
maximal value of each coordinate of the vector z := (xB , sN ) when this vector runs
through all possible solutions of (3.2). For each i we know that there exists a solution
z with zi > 0. Hence there exists a basic solution z of (3.2) with zi > 0. Therefore,
Corollary 2.2 yields the following lower bound on the biggest coordinate of z.

max
x∈Γ∗

zi ≥ 1

π (M.B)
.

Since π(M) ≥ π (M.B), the lemma follows.

Now we are ready to estimate the size of the variables xi, si(x) when x lies on the
central path, i.e., xs(x) = µe, and i ∈ B or i ∈ N . We denote s(µ) := s (x(µ)).

Theorem 3.5. For any positive µ one has

xi(µ) ≥ σLCP
n(1 + 4κ)

, i ∈ B,

si(µ) ≤ nµ(1 + 4κ)

σLCP
, i ∈ B,

xi(µ) ≤ nµ(1 + 4κ)

σLCP
, i ∈ N,

si(µ) ≥ σLCP
n(1 + 4κ)

, i ∈ N.

Proof. We first consider the case i ∈ N . Let us assume that x ∈ Γ∗ and s := s(x).
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Taking into consideration that M ∈ P∗(κ) and x(µ), s(µ), x, s ≥ 0, we get

(x(µ)− x)T (s(µ)− s) = (x(µ)− x)TM(x(µ)− x)

≥ −4κ
∑

i∈I+(x(µ)−x)
(x(µ)− x)i[M(x(µ)− x)]i

= −4κ
∑

i∈I+(x(µ)−x)
(x(µ)− x)i(s(µ)− s)i

= −4κ
∑

i∈I+(x(µ)−x)
((x(µ)s(µ))i − (x(µ)s)i − (xs(µ))i + (xs)i)

≥ −4κ
∑

i∈I+(x(µ)−x)
(x(µ)s(µ))i

≥ −4κnµ.(3.3)

The last inequality holds because x(µ)s(µ) = µe and x ∈ Γ∗. On the other hand

(x(µ)− x)T (s(µ)− s) = nµ− x(µ)T s− xT s(µ).

Combining this with (3.3) we have

x(µ)T s+ s(µ)Tx ≤ nµ(1 + 4κ),

which implies

xi(µ)si ≤ x(µ)T s ≤ nµ(1 + 4κ) for all i ∈ I.(3.4)

Now if i ∈ N and (x̄, s) is a maximally complementarity solution, then by definition
si ≥ σLCP . Dividing by si in (3.4) we obtain

xi(µ) ≤ nµ(1 + 4κ)

si
≤ nµ(1 + 4κ)

σLCP
.(3.5)

Since xi(µ)si(µ) = µ, it also follows that

si(µ) ≥ σLCP
n(1 + 4κ)

for all i ∈ N.

This proves the second and fourth inequality in the lemma. The first and third
inequalities for i ∈ B are obtained from (3.4) analogously.

3.3. The second condition number for (LCP ). In this section we derive
bounds that will help us control the variables xi(µ) and si(µ) if i ∈ T . Before dealing
with the main theorem in this section we review some results about systems of linear
inequalities and equalities.

Let A ∈ R
m×n and C ∈ R

k×n be two real matrices. For given b ∈ R
m and d ∈ R

k,
consider the following system of linear inequalities

Ax ≤ b, Cx = d.(3.6)

Cook et al. [3] and Mangasarian and Shiau [21] studied the Lipschitz continuity of
solutions of (3.6) with respect to right-hand-side perturbations of (3.6). We will use
a variant of those results. For completeness, we give a simple proof, similar to that
presented in [3]. We further assume that both A and C do not contain a zero row.
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Lemma 3.6. Let the system (3.6) have nonempty feasible sets Γ1 and Γ2 for the
right-hand side (b1, d1) and (b2, d2), respectively. For each x1 ∈ Γ1 there exists an
x2 ∈ Γ2 such that

‖x1 − x2‖∞ ≤ ν(A;C)

∥∥∥∥
(

b1 − b2

d1 − d2

)∥∥∥∥
∞

,(3.7)

where9

ν(A;C) := max
u,v



∥∥∥∥
(

u
v

)∥∥∥∥
1

∣∣∣∣∣∣
ATu+ CT v = z − y, eT (z + y) = 1, u, y, z ≥ 0,

the columns of (AT , CT ) corresponding to nonzero
elements of (u, v) are linearly independent


 .

Proof. We are interested in finding t such that t =
∥∥x− x1

∥∥
∞, with x ∈ Γ2, is

minimal. This amounts to solving the linear minimization problem

min
x

{
t : Ax ≤ b2, Cx = d2, te+ x ≥ x1, te− x ≥ −x1

}
.(3.8)

Note that this problem is feasible, since Γ2 �= ∅, and bounded. Hence, the optimal
value t∗ is equal to the optimal value of the dual problem of (3.8). This gives

t∗ = max


uT b2 + vT d2 + yTx1 − zTx1 :

ATu+ CT v + y − z = 0,

eT (z + y) = 1,

y, z ≥ 0, u ≤ 0


 .(3.9)

Let (u, v, y, z) be an optimal solution of this problem. Recalling that x1 ∈ Γ1 and
u ≤ 0, from the definition of t∗ we get

t∗ = uT b2 + vT d2 + (y − z)
T
x1

= uT b2 + vT d2 − (ATu+ CT v
)T

x1

= uT b2 + vT d2 − uTAx1 − vTCx1

≤ uT b2 + vT d2 − uT b1 − vT d1

= uT
(
b2 − b1

)
+ vT

(
d2 − d1

)
≤
∥∥∥∥
(

u
v

)∥∥∥∥
1

∥∥∥∥
(

b2 − b1

d2 − d1

)∥∥∥∥
∞

.

Hence, the proof will be complete if we show that (3.9) has an optimal solution
(u, v, y, z) such that the columns of (AT , CT ) corresponding to the nonzero compo-
nents of (u, v) are linearly independent. This can be shown as follows. Suppose to
the contrary that the columns corresponding to the nonzero coordinates of (u, v) are
dependent; then there exist nonzero vectors ū and v̄ such that AT ū + CT v̄ = 0 and
ūi = 0 if ui = 0 and v̄i = 0 if vi = 0. Let us define w(λ) := (u, v, y, z) + λ(ū, v̄, 0, 0);
then w(λ) is feasible for (3.9) for all λ satisfying u + λū ≤ 0. From the definition of
ū and v̄ one can easily conclude that there is a closed interval [α, β] with α < 0 < β
(here we allow α = −∞ and β = ∞) such that w(λ) is feasible for (3.9) for any

9This definition is a slight modification of the one given by Mangasarian and Shiau [21]. They
simply require ‖ATu+CT v‖1 = 1, not using the variables y and z. Our definition has the advantage
that the feasible region of the optimization problem defining ν(A;C) is a polyhedral set.
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λ ∈ [α, β]. Hence we necessarily have ūT b2 + v̄T d2 = 0—otherwise a contradiction
with the optimality of w(0) would arise. As a consequence, w(λ) is optimal for all
λ ∈ [α, β]. Clearly, by choosing λ appropriately, we can obtain a solution of (3.9)
with fewer nonzero coordinates. By repeating this procedure we obtain a solution
(u, v, y, z) of (3.9) for which the columns of (AT , CT ) corresponding to the nonzero
components of (u, v) are linearly independent. For such a solution by the definition
of ν(A;C) we have ∥∥∥∥

(
u
v

)∥∥∥∥
1

≤ ν(A;C),

because (û, v̂, ŷ, ẑ) = (−u,−v, z, y) is feasible for the optimization problem in the
definition of ν(A,C) with ∥∥∥∥

(
û
v̂

)∥∥∥∥
1

=

∥∥∥∥
(

u
v

)∥∥∥∥
1

.

This completes the proof.
We proceed by deriving a lower bound for ν(A;C).
Lemma 3.7. One has

ν(A;C) ≥ 1

mini,j
(‖ai‖1 , ‖cj‖1) ,

where ai runs through the rows of A and cj through the rows of C.
Proof. Let a denote the ith row of A. Then, if ei denotes the ith unit vector,

one has
∥∥AT ei∥∥1

= ‖a‖1 . Hence, assuming a �= 0, taking u = ei/ ‖a‖1 , v = 0, zj =
aj/ ‖a‖1 if aj ≥ 0, yj = −aj/ ‖a‖1 if aj < 0, and all remaining entries of y and
z equal to zero, the quadruple (u, v, y, z) is feasible for the maximization problem
defining ν(A;C). Therefore, ν(A;C) ≥ ‖u‖1 = 1/ ‖a‖1. A similar argument yields
that ν(A;C) ≥ 1/ ‖c‖1 for each row c of C, and hence the lemma follows.

An upper bound for ν(A;C) can be derived if all the entries of A and C are
integral.

Lemma 3.8. For integer A,C one has

ν(A;C) ≤ n∆(AT ;CT ) ≤ nπ(AT , CT ).(3.10)

Proof. Let (u, v, y, z) be a feasible solution for the maximization problem in the
definition of ν(A;C). Let wT = (uT , vT ), Ā = (AT , CT ). Then Āw = z − y. Since
the columns of Ā corresponding to nonzero elements of w are linearly independent,
we may apply Lemma 2.1, which yields

‖w‖∞ ≤ ∆
(
Ā
) ‖z − y‖1 ≤ ∆

(
Ā
)
.

The last inequality follows since ‖z − y‖1 ≤ ‖z + y‖1 = 1. Since ‖w‖1 ≤ n‖w‖∞ the
first inequality in the lemma follows from this. The rest of the lemma follows from
the Hadamard inequality for determinants. Hence the proof is complete.

We now are going to apply Lemma 3.8 to a second condition number for (LCP ),
which enables us to bound the variables along the central path. This second condition
number, denoted as νLCP , depends on the input matrix M and the optimal partition
(B,N, T ). It is defined as follows.
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Definition 3.9. Let I1, I2 be a partition of the index set I such that B ⊆ I1 and
N ⊆ I2. Let us define

νLCP := max
I1∪I2=I

ν




 −EI1 0

0 −EI2


 ;




M −E
EI2 0

0 EI1




 .

If the matrix M is integral, then we can give a lower bound and an easily computable
upper bound for νLCP .

Lemma 3.10. If M is integral, then

1 ≤ νLCP ≤ max
I1∪I2=I

n∆




 −EI1 0

0 −EI2


 ;




M −E
EI2 0

0 EI1




 = n∆(M) ≤ nπ(M).

Proof. The first inequality is immediate from Lemma 3.7, the second inequality
follows from Lemma 3.8, the equality is obvious, and the last inequality is Hadamard’s
inequality.

Now we are ready to state our main theorem in this section.
Theorem 3.11. If

µ <
σ2
LCP

n2(1 + 4κ)2
,(3.11)

then
√
µ

νLCP
≤ xi(µ), si(µ) ≤ νLCP

√
µ, i ∈ T.

Proof. When (3.11) holds, one can easily verify that

xi(µ) ≥ σLCP
n(1 + 4κ)

>
nµ(1 + 4κ)

σLCP
≥ si(µ) for all i ∈ B

and

si(µ) ≥ σLCP
n(1 + 4κ)

>
nµ(1 + 4κ)

σLCP
≥ xi(µ) for all i ∈ N.

Letting

I1 = {i : xi(µ) ≥ si(µ)}, I2 = {i : xi(µ) < si(µ)},
we have B ⊂ I1 and N ⊂ I2 if (3.11) holds. Hence, defining

H(x) := min (x, s(x)) ,

we have

Hi (x(µ)) =


 si(µ) if i ∈ I1,

xi(µ) if i ∈ I2.
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From the fact that H(x(µ)) = min(x(µ), s(µ)) and xi(µ)si(µ) = µ we conclude that
Hi(x(µ)) ≤ √µ.

Consider the following linear system:

Mx− s = −q,
xI2 = 0,

sI1 = 0,

−xI1 ≤ 0,

−sI2 ≤ 0.

(3.12)

It is easy to see that the feasible set of the system (3.12) is the solution set Γ∗ of
(LCP ). Let this set play the role of Γ2 in Lemma 3.6. Further, let the solution set of
the following linear system play the role of Γ1:

Mx− s = −q,
xI2 = HI2 (x(µ)) ,

sI1 = HI1 (x(µ)) ,

−xI1 ≤ 0,

−sI2 ≤ 0.

(3.13)

Clearly Γ1 is not empty, because x(µ) satisfies (3.13). Now it follows from Lemma 3.6
that there exists a solution x∗ of (3.12), i.e., x∗ ∈ Γ∗, such that

∥∥∥∥∥∥

 x∗ − x(µ)

s∗ − s(µ)



∥∥∥∥∥∥
∞

≤ ν




 −EI1 0

0 −EI2


 ;




M −E
EI2 0

0 EI1




 ‖H(x(µ))‖∞.

Using the definition of νLCP and Hi(x(µ)) ≤ √µ it follows that∥∥∥∥∥∥

 x∗ − x(µ)

s∗ − s(µ)



∥∥∥∥∥∥
∞

≤ νLCP
√
µ.

Since x∗
i = 0 for i ∈ T, we conclude that for all i ∈ T ∩ I1 one has

√
µ

νLCP
≤ si(µ) ≤ √µ ≤ xi(µ) ≤ νLCP

√
µ.

Similarly for all i ∈ T ∩ I2, it holds that

√
µ

νLCP
≤ xi(µ) ≤ √µ ≤ si(µ) ≤ νLCP

√
µ.

This proves the theorem.

3.4. Finding the optimal partition. In Table 3.1 we show the results of the
last two theorems (Theorem 3.5 and Theorem 3.11).

These results have an important consequence. If µ is so small that

nµ(1 + 4κ)

σLCP
<

√
µ

νLCP

and

νLCP
√
µ <

σLCP
n(1 + 4κ)

,
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Table 3.1
Local bounds for the variables on the central path.

i ∈ B i ∈ N i ∈ T

xi(µ) ≥ σLCP
n(1+4κ)

≤ nµ(1+4κ)
σLCP

√
µ

νLCP
≤ xi(µ) ≤ νLCP

√
µ

si(µ) ≤ nµ(1+4κ)
σLCP

≥ σLCP
n(1+4κ)

√
µ

νLCP
≤ si(µ) ≤ νLCP

√
µ

then we have a complete separation of the variables. Both inequalities give the same
bound on µ, namely,

µ <
σLCP

2

ν2
LCPn

2(1 + 4κ)2
.(3.14)

This means that if a point on the central path is given such that (3.14) holds, then
we can determine the optimal partition (B,N, T ) of (LCP ).

Unfortunately, in practice we may not assume that we can calculate points on
the central path exactly. Practical algorithms generate points in the vicinity of the
central path. Therefore, in the next section we deal with the situation that a point
x is given in an appropriate neighborhood of the central path. We will show that if
x is close enough to x(µ), with µ small enough, we also have a complete separation
of the variables into the three different classes B,N, and T . This will imply that all
path-following IPMs eventually produce iterates that are suitable for identifing the
optimal partition of (LCP ).

4. Optimal partition identification from approximate centers. In this
section we generalize the results of the previous section to the case where a point
x is given in a specific neighborhood of the central path. On the central path all
the coordinates of the vector xs(x) are equal. This suggests that a good measure
of centrality could be the ratio of the smallest and largest coordinate. If we bound
this ratio, then a neighborhood of the central path is obtained. We therefore use the
measure of centrality10

δc(x) :=
max(xs(x))

min(xs(x))
,

where max(xs(x)) denotes the largest coordinate of xs(x) and min(xs(x)) denotes the
smallest one.

4.1. Finding the optimal partition from approximate centers. We first
generalize the results of Theorems 3.5 and 3.11 to the case where x is not on the
central path C.

10This measure of centrality is introduced by Ling [20] and used in [8, 9]. The same measure of
centrality is used throughout Roos, Terlaky, and Vial [27].
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Lemma 4.1. Let x ∈ Γ0 and s = s(x). If δc(x) ≤ τ , for some τ > 1, and

µ := xT s(x)
n , then one has

xi ≥ σLCP
τn(1 + 4κ)

, i ∈ B,

si ≤ (1 + 4κ)nµ

σLCP
, i ∈ B,

xi ≤ (1 + 4κ)nµ

σLCP
, i ∈ N,

si ≥ σLCP
τn(1 + 4κ)

, i ∈ N.

If, further,

µ ≤ σ2
LCP

τn2(1 + 4κ)2
,(4.1)

then
√
µ

τ
√
τνLCP

≤ xi, si ≤
√
τνLCP

√
µ, i ∈ T.

Proof. The proof uses essentially the same arguments as the proofs of Theorems
3.5 and 3.11. The arguments leading to (3.5) in the proof of Theorem 3.5 are still
valid, so

xi ≤ (1 + 4κ)xT s

σLCP
=

(1 + 4κ)nµ

σLCP
for i ∈ N.(4.2)

The rest of the proof is a little complicated by the fact that x is not on the central
path but only in a certain neighborhood of the central path. If δc(x) ≤ τ , then there
are α, β ∈ (0,∞) such that

αe ≤ xs ≤ βe with
β

α
= τ.(4.3)

These inequalities replace the identity xi(µ)si(µ) = µ used in the proof of Theorem
3.5. Due to the left inequality in (4.3) we also have xisi ≥ α for all i. Hence using
(4.2) we must have

si ≥ ασLCP
(1 + 4κ)xT s

.

The right inequality in (4.3) gives xT s ≤ nβ, and thus

si ≥ ασLCP
nβ(1 + 4κ)

=
σLCP

τn(1 + 4κ)
.

This proves the second and fourth inequality in the lemma. The proof of the first and
third inequalities can be obtained in the same way and is therefore left to the reader.

To prove the last statement of the lemma, we notice that for the current point
(x, s), it obviously holds that

xisi
µ

=
nxisi
xT s

≥ nmin(xs)

nmax(xs)
≥ 1

τ
for all i = 1, 2, . . . , n

and

xisi
µ

=
nxisi
xT s

≤ nmax(xs)

nmin(xs)
≤ τ for all i = 1, 2, . . . , n.



A ROUNDING PROCEDURE FOR LCP 335

Table 4.1
Local estimates for variables belonging to index sets B,N, and T if δc(x) ≤ τ .

µ =
xT s(x)
n

i ∈ B i ∈ N i ∈ T

xi ≥ σLCP
τn(1+4κ)

≤ (1+4κ)nµ
σLCP

√
µ

τ
√
τνLCP

≤ xi ≤
√
τνLCP

√
µ

si(x) ≤ (1+4κ)nµ
σLCP

≥ σLCP
τn(1+4κ)

√
µ

τ
√
τνLCP

≤ si ≤
√
τνLCP

√
µ

Letting H(x) = min(x, s), the above two inequalities give

[H(x)]i ≤
√
τ
√
µ for all i = 1, 2, . . . , n.

Following arguments similar to those in the proof of Theorem 3.11, one can easily
derive the conclusion.

In Table 4.1 we show the results of the above lemma.
We conclude that the partition (B,N, T ) can be identified if xT s(x) is so small

that

(1 + 4κ)nµ

σLCP
<

√
µ

τ
√
τνLCP

and

√
τνLCP

√
µ <

σLCP
τn(1 + 4κ)

.

It is easy to verify that both inequalities give the same bound for µ; thus for complete
separation of the variables we need

µ <
σ2
LCP

n2τ3ν2
LCP (1 + 4κ)2

.(4.4)

Therefore we may state without further proof our main result.
Theorem 4.2. Let x ∈ Γ0 be such that δc(x) ≤ τ , for some τ > 1, and µ =

xT s(x)
n . If (4.4) is true, then, with s = s(x), the optimal partition of (LCP ) follows

from

T =

{
i :

√
µ

τ
√
τνLCP

≤ xi, si ≤
√
τνLCP

√
µ

}
,

B = {i �∈ T : xi > si}, and N = {i �∈ T : xi < si}.

4.2. Complexity of finding the optimal partition. In this section we assume
that we have given a point x(0) ∈ Γ0 close to the central path (i.e., δc(x

(0)) ≤ τ for

some τ > 1). We define µ0 by nµ0 =
(
x(0)

)T
s(0). Starting at x0, interior point

methods for solving (LCP ) need O(√n log(nµ0/ε)) iterations (see, e.g., [12, 16, 18,
34]) or O(n log(nµ0/ε)) iterations (see, e.g., [8]) to generate a point x such that
δc(x) ≤ τ and xT s(x) ≤ ε. The first bound holds for methods with small updates of
the barrier parameter, whereas the second bound is typical for methods using large
updates, and also for methods using a Dikin-type affine-scaling direction. Hence, by
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substituting the value of ε according to Theorem 4.2, we can get iteration bounds to
identify the optimal partition.

The above will be illustrated below for the Dikin affine-scaling algorithm presented
in [8]. If n ≥ 4, this algorithm, with τ = 2, requires at most

3(1 + 4κ)n log
nµ0

ε
(4.5)

iterations to generate a point x such that δc(x) ≤ 2 and xT s(x) ≤ ε.
Theorem 4.3. Starting at a point x(0) ∈ Γ0 with δc

(
x(0)

) ≤ 2, and n ≥ 4, the
Dikin affine-scaling algorithm reveals the optimal partition after at most

3(1 + 4κ)n log
8n2(1 + 4κ)2ν2

LCPµ
0

σ2
LCP

≤ 3(1 + 4κ)n log
(
8n4(1 + 4κ)2π(M)4µ0

)
iterations.

Proof. The expression (4.5) gives the number of iterations to reach an ε-solution.
With µ as in Theorem 4.2 and ε = nµ we obtain the first bound. The inequality
follows by using the upper bound for νLCP in Lemma 3.10 and the lower bound for
σLCP in Lemma 3.4.

Similar results can be derived for other polynomial IPMs.

5. Rounding to a strictly complementary solution. We just established
that the optimal partition of (LCP ) can be found after a polynomial number of
iterations with any known path-following IPMs for P∗(κ) LCPs. The required number
of iterations depends on the starting point x(0), the parameter κ, and the condition
numbers νLCP and σLCP . Our ultimate goal is not only to find the optimal partition
but also to find an exact and maximally complementary solution of (LCP ). Assuming
that the optimal partition (B,N, T ) has been determined, with B nonempty,11 we
describe a rounding procedure that can be applied to any sufficiently centered positive
vector x with xT s(x) small enough, and the rounding procedure yields a vector x̃ such
that (3.2) is satisfied and x̃B > 0, sN (x̃) > 0. As might be expected, the accuracy
that was sufficient to find the optimal partition is not enough to perform the rounding
procedure. In Theorem 5.1 we will give a bound on the complementary gap that
provides sufficient accuracy for our rounding procedure. The rounding procedure
yields a maximally complementary solution in strongly polynomial time. Finally, the
number of iterations required to reach the necessarily small complementarity gap is
bounded by Theorem 5.2.

5.1. Rounding procedure. Let x ∈ Γ0, s = s(x) be given and assume that the
optimal partition (B,N, T ) is known. Now we want to compute ∆xB ,∆sN such that

xB +∆xB > 0 and sN +∆sN > 0(5.1)

and 
 0

sN +∆sN
0


 =


MBB MBN MBT

MNB MNN MNT

MTB MTN MTT




xB +∆xB

0
0


+


 qB

qN
qT


 ,(5.2)

11If B = ∅, then x = 0 and s = q is the only possible solution. The vector (0, q) solves the problem
if and only if q ≥ 0.
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because then x̃ := (xB +∆xB , 0, 0) ∈ Γ∗, and this solution is maximally complemen-
tary. Since x and s satisfy (3.1), we may subtract (3.1) from (5.2), leading to the
system 

−sB∆sN
−sT


 =


MBB MBN MBT

MNB MNN MNT

MTB MTN MTT




∆xB
−xN
−xT


 ,(5.3)

which is thus equivalent to (5.2). We can rewrite this as
MBB 0BN

MNB −ENN
MTB 0TN


(

∆xB
∆sN

)
=


MBNxN +MBTxT − sB

MNNxN +MNTxT
MTNxN +MTTxT − sT


 .(5.4)

We conclude that we can round x to a maximally complementary solution x̃ if we
can find a solution (∆xB ,∆sN ) of (5.4) that satisfies (5.1). We show below that if
xT s(x) = nµ is small enough and x is close enough to the central path, then such
(∆xB ,∆sN ) can be found by Gaussian elimination.

It may be useful to point out that the analysis below works out well because the
variables xT , xN , sB , and sT that occur in the right-hand side of (5.4) are “small”
if µ is small enough and x is close enough to the central path. These variables are
bounded above by Lemma 4.1. Since xB and sN are “large,” by the same lemma, it
is therefore not surprising that (5.4) admits a solution such that (5.1) holds.

Theorem 5.1. Assume that M is integral. Let x ∈ Γ0 be such that δc(x) ≤ τ = 2.
If

µ <
σ2
LCP

8n3(1 + 4κ)2ν2
LCP ‖M‖2∞ π (M)

2 ,(5.5)

then the rounding procedure yields a maximally complementary solution in at most
O(n3) arithmetic operations.

Proof. To keep the expressions simple we introduce the following notation:

A :=


MBB 0BN

MNB −ENN
MTB 0TN


 , ∆z :=

(
∆xB
∆sN

)
, and r :=


MBNxN +MBTxT − sB

MNNxN +MNTxT
MTNxN +MTTxT − sT


 .

Then (5.4) becomes

A∆z = r.(5.6)

When solving (5.6) by Gaussian elimination, which needsO(n3) arithmetic operations,
we obtain a solution such that the columns of A corresponding to its support are
linearly independent. Hence, using Corollary 2.2,

‖∆z‖∞ ≤ π(A) ‖r‖ = π (M.B) ‖r‖ ≤ π(M) ‖r‖ .(5.7)

We proceed by estimating ‖r‖. We use the trivial inequality ‖r‖ ≤ √n‖r‖∞ and

‖r‖∞ ≤
∥∥∥∥∥∥

 MBN MBT −EB 0

MNN MNT 0 0
MTN MTT 0 −ET



∥∥∥∥∥∥
∞

∥∥∥∥∥∥∥∥




xN
xT
sB
sT



∥∥∥∥∥∥∥∥
∞

.(5.8)
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Observe that the value of µ given by (5.5) satisfies the hypothesis of Theorem 4.2.
Therefore, we have a complete separation of the variables. As a consequence, all
entries in the vectors xN , xT , sB , and sT are bounded above by

√
τνLCP

√
µ. Hence,

the infinity norm of the concatenation of these vectors, which appears at the right in
(5.8), is bounded above by this number. Obviously the infinity norm of the matrix in
(5.8) is bounded above by the infinity norm of M . Thus we find

‖r‖ ≤ 2n
√
nνLCP (1 + 4κ)

√
µ ‖M‖∞ .

Substitution in (5.7) yields

‖∆z‖∞ ≤
√
nνLCP

√
τ
√
µ ‖M‖∞ π (M) .(5.9)

Using the lower bound of Lemma 4.1 (with τ = 2) for the entries of xB and sN , we
conclude that the rounding procedure certainly yields a maximally complementary
solution if

√
2nνLCP

√
µ ‖M‖∞ π (M) <

σLCP
2n(1 + 4κ)

.

This inequality is equivalent to

√
µ <

σLCP

2
√
2n
√
nνLCP (1 + 4κ) ‖M‖∞ π (M)

,

which yields the bound for µ in the theorem. This completes the proof.

5.2. Complexity of finding an exact solution. We apply the results of the
previous section to estimate the number of iterations required by the Dikin affine-
scaling algorithm to reach the state where the rounding procedure yields a maximally
complementary solution. Without further proof we may state our final result.

Theorem 5.2. Starting at a point x(0) ∈ Γ0 with δc
(
x(0)

) ≤ 2, and n ≥ 4, the
Dikin affine-scaling algorithm requires at most

3(1 + 4κ)n log
8n3(1 + 4κ)2ν2

LCP ‖M‖2∞ π (M)
2
µ0

σ2
LCP

iterations to generate a point x at which the rounding procedure produces a maximally
complementary solution.

6. Concluding remarks. The aim of this paper was to show that one can
determine a maximally complementary solution of (LCP ) in polynomial time, thus
extending a well-known result for LO (cf. Roos, Terlaky, and Vial [27]). We assumed
that Γ0 �= ∅, q �= 0 and that a starting point x(0) ∈ Γ0 is given. Under these
assumptions we could derive the desired result.

A crucial point in the analysis is the convergence rate along the central path of
the variables in the index set T , which is O(√µ). All known proofs of this result use
a corollary of Robinson [26] related to the theory of polyhedral multifunctions. In
section 3 we presented a new and relatively simple proof.

In the analysis we need two condition numbers for P∗(κ) LCPs, both of which
appear in the achieved iterations bound. Both numbers were bounded by expressions
in the input data. Using Theorems 3.11 and 4.1 we showed that if x ∈ Γ0 is sufficiently
close to the central path and xT s(x) is sufficiently small, then we can identify the op-
timal partition and compute a maximally complementary solution by using Gaussian
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elimination (Theorem 5.1). Similar bounds were presented in [18, 15] to generate a
complementary basic solution of (LCP ).

The number of iterations to obtain the accuracy necessary to run the rounding
procedure is computed for Dikin affine-scaling algorithm [8] in Theorem 5.2. Similar
results for other known IPMs can be obtained as well.
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Abstract. In this paper, we propose a Big-Γ smoothing method for solving the P0 matrix
linear complementarity problem. We study the trajectory defined by the augmented smoothing
equations and global convergence of the method under an assumption that the original P0 matrix
linear complementarity problem has a solution. The method has been tested on the P0 matrix linear
complementarity problem with unbounded solution set. Preliminary numerical results indicate the
robustness of the method.

Key words. linear complementarity problem, P0 matrix, smoothing algorithm
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1. Introduction. In this paper we consider the linear complementarity problem
(LCP)

tT s = 0, s = Mt + q, and t, s ≥ 0,

where M is an n×n P0 matrix and q is an n-dimensional vector. A matrix M ∈ Rn×n
is called a P0 matrix if

max
i:ti �=0

{ti(Mt)i} ≥ 0 for all t ∈ Rn, t �= 0.

An LCP is called a P0 matrix LCP if the matrix M is a P0 matrix. The class of the
P0 matrix LCP includes the monotone LCP and the P matrix LCP. The P0 matrix
LCP has been studied extensively under additional conditions [5, 11].

A differentiable function on Rn is called a P0 function if its Jacobian is a P0

matrix at every point in Rn. A nonlinear complementarity problem (NCP) is called
a P0 function NCP if the involved function is a P0 function. Kojima, Megiddo, and
Noma [10] proved the existence of a trajectory in the interior of the feasible set of
the P0 function NCP under some additional conditions. Their results influenced the
development of interior point methods and noninterior point methods and led several
continuation methods for solving P0 function NCP.

Recently, Facchinei and Kanzow [6] applied regularization methods for solving a
continuously differentiable P0 function NCP under the following assumption.

Assumption 1.1. The solution set of the P0 function NCP is nonempty and
bounded.

This assumption is weaker than that used by Kojima and colleagues in [10, 11].
Moreover, it includes the monotone NCP with an interior point and the P0 and
R0 NCP [5]. After Facchinei–Kanzow’s encouraging work, several algorithms and
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theoretical results on regularization methods for the P0 function NCP have been
developed [15, 16, 18] under Assumption 1.1. In particular, Ravindran and Gowda
[16] generalized the results of Facchinei and Kanzow [6] to a continuous P0 function
variational inequality problem with box constraints. Facchinei and Kanzow [6] gave a
counterexample to show that it is not possible to remove the boundedness assumption
of the solution set for regularization methods for solving the P0 matrix LCP and the
P0 function NCP.

In this paper, we study a “Big-Γ” smoothing method for the P0 matrix LCP
under the following assumption, which removes the boundedness assumption of the
solution set from Assumption 1.1.

Assumption 1.2. The P0 matrix LCP has a solution.
Big-Γ interior point methods have been studied for solving the monotone LCP

[12]. The methods add one inequality, with a positive number Γ as the right-hand-
side bound, to bound the variables of the problem. If this inequality contains an
original solution, then the augmented problem has a solution and it is also a solution
to the original problem. One can always set Γ sufficiently big such that the inequality
does contain a solution, assuming that it exists. However, the techniques used in
Big-Γ interior point methods heavily rely on the monotone property, which cannot
be carried over from the monotone LCP to the P0 matrix LCP. One difference, for
example, is that the existence of an interior feasible point implies the bounded solution
set for the monotone LCP, but it is not held for the P0 matrix LCP.

Example 1.1.

M =


 0 1 0

0 0 1
0 −1 1


 and q =


 0

0
1


 .

It is not difficult to verify that M is a P0-matrix and that this LCP has a strictly
feasible point (t, s) = (1, 1, 1, 1, 1, 1)T . However, the solution set of the LCP contains
the unbounded line (t, s) = (t1, 0, 0, 0, 0, 1)T for all t1 ≥ 0.

The generalization of Big-Γ methods to the P0 matrix LCP is nontrivial; see [11].
In order to make the Big-Γ smooth paths and their neighborhood be bounded, we
have to slightly destroy the P0 property. Furthermore, in contrast with the trajectory
analysis given by Kojima, Megiddo, and Noma [10], the existence of sufficiently short
central path is not guaranteed under Assumption 1.2; see Example 2.1.

In section 2, we establish the existence of the Big-Γ smooth trajectory, which leads
to a solution of the problem. In section 3, we propose an algorithm for tracing the
trajectory numerically and show the global convergence property of the algorithm. We
tested the algorithm on the P0 matrix LCP with unbounded solution sets. Numerical
results reported in section 4 indicate the robustness of the algorithm.

We use ‖ · ‖ to denote ‖ · ‖∞. We use e for a vector with all entries equal to 1 and
I for a diagonal matrix with all diagonal entries equal to 1. We denote the solution
set of LCP(M, q) by S0(M, q).

2. A Big-Γ smoothing model. Let

N =


 M r 0

0 1 0
−eT −1 −1


 , p =


 q

0
Γ


 ,

where r = e−Me− q and Γ ≥ n + 5 is sufficiently big.
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Let x = (t, θ, α) ∈ Rn+2 and y = (s, η, β) ∈ Rn+2. We consider the LCP(N, p)

xT y = 0, y = Nx + p, and x, y ≥ 0.

By the construction of the model, we have the following lemma whose simple
proof is omitted.

Lemma 2.1.
1. LCP(N, p) has a feasible interior point

t = e, θ = 1, α = 1,

s = e, η = 1, β = Γ− (n + 2) ≥ 1.

2. If (t∗, s∗) is a solution of LCP(M, q) with eT t∗ ≤ Γ, then

(t∗, 0,Γ− eT t∗, s∗, 0, 0) and (t∗, 0, 0, s∗, 0,Γ− eT t∗)

are solutions of LCP(N, p).
3. If LCP(N, p) has a solution, then we have that in every complementarity so-

lution (t∗, θ∗, α∗, s∗, η∗, β∗) of LCP(N, p), (t∗, s∗) is a solution of LCP(M, q), η∗ =
θ∗ = 0 and α∗ + β∗ = Γ− eT t∗.

4. The feasible set of LCP(N, p) is bounded.
Notice that N is not a P0 matrix, since Nn+2,n+2 = −1. Although we can easily

construct a P0 matrix that satisfies Results 1–3 of Lemma 2.1, e.g., set Nn+2,n+2 = 1,
the resulting LCP may have an unbounded solution set. The authors believe that
it is hard to construct a Big-Γ model for the P0 matrix LCP that has both the P0

property and the boundedness of the solution set. This contrasts with the monotone
LCP, for which we always can construct a Big-Γ model having a bounded solution set
without loss of the monotone property [12, 20].

Nevertheless, the matrix N is a block lower triangular matrix and its first block
is an (n + 1)× (n + 1) P0 matrix; i.e.,

N =

(
Ñ 0
−eT −1

)
,

where

Ñ :=

(
M r
0 1

)
.

We will often use this fact later.
In what follows, for simplicity, we use z := (x, y). It is easy to verify that the

LCP(N, p) is equivalent to the following system of nonsmooth equations:

H0(z) :=

(
Nx + p− y
x−max(x− y, 0)

)
= 0.(2.1)

To define a smoothing approximation function of H0, we employ two density
functions

ρ1(µ) =
2

(µ2 + 4)
3
2
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and

ρ2(µ) =

{
1
4 if −4 ≤ µ ≤ 0,
0 otherwise.

Let

Ψi(xi, yi, ε) := xi −
∫ (xi−yi)/ε

−∞
(xi − yi − εµ)ρ1(µ)dµ, i = 1, 2, . . . , n + 1,

and

Ψn+2(xn+2, yn+2, ε) := xn+2 −
∫ (xn+2−yn+2)/ε

−∞
(xn+2 − yn+2 − εµ)ρ2(µ)dµ.

Calculating the integral, we obtain

Ψi(xi, yi, ε) =
1

2

(
xi + yi −

√
(xi − yi)2 + 4ε2

)
, i = 1, 2, . . . , n + 1,

and

Ψn+2(xn+2, yn+2, ε) =




xn+2, xn+2 − yn+2 ≤ −4ε,
yn+2 − 2ε, xn+2 − yn+2 ≥ 0,
yn+2 − 1

8ε (xn+2 − yn+2)
2 − 2ε otherwise.

Each component of Ψ is continuously differentiable [3]. Moreover, by Lemma 2.4
in [8], for i = 1, 2, . . . , n + 1,

|Ψi(xi, yi, ε1)−Ψi(xi, yi, ε2)| ≤
(∫ ∞

−∞
|µ|ρ1(µ)dµ

)
|ε1 − ε2| = 2|ε1 − ε2|,

and for i = n + 2,

|Ψi(xi, yi, ε1)−Ψ(xi, yi, ε2)| ≤
(∫ ∞

−∞
|µ|ρ2(µ)dµ

)
|ε1 − ε2| = 2|ε1 − ε2|.

Therefore, letting ε > 0, we see that the smoothing approximation function de-
fined by

H(z, ε) :=

(
Nx + p− y
Ψ(x, y, ε)

)

is continuously differentiable in R2(n+2). Moreover,

‖H(z, ε1)−H(z, ε2)‖ ≤ 2|ε1 − ε2| for z ∈ R2(n+2)(2.2)

and

‖H(z, ε)−H0(z)‖ ≤ 2ε for z ∈ R2(n+2).(2.3)

We will show that for every ε > 0 the system

H(z, ε) = 0(2.4)
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has at most two solutions, and the two solutions differ possibly in the (xn+2, yn+2)
components. Under certain conditions, the solutions of (2.4) form two paths that
never cross each other and converge to two solutions of (2.1).

To study the existence of the trajectory, we first consider the following closed set:

D(ε) = {z : ‖H(z, ε)‖ ≤ cε},
where c > 2

√
2(n + 2) is a constant.

Lemma 2.2. Suppose that LCP(N, p) has a solution z∗. Then for every ε > 0,
the set D(ε) is nonempty and compact. Moreover, for every z ∈ D(ε),

xi + cε ≥ 0, yi + cε ≥ 0,(2.5)

and

(xi + cε)(yi + cε) ≤ 2(c + 1)(|xi|+ |yi|)ε + (4 + c2)ε2(2.6)

for i = 1, 2, . . . , n + 2.
Proof. At the solution z∗, we have

‖H(z∗, ε)‖ ≤ ‖H(z∗, ε)−H0(z
∗)‖+ ‖H0(z

∗)‖ = 2ε.

Hence z∗ ∈ D(ε) and so D(ε) is nonempty.
Suppose z ∈ D(ε). Then we have

‖H(z, ε)‖ =

∥∥∥∥
(

Nx + p− y
Ψ(x, y, ε)

)∥∥∥∥ ≤ cε.

Set u = Ψ(x, y, ε). Then u ∈ Rn+2 satisfies

cε ≥ ui ≥ −cε, i = 1, 2, . . . , n + 2.

By construction of Ψ (cf. Lemma 2.1 in [2]), we have

Ψ(x− u, y − u, ε) = 0.(2.7)

Since ρ1 is continuous, symmetric, and has an infinite support, by Theorem 2.1 in [4],
we have

xi − ui > 0, yi − ui > 0, i = 1, 2, . . . , n + 1.

Using cε ≥ −ui, we obtain (2.5) for i = 1, 2, . . . , n+1. Now we show (2.5) for i = n+2.
By the definition of Ψ and (2.7), we have the following equalities:

0 = Ψn+2(xn+2 − un+2, yn+2 − un+2, ε)

= xn+2 − un+2 −
∫ (xn+2−yn+2)/ε

−∞
(xn+2 − yn+2 − εµ)ρ2(µ)dµ.

This implies that xn+2 − un+2 ≥ 0, since the integral part is nonnegative. To show
yn+2 − un+2 ≥ 0, we assume on the contrary that yn+2 < un+2. Then xn+2 − yn+2 >
xn+2 − un+2 ≥ 0 and

xn+2 − un+2 =

∫ (xn+2−yn+2)/ε

−∞
(xn+2 − yn+2 − εµ)ρ2(µ)dµ

=
1

4

∫ 0

−4

(xn+2 − yn+2 − εµ)dµ

= xn+2 − yn+2 + 2ε,
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which implies

yn+2 − un+2 = 2ε > 0.

This contradicts the assumption that yn+2 − un+2 < 0. Hence we have

xn+2 − un+2 ≥ 0 and yn+2 − un+2 ≥ 0.

Using cε ≥ −un+2, we obtain (2.5) for i = n + 2.
Now we show (2.6). Suppose that xi ≤ yi. Then we have

xi − ui −max(xi − yi, 0) = min(xi − ui, yi − ui) = xi − ui.

From (2.3) and (2.7),

xi − ui = |Ψi(xi − ui, yi − ui, ε)− (xi − ui)| ≤ 2ε.

By a simple manipulation, we obtain

(xi + cε)(yi + cε)

= (xi − ui)(yi − ui) + (xi + yi)(ui + cε)− u2
i + c2ε2

= (xi − ui)(yi − xi) + (xi − ui)
2 + |xi + yi|(ui + cε)− u2

i + c2ε2

≤ 2(|xi|+ |yi|)ε + 4ε2 + 2|xi + yi|cε + c2ε2

≤ 2(1 + c)(|xi|+ |yi|)ε + (4 + c2)ε2,

where the first inequality follows from

0 ≤ xi − ui ≤ 2ε and − cε ≤ ui ≤ cε.

The proof is similar for the case xi ≥ yi.
Now we show D(ε) is bounded. Using

cε ≥ Hn+2(z, ε) ≥ −cε,
we have

cε ≥ (Nx + p− y)n+2

= −eTx + Γ− yn+2

≥ −cε.
This implies

Γ + cε ≥ eTx + yn+2 ≥ Γ− cε.

Since xi and yi are bounded below by (2.5), x and y cannot go to ∞, and so D(ε) is
bounded.

Theorem 2.3. Suppose that LCP(N, p) has a solution z∗. Then for every ε > 0,
there is a zε ∈ R2(n+2) such that

H ′(zε, ε)TH(zε, ε) = 0(2.8)

and

‖H(zε, ε)‖ ≤ cε.(2.9)
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Proof. By Lemma 2.2, for every ε > 0, D(ε) is nonempty and bounded. Let

θ(z) =
1

2
‖H(z, ε)‖22.

Since H(·, ε) is continuously differentiable and D(ε) is nonempty and compact, θ has
a global minimum point zε in D(ε). Recalling that ‖ · ‖ := ‖ · ‖∞, z∗ ∈ D(ε), and
H0(z

∗) = 0, we have

‖H(zε, ε)‖ ≤ ‖H(zε, ε)‖2
≤ ‖H(z∗, ε)‖2
≤
√

2(n + 2)‖H(z∗, ε)‖
≤
√

2(n + 2)(‖H0(z
∗)‖+ 2ε)

= 2ε
√

2(n + 2)

< cε.

Hence, (2.9) holds. Moreover, this implies zε ∈ int D(ε). By Theorem 4.1.3 in [13],
we have

θ′(zε) = H ′(zε, ε)TH(zε, ε) = 0.

This completes the proof.
Theorem 2.3, together with Lemma 2.1, shows that if the LCP(M, q) has a solu-

tion, then there is a Γ such that the LCP(N, p) has a solution and for every ε > 0 the
system (2.8) has a solution. Clearly, if H ′(zε, ε) is nonsingular, then zε is a solution
of (2.4). Now we give a necessary and sufficient condition for the nonsingularity.

Lemma 2.4. Let M be a P0 matrix. Then H ′(z, ε) is nonsingular at z ∈ R2(n+2)

if and only if xn+2 − yn+2 �= −2ε.
Proof. Let

di(xi − yi, ε) =

∫ (xi−yi)/ε

−∞
ρ1(µ)dµ, i = 1, 2, . . . , n + 1

and

dn+2(xn+2 − yn+2, ε) =

∫ (xn+2−yn+2)/ε

−∞
ρ2(µ)dµ.

Let

Dn+1(x− y, ε) = diag(d1(x1 − y1, ε), . . . , dn+1(xn+1 − yn+1, ε))

and

D(x− y, ε) = diag(Dn+1(x− y, ε), dn+2(xn+2 − yn+2, ε)).

By the definition of H(z, ε),

H ′(z, ε) =

(
N −I
I −D(x− y, ε) D(x− y, ε)

)
.

It is well known that H ′(z, ε) is nonsingular if and only if I −D(x− y, ε)(I −N)
is nonsingular.
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Notice that Ñ is a P0 matrix, and

I −D(x− y, ε)(I −N)

=

(
In+1 −Dn+1(x− y, ε)(In+1 − Ñ) 0
−dn+2(xn+2 − yn+2, ε)e

T 1− 2dn+2(xn+2 − yn+2, ε)

)
.

Since supp{ρ1} = R and Ñ is a P0 matrix, In+1 − Dn+1(x − y, ε)(In+1 − Ñ) is
nonsingular [8].

Hence H ′(z, ε) is nonsingular if and only if dn+2(xn+2 − yn+2, ε) �= 1
2 . By the

definition of dn+2(xn+2 − yn+2, ε), we have dn+2(xn+2 − yn+2, ε) �= 1
2 if and only if

xn+2 − yn+2 �= −2ε. This completes the proof of the lemma.
Lemma 2.5. Suppose that M is a P0 matrix. Then for every ε > 0, (2.4)

has at most two solutions, and any two solutions differ possibly in the (xn+2, yn+2)
components. Moreover, a solution zε of (2.4) is unique if and only if H ′(zε, ε) is
singular.

Proof. Let x̃ = (x1, . . . , xn+1), ỹ = (y1, . . . , yn+1), z̃ = (x̃, ỹ), and

Ψ̃(z̃, ε) = (Ψ1(x1, y1, ε), . . . ,Ψn+1(xn+1, yn+1, ε))
T .

That is, x̃, ỹ, and Ψ̃ are the first n + 1 components of x, y, and Ψ, respectively. If z
is a solution of (2.4), then z̃ is a solution of(

Ñ x̃ + p− ỹ

Ψ̃(z̃, ε)

)
= 0.(2.10)

Since Ñ is a P0 matrix and Ψ̃ is given by ρ1, by Theorem 2.3 in [4], z̃ε is the unique
solution of (2.10). Hence any two solutions of (2.4) differ possibly at the (xn+2, yn+2)
components.

Now we show (2.4) has at most two solutions. Since a solution z̃ of (2.10) is
unique, we only need to show that the system of the remaining equations in (2.4),(

Γ− eT x̃− xn+2 − yn+2

Ψn+2(xn+2, yn+2, ε)

)
= 0,

has at most two solutions.
Substituting yn+2 = Γ− eT x̃− xn+2 into the second equation, we obtain

ψ(xn+2) := Ψn+2(xn+2,Γ− eT x̃− xn+2, ε) = 0.

The function ψ : R→ R is a polynomial of degree 2 in the interval[
1

2
(Γ− eT x̃)− 2ε,

1

2
(Γ− eT x̃)

]

and linear outside of this interval. Furthermore, ψ is monotonically decreasing in[
1

2
(Γ− eT x̃)− ε, ∞

)

and monotonically increasing in(
−∞,

1

2
(Γ− eT x̃)− ε

]
.
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Therefore, ψ has at most two zero points. Moreover, a zero point xn+2 of ψ is unique
if and only if

xn+2 =
1

2
(Γ− eT x̃)− ε =

1

2
(yn+2 + xn+2)− ε.

Hence the system of (2.4) has at most two solutions, and a solution of (2.4) is
unique if and only if xn+2− yn+2 = −2ε. By Lemma 2.4, a solution of (2.4) is unique
if and only if H ′ is singular at this solution.

Lemma 2.6. Suppose thatM is a P0 matrix and the solution set of the LCP(M, q)
is nonempty and bounded. Then there exist Γ > 0 and ε0 > 0 such that LCP(N, p)
has a solution and for every ε ∈ (0, ε0], H ′(z, ε) are nonsingular for all z ∈ D(ε0).

Proof. Since the solution set S0(M, q) is bounded, we can choose Γ > 0 satisfying

Γ > 4eT t for all (t, s) ∈ S0(M, q).(2.11)

Then from Lemma 2.1, the solution set of the LCP(N, p) is given by

S0(N, q) = {(t, 0,Γ− eT t, s, 0, 0), (t, 0, 0, s, 0,Γ− eT t) : (t, s) ∈ S0(M, q)}.
Hence for a solution (t∗, s∗) ∈ S0(M, q), z∗,1 = (t∗, 0,Γ − eT t∗, s∗, 0, 0) and z∗,2 =
(t∗, 0, 0, s∗, 0,Γ− eT t∗) are solutions of LCP(N, p) and

max
z∈S0(N,p)

min(|x−y−x∗,1+y∗,1|n+2, |x−y−x∗,2+y∗,2|n+2) = max
z∈S0(N,p)

|eT (t∗−t)| ≤ Γ

4
.

By the continuity of H(z, ε) on ε, for such Γ there exists ε0 ∈ (0, Γ
8 ) such that for all

z ∈ D(ε0),

max
z∈D(ε0)

min(|x− y − x∗,1 + y∗,1|n+2, |x− y − x∗,2 + y∗,2|n+2) ≤ Γ

2
.

Let z ∈ D(ε0). Without loss of generality we may assume |x−y−x∗,1+y∗,1|n+2 ≤
|x− y − x∗,2 + y∗,2|n+2. Then

|xn+2 − yn+2|
≥ |x∗,1n+2 − y∗,1n+2| − |xn+2 − yn+2 − x∗,1n+2 + y∗,1n+2|
≥ Γ− eT t∗ − max

z∈D(ε0)
min(|x− y − x∗,1 + y∗,1|n+2, |x− y − x∗,2 + y∗,2|n+2)

≥ Γ− Γ

4
− Γ

2
=

Γ

4
> 2ε0.

By Lemma 2.4, H ′(z, ε) is nonsingular for ε ∈ (0, ε0] and z ∈ D(ε0).
Theorem 2.7. Suppose that M is a P0 matrix and the solution set of the

LCP(M, q) is nonempty and bounded. Then there exist Γ > 0 and ε0 > 0 such
that

1. for every ε ∈ (0, ε0], the system (2.4) has only two solutions zα(ε) and zβ(ε),
which are continuous in ε and never cross each other;

2. zα(ε) and zβ(ε) converge to two solutions of LCP(N, q) as ε→ 0.
Proof. 1. By Theorem 2.3 and Lemma 2.6 there exist Γ > 0 satisfying (2.11)

and ε0 > 0 such that LCP(N, p) has a solution and for every ε ∈ (0, ε0], the system
(2.4) has a solution in D(ε0). Then using Lemma 2.5, the system (2.4) has only two
solutions zα(ε), zβ(ε) ∈ D(ε0), and H ′(zα(ε), ε) and H ′(zβ(ε), ε) are nonsingular.
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By the implicit Theorem 5.2.4 in [13], zα(ε) and zβ(ε) are continuous in ε ∈ (0, ε0].
Now we show that zα(ε) and zβ(ε) never cross each other. Assume on the contrary

that there is an ε̃ ∈ (0, ε0] such that zα(ε̃) = zβ(ε̃). Then by Lemma 2.5, H ′(zα(ε̃), ε̃)
is singular. This is a contradiction, since zα(ε̃) ∈ D(ε0) and for every z ∈ D(ε0),
H ′(z, ε) is nonsingular. Hence zα(ε) and zβ(ε) never cross each other, which forms
two paths.

2. Since zα(ε), zβ(ε) ⊂ D(ε0), and D(ε0) is bounded, zα(ε) and zβ(ε) has limiting
points, respectively, as ε → 0. By (2.9) in Theorem 2.3, every limiting point is a
solution of LCP(N, p). We assume that for some sequence εk → 0, zα(εk)→ z∗α, and
zβ(εk)→ z∗β .

From H(zα(ε), ε) = H(zβ(ε), ε) = 0, we have

(xα(ε), yα(ε)) := zα(ε) ≥ 0, (xβ(ε), yβ(ε)) := zβ(ε) ≥ 0

and

(xα(ε))i(yα(ε))i = (xβ(ε))i(yβ(ε))i = ε2, i = 1, 2, . . . , n + 1.

Moreover, without loss of generality, we may assume

(xα(ε))n+2 ≥ Γ

4
+ 2ε, (yα(ε))n+2 ≤ 2ε

and

(xβ(ε))n+2 ≤ 2ε, (yβ(ε))n+2 ≥ Γ

4
+ 2ε.

(See the proof of Lemmas 2.2 and 2.6.)
Consider the two sets

E1 :=

{
(x, y, ε) : ε > 0, x ≥ 0, y = Nx + p ≥ 0, xn+2 ≥ Γ

4
+ 2ε, yn+2 ≤ 2ε,

xiyi = ε2, i = 1, 2, . . . , n + 1

}

and

E2 :=

{
(x, y, ε) : ε > 0, x ≥ 0, y = Nx + p ≥ 0, xn+2 ≤ 2ε, yn+2 ≥ Γ

4
+ 2ε,

xiyi = ε2, i = 1, 2, . . . , n + 1

}
.

The sets E1 and E2 are semialgebraic and E1 ∩ E2 = ∅. Furthermore, zα(ε) ⊂
E1, z

∗
α(ε) ∈ E1, zβ(ε) ⊂ E2, and z∗β(ε) ∈ E2. Hence by the similar argument in the

proof of Theorem 5.2 in [19] (also see the proof of Theorem 4.4 in [10]), we claim that
zα(ε)→ z∗α(ε) and zβ(ε)→ z∗β(ε), as ε→ 0.

Now we consider a special class of the P0 matrix LCP whose solution set is not
empty. Let

M =

(
M1 M12

0 M2

)
, q =

(
q1
q2

)
,(2.12)
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where M1 ∈ Rn1×n1 is a P0 matrix, M12 ∈ Rn1×n2 , M2 ∈ Rn2×n2 is a monotone
matrix, q1 ∈ Rn1 , q2 ∈ Rn2 , and n1 + n2 = n.

It is easy to see that M is a P0 matrix and in every solution (t∗1, t
∗
2, s

∗
1, s

∗
2) of the

LCP(M, q), (t∗2, s
∗
2) ∈ S0(M2, q2).

We denote the set of all maximal complementarity solutions (the number of
positive components in t2 and s2 is maximal) of LCP(M2, q2) by Ŝ0(M2, q2). If
LCP(M2, q2) has a strictly complementarity solution, then Ŝ0(M2, q2) is the set of
all strictly complementarity solutions of LCP(M2, q2).

Let us use the standard index set notation

T = {i : (t∗2)i > 0 = (s∗2)i = (M2t
∗
2 + q2)i, (t

∗
2, s

∗
2) ∈ Ŝ0(M2, q2)},

S = {i : (t∗2)i = 0 < (s∗2)i = (M2t
∗
2 + q2)i, (t

∗
2, s

∗
2) ∈ Ŝ0(M2, q2)}.

To simplify illustration, we assume T ∪ S = {1, 2, . . . , n2}; i.e., LCP(M2, q2) has a
strictly complementarity solution.

Assumption 2.1.

(i) M is a matrix defined by (2.12).
(ii) LCP(M2, q2) has a strictly complementarity solution, and S0(M2, q2) is bounded.
(iii) For every (t∗2, s

∗
2) ∈ Ŝ0(M2, q2), LCP(M1,M12t

∗
2 + q1) has a solution and

Ŝ0(M, q) := {(t∗1, t∗2, s∗1, s∗2) : (t∗1, s
∗
1) ∈ S0(M1,M12t

∗
2 + q1), (t

∗
2, s

∗
2) ∈ Ŝ0(M2, q2)}

is bounded.
(iv) (r2)i∈T = (e−M2e− q2)i∈T = 0.

Example 1.1 satisfies Assumption 2.1 here:

M1 = (0), M12 = (1, 0), q1 = (0),

M2 =

(
0 1
−1 1

)
, q2 =

(
0
1

)
,

S0(M2, q2) = {(τ, 0, 0, 1− τ) : 0 ≤ τ ≤ 1},
Ŝ0(M2, q2) = {(τ, 0, 0, 1− τ) : 0 < τ < 1},

S0(M, q) = {(t1, 0, 0, 0, 0, 1) : t1 ≥ 0} ∪ {(0, t2, 0, t2, 0, 1− t2) : 0 < t2 ≤ 1},
Ŝ0(M, q) = {(0, t2, 0, t2, 0, 1− t2) : 0 < t2 < 1},

and T = {1}.
Although the solution set S0(M, q) is unbounded, its subset Ŝ0(M, q) is bounded.

Theorem 2.8. Under Assumption 2.1, the conclusion of Theorem 2.7 holds.

Proof. We first consider the problem LCP(M2, q2). By Theorem 2.7, there exist
Γ2 and ε02 such that two paths zα2(ε) and zβ2(ε) for ε ∈ (0, ε02] exist and converge to
two solutions of the corresponding problem LCP(N2, p2),

zα2 = (t̄2, 0,Γ2 − eT t̄2, s̄2, 0, 0) and zβ2 = (t̄2, 0, 0, s̄2, 0,Γ2 − eT t̄2).

By Lemma 2.1, (t̄2, s̄2) is a solution of LCP(M2, q2).

Now we show (t̄2, s̄2) is a strictly complementarity solution. Choose any element
(t∗2, s

∗
2) ∈ Ŝ0(M2, q2).
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By Lemma 2.5, for every ε ∈ (0, ε2], the two solutions of (2.4) are identical in
the (t2, s2) components. Moreover, by Lemma 2.1 in [9] and the construction of the
Big-Γ model, we have

θ2 = β2 = ε

and

(t2)i(s2 + εr2)i = (t2)i(M2t2 + q2 + εr2)i = ε2.

Hence, by (iv) of Assumption 2.1,

∑
i∈T

ε2 + ε2
∑
i∈S

(s2)i
(s2 + εr2)i

=
∑
i∈T

(t2)i(s2 + εr2)i +
∑
i∈S

(t2)i(s2)i(s2 + εr2)i
(s2 + εr2)i

= tT2 s2 ≥ sT2 t
∗
2 + tT2 s

∗
2

=
∑
i∈T

(s2)i(t
∗
2)i +

∑
i∈S

(t2)i(s
∗
2)i

=
∑
i∈T

(s2 + εr2)i(t2)i(t
∗
2)i

(t2)i
+
∑
i∈S

(s2 + εr2)i(t2)i(s
∗
2)i

(s2 + εr2)i

= ε2
∑
i∈T

(t∗2)i
(t2)i

+ ε2
∑
i∈S

(s∗2)i
(s2 + εr2)i

,

where the inequality uses the monotone property of M2. Therefore, we have

∑
i∈T

(t∗2)i
(t2)i

+
∑
i∈S

(s∗2 − s2)i
(s2 + εr2)i

≤
∑
i∈T

1.

This implies that (t2)i∈T and (s2)i∈S cannot go to zero. Hence (t̄2, s̄2) ∈ Ŝ0(M2, q2).
Now we claim that there exist Γ satisfying

Γ > 4eT t for all t ∈ Ŝ0(M, q)(2.13)

and ε0 > 0 such that the conclusion of Theorem 2.7 holds. Indeed, since M is block
triangular, we claim that the system

Ĥ(t1, xn+2, s1, yn+2, ε) :=




M1t1 + M12t2 + εr1 + q1 − s2
−eT (t1 + t2)− ε− xn+2 − yn+2 + Γ

Ψ1((t1 − s1)1, ε)
. . .

Ψn1((t1 − s1)n1 , ε)
Ψn+2(xn+2 − yn+2, ε)




= 0

has two solutions for all ε ∈ (0, ε0].
Assume on the contrary that this claim is not true. By (iii) of Assumption 2.1,

the solution set S0(M1,M12t̄2 + q1) is nonempty and bounded. There is ε0 > 0 such
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that S0(M1,M12t2 + q1) is nonempty for all t2 satisfying ‖t2− t̄2‖ ≤ ε0 [7, 16]. Hence
by Theorem 2.3 for all ε ∈ (0, ε0), there is a z1

ε := (t1, xn+2, s1, yn+2)ε such that

Ĥ ′(z1
ε , ε)

T Ĥ(z1
ε , ε) = 0

‖Ĥ(z1
ε , ε)‖ ≤ cε ≤ cε0.

However, by our assumption, there exists a sequence {εk} with εk−1 ≤ εk ≤ ε0 and
εk → 0 such that Ĥ ′(z1

εk
, εk) is singular. Then by Lemma 2.4, at the point z1

εk
,

−2εk = xn+2 − yn+2 ≤ 2xn+2 + eT (t1 + t2) + εk − Γ + cεk.

Since D(ε0) is bounded, by passing to a subsequence, we may assume that z1
εk
→

(t̄1, t̄2, x̄n+2, s̄1, s̄2, ȳn+2). By (2.5) and (2.6), (t̄1, t̄2, s̄1, s̄2) ∈ Ŝ0(M, q) and x̄n+2 =
ȳn+2 = 0. Hence we have

eT (t̄1 + t̄2) ≥ Γ.

This contradicts (2.13). This completes the proof.
Let us end this section by the following example, which shows the following:

1. the central path can be very short when the solution set is bounded;
2. the central path may not exist for all ε > 0 if the solution set is unbounded.

However, the Big-Γ smooth paths exist for all ε ∈ (0, 1].
Example 2.1. Let

M =

(
0 −1
0 1

)
, q =

(
δ
− 1

2

)
, where δ ≥ 1

2
.

It is easy to verify that M is a P0 matrix and the LCP(M, q) has a unique solution

(t∗, s∗) =

(
0,

1

2
, δ − 1

2
, 0

)
if δ >

1

2
.

However, for any δ0 > 0 the complementarity level set{
(t, s) : tT s ≤ δ0 + δ

(
δ − 1

2

)
, s = Mt + q, (t, s) > 0

}

contains the unbounded line(
k, δ − δ0

k
,
δ0

k
, δ − δ0

k
− 1

2

)

for all k > δ0/(δ − 1
2 ).

The central path

{(t, s) : tisi = ε, i = 1, 2, s = Mt + q, (t, s) > 0}

=

{(
ε

δ − t2
, t2

)
, t2 =

1 +
√

1 + 16ε

4
< δ

}

does not exist for ε ≥ δ(δ − 1
2 ).
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If δ = 1
2 , this problem has a unbounded solution set

{(
t1,

1

2
, 0, 0

)
: t1 ≥ 0

}
.

In this case the central path does not exist for all ε > 0.

Now we show that if we choose Γ ≥ n + 5 = 7, then for all ε ≤ 1, (2.4) has a
solution; i.e., the Big-Γ smooth paths exist for all ε ≤ 1.

By Lemma 2.1 in [9] and Lemma 2.2, at the Big-Γ smooth paths, (x, y) ≥ 0 and

x1y1 = x1(δ − x2 + (2− δ)x3) = ε2,

x2y2 = x2

(
−1

2
+ x2 +

1

2
x3

)
= ε2,

x3y3 = x2
3 = ε2,

y4 = Γ− x1 − x2 − x3 − x4,

x4 =

∫ (x4−y4)/ε

−∞
(x4 − y4 − εµ)ρ2(µ)dµ.

We can calculate the point on the Big-Γ smooth paths

x3 = y3 = ε ≤ 1,

x2 =
1− ε +

√
(1− ε)2 + 16ε2

4
≤ 1,

x1 =
ε2

δ − x2 + (2− δ)ε
≤ 1,

y1 = δ − x2 + (2− δ)x3, y2 = x2 +
1

2
x3 − 1

2
,

x4 = Γ− x1 − x2 − x3 − 2ε ≥ 2ε, y4 = 2ε,

or

x4 = 0, y4 = Γ− x1 − x2 − x3 ≥ 4ε,

where we use ρ(µ) = 0 for µ �∈ [−4, 0] to calculate x4 and y4.

There are two Big-Γ smooth paths that are bounded, continuous in ε, never cross
each other, and converge to two solutions

z∗,1 =

(
0,

1

2
, 0,Γ− 1

2
, δ − 1

2
, 0, 0, 0

)

and

z∗,2 =

(
0,

1

2
, 0, 0, δ − 1

2
, 0, 0,Γ− 1

2

)

as ε→ 0. Both of the above equations contain the solution of the original LCP(M, q):
(x∗,11 , x∗,12 , y∗,11 , y∗,12 ) = (x∗,21 , x∗,22 , y∗,21 , y∗,22 ) = (0, 1

2 , δ − 1
2 , 0).
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3. Algorithm and its convergence. In this section we propose an algorithm
and prove its global convergence.

Algorithm 3.1. Given σ ∈ (0, 1) and αi ∈ (0, 1) for i = 1, 2.
Step 0 (Initial Step)

Choose x0, y0, ε0 such that ‖H(z0, ε0)‖ ≤ cε0 and H ′(z0, ε0) is nonsingular.
Step 1 (Newton Step)

If H(zk, εk) = 0, set zk+1 = zk and go to Step 3. Otherwise, let ∆zk solve
the equation

H(zk, εk) + H ′(zk, εk)∆zk = 0.(3.1)

Step 2 (Line Search)
Let λk be the maximum of the values 1, α1, α

2
1, . . . such that

‖H(zk + λk∆zk, εk)‖ ≤ (1− σλk)‖H(zk, εk)‖.(3.2)

Set zk+1 = zk + λk∆zk.
Step 3 (ε Reduction)

Let γk be the maximum of the values α2
2, α

3
2, . . . such that

‖H(zk+1, (1− γk)ε
k)‖ ≤ (1− γk)cεk.(3.3)

If xk+1
n+2− yk+1

n+2 �= −2(1− γk)εk, set εk+1 = (1− γk)εk. Otherwise, set εk+1 =
(1− α2γk)ε

k.
Algorithm 3.1 is similar to the smoothing method introduced by Burke and Xu [1].

The main difference is that the definition of εk+1 in Step 3 ensures the nonsingularity
of H ′(zk+1, εk+1) for the P0 matrix LCP(M, q).

It is easy to verify that if y0 = Nx0 + p, then yk = Nxk + p for all k ≥ 0.
The following lemma shows that we can easily find a starting point (z0, ε0) satis-

fying these conditions in the initial step of Algorithm 3.1.
Lemma 3.1. Suppose that M is a P0 matrix. Let

x0 = (e, 1, 0), y0 = (e, 1,Γ− (n + 1)),
1

c + 1
≤ ε0 ≤ 1.(3.4)

Then y0 = Nx0 + p ≥ 0, ‖H(z0, ε0)‖ ≤ cε0, and H ′(z0, ε0) is nonsingular.
Proof. Obviously y0 = Nx0 + p. Since Γ ≥ n + 5, y0 ≥ 0. Thus Hi(z

0, ε0) =
0, i = 1, 2, . . . , n + 2. By a simple calculation, we have

Ψi(x
0
i , y

0
i , ε

0) =
1

2

(
xi + yi −

√
(xi − yi)2 + 4ε2

)
= 1− ε0, i = 1, 2, . . . , n + 1,

and

Ψn+2(x
0
n+2, y

0
n+2, ε

0) = xn+2 = 0.

Hence (z0, ε0) satisfies ‖H(z0, ε0)‖ ≤ cε0.
Moreover, from Γ ≥ n + 5 and ε0 ≤ 1, we have

x0
n+2 − y0

n+2 = n + 1− Γ ≤ −4 < −2ε0.

Therefore, H ′(z0, ε0) is nonsingular by Lemma 2.4.
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Theorem 3.2. If M is a P0 matrix, then Algorithm 3.1 is well defined, and the
sequence {zk} satisfies

‖H(zk, εk)‖ ≤ cεk.(3.5)

Proof. We prove this theorem by induction.
For k = 0, by Lemma 3.1, z0 = (e, 1, 0, e, 1,Γ−(n+1)) satisfies (3.5) and H ′(z0, ε0)

is nonsingular.
We suppose that zk satisfies (3.5) and H ′(zk, εk) is nonsingular. Then Step 1 is

well defined. If H(zk, εk) �= 0, then ∆zk �= 0. Hence ∆zk is a strictly descent direction
of ‖H(·, εk)‖ at zk, and so the line search procedure is finite by construction in Step 2.

Step 3 is well defined since if H(zk, εk) = 0, then zk+1 = zk and

‖H(zk+1, εk)‖ = 0 < cεk.

Otherwise, by the construction of Step 2,

‖H(zk+1, εk)‖ < ‖H(zk, εk)‖ ≤ cεk,

which implies that there is a finite number γk > 0 such that (3.3) holds.
By the construction of Step 3, H ′(zk+1, εk+1) is nonsingular.
Now we show that (3.5) holds at (zk+1, εk+1).
If xk+1

n+2−yk+1
n+2 �= −2(1−γk)εk, then by construction of Step 3, (3.5) holds. Hence

we need only consider the case

xk+1
n+2 − yk+1

n+2 = −2(1− γk)ε
k;

i.e.,

εk+1 = (1− α2γk)ε
k.

Notice that

εk > (1− α2γk)ε
k > (1− γk)ε

k

and Step 3 provides that

cεk+1 ≥ c(1− α2γk)ε
k

≥ c(1− γk)εk

≥ H(zk+1, (1− γk)εk)

≥ −c(1− γk)ε
k.(3.6)

By Result 3 of Proposition 2.1 in [2], for i = 1, 2, . . . , n+1, Ψi(x
k+1
i , yk+1

i , ·) is strictly
decreasing with respect to ε, which gives

cεk+1 ≥ Ψi(x
k+1
i , yk+1

i , (1− γk)ε
k)

> Ψi(x
k+1
i , yk+1

i , εk+1)

= Ψi(x
k+1
i , yk+1

i , (1− α2γk)ε
k)

≥ Ψi(x
k+1
i , yk+1

i , (1− γk)ε
k) + (α2 − 1)γkεk
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> −c(1− γk)ε
k − (1− α2)γkε

k

= −cεk + cγkε
k − γkε

k + α2γkε
k

≥ −cεk + α2(c− 1)γkε
k + α2γkε

k

> −cεk + cα2γkε
k

= −cεk+1,

where the third inequality follows from Result 4 of Proposition 2.1 in [2] (also see [8]),
and the fourth inequality follows from (3.6). Hence (3.5) holds for i = 1, 2, . . . , n+ 1.

Let w = xk+1
n+2 − yk+1

n+2, and

φ(ε) =

∫ w
ε

−∞
(w − εµ)ρ2(µ)dµ.

Then ω = −2(1− γk)ε
k < 0 and

φ′(ε) = −
∫ w

ε

−∞
µρ2(µ)dµ ≥ 0.

Hence φ is a monotonically increasing function. This implies that Ψn+2 is monotoni-
cally decreasing and Lipschitz continuous with respect to the parameter ε. Hence we
obtain

cεk+1 ≥ Ψn+2(x
k+1
n+2, y

k+1
n+2, (1− γk)ε

k)

≥ Ψn+2(x
k+1
n+2, y

k+1
n+2, (1− α2γk)ε

k)

≥ Ψn+2(x
k+1
n+2, y

k+1
n+2, (1− γk)ε

k)− 2(1− α2)γkε
k

≥ −c(1− γk)ε
k − 2(1− α2)γkεk

= −cεk + (c− 2(1− α2))γkε
k

= −cεk + cα2γkεk + (c− 2)(1− α2)γkε
k

≥ −c(1− α2γk)ε
k

= −cεk+1,

where the third inequality follows from that Ψn+2 is Lipschitz continuous with the
Lipschitz constant 2 and c ≥ 2. (See (2.2).)

Therefore, we have

cεk+1 ≥ Hi(z
k+1, εk+1) ≥ −cεk+1 for i = n + 3, . . . , 2(n + 2).

By the definition of H, the parameter ε is not involved in the first n+2 components
of H; i.e.,

Hi(z
k+1, εk) = Hi(z

k+1, εk+1) for i = 1, 2, . . . , n + 2.

Hence (3.5) holds.
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Theorem 3.3. Suppose that M is a P0 matrix. Then Algorithm 3.1 is well
defined. Let {(zk, εk)} be a sequence generated by Algorithm 3.1.

1. {zk} remains in the bounded set D(ε0), and {εk} decreases monotonically in
R++.

2. If an accumulation point (z̄, ε̄) of {(zk, εk)} satisfies x̄n+2 − ȳn+2 �= −2ε̄ or
ε̄ = 0, then

lim
k→∞

εk = 0 and lim
k→∞

H(zk, εk) = 0,(3.7)

and for all accumulation points {ẑ, ε̂} of {zk, εk},
ε̂ = 0 and H(ẑ, ε̂) = H0(ẑ) = 0.(3.8)

Proof. First we show that

D(εk) ⊆ D(εk−1) for εk ≤ εk−1.

Suppose that z ∈ D(εk). Then

‖H(z, εk−1)‖ ≤ ‖H(z, εk−1)−H(z, εk)‖+ ‖H(z, εk)‖
≤ 2(εk−1 − εk) + cεk

= cεk−1 − (c− 2)(εk−1 − εk)

≤ cεk−1,

where we use c ≥ 2 and (2.2). Hence z ∈ D(εk−1). This, together with Theorem 3.2,
implies that the sequence generated by Algorithm 3.1 remains in D(ε0).

By Theorem 3.2, Algorithm 3.1 is well defined. Furthermore, by construction of
Algorithm 3.1,

0 < εk+1 ≤ (1− α2γk)ε
k < εk.

Hence {εk} is a monotonically decreasing sequence, and there is ε̄ such that

lim
k→∞

εk = ε̄.

If ε̄ = 0, then from Theorem 3.2 we have (3.7). Moreover, since {εk} is a monotonically
decreasing sequence, (3.5) and (3.7) imply (3.8).

Suppose on the contrary that ε̄ > 0. Then this implies γk → 0.
Since {zk} remains in the bounded set D(ε0), taking a subsequence if necessary,

we may assume that the sequence {zk} converges to some z̄. Based on the ε reduction
step, we have ∥∥∥∥H

(
zk,

(
1− 1

α2
2

γk−1

)
εk−1

)∥∥∥∥ >
(

1− 1

α2
2

γk−1

)
cεk−1.

Since γk → 0, by passing to limits, we have

‖H(z̄, ε̄)‖ ≥ cε̄ > 0.(3.9)

Since x̄n+2 − ȳn+2 �= −2ε̄, H ′(z̄, ε̄) is nonsingular by Lemma 2.4. Hence we can
find a unique solution ∆z̄ of the linear equations in Step 1. Furthermore, from (3.9)
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it is a strictly descent direction for ‖H(·, ε̄)‖ at z̄. As a result, the corresponding
linear search step length λ̄ and ε reduction step length γ̄ are both bounded below by
a positive constant. Notice that the function H and its Jacobian H ′ are continuous
in a neighborhood of (z̄, ε̄). It follows that ∆zk converges to ∆z̄ and therefore γk
must be uniformly bounded below by some positive constant for all large k. This
contradicts the assumption that γk → 0. Hence we must have εk → 0, and so (3.7)
and (3.8) hold.

Corollary 3.4. Suppose that the solution set S0(M, q) of the P0 matrix LCP(M, q)
is nonempty and bounded. Then there exist Γ > 0 and ε0 > 0 such that the sequence
{zk} generated by Algorithm 3.1 is bounded and its limiting points are solutions of
LCP(N, p).

Proof. By Lemma 2.6, there exists Γ > 0 and ε0 > 0 such that H ′(z, ε) is
nonsingular for all z ∈ D(ε0).

Hence at any accumulation point (z̄, ε̄) generated by Algorithm 3.1, x̄n+2−ȳn+2 �=
−2ε̄. By Theorem 3.3, we complete the proof.

Corollary 3.5. Under Assumption 2.1, the conclusion of Corollary 3.4 holds.
Proof. The proof is similar to that of Theorem 2.8. It is sufficient to show

that any limit point of the sequence {tk2 , sk2} generated by Algorithm 3.1 for solving
LCP(M2, q2) is a strictly complementarity solution.

Let

uk = Ψ(tk2 , s
k
2 , ε

k).

By Corollary 3.4 and (ii) of Assumption 2.1, any limit point of {tk2 , sk2} is a solution
of LCP(M2, q2), and

‖uk‖ ≤ cεk → 0.

Notice that we have

s2 − uk = M2(t
k
2 − uk) + εkr2 + q2 + (M2 − I)uk,(3.10)

tk2 − uk > 0, sk2 − uk > 0, (sk2 − uk)i(t2 − uk)i = (εk)2.(3.11)

Let

q2(ε
k) = q2 + (M2 − I)uk + εkr2.

The boundedness of S0(M2, q2) implies there is k0 ≥ 0 such that for all k ≥ k0,
S0(M2, q2(ε

k)) is nonempty [17]. Since (tk2 − uk, sk2 − uk) is an interior point of
LCP(M2, q2(ε

k)), the monotone property of M2 implies S0(M2, q2(ε
k)) is bounded.

Moreover, since S0(M2, q2) has a strictly complementarity solution and ‖q2(εk)−q2‖ ≤
(‖r2‖ + c‖M − I‖)εk → 0, there is k1 ≥ k0 such that for all k ≥ k1, S0(M2, q2(ε

k))
has a strictly complementarity solution.

Therefore, by Theorem 2.8 there is εk1 such that for ε ∈ (0, εk1) the smooth path
for LCP(M2, q2(ε

k)) exists and leads to a strictly complementarity solution.
By (3.10) and (3.11), (tk2 − uk, sk2 − uk) is on the path. Therefore, using ‖uk‖ →

cεk → 0 again, we complete this proof.
We can restart Algorithm 3.1 when x̄n+2 − ȳn+2 = −2ε̄. In particular, we have

the following proposition.
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Proposition 3.6. Suppose H ′(z, ε) is singular. Then for Γ̂ = Γ + ε and

ẑi = zi, i �= n + 2, 2n + 2, x̂n+2 = xn+2 − 1

2
ε, ŷn+2 = yn+2 +

3

2
ε,

Ĥ ′(ẑ, ε) is nonsingular and

Ĥ(ẑ, ε) = H(z, ε),(3.12)

where Ĥ is the function using Γ̂.
Proof. At the new point

ẑ = (x1, . . . , xn+1, x̂n+2, y1, . . . , yn+1, ŷn+2)

the new LCP(N, p̂) with the new Γ̂ satisfies

Ĥi(ẑ, ε) = Hi(z, ε), i = 1, 2, . . . , 2(n + 1) + 1,

and

Ĥ2(n+2)(ẑ, ε) = x̂n+2 = xn+2 − 1

2
ε = xn+2 +

ε

4

∫ −2

−4

(2 + µ)dµ = H2(n+2)(z, ε),

where we use x̂n+2− ŷn+2 ≤ −4ε and ρ2(µ) = 0 for µ ≤ −4. Hence we have (3.12).
Furthermore, Ĥ ′(ẑ, ε) is nonsingular since

x̂n+2 − ŷn+2 = xn+2 − yn+2 − 2ε = −4ε < −2ε.

4. Numerical results. In this section, we report numerical results for testing
Algorithm 3.1. These test problems are P0 matrix LCP with unbounded solution set,
which include a random test problem and a Murty-type problem with an unbounded
solution set.

Problem 1. Example 1.1.
Problem 2. Example 2.1 with δ = 1

2 .
Notice that this problem has no interior point.
Problem 3. A Murty-type problem with an unbounded solution set.

M =




1 2 . . . 2 2
0 1 . . . 2 2
...

...
. . .

...
...

... 1 2
0 0 0 . . . 0



, q = −




1
1
...
1
0


 .

The solution set of this problem contains the unbounded line t = (0, . . . , 0, tn)T for
all tn ≥ 0.5. Moreover, the set of interior points is empty.

Problem 4. A random problem [14].

M =

(
P + D1 P + D2

−I 0

)
, q = −

(
e
0

)
,

where P = ATA, A ∈ R
n
2 ×n

2 with 0 < aij < 1, D1 and D2 are diagonal matrices
with 1 ≤ (D1)ii, (D2)ii ≤ 3. This problem is a P0 matrix LCP and has an engi-
neering application. The solution set of this problem contains the unbounded set
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Table 4.1
Numerical results of Algorithm 3.1

prob n k km ‖t‖+ ‖s‖ ‖H0‖
1 3 5 0 1 2.0837e-9

2 2 9 0 0.5 7.2783e-9

3 100 10 2 2 1.9674e-9

4 100 10 7 0.1928 3.9348e-9

{t = (0, . . . , 0, tn
2 +1, . . . , tn)T : ti ≥ 1, i = n

2 + 1, . . . , n}. Moreover, the set of interior
points is empty.

We implemented Algorithm 3.1 in MATLAB using the following parameters:

σ = 0.125, α1 = 0.625, α2 = 0.925, Γ = n + 5, c = 2
√

2(n + 2) + 1.

Based on Lemma 3.1, we chose the initial point as

x0 = (e, 1, 0), y0 = (e, 1,Γ− (n + 1)), ε0 =
c + 2

2(c + 1)
.

We terminate the iteration if ‖H0(z
k)‖ ≤ 1.0−8 or k ≥ 200.

In Table 4.1, we report our results for these four problems. The columns in Table
4.1 have the following definitions:

prob: number of test problems,
n : dimension of test example,
k: number of iterations,
km the total iteration number of line search steps,
‖t‖+ ‖s‖: the value ‖t‖+ ‖s‖ at the final iterate,
‖H0‖ : the value ‖H0(z)‖ at the final iterate.

Remark 4.1. Regularization methods [6, 15, 16, 18] have been used successfully to
solve ill-posed problems. However, if the original problem has a solution with t = 0,
then the regularization method only can generate this solution. In many cases we
need a nonzero solution or a strictly complementarity solution if it exists. In such
cases, the Big-Γ smoothing method may give a satisfactory solution. Our numerical
results show this advantage. In particular, Algorithm 3.1 generated the following final
iterates:

Problem 1: t = (0, 0.5, 0), s = (0.5, 0, 0.5).
Problem 2: t = (0, 0.5), s = (0, 0).
Problem 3: t = (0, . . . , 0, 1, 0), s = (1, . . . , 1, 0, 0).
Problem 4: number of components with ti, si > 1.0−8 is n.

All final iterates approach maximal complementarity solutions. We assume that
such numerical results are due to the properties of the path. Let us use Example 1.1
to compare the Big-Γ smooth path with the regularization path [6]:

{t(ε) : t(ε) is a solution of the LCP(M + εI, q), ε > 0}.

Example 1.1 contains a solution with t = 0.

Since M +εI is a P matrix for every ε > 0, the regularization path t(ε) ≡ (0, 0, 0)
for every ε > 0.
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In the Big-Γ smoothing model for Example 1.1, r = e−Me− q = 0. We choose
Γ = n + 5 = 8. At the Big-Γ smooth path,

xi > 0, yi > 0, yi = (Nx + p)i, xiyi = ε2, i = 1, 2, 3, 4,

and

x5 =

∫ (x5−y5)/ε

−∞
(x5 − y5 − εµ)ρ2(µ)dµ, y5 = Γ− x1 − x2 − x3 − x4 − x5.

We can calculate this point for ε ∈ (0, 1]:

x1 =
4ε2√

1 + 8ε2 + 1
≤ 1, x2 =

√
1 + 8ε2 + 1

4
≤ 1, x3 =

4ε2√
1 + 8ε2 + 1

≤ 1,

x4 = ε ≤ 1, and x5 = 0, or x5 = Γ− x1 − x2 − x3 − x4 − 2ε,

where we use ρ2(µ) = 0 for µ �∈ [−4, 0] to calculate x5. Two Big-Γ smooth paths never
cross each other and converge to two solutions:

z∗,1 =

(
0,

1

2
, 0, 0,Γ− 1

2
,
1

2
, 0,

1

2
, 0, 0

)

and

z∗,2 =

(
0,

1

2
, 0, 0, 0,

1

2
, 0,

1

2
, 0,Γ− 1

2

)
,

respectively, as ε → 0. Both of them contain a strictly complementarity solution of
the original LCP(M, q)

(t∗, s∗) =

(
0,

1

2
, 0,

1

2
, 0,

1

2

)
.

Acknowledgment. The authors are grateful to the referees, M. S. Gowda,
C. Kanzow, D. Sun, and P. Tseng for their helpful comments.

REFERENCES

[1] J. Burke and S. Xu, The global linear convergence of a non-interior path-following algorithm
for linear complementarity problem, Math. Oper. Res., 23 (1998), pp. 719–734.

[2] B. Chen and X. Chen, A global and local superlinear continuation-smoothing method for P0
and R0 NCP or monotone NCP, SIAM J. Optim., 9 (1999), pp. 624–645.

[3] C. Chen and O.L. Mangasarian, Smoothing methods for convex inequalities and linear
complementarity problems, Math. Programming, 71 (1995), pp. 51–69.

[4] X. Chen and Y. Ye, On homotopy-smoothing methods for box-constrained variational in-
equalities, SIAM J. Control Optim., 37 (1999), pp. 589–616.

[5] R.W. Cottle, J.-S. Pang, and R.E. Stone, The Linear Complementarity Problem, Aca-
demic Press, Boston, 1992.

[6] F. Facchinei and C. Kanzow, Beyond monotonicity in regularization methods for nonlinear
complementarity problems, SIAM J. Control Optim., 37 (1999), pp. 1150–1161.

[7] F. Facchinei and J.-S. Pang, Total Stability of Variational Inequalities, Tech. report, Univer-
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Abstract. In this paper, we consider a proximal point algorithm (PPA) for solving monotone
nonlinear complementarity problems (NCP). PPA generates a sequence by solving subproblems that
are regularizations of the original problem. It is known that PPA has global and superlinear con-
vergence properties under appropriate criteria for approximate solutions of subproblems. However,
it is not always easy to solve subproblems or to check those criteria. In this paper, we adopt the
generalized Newton method proposed by De Luca, Facchinei, and Kanzow to solve subproblems and
adopt some NCP functions to check the criteria. Then we show that the PPA converges globally
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provided that the limit point satisfies the strict complementarity condition.
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1. Introduction. The nonlinear complementarity problem (NCP) [9] is to find
a vector x ∈ Rn such that

NCP(F ): F (x) ≥ 0, x ≥ 0, 〈x, F (x)〉 = 0,

where F is a mapping from Rn into Rn and 〈·, ·〉 denotes the inner product in Rn.
Throughout this paper we assume that F is continuously differentiable and monotone.

Until now, a variety of methods for solving NCP have been proposed and inves-
tigated. Among them, the proximal point algorithm (PPA) proposed by Martinet
[7] and further studied by Rockafellar [13] is known for its theoretically nice conver-
gence properties. PPA originally was designed to find a vector x satisfying 0 ∈ T (x),
where T is a maximal monotone operator. Hence it is applicable to a wide class
of problems such as convex programming problems, monotone variational inequality
problems, and monotone complementarity problems. In this paper, we focus on PPA
for solving monotone complementarity problems. PPA generates a sequence {xk} by
solving subproblems that are regularizations of the original problem. For NCP(F ),
given the current point xk, PPA obtains the next point xk+1 by approximately solving
the subproblem

F k(x) ≥ 0, x ≥ 0, 〈x, F k(x)〉 = 0,(1.1)

where F k : Rn → Rn is defined by

F k(x) := F (x) + ck(x− xk)(1.2)
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and ck > 0. The mapping F k is strongly monotone when F is monotone. Hence
subproblem (1.1) is expected to be more tractable than the original problem. With
appropriate criteria for approximate solutions of subproblems (1.1), PPA has global
and superlinear convergence property under mild conditions [6, 13]. However, it is not
always easy to check those criteria for general monotone operator problems. In this pa-
per, we will show that, for monotone complementarity problems, some NCP functions
turn out to be useful in constructing practical approximation criteria. Another imple-
mentation issue is how to solve subproblems efficiently. In the PPA proposed in this
paper, we will use the generalized Newton method proposed by De Luca, Facchinei,
and Kanzow [2] to solve subproblems (1.1). Since F k is strongly monotone, we can
show that the approximation criteria for each subproblem are attained finitely. The
PPA then converges globally provided that the solution set of NCP(F ) is nonempty.
Moreover, without assuming the local uniqueness of the solution, we can show that
the rate of convergence is superlinear. From the practical viewpoint, it is important
to estimate computational costs for solving a subproblem at each iteration. We give
conditions under which the approximation criteria for the subproblem are eventually
fulfilled by a single Newton iteration.

The paper is organized as follows. In section 2, we review some concepts and pre-
liminary results that will be used in the subsequent analysis. In section 3, we describe
the proposed PPA for NCP(F ). In section 4 we show its convergence properties.

Throughout we adopt the following notation. For a ∈ R, (a)+ denotes max{0, a},
and for x ∈ Rn, [x]+ denote the projection of x onto Rn+, the nonnegative orthant
of Rn. For two vectors x and y, min{x, y} denotes the vector whose ith element is
min{xi, yi}. For a vector valued function F : Rn → Rm, F ′(x) denotes the Jacobian
and ∇F (x) denotes the transposed matrix of F ′(x).

2. Preliminaries. In this section, we first review some mathematical concepts
and basic properties of PPA that will be used in the subsequent analysis. We then
discuss reformulations of NCP and related results concerning error bounds. Finally,
we briefly mention the generalized Newton method for NCP proposed in [2], which
will be used to solve subproblems in PPA.

2.1. Mathematical concepts. First we recall some definitions concerning the
monotonicity of a mapping from Rn into itself.

Definition 2.1. The mapping F : Rn → Rn is called a
(a) monotone function if

〈x− y, F (x)− F (y)〉 ≥ 0 for all x, y ∈ Rn,(2.1)

(b) strongly monotone function with modulus µ > 0 if

〈x− y, F (x)− F (y)〉 ≥ µ‖x− y‖2 for all x, y ∈ Rn.(2.2)

From the definition, it is clear that a strongly monotone function is monotone. More-
over, if F is a differentiable monotone function, then ∇F (x) is positive semidefinite
for all x ∈ Rn.

Definition 2.2. Let H : Rn → Rn be locally Lipschitz continuous. Then the B
subdifferential of H at x is the set of n× n matrices defined by

∂BH(x) :=


 lim

xi∈DH
xi→x

∇H(xi)T


 ,
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where DH ⊆ Rn is the set where H is differentiable.
Note that the Clarke subdifferential of H is defined by

∂H(x) := co ∂BH(x),

where co denotes the convex hull of a set [1].
Next we recall the notion of semismoothness, which lies in between the continuous

differentiability and the directional differentiability.
Definition 2.3. Let H : Rn → Rn be locally Lipschitz continuous. We say that

H is semismooth at x if

lim
V ∈∂H(x+td′)

d′→d,t↓0

V d′(2.3)

exists for all d. Moreover, we say that H is strongly semismooth at x if for any d→ 0
and for any V ∈ ∂H(x+ d),

V d−H ′(x; d) = O(‖d‖2),

where H ′(x; d) denotes the directional derivative of H at x along direction d.
Note that, when H is semismooth at x, the limit (2.3) is equal to the directional

derivative H ′(x; d).

2.2. Proximal point algorithm. NCP(F ) is equivalent to the problem of find-
ing a point x such that

0 ∈ T (x),(2.4)

where T : Rn → 2R
n

is the maximal monotone mapping defined by

T (x) := F (x) +N(x),(2.5)

with N : Rn → 2R
n

being the normal cone mapping for Rn+ defined by

N(x) :=

{ {y ∈ Rn | 〈x− z, y〉 ≥ 0, ∀z ≥ 0} if x ≥ 0,
∅ otherwise.

With an arbitrary initial point x0, PPA generates a sequence {xk} converging to
a solution of (2.4) by the iterative scheme:

xk+1 ≈ Pk(x
k),

where Pk : R
n → Rn is the mapping defined by Pk := (I +

1
ck

T )−1, {ck} is a positive
sequence, and xk+1 ≈ Pk(x

k) means that xk+1 is an approximation to Pk(x
k). For

NCP(F ), Pk(x
k) is given by

Pk(x
k) =

(
I +

1

ck
(F +N)

)−1

(xk).

Hence, we have

0 ∈ F (Pk(x
k)) + ck(Pk(x

k)− xk) +N(Pk(x
k)).



PROXIMAL POINT ALGORITHM FOR MONOTONE CP 367

Therefore, the finding xk+1 ≈ Pk(x
k) for NCP(F ) amounts to approximately solving

the following subproblem NCP(F k): Find x ∈ Rn such that

F k(x) ≥ 0, x ≥ 0, 〈x, F k(x)〉 = 0,(2.6)

where F k is defined by (1.2). Note that when ck is small, the subproblem is close to
the original one. On the other hand, when ck is large, a solution of the subproblem
is expected to lie near xk, and hence the subproblem is presumably easy to solve.

To ensure convergence of PPA, xk+1 has to be located sufficiently near the solution
Pk(x

k) of subproblem (1.1). There have been proposed a number of criteria for the
approximate solution of the subproblem. Among others, Rockafellar [13] proposed
the following two criteria:

Criterion 1. ‖xk+1 − Pk(x
k)‖ ≤ εk,

∞∑
k=0

εk <∞.

Criterion 2. ‖xk+1 − Pk(x
k)‖ ≤ ηk‖xk+1 − xk‖,

∞∑
k=0

ηk <∞.

Note that Criterion 1 guarantees global convergence, while Criterion 2, which is
rather restrictive, ensures superlinear convergence of PPA.

Theorem 2.4. (see [13, Theorem 1]). Suppose that the sequence {xk} is generated
by PPA with Criterion 1 and that {ck} is bounded. If NCP(F) has at least one solution,
then {xk} converges to a solution x∗ of NCP(F).

Note that it is not necessary to let {ck} converge to 0 for the global convergence.
Therefore, we may keep F k uniformly strongly monotone, so that subproblems (1.1)
are numerically well-conditioned.

On the other hand, if we let {ck} converge to 0, we can expect rapid convergence
of PPA. Luque [6, Theorem 2.1] showed superlinear convergence without assuming
the local uniqueness of the solution of NCP(F ).

Theorem 2.5. (see [6, Theorem 2.1]). Suppose that {xk} is generated by PPA
with Criteria 1 and 2 and that ck → 0. If there exist positive constants δ and C such
that

dist(x, X̄) ≤ C‖w‖ whenever x ∈ T−1(w) and ‖w‖ ≤ δ,(2.7)

where dist(x, X̄) denotes the distance from point x to the solution set X̄ of NCP(F),
then the sequence {dist(xk, X̄)} converges to 0 superlinearly.

2.3. Reformulations of NCP. NCP can be reformulated as a system of equa-
tions in various ways. In this subsection, we review basic properties of two reformu-
lations of NCP that will play a crucial role in solving subproblems of PPA. In the
remainder of this section, we deal with the problem NCP(F̂ ), where F̂ : Rn → Rn is
a certain mapping.

First we consider the function φFB : R
2 → R defined by

φFB(a, b) := a+ b−
√

a2 + b2.(2.8)

This function is called the Fischer–Burmeister function and has the following property:

φFB(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.
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Any function with this property is often called an NCP function. Using the function
φFB , we define the mapping H : Rn → Rn by

H(x) :=




φFB(x1, F̂1(x))
...

φFB(xn, F̂n(x))


 .(2.9)

Then it is straightforward to see that NCP(F̂ ) is equivalent to the system of equations

H(x) = 0.(2.10)

The mapping H is not differentiable at a point x such that xi = F̂i(x) = 0 for some
i. However, when F̂ is continuously differentiable, H is locally Lipschitz, and hence
it has the B subdifferential everywhere. Though it is not necessarily easy to calculate
the B subdifferential of a general locally Lipschitz mapping, De Luca, Facchinei, and
Kanzow [2] show that, for the mapping H, an element V of ∂BH(x) is expressed as

V = Da +Db∇F̂ (x)T ,(2.11)

where Da, Db are diagonal matrices defined by

((Da)ii, (Db)ii)

=



(
1− xi√

x2
i
+F̂i(x)2

, 1− F̂i(x)√
x2
i
+F̂i(x)2

)
if (xi, F̂i(x)) �= (0, 0),

(1− η, 1− ξ) otherwise
(2.12)

and (η, ξ) is a vector satisfying η2 + ξ2 = 1. De Luca, Facchinei, and Kanzow [2] also
discuss how to calculate (η, ξ) when (xi, F̂i(x)) = (0, 0).

The next proposition will be useful in the analysis of the generalized Newton
method for solving subproblems of PPA.

Proposition 2.6. Let M be a positive definite matrix and µ be a positive constant
such that

〈v,Mv〉 ≥ µ‖v‖2 for all v ∈ Rn.(2.13)

Let Da = diag(ai) and Db = diag(bi) be diagonal matrices whose diagonal elements
are nonnegative and satisfy ai + bi ≥ d for all i, where d is a positive constant. Then
we have

inf
‖v‖=1

‖(Da +DbM)v‖ ≥ B̄µ,

where B̄ = d/(nmax{1, ‖M‖}). Moreover, the following inequality holds:

‖(Da +DbM)−1‖ ≤ 1

B̄µ
.

Proof. Let v be an arbitrary vector such that ‖v‖ = 1. Then, since
〈v,Mv〉 ≥ µ

holds by (2.13), there exists an index i such that

vi(Mv)i ≥ µ

n
.(2.14)
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Since

vi(Mv)i ≤ |vi|‖M‖,
it follows from (2.14) that

|vi| ≥ µ

n‖M‖ .(2.15)

Moreover, (2.14) implies that vi has the same sign as (Mv)i. Hence, by (2.14) and
(2.15), we have

|((Da +DbM)v)i| = ai|vi|+ bi|(Mv)i|
≥ µ

n‖M‖ai +
µ

n|vi|bi

≥ µ

n‖M‖ai +
µ

n
bi

≥ (ai + bi)µ

nmax{1, ‖M‖}
≥ B̄µ.

Consequently, we have

‖(Da +DbM)v‖ ≥ B̄µ.

Next we show the last part of the lemma. Note that, under the given assumptions,
Da +DbM is nonsingular [2, Lemma 5.1]. Since

‖(Da +DbM)−1‖ = 1

inf‖v‖=1 ‖(Da +DbM)v‖ ,

it follows that

‖(Da +DbM)−1‖ ≤ 1

B̄µ
.

As a direct consequence of this proposition, we have the following corollary.
Corollary 2.7. Suppose that F̂ is strongly monotone with modulus µ. Let Da

and Db be defined by (2.12). Then we have

‖(Da +Db∇F̂ (x)T )−1‖ ≤ 1

B1µ
,

where B1 = (2−
√
2)/(nmax{1, ‖∇F̂ (x)‖}).

Now we define the function ΦFB : R
n → R by

ΦFB(x) :=
1

2
‖H(x)‖2,(2.16)

where H is given by (2.9). We note that ΦFB attains its global minimum at a solution
of NCP(F̂ ), because NCP(F̂ ) is equivalent to (2.10).

Lemma 2.8. The mapping H : Rn → Rn defined by (2.9) has the following
properties:

(a) If F̂ is differentiable, then H is semismooth.
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(b) If ∇F̂ is locally Lipschitz continuous, then H is strongly semismooth.

(c) If ∇F̂ (x) is positive definite, then every V ∈ ∂BH(x) is nonsingular.

Proof. Items (a) and (c) are shown in [3]. Item (b) is shown in [14].

Lemma 2.9. The function ΦFB : Rn → R defined by (2.16) has the following
properties:

(a) If F̂ is differentiable, then ΦFB is differentiable.

(b) If F̂ is monotone, then any stationary point of ΦFB is a solution of NCP(F̂ ).

(c) If F̂ is strongly monotone with modulus µ and Lipschitz continuous with con-
stant L, then

√
ΦFB(x) provides a global error bound for NCP(F̂ ), that is,

‖x− x̂‖ ≤ B2(L+ 1)

µ

√
ΦFB(x) for all x ∈ Rn,

where x̂ is the unique solution of NCP(F̂ ) and B2 is a positive constant independent
of F̂ .

(d) If F̂ is affine and NCP(F̂ ) has a solution, then
√
ΦFB(x) provides a local

error bound for NCP(F̂ ), that is, there exist positive constants B3 and B4 such that

dist(x, X̂) ≤ B3

√
ΦFB(x) for all x ∈ {y ∈ Rn | ΦFB(y) ≤ B4},

where X̂ denotes the solution set of NCP(F̂ ).

Proof. Items (a) and (b) are shown in [5]. Item (c) follows from [8, 11]. Item (d)
is shown in [4].

By using Lemma 2.9(c), we have the following error bound result on a compact
set.

Corollary 2.10. Let S ⊆ Rn be a compact set. Suppose that F̂ is strongly
monotone with modulus µ and Lipschitz continuous with constant L on S. Then√
ΦFB(x) provides an error bound on S, that is, there exists a positive constant B2

such that

‖x− x̂‖ ≤ B2(L+ 1)

µ

√
ΦFB(x) for all x ∈ S,

where x̂ is the unique solution of NCP(F̂ ).

In the PPA to be presented in the next section, we will also utilize the following
function Ψ : Rn → R, which has a more favorable error bound property than ΦFB :

Ψ(x) :=

n∑
i=1

ψ(xi, F̂i(x)),

where ψ : R2 → R is defined by

ψ(a, b) := |ab|+ |min{a, b}|.

Note that ψ is also an NCP function. It is clear that Ψ(x) ≥ 0 for all x, and Ψ(x) = 0
if and only if x is a solution of NCP(F̂ ).

The next lemma shows an interesting error bound result for the function Ψ, which
will play an important role in section 4. Note that this error bound is valid only on
the set Rn+.
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Lemma 2.11. Suppose that F̂ is strongly monotone with modulus µ. Then we
have

‖x− x̂‖ ≤ 2max{1, ‖x‖}
√
Ψ(x)

µ
for all x ∈

{
y ∈ Rn+ | Ψ(y) ≤

µ

4

}
,

where x̂ is the unique solution of NCP(F̂ ).
Proof. Let x ∈ Rn+ be arbitrary. Since F̂ is strongly monotone with modulus µ,

we have

µ‖x− x̂‖2 ≤ 〈x− x̂, F̂ (x)− F̂ (x̂)〉
= 〈x, F̂ (x)〉+ 〈x̂,−F̂ (x)〉+ 〈F̂ (x̂),−x〉

≤
n∑
i=1

|xiF̂i(x)|+
n∑
i=1

|x̂i||(−F̂i(x))+|+
n∑
i=1

|F̂i(x̂)||(−xi)+|

=
n∑
i=1

|xiF̂i(x)|+
n∑
i=1

|x̂i||(−F̂i(x))+|.

Since

(−b)+ ≤ |min{a, b}| for all (a, b) ∈ R2,

it follows that

µ‖x− x̂‖2 ≤
n∑
i=1

|xiF̂i(x)|+
n∑
i=1

|x̂i||(−F̂i(x))+|

≤
n∑
i=1

{
|xiF̂i(x)|+ |x̂i||min{xi, F̂i(x)}|

}
≤ max{1, ‖x̂‖∞}Ψ(x)
≤ max{1, ‖x̂‖}Ψ(x).

Hence we have

‖x− x̂‖ ≤
√
max{1, ‖x̂‖}

µ
Ψ(x)

≤ max{1, ‖x̂‖}
√
Ψ(x)

µ

≤ max{1, ‖x̂− x‖+ ‖x‖}
√
Ψ(x)

µ
.

Therefore, if ‖x̂−x‖+‖x‖ ≤ 1, then the desired inequality holds. If ‖x̂−x‖+‖x‖ > 1,
then (

1−
√
Ψ(x)

µ

)
‖x− x̂‖ ≤ ‖x‖

√
Ψ(x)

µ
.

Since 1 − √
Ψ(x)/µ ≥ 1

2 whenever Ψ(x) ≤ µ
4 , we also have the desired

inequality.
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We note that, unlike Lemma 2.8(c), Lemma 2.11 does not assume the Lipschitz
continuity of F̂ . Moreover, unlike Lemma 2.8(d), the error bound result shown in
Lemma 2.11 is explicitly represented in terms of the modulus of strong monotonicity
of F̂ .

2.4. Generalized Newton method. In this section, we review the generalized
Newton method for solving NCP proposed by De Luca, Facchinei, and Kanzow [2].
The PPA to be presented in the next section will use this method to solve subproblems.

Procedure 1 (generalized Newton method for NCP(F̂ )).
Step 1. Choose a constant β ∈ (0, 1

2 ). Let x0 be an initial point and set j := 0.
Step 2. If xj satisfies a termination criterion, then stop.
Step 3. Choose Vj ∈ ∂BH(xj) and get dj satisfying

Vjd
j = −H(xj).(2.17)

Step 4. If xj + dj satisfies the termination criterion, then stop. Otherwise, find
the smallest nonnegative integer ij such that

ΦFB(x
j + 2−ijdj) ≤ (1− β2−ij )ΦFB(xj).

Step 5. Set xj+1 := xj + 2−ijdj and j := j + 1, and go to Step 2.
Note that Procedure 1 is a slight simplification of the algorithm in [2]. Within the

framework of the present paper, however, there is essentially no difference between
them, because we only consider the case where F̂ is strongly monotone.

For Procedure 1 with the termination criterion ignored, the following convergence
result holds.

Proposition 2.12 (see [2]). Suppose that F̂ is differentiable and strongly mono-
tone and that ∇F̂ is Lipschitz continuous around the unique solution x̂ of NCP(F̂ ).
Then Procedure 1 globally converges to x̂ and the rate of convergence is quadratic.

Since the mappings F k involved in the subproblems generated by PPA are strongly
monotone, Procedure 1 can be applied to these problems effectively.

3. Algorithm and its convergence properties. In this section we describe
PPA for NCP(F ) and study its convergence properties.

Algorithm 1.
Step 1. Choose parameters α ∈ (0, 1), c0 ∈ (0, 1) and an initial point x0 ∈ Rn.

Set k := 0.
Step 2. If xk satisfies ΦFB(x

k) = 0, then stop.
Step 3. Let F k : Rn → Rn be defined by (1.2), and apply Procedure 1 to obtain

an approximate solution x̃k+1 of NCP(F k) that satisfies the conditions

Ψk([x̃k+1]+) ≤ c3k
4max{1, ‖[x̃k+1]+‖}2(3.1)

and √
ΦkFB(x̃

k+1) ≤ c4k‖xk − x̃k+1‖,(3.2)

where

Ψk(x) :=

n∑
i=1

ψ(xi, F
k
i (x))
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and

ΦkFB(x) :=
1

2

n∑
i=1

φFB(xi, F
k
i (x))

2.

Step 4. Set xk+1 := [x̃k+1]+, ck+1 := αck, and k := k + 1. Go to Step 2.
Remark 3.1. The condition (3.1) in Step 3 corresponds to Criterion 1 of PPA,

while the condition (3.2) corresponds to Criterion 2.
Remark 3.2. If xk is a solution of NCP(F ), then the algorithm stops at Step

2. Otherwise, since F k(xk) = F (xk), xk is not a solution of NCP(F k) at Step 3.
Moreover, since F k is strongly monotone, Theorem 2.12 ensures that Procedure 1 can
finitely find x̃k+1 satisfying (3.1) and (3.2).

First we show that Algorithm 1 has a global convergence property.
Theorem 3.1. Suppose that NCP(F ) has at least one solution. Then the se-

quence {xk} generated by Algorithm 1 converges to a solution x∗ of NCP(F ).
Proof. It suffices to show that {xk} satisfies the assumption of Theorem 2.4, that

is, {xk} satisfies Criterion 1. Since xk+1 = [x̃k+1]+ in Step 4 and 0 < ck < 1, we have,
by (3.1) in Step 3,

Ψk(xk+1) ≤ c3k
4max{1, ‖xk+1‖}2(3.3)

≤ ck
4
.(3.4)

Since F k is strongly monotone with modulus ck, it then follows from Lemma 2.11 and
(3.4) that

‖xk+1 − Pk(x
k)‖ ≤ 2max{1, ‖xk+1‖}

√
Ψk(xk+1)

ck
,(3.5)

where Pk(x
k) is the unique solution of NCP(F k). By (3.3) and (3.5), we have

‖xk+1 − Pk(x
k)‖ ≤ ck.

Since Σ∞
k=1ck <∞, it follows from Theorem 2.4 that {xk} converges to a solution of

NCP(F ).
Remark 3.3. The sequence {ck} in Algorithm 1 converges to 0. However this

property is needed for superlinear convergence, not for global convergence. To see
this, consider the algorithm using the condition

Ψk([x̃k+1]+) ≤ c2kη
k

4max{1, ‖[x̃k+1]+‖}2
with η ∈ (0, 1) instead of (3.1). In a similar way to the proof of Theorem 3.1, we can
show that the modified algorithm has the global convergence property even if {ck} is
bounded away from 0.

Next we give conditions for Algorithm 1 to converge superlinearly. For this pur-
pose, we first show that T defined by (2.5) has the property (2.7) under the following
assumption.

Assumption 1. ‖min{x, F (x)}‖ provides a local error bound for NCP(F ), that
is, there exist positive constants C̄ and δ̄ such that

dist(x, X̄) ≤ C̄‖min{x, F (x)}‖ for all x with ‖min{x, F (x)}‖ ≤ δ̄,
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where X̄ denotes the solution set of NCP(F ).
Note that when F is affine, Assumption 1 holds by Lemma 2.9(d). On the other

hand, when ∇F (x) is positive definite at any solution x of NCP(F ), Assumption 1
holds by Lemma 2.8(c) and [10, Proposition 3].

The following result directly follows from [12, Proposition 3.1]. However, for
completeness, we give a proof.

Proposition 3.2. Let T be the maximal monotone mapping defined by (2.5). If
Assumption 1 holds and the solution set X̄ of NCP(F ) is nonempty, then there exist
positive constants C and δ such that

dist(x, X̄) ≤ C‖w‖ for all x ∈ T−1(w), for all wwith ‖w‖ ≤ δ.

Proof. The mapping T defined by (2.5) is expressed as

T (x) = T1(x)× · · · × Tn(x),

where Ti(x) ⊆ R is given by

Ti(x) =



{Fi(x)} if xi > 0,
{Fi(x) + vi | vi ∈ (−∞, 0]} if xi = 0,
∅ otherwise

for i = 1, . . . , n.
Consider a pair (x,w) such that w ∈ T (x). If xi > 0, we have

|wi| = |Fi(x)| ≥ |min{xi, Fi(x)}|.
If xi = 0 and Fi(x) > 0, it is clear that

|wi| ≥ 0 = |min{xi, Fi(x)}|.
If xi = 0 and Fi(x) ≤ 0, then there exists vi ≤ 0 such that

|wi| = |Fi(x) + vi|.
Hence we have

|wi| = |Fi(x) + vi| ≥ |Fi(x)| = |min{xi, Fi(x)}|.
Consequently we have

‖w‖ ≥ ‖min{x, F (x)}‖.
It then follows from Assumption 1 that the desired property holds.

By using Proposition 3.2, we show that Algorithm 1 has a superlinear rate of
convergence.

Theorem 3.3. Suppose that Assumption 1 holds. Let {xk} be generated by
Algorithm 1. Then the sequence {dist(xk, X̄)} converges to 0 superlinearly.

Proof. By Theorem 3.1, {xk} is bounded. Hence we may suppose that F k is
uniformly Lipschitz continuous with modulus L on a bounded set containing {xk}. It
then follows from Corollary 2.10 that there exists a positive constant B2 such that

‖x̃k+1 − Pk(x
k)‖ ≤ B2(L+ 1)

ck

√
ΦkFB(x̃

k+1).
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Hence by (3.2) in Step 3, we have

‖x̃k+1 − Pk(x
k)‖ ≤ B2(L+ 1)c

3
k‖xk − x̃k+1‖.

Since Σ∞
k=1c

3
k <∞, the last inequality implies that {x̃k} satisfies Criterion 2. There-

fore, by Proposition 3.2 and [6, Theorem 2.1], there exists a constant C > 0 such that
for sufficiently large k

dist(x̃k+1, X̄) ≤ C

(C2 + (1/ck)2)
1
2

dist(xk, X̄).

Noting that dist(xk+1, X̄) ≤ dist(x̃k+1, X̄), we then have

dist(xk+1, X̄) ≤ C

(C2 + (1/ck)2)
1
2

dist(xk, X̄).

Since ck → 0, {dist(xk, X̄)} converges to 0 superlinearly.
Theorem 3.3 says that the sequence {xk} generated by Algorithm 1 converges

to the solution set X̄ superlinearly under mild conditions. However, this does not
necessarily mean that Algorithm 1 is practically efficient, because it says nothing
about computational costs to solve a subproblem at each iteration. So it is important
to estimate the number of iterations Procedure 1 spends at each iteration of Algorithm
1. Moreover, it is particularly interesting to see under what conditions Procedure 1
requires just a single iteration. In the next section, we answer this question.

4. Genuine superlinear convergence. In this section we give conditions un-
der which a single Newton step of Procedure 1 for NCP(F k) attains (3.1) and (3.2)
in Step 3 of Algorithm 1, thereby genuine superlinear convergence of Algorithm 1 is
ensured.

First we show that (3.1) is implied by (3.2) for sufficiently large k.
Lemma 4.1. When k is sufficiently large, if√

ΦkFB(x̃
k+1) ≤ c4k‖xk − x̃k+1‖

holds, then

Ψk([x̃k+1]+) ≤ c3k
4max{1, ‖[x̃k+1]+‖}2

also holds.
Proof. Since Ψk is uniformly locally Lipschitz continuous and {xk} converges,

there exists L > 0 such that

Ψk([x̃k+1]+) ≤ L‖[x̃k+1]+ − Pk(x
k)‖ ≤ L‖x̃k+1 − Pk(x

k)‖,(4.1)

for all k. Moreover, since F is continuous differentiable, F is Lipschitz continuous

on a compact set containing {xk}. Therefore
√
ΦkFB(x) provides an error bound for

NCP(F k) on the same set by Corollary 2.10, that is, there exists τ > 0 such that

‖x̃k+1 − Pk(x
k)‖ ≤ τ

ck

√
ΦkFB(x̃

k+1).(4.2)
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It then follows from (3.2), (4.1), and (4.2) that there exists a positive constant τ ′ such
that

Ψk([x̃k+1]+) ≤ τ ′c3k‖x̃k+1 − xk‖.

Since {‖x̃k+1− xk‖} converges to 0 and since {‖[x̃k+1]+‖} is bounded, (3.1) holds for
sufficiently large k.

This lemma says that (3.2) implies (3.1) for all k sufficiently large. Therefore,
in the remainder of this section, we consider only conditions under which (3.2) is
satisfied after a single Newton step for NCP(F k).

The following lemma indicates the relation between ‖xk−Pk(x
k)‖ and dist(xk, X̄).

Lemma 4.2. For sufficiently large k, there exists a constant B5 > 0 such that

‖xk − Pk(x
k)‖ ≤ B5

ck
dist(xk, X̄).

Proof. Let x̄k be the nearest point in X̄ from xk. Since {xk} is bounded, so is {x̄k}.
Thus the function

√
ΦFB(x) is Lipschitz continuous on a bounded set containing {xk}

and {x̄k}. Moreover,
√
ΦkFB(x) is also uniformly Lipschitz continuous on the same

set. Let L1 > 0 and L2 > 0 be Lipschitz constants of
√
ΦFB(x) and

√
ΦkFB(x),

respectively. Then we have

√
ΦFB(xk) =

∣∣∣∣
√
ΦFB(xk)−

√
ΦFB(x̄k)

∣∣∣∣
≤ L1‖xk − x̄k‖
= L1dist(x

k, X̄).

It follows from Corollary 2.10 that

‖xk − Pk(x
k)‖ ≤ B2(L2 + 1)

ck

√
ΦkFB(x

k)

=
B2(L2 + 1)

ck

√
ΦFB(xk).

Combining the above inequalities and letting B5 = B2(L2 + 1)L1 yield the desired
inequality.

Next we assume that the strict complementarity is satisfied at the limit point of
the generated sequence. The assumption ensures the twice differentiability of H.

Assumption 2.

(a) The limit point x∗ of the sequence {xk} generated by Algorithm 1 is nonde-
generate, that is, x∗

i + Fi(x
∗) > 0 holds for all i.

(b) F is a continuously differentiable function with a locally Lipschitzian Jaco-
bian.

For the sake of convenience, we define the mapping Hk : Rn → Rn by

Hk(x) :=




φFB(x1, F
k
1 (x))

...
φFB(xn, F

k
n (x))


 .
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Lemma 4.3. Suppose that Assumptions 1 and 2 hold. Then Hk is twice contin-
uously differentiable in a neighborhood of xk for sufficiently large k, and there exists
a positive constant B6 such that

‖∇Hk(xk)T (xk − Pk(x
k))−Hk(xk) +Hk(Pk(x

k))‖ ≤ B6‖xk − Pk(x
k)‖2.

Proof. Let F̄ : R2n+1 → Rn and H̄ : R2n+1 → Rn be defined by

F̄ (x, y, µ) := F (x) + µ(x− y),

H̄(x, y, µ) :=




φFB(x1, F̄1(x, y, µ))
...

φFB(xn, F̄n(x, y, µ))


 ,

respectively. Suppose that x∗ is the limit point of the sequence {xk}. Then, by
Assumption 2, there exists a positive constant B6 such that∥∥∥∥∥∥∥


 ∇xH̄(x, y, µ)∇yH̄(x, y, µ)
∇µH̄(x, y, µ)



T 
 x− x′

y − y′

µ− µ′


− H̄(x, y, µ) + H̄(x′, y′, µ′)

∥∥∥∥∥∥∥
≤ B6(‖x− x′‖2 + ‖y − y′‖2 + |µ− µ′|2), ∀(x, y, µ), (x′, y′, µ′) ∈ N.(4.3)

We also note that Hk is twice continuously differentiable near xk when k is sufficiently
large. Since

∇xH̄(x, xk, ck) = ∇Hk(x)

and since (xk, xk, ck), (Pk(x
k), xk, ck) ∈ N for sufficiently large k, substituting

(xk, xk, ck) for (x, y, µ) and (Pk(x
k), xk, ck) for (x

′, y′, µ′) in (4.3) yields the desired
inequality.

Remark 4.1. For all k, Hk is strongly semismooth, and hence we have

‖∇Hk(xk)T (xk − Pk(x
k))−Hk(xk) +Hk(Pk(x

k))‖ ≤ Bk‖xk − Pk(x
k)‖2,

where Bk is a constant depending on Hk. If {Bk} were bounded, the result stated
in Lemma 4.3 would hold without Assumption 2. However, the boundedness of {Bk}
appears to be difficult to ensure without making an extra assumption.

Now let us denote

xkN := xk − V −1
k Hk(xk), Vk ∈ ∂BHk(xk).(4.4)

Note that xkN is a point produced by a single Newton iteration of Procedure 1 for
NCP(F k) with the initial point xk.

By using Corollary 2.7 and Lemma 4.3, we can show the following key lemma.
Lemma 4.4. Suppose that Assumptions 1 and 2 hold. Then there exists B7 > 0

such that

‖xkN − Pk(x
k)‖ ≤ B7‖xk − Pk(x

k)‖2
ck

for sufficiently large k.
Proof. First note that, by Lemma 4.3, ∇Hk(xk) exists and hence V k = ∇Hk(xk)T

for all k sufficiently large. By (2.11), ∇Hk(xk) is expressed as ∇Hk(xk) = Da +
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∇F k(xk)TDb. Moreover, {‖∇F k(xk)‖} is bounded. Therefore, by Corollary 2.7 and
Lemma 4.3, there exist B1 > 0 and B6 > 0 such that

‖xkN − Pk(x
k)‖ = ‖xk − Pk(x

k)− (∇Hk(xk)T )−1(Hk(xk)−Hk(Pk(x
k)))‖

≤ ‖(∇Hk(xk)T )−1‖‖∇Hk(xk)T (xk − Pk(x
k))−Hk(xk) +Hk(Pk(x

k))‖

≤ B6‖xk − Pk(x
k)‖2

B1ck

for sufficiently large k. Consequently, letting B7 = B6/B1 shows the lemma.
Now we are in a position to establish the main result of this section.
Theorem 4.5. Suppose that Assumptions 1 and 2 hold. Let xkN be given by (4.4).

Then for sufficiently large k, xkN satisfies the condition (3.2) in Step 3 of Algorithm
1, that is, √

ΦkFB(x
k
N ) ≤ c4k‖xkN − xk‖.

Proof. Let γ > 0 be arbitrary. Since {dist(xk, X̄)} converges to 0 superlinearly
by Theorem 3.3, we have for sufficiently large k

dist(xk, X̄) ≤ γc6k.

It follows from Lemma 4.2 that

‖xk − Pk(x
k)‖ ≤ γB5c

5
k.

Then by Lemma 4.4, we have

‖xkN − Pk(x
k)‖ ≤ B7

ck
‖xk − Pk(x

k)‖2

≤ γB5B7c
4
k‖xk − Pk(x

k)‖.

By the triangle inequality, the last inequality yields

1− γB5B7c
4
k

γB5B7
‖xkN − Pk(x

k)‖ ≤ c4k‖xkN − xk‖.(4.5)

On the other hand, since
√
ΦkFB(x) is uniformly locally Lipschitz continuous, there

exists L2 > 0 such that √
ΦkFB(x

k
N ) ≤ L2‖xkN − Pk(x

k)‖.

Hence, by (4.5) it suffices to show

L2 ≤ 1− γB5B7c
4
k

γB5B7
.

Since γ is arbitrary, choosing γ sufficiently small yields the last inequality.
This theorem, along with Theorem 3.3, ensures that Algorithm 1 converges su-

perlinearly in a genuine sense, provided that the limit of the generated sequence {xk}
is nondegenerate.
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Abstract. Andersen and Ye [Math. Programming, 84 (1999), pp. 375–399] suggested a homo-
geneous formulation and an interior-point algorithm for solution of the monotone complementarity
problem (MCP). The advantage of the homogeneous formulation is that it always has a solution.
Moreover, in the case in which the MCP is solvable or is (strongly) infeasible, the solution provides a
certificate of optimality or infeasibility. In this note we demonstrate that if the suggested formulation
is applied to the Karush–Kuhn–Tucker optimality conditions corresponding to a convex optimiza-
tion problem, then an infeasibility certificate provides information about whether the primal or dual
problem is infeasible given certain assumptions.
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1. Introduction. Most interior-point methods for solving convex optimization
problems require that the problem has an optimal solution. Clearly, this assumption
is not satisfied if the problem is either primal or dual infeasible. In the linear case this
problem is addressed by using a homogeneous and self-dual model which was orig-
inally suggested by Goldman and Tucker [3] and later generalized to the monotone
complementarity problem (MCP) by Andersen and Ye [2]. This larger class of prob-
lems contains all convex optimization problems, because the Karush–Kuhn–Tucker
conditions corresponding to a convex optimization problem form an MCP.

The main idea of the homogeneous model is to embed the optimization problem
in a slightly larger problem which always has a solution. The optimal solution to the
embedded problem indicates whether the original problem has an optimal solution.
Moreover, in the case in which the original problem has an optimal solution, the
optimal solution to the embedded problem can easily be transformed into an optimal
solution to the original problem. In the case where the original problem is (strongly)
infeasible, then a certificate for the infeasibility is computed. However, in [2] it is
not stated whether an infeasibility certificate indicates primal or dual infeasibility
when the homogeneous model is applied to the optimality conditions of a convex
optimization problem. The main purpose of the present work is to show that an
infeasibility certificate in some cases indicates whether the primal or dual problem is
infeasible.

The outline of the paper is as follows. In section 2 we present a homogeneous
model for convex optimization and state the main lemma. In section 3 we apply
the developed theory to convex quadratic and quadratically constrained optimization
problems.
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2. A homogeneous model for convex optimization. The problem of inter-
est is

minimize c(x)
subject to ai(x) ≥ 0, i = 1, . . . ,m,

(2.1)

where x ∈ Rn. The function c : Rn → R is assumed to be convex, and the component
functions ai : R

n → R, i = 1, . . . ,m, are assumed to be concave. All functions
are assumed to be once differentiable. Hence, the problem (2.1) minimizes a convex
function over a convex set.

Next, define the Lagrange function

L(x, y) := c(x)− yTa(x),
and then the Wolfe dual corresponding to (2.1) is

maximize L(x, y)
subject to ∇xL(x, y)T = 0,

y ≥ 0.
(2.2)

Combining (2.1) and (2.2) gives the MCP

minimize yT z
subject to ∇xL(x, y)T = 0,

a(x) = z,
y, z ≥ 0,

(2.3)

where z ∈ Rm is a vector of slack variables. A solution to (2.3) is said to be comple-
mentary if the corresponding objective value is zero.

Now when applying the homogeneous model suggested in [1, 2] to this problem
we obtain the homogenized MCP

minimize zT y + τκ
subject to τ∇xL(x/τ, y/τ)T = 0,

τa(x/τ) = z,
−xT∇xL(x/τ, y/τ)T − yTa(x/τ) = κ,

z, τ, y, κ ≥ 0,

(2.4)

where τ and κ are two additional variables.
Following [2], we say that (2.4) is asymptotically feasible if and only if a convergent

sequence (xk, zk, τk, yk, κk) exists for k = 1, 2, . . . such that

lim
k→∞


 τk∇xL(xk/τk, yk/τk)T ,

τka(xk/τk)− zk,
−(xk)T∇xL(xk/τk, yk/τk)T − (yk)Ta(xk/τk)− κk


 = 0(2.5)

and

(xk, zk, τk, yk, κk) ∈ Rn ×Rm+ ×R++ ×Rm+ ×R++ ∀k,(2.6)

where the limit point (x∗, z∗, τ∗, y∗, κ∗) of the sequence is called an asymptotically
feasible point. We write R+ and R++ for the nonnegative and positive real line,
respectively. If this limit point also satisfies

(y∗)T z∗ + τ∗κ∗ = 0,
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it is said to be asymptotically complementary.
Theorem 2.1. Equation (2.4) is asymptotically feasible, and every asymptotically

feasible point is an asymptotically complementary solution.
Proof. See [1] for the proof.
Hence, Theorem 2.1 implies that the objective function in (2.4) is redundant, and

hence the problem is a feasibility problem.
An asymptotically complementary solution (x∗, z∗, τ∗, y∗, κ∗) is said to be maxi-

mally complementary if the number of positive coordinates in (z∗, τ∗, y∗, κ∗) is max-
imal among asymptotically complementary solutions. Using this definition we can
state the following theorem.

Theorem 2.2. Let (x∗, z∗, τ∗, y∗, κ∗) be any asymptotically feasible and maxi-
mally complementary solution to (2.4). Equation (2.3) has a feasible and complemen-
tary solution if and only if τ∗ > 0. Furthermore, in this case (x∗, y∗, z∗)/τ∗ is an
optimal solution to (2.3).

Proof. See [1] for the proof.
Therefore, in the case τ∗ > 0 it can be concluded that (2.1) has an optimal

solution. On the other hand if κ∗ > 0, then it can be concluded that a primal-dual
optimal solution to (2.1) having zero duality gap does not exist. Moreover, using the
following lemma it may be possible to conclude that either the primal or the dual
problem is infeasible.

Lemma 2.3. Let (xk, zk, τk, yk, κk) be any bounded sequence satisfying (2.6) such
that

lim
k→∞

(xk, zk, τk, yk, κk) = (x∗, z∗, τ∗, y∗, κ∗)

is an asymptotically feasible and maximally complementary solution to (2.4). Given

lim
k→∞

−(xk)T∇xL(xk/τk, yk/τk)T − (yk)Ta(xk/τk) = κ∗ > 0,(2.7)

then

lim
k→∞

sup (∇a(xk/τk)(xk/τk)− a(xk/τk))T (yk) > 0(2.8)

or

lim
k→∞

sup−∇c(xk/τk)xk > 0(2.9)

holds true.
Moreover, if

lim
k→∞

τk∇c(xk/τk) = 0,(2.10)

then the primal problem (2.1) is infeasible if (2.8) holds and the dual problem (2.2) is
infeasible if (2.9) holds.

Proof. Note that κ∗ > 0 implies that τ∗ = 0 by complementarity. Furthermore,
if (2.7) is true, then either (2.8) or (2.9) must be true. Now suppose (2.10) holds.

Assume first that (2.8) holds and the primal problem (2.1) has a feasible solution.
Let x̄ be any feasible solution, and since a is concave, then

a(x̄) ≤ a(xk/τk) +∇a(xk/τk)(x̄− xk/τk),
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which leads to the contradiction

0 ≤ lim
k→∞

inf (yk)Ta(x̄)

≤ lim
k→∞

inf (yk)T (a(xk/τk) +∇a(xk/τk)(x̄− xk/τk))
= lim
k→∞

inf − (yk)T (∇a(xk/τk)(xk/τk)− a(xk/τk))
< 0.

(2.11)

Here the equation follows from the fact that assumption (2.10) and the first equation
of (2.5) together imply

lim
k→∞

∇a(xk/τk)T yk = 0.

Hence, if (2.8) holds, then (2.1) must be infeasible.
Assume next that (2.9) is true and the dual problem (2.2) has a solution denoted

(x̄, ȳ). By convexity we have that

c(0) ≥ c(xk/τk) +∇c(xk/τk)(0− xk/τk) ∀k,
c(xk/τk) ≥ c(x̄) +∇c(x̄)(xk/τk − x̄) ∀k,
a(xk/τk) ≤ a(x̄) +∇a(x̄)(xk/τk − x̄) ∀k.

This implies

c(0)−∇c(xk/τk)(0− xk/τk)− c(x̄) ≥ c(xk/τk)− c(x̄)
≥ ∇c(x̄)(xk/τk − x̄)
= (∇a(x̄)T ȳ)T (xk/τk − x̄)
≥ ȳT (a(xk/τk)− a(x̄)).

Therefore,

τk(c(0)−∇c(xk/τk)(0− xk/τk)− c(x̄)) ≥ τk(c(xk/τk)− c(x̄))
≥ τkȳT (a(xk/τk)− a(x̄)).(2.12)

Given the assumptions, we have that

lim
k→∞

inf τk(c(0)−∇c(xk/τk)(0− xk/τk)− c(x̄)) < 0

and

lim
k→∞

sup τkȳT (a(xk/τk)− a(x̄)) ≥ 0,

because ȳ ≥ 0 and limk→∞ τka(xk/τk) ≥ 0. Therefore, taking the limit on both
sides of (2.12) leads to a contradiction, implying that the dual problem (2.2) is infea-
sible.

3. Applications. In this section we will show that Lemma 2.3 can be strength-
ened in the case of quadratic and quadratically constrained optimization problems.

3.1. Quadratically constrained quadratic optimization. A quadratically
constrained optimization problem can be stated as

minimize 1
2x

TQ0x+ cTx

subject to 1
2x

TQix+ ai:x ≥ bi, i = 1, . . . ,m,
(3.1)
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where ai: is the ith row of A. It is assumed Q
0 and −Qi ∈ Rn×n are symmetric

positive semidefinite matrices ∀i’s. Moreover, A ∈ Rm×n and all other quantities
have conforming dimensions. The dual problem corresponding to (3.1) is

maximize bT y −
(
1

2
xTQ0x−

m∑
i=1

yi
1

2
xTQix

)

subject to Q0x+ c−AT y −
m∑
i=1

yiQ
ix = 0,

y ≥ 0,

(3.2)

and the associated homogeneous model is

Q0x+ cτ −AT y −
m∑
i=1

yi
τ
Qix = 0,

xTQix

2τ
+ ai:x− biτ = zi, i = 1, . . . ,m,

−x
TQ0x

τ
− cTx+

m∑
i=1

yi
2τ

xTQix

τ
+ bT y = κ,

z, y, τ, κ ≥ 0.

(3.3)

Using the special structure of (3.1) and Lemma 2.3 we can state the following lemma.
Lemma 3.1. Let (xk, zk, τk, yk, κk) be any bounded sequence satisfying (2.6) such

that

lim
k→∞

(xk, zk, τk, yk, κk) = (x∗, z∗, τ∗, y∗, κ∗)

is an asymptotically feasible and maximally complementary solution to (3.3). Given

lim
k→∞

(
− (x

k)TQ0xk

τk
− cTxk +

m∑
i=1

yki
2τk

(xk)TQixk

τk
+ bT yk

)
= κ∗ > 0,(3.4)

then at least one of

bT y∗ + lim
k→∞

sup

m∑
i=1

yki
2τk

(xk)TQixk

τk
> 0(3.5)

or

cTx∗ < 0(3.6)

holds true. The primal problem (3.1) is infeasible if (3.5) holds. Moreover, the dual
problem (3.2) is infeasible if (3.6) holds.

Proof. It can be verified that

(xk)TQ0xk

τk
≥ 0 ∀k.

Hence it follows that if (3.4) holds, then at least one of the conditions (3.5) or (3.6)
is true.
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First we prove an intermediate result. We have that

0 = lim
k→∞

(xk)T

(
Q0xk + cτk −AT yk −

m∑
i=1

yki
τk
Qixk

)

= lim
k→∞

(
(xk)T

(
Q0xk −

m∑
i=1

yki
2τk

Qixk + cτk

)
−

m∑
i=1

yki

(
(xk)TQixk

2τk
+ ai:x

k

))

= lim
k→∞

(xk)T

(
Q0xk −

m∑
i=1

yki
2τk

Qixk

)

(3.7)
because limk→∞ τk = 0 and

lim
k→∞

yki

(
(xk)TQixk

2τk
+ ai:x

k

)
= lim
k→∞

yki (z
k
i + biτ

k) = 0.

Given the convexity assumptions,

(xk)TQ0xk ≥ 0.
This fact in combination with (3.7) leads to the conclusion that

(x∗)TQ0x∗ = lim
k→∞

(xk)TQ0xk = 0 and Q0x∗ = lim
k→∞

Q0xk = 0.

This, combined with the facts

lim
k→∞

(
Q0xk + cτk −AT yk −

m∑
i=1

yki
τk
Qixk

)
= 0

and limk→∞ τk = 0, leads to the conclusion

lim
k→∞

(
−AT yk −

m∑
i=1

yki
τk
Qixk

)
= 0.(3.8)

First, assume that (3.5) is the case and (3.1) has a feasible solution x̄. Therefore,

0 ≤
m∑
i=1

yki

(
1

2
x̄TQix̄+ ai:x̄− bi

)

≤
m∑
i=1

yki

(
1

2

(xk)TQixk

(τk)2
+ ai:x̄− bi + (Qixk/τk)T (x̄− xk/τk)

)

=

m∑
i=1

yki

(
−1
2

(xk)TQixk

(τk)2
− bi

)
+ x̄T

(
AT yk +

m∑
i=1

yki
τk
Qixk

)
,

where the second inequality follows from the concavity assumption. This fact, in
combination with (3.5) and (3.8), gives rise to the contradiction

0 ≤ lim
k→∞

inf

(
m∑
i=1

yki

(
−1
2

(xk)TQixk

(τk)2
− bT yk

)
+ x̄T

(
AT yk +

m∑
i=1

yki
τk
Qixk

))

= −bT y∗ − lim
k→∞

sup

m∑
i=1

yki
2τk

(xk)TQixk

τk

< 0.
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Hence, given (3.5) then (3.1) must be infeasible.
Second, assume that (3.6) holds and the dual problem has a feasible solution

denoted (x̄, ȳ). Then

(x∗)T
(
Q0x̄+ c−AT ȳ −

m∑
i=1

ȳiQ
ix̄

)
= 0,

from which we obtain

cTx∗ = (x∗)T
(
AT ȳ +

m∑
i=1

ȳiQ
ix̄

)
.(3.9)

Since

lim
k→∞

τk
(
(xk)TQixk

2τk
+ ai:x

k − τkbi
)
= lim
k→∞

τkzki

= 0

(3.10)

then

lim
k→∞

(xk)TQixk = (x∗)TQix∗ = 0

is true. This fact, in combination with (3.9), leads to the contradiction

0 > cTx∗

= (x∗)TAT ȳ
≥ 0

because ȳ ≥ 0 and
ai:x

∗ = lim
k→∞

ai:x
k

= lim
k→∞

(
zki −

(xk)TQixk

τk
+ biτ

k

)

≥ 0.
Therefore, we can conclude that if (3.6) holds, then (3.2) is infeasible.

3.2. Quadratic optimization. An important special case of quadratically con-
strained optimization is quadratic optimization, i.e., the case where

Qi = 0, i = 1, . . . ,m.

In this case the homogeneous model has the form

Q0x+ cτ −AT y = 0,
Ax− bτ = z,

−x
TQ0x

τ
− cTx+ bT y = κ,

x, τ, y, κ,≥ 0.

(3.11)

Using Lemma 3.1 we can state the following lemma.
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Lemma 3.2. Let (xk, zk, τk, yk, κk) be any bounded sequence satisfying (2.6) such
that

lim
k→∞

(xk, zk, τk, yk, κk) = (x∗, z∗, τ∗, y∗, κ∗)

is an asymptotically feasible and maximally complementary solution to (3.11). Given

lim
k→∞

(
− (x

k)TQ0xk

τk
− cTxk + bT yk

)
= κ∗ > 0,(3.12)

then

bT y∗ > 0(3.13)

or

cTx∗ < 0(3.14)

holds true. The primal problem (3.1) is infeasible if (3.13) holds. Moreover, the dual
problem (3.2) is infeasible if (3.14) holds.

Proof. This follows immediately from Lemma 3.1. From the proof, note that
Q0x∗ = 0.

It can be observed that in the case where the primal problem (3.1) is concluded
to be infeasible, y∗ satisfies

AT y∗ = 0, bT y∗ > 0, y∗ ≥ 0,(3.15)

which by Farkas’s lemma implies that

{x : Ax ≥ b} = ∅,(3.16)

i.e., the problem is infeasible. Observe if the dual problem has a feasible solution; then
(0, y∗) is a ray along which dual objective value tends to +∞, i.e., the dual problem
(3.2) is unbounded.

Similarly, it can be observed that in the case where the dual problem (3.2) is
concluded to be infeasible, an x∗ is known such that

Ax∗ ≥ 0, Q0x∗ = 0, cTx∗ < 0,(3.17)

which (once again using Farkas’s lemma) implies that

{(x, y) : Q0x+ c−AT y = 0, y ≥ 0} = ∅.

Note also that if the primal problem has a feasible solution, then x∗ is a ray along
which the primal objective value tends to −∞, i.e., the primal problem (3.1) is un-
bounded.

Acknowledgments. The author is thankful for comments made by Tamás Ter-
laky, the anonymous referees, and the associate editor, Mike Todd, regarding this
article.
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A SMOOTHING NEWTON METHOD FOR MINIMIZING
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Abstract. We consider the problem of minimizing a sum of Euclidean norms, f(x) =
∑m
i=1 ‖bi−

ATi x‖. This problem is a nonsmooth problem because f is not differentiable at a point x when
one of the norms is zero. In this paper we present a smoothing Newton method for this problem
by applying the smoothing Newton method proposed by Qi, Sun, and Zhou [Math. Programming,
87 (2000), pp. 1–35] directly to a system of strongly semismooth equations derived from primal
and dual feasibility and a complementarity condition. This method is globally and quadratically
convergent. As applications to this problem, smoothing Newton methods are presented for the
Euclidean facilities location problem and the Steiner minimal tree problem under a given topology.
Preliminary numerical results indicate that this method is extremely promising.

Key words. sum of norms, smoothing Newton method, semismoothness, Euclidean facilities
location, shortest networks, Steiner minimum trees
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PII. S105262349834895X

1. Introduction. Consider the problem of minimizing a sum of Euclidean norms
(MSNs):

min
x∈Rn

m∑
i=1

‖bi −ATi x‖,(1.1)

where b1, b2, . . . , bm ∈ Rd are column vectors in the Euclidean d-space, A1, A2, . . . , Am
∈ Rn×d are n × d matrices with each having full column rank, n ≤ m(d − 1), and
‖r‖ represents the Euclidean norm (

∑m
i=1 r

2
i )

1/2. Let A = [A1, A2, . . . , Am]. In what
follows we always assume that A has rank n. Let

f(x) =
m∑
i=1

‖bi −ATi x‖.(1.2)

It is clear that x = 0 is an optimal solution to problem (1.1) when all of the bi are
zero. Therefore, we assume in the rest of this paper that not all of the bi are zero.
Problem (1.1) is a convex programming problem, but its objective function f is not
differentiable at any point x when some bi − ATi x = 0. Three special cases of this
problem are the Euclidean single facility location (ESFL) problem, the Euclidean
multifacility location (EMFL) problem, and the Steiner minimal tree (SMT) problem
under a given topology.

Many algorithms have been designed to solve problem (1.1). For the ESFL prob-
lem, Weiszfeld [34] gave a simple iterative algorithm in 1937. Later, a number of
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important results were obtained along this line; see [6, 7, 13, 22, 24, 30, 31, 33]. Prac-
tical algorithms for solving these problems began with the work of Calamai and Conn
[4, 5] and Overton [25], where they proposed projected Newton algorithms with the
quadratic rate of convergence. The essential idea of these algorithms is as follows. In
each iteration a search direction is computed by Newton’s method projected into a
linear manifold along which f is locally differentiable. The advantage of this method
is the quadratic convergence and the avoidance of approximation techniques for f .
However, it is difficult to use this method due to the dynamic structure of the linear
manifold into which the method projects the search direction. Every time terms are
added and deleted from the active set, the size and the sparse structure of the problem
changes.

More recently, Andersen [1] used the HAP idea [13] to smooth the objective
function by introducing a perturbation ε > 0 and applied a Newton barrier method for
solving this problem. Andersen et al. [3] proposed a primal-dual interior-point method
based on the ε-perturbation and presented impressive computational results. Xue and
Ye [35, 36] presented polynomial-time primal-dual potential reduction algorithms by
transforming this problem into a standard convex programming problem in conic
form. However, these methods do not possess second-order convergence.

In recent years, two major reformulation approaches, the nonsmooth approach
and the smoothing approach, for solving nonlinear complementarity problems (NCPs)
and box constrained variational inequality problems (BVIPs), have been rapidly de-
veloped based on NCP and BVIP functions, e.g., see [8, 9, 10, 11, 14, 15, 19, 21, 26,
28, 32, 37, 38] and references therein. In particular, Jiang and Qi [21] and De Luca,
Facchinei, and Kanzow [14] proposed globally and superlinearly (quadratically) con-
vergent nonsmooth Newton methods for NCPs, which only require solving a system
of linear equations to determine the search direction at each iteration. A globally and
superlinearly (quadratically) convergent smoothing Newton method was proposed by
Chen, Qi, and Sun in [10], where the authors exploited a Jacobian consistence prop-
erty and applied this property to an infinite sequence of smoothing approximation
functions to get high-order convergence. On the other hand, Hotta and Yoshise [20],
Qi, Sun, and Zhou [28], and Jiang [19] proposed smoothing methods for NCPs and
BVIPs by treating the smoothing parameter as a variable, in which the smoothing
parameter is driven to zero automatically and no additional procedure for adjusting
the smoothing parameter is necessary. Some regularized versions of the method in
[28] were proposed in [26, 32, 38] for NCPs and BVIPs.

In this paper we present a smoothing Newton method for problem (1.1) by apply-
ing the smoothing Newton method proposed by Qi, Sun, and Zhou [28] directly to a
system of strongly semismooth equations derived from primal and dual feasibility and
a complementarity condition and prove that this method is globally and quadratically
convergent. Numerical results indicate that this method is extremely promising.

This paper is organized as follows. In section 2, we transform primal and dual
feasibility and a complementarity condition derived from problem (1.1) and its dual
problem into a system of strongly semismooth equations. Some smooth approxima-
tions to the projection operator on the unit ball are given in section 3. In section 4,
we present a smoothing Newton method for solving problem (1.1) and prove that this
method is globally and quadratically convergent. In section 5, we discuss applications
to the ESFL problem, the EMFL problem, and the SMT problem. In section 6, we
present some numerical results. We conclude this paper in section 7.

Concerning notation, for a continuously differentiable function F : Rn → Rm, we
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denote the Jacobian of F at x ∈ Rn by F ′(x), whereas the transposed Jacobian is
denoted as ∇F (x). In particular, if m = 1, the gradient ∇F (x) is viewed as a column
vector.

Let F : Rn → Rm be a locally Lipschitzian vector function. By Rademacher’s
theorem, F is differentiable almost everywhere. Let ΩF denote the set of points where
F is differentiable. Then the B-subdifferential of F at x ∈ Rn is defined as

∂BF (x) = { lim
xk→x
xk∈ΩF

∇F (xk)T },(1.3)

while Clarke’s generalized Jacobian of F at x is defined as

∂F (x) = conv∂BF (x),(1.4)

(see [12, 27, 29]). F is called semismooth at x if F is directionally differentiable at x
and for all V ∈ ∂F (x+ h) and h→ 0,

F ′(x;h) = V h+ o(‖h‖);(1.5)

F is called p-order semismooth, p ∈ (0, 1], at x if F is semismooth at x and for all
V ∈ ∂F (x+ h) and h→ 0,

F ′(x;h) = V h+O(‖h‖1+p);(1.6)

F is called strongly semismooth at x if F is 1-order semismooth at x. F is called
a (strongly) semismooth function if it is (strongly) semismooth everywhere (see [27,
29]). In particular, a PC2 (piecewise twice continuously differentiable) function is a
strongly semismooth function. Here, o(‖h‖) stands for a vector function e : Rn → Rm,
satisfying

lim
h→0

e(h)

‖h‖ = 0,

while O(‖h‖2) stands for a vector function e : Rn → Rm, satisfying

‖e(h)‖ ≤M‖h‖2

for all h satisfying ‖h‖ ≤ δ and some M > 0 and δ > 0.
Lemma 1.1 (see [29]).
(i) If F is semismooth at x, then for any h→ 0,

F (x+ h)− F (x)− F ′(x;h) = o(‖h‖);
(ii) if F is p-order semismooth at x, then for any h→ 0,

F (x+ h)− F (x)− F ′(x;h) = O(‖h‖1+p).
Theorem 1.2 (see [16, Theorem 19]). Suppose that the function F : Rn → Rm

is p-order semismooth at x and the function G : Rm → Rl is p-order semismooth at
F(x). Then the composite function H = G ◦ F is p-order semismooth at x.

For a set A, |A| denotes the cardinality of the set A. We denote xTx by x2,
for a vector x ∈ Rn, i.e., x2 = ‖x‖2. For A ∈ Rn×m, ‖A‖ denotes the induced
norm, i.e., ‖A‖ = max{‖Au‖ : u ∈ Rn, ‖u‖ = 1}. Let Id denote the d × d identity
matrix. Let bT = [bT1 , . . . , b

T
m], y = [yT1 , . . . , y

T
m]T ∈ Rmd, R+ = {ε ∈ R : ε ≥ 0}, and

R++ = {ε ∈ R : ε > 0}. Finally, we use ε ↓ 0+ to denote the case that a positive
scalar ε tends to 0.
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2. Some preliminaries. In [1, 3], Andersen et al. studied the duality for prob-
lem (1.1) and presented some efficient algorithms for solving it. In this section we
will transform three sets of equations—primal feasibility, dual feasibility, and the
complementarity condition derived from problem (1.1) and its dual problem—into a
system of strongly semismooth equations. This transformation is very important for
the method proposed in this paper.

Lemma 2.1. Assume that A has rank n. Then the set of solutions to the problem
(1.1) is bounded.

Proof. It follows from the assumed rank of A that

min
‖x‖=1

‖ATx‖ = τ > 0.(2.1)

From (2.1) we obtain

‖ATx‖ ≥ τ‖x‖.(2.2)

This shows that the set of solutions to the problem (1.1) is bounded.
The dual of the problem (1.1) has the form (see [1])

max
y∈Y

bT y,(2.3)

where

Y =
{
y = [yT1 , . . . , y

T
m]T ∈ Rmd : yi ∈ Rd, ‖yi‖ ≤ 1, i = 1, . . . ,m;Ay = 0

}
.(2.4)

Theorem 2.2 (see [1]). Let x ∈ Rn, y ∈ Y and let x∗ ∈ Rn, y∗ ∈ Y be optimal
solutions to problems (1.1) and (2.3), respectively. Then

(a) bT y ≤
m∑
i=1

‖bi −ATi x‖ (weak duality)

and

(b) bT y∗ =

m∑
i=1

‖bi −ATi x∗‖ (strong duality).

Definition 2.3 (see [1]). A solution x ∈ Rn and a solution y ∈ Y are called
ε-optimal to problems (1.1) and (2.3) if

m∑
i=1

‖bi −ATi x‖ − bT y ≤ ε.

From Theorem 2.2 we have that (x∗, y∗) is a pair of optimal solutions to problems
(1.1) and (2.3) if and only if (x∗, y∗) is a solution to the following system:



Ay = 0,

‖yi‖ ≤ 1, i = 1, . . . ,m,

m∑
i=1

‖bi −ATi x‖ − bT y = 0.

(2.5)
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Suppose that y ∈ Rmd, satisfying that Ay = 0 and ‖yi‖ ≤ 1, i = 1, 2, . . . ,m. Then

m∑
i=1

‖bi −ATi x‖ − bT y =

m∑
i=1

‖bi −ATi x‖ −
m∑
i=1

bTi yi

=

m∑
i=1

(‖bi −ATi x‖ − bTi yi)
=

m∑
i=1

(‖bi −ATi x‖ − (bi −ATi x)T yi + xT (Aiyi)
)

=
m∑
i=1

(‖bi −ATi x‖ − (bi −ATi x)T yi
)

+ xT (Ay)

=

m∑
i=1

(‖bi −ATi x‖ − (bi −ATi x)T yi
)
,

and for i = 1, 2, . . . ,m,

‖bi −ATi x‖ − (bi −ATi x)T yi ≥ 0.

So the duality gap is zero if and only if

‖bi −ATi x‖ − (bi −ATi x)T yi = 0

for i = 1, . . . ,m. Then (2.5) is equivalent to



Ay = 0,

‖yi‖ ≤ 1, i = 1, . . . ,m,

‖bi −ATi x‖ − (bi −ATi x)T yi = 0, i = 1, . . . ,m.

(2.6)

Lemma 2.4. Let r, s ∈ Rd. If ‖s‖ ≤ 1, then ‖r‖ = rT s if and only if r−‖r‖s = 0.
Proof. Suppose ‖r‖ = rT s. If r = 0, then r − ‖r‖s = 0. If r �= 0, then

‖r‖ = rT s ≤ ‖r‖‖s‖.
So ‖s‖ = 1. Then (r − ‖r‖s)2 = ‖r‖2 − 2‖r‖rT s+ ‖r‖2‖s‖2 = 0, i.e., r − ‖r‖s = 0.

On the other hand, if r = 0, then ‖r‖ = rT s. If r − ‖r‖s = 0 and r �= 0, then
‖s‖ = 1 and rT s− ‖r‖sT s = rT s− ‖r‖ = 0, i.e., ‖r‖ = rT s.

From the above lemma (2.6) is equivalent to


Ay = 0,

‖yi‖ ≤ 1, i = 1, . . . ,m,

(bi −ATi x)− ‖bi −ATi x‖yi = 0, i = 1, . . . ,m.

(2.7)

It follows from (2.7) that if (x∗, y∗) is a pair of optimal solutions to problems (1.1)
and (2.3), then for i = 1, . . . ,m, either bi − ATi x∗ = 0 or ‖y∗i ‖ = 1. We say strict
complementarity holds at (x∗, y∗) if, for each i, only one of these two conditions holds.

Let B = {s ∈ Rd : ‖s‖ ≤ 1} and let ΠB(s) be the projection operator onto B.
Lemma 2.5. Let r, s ∈ Rd. Then s = ΠB(s + r) if and only if ‖s‖ ≤ 1 and

‖r‖ = rT s.
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Proof. Suppose that s = ΠB(s+ r). Then ‖s‖ ≤ 1 and

rT (s− s∗) ≥ 0 for any s∗ ∈ B.
It follows that ‖r‖ = max‖s∗‖≤1 r

T s∗ ≤ rT s. So ‖r‖ = rT s.
On the other hand, if ‖r‖ = rT s and ‖s‖ ≤ 1, then for any s∗ ∈ B,

rT (s− s∗) ≥ 0

because ‖r‖ = max‖s∗‖≤1 r
T s∗. Hence s = ΠB(s+ r).

It follows from the above lemma that (2.6) is equivalent to

Ay = 0,

yi −ΠB(yi + bi −ATi x) = 0, i = 1, . . . ,m.
(2.8)

Define F : Rn+md → Rn+md by

Fj(x, y) = (Ay)j , j = 1, . . . , n,

Fj(x, y) = yi −ΠB(yi + bi −ATi x),
j = n+ il, i = 1, . . . ,m, l = 1, . . . , d.

(2.9)

Then we have that (x∗, y∗) is a pair of optimal solutions to problems (1.1) and (2.3)
if and only if (x∗, y∗) is a solution to the following equation:

F (x, y) = 0.(2.10)

From Lemma 2.1, (2.3), and (2.4), we have the following.
Lemma 2.6. All solutions to (2.10) are bounded.
Clearly, F is not continuously differentiable, but we can prove that it is strongly

semismooth.
Theorem 2.7. The function F defined in (2.9) is strongly semismooth on Rn ×

Rmd.
Proof.

ΠB(s) =

{ s

‖s‖ if ‖s‖ > 1,

s if ‖s‖ ≤ 1.

Then

ΠB(s) =
s

max{1, ‖s‖} =
s

1 + max{0, (‖s‖ − 1)} .(2.11)

Since the function h, defined by h(x) = ‖x‖, where x ∈ Rd, max functions, and linear
functions are all strongly semismooth, from Theorem 1.2 F is strongly semismooth
on Rn ×Rmd.

3. Smooth approximations to ΠB(s). In this section we will present some
smooth approximations to the projection operator ΠB(s) and study the properties of
these smooth approximations.

In [9], Chen and Mangasarian presented a class of smooth approximations to the
function max{0, ·}. Similarly, we can give a class of smooth approximations to the
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projection operator ΠB(s) defined in (2.11). For simplicity, throughout this paper we
use only the following smooth function to approximate ΠB(s), which is based on the
neural networks smooth function and defined as follows:

φ(t, s) =
s

q(t, s)
, (t, s) ∈ R++ ×Rd,(3.1)

where q(t, s) = t ln(e
1
t + e

√
‖s‖2+t2

t ).
Proposition 3.1. φ(t, s) has the following properties:
(i) For any given t > 0, φ(t, s) is continuously differentiable;
(ii) φ(t, s) ∈ intB, for any given t > 0;
(iii) |φ(t, s)−ΠB(s)| ≤ (ln 2 + 1)t;
(iv) for any given t > 0,

∇φs(t, s) =
1

q(t, s)
Id − ssT

q(t, s)2(1 + e(1−
√

‖s‖2+t2)/t)
√‖s‖2 + t2

,(3.2)

and ∇φs(t, s) is symmetric, positive definite and ‖∇φs(t, s)‖ < 1;
(v) for any given s ∈ Rd and t > 0,

∇φt(t, s) = − 1

q2(t, s)


ln e(t, s)− e

1
t

te(t, s)
+

‖s‖2e
√

‖s‖2+t2

t

t
√‖s‖2 + t2e(t, s)


 s,(3.3)

where e(t, s) = e
1
t + e

√
‖s‖2+t2

t .
Proof. It is clear that (i) holds. For any t > 0, q(t, s) > max{1, ‖s‖}. So (ii)

holds. By Proposition 2.2(ii) in [9],

|q(t, s)−max{1, ‖s‖}| ≤ (ln 2 + 1)t.

Hence,

‖φ(t, s)−ΠB(s)‖ =
‖s‖|q(t, s)−max{1, ‖s‖}|

q(t, s) max{1, ‖s‖}

≤ |q(t, s)−max{1, ‖s‖}|

≤ (ln 2 + 1)t.

By simple computation, (iv) and (v) hold.
Let

p(t, s) =

{
φ(|t|, s) if t �= 0,
ΠB(s) if t = 0.

(3.4)

From Proposition 3.1 of [28] and Theorem 1.2 we have the following.
Proposition 3.2. p(t, s) is a strongly semismooth function on R×Rd.
It follows from Proposition 3.1 that the following proposition holds.
Proposition 3.3.
(i) If ‖s∗‖ < 1, then

lim
tk↓0+

sk→s∗

∇φs(tk, sk) = Id;
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(ii) if ‖s∗‖ > 1, then

lim
tk↓0+

sk→s∗

∇φs(tk, sk) =
1

‖s∗‖Id −
1

‖s∗‖3 s
∗(s∗)T ,

which is symmetric, nonnegative definite, and the norm of this matrix is less
than 1 and the rank of this matrix is d− 1.

4. A smoothing Newton method. In this section we will present a smoothing
Newton method for solving problem (1.1) by applying the smoothing Newton method
proposed by Qi, Sun, and Zhou [28] directly to the system of strongly semismooth
equation (2.10) and prove that this method is globally and quadratically convergent.

Define G : R×Rn ×Rmd → Rn+md by

Gj(t, x, y) = (Ay)j − txj , j = 1, . . . , n,

Gj(t, x, y) = (yi)l − (p(t, yi + bi −ATi x))l,
j = n+ il, i = 1, . . . ,m, l = 1, . . . , d.

(4.1)

Then G is continuously differentiable at any (t, x, y) with t �= 0 and from Theorem
1.2 and Proposition 3.2 it is strongly semismooth on R×Rn ×Rmd.

Let z := (t, x, y) ∈ R×Rn ×Rmd and define H : R×Rn ×Rmd → Rn+md+1 by

H(z) :=

(
t

G(z)

)
.(4.2)

Then H is continuously differentiable at any z ∈ R++ × Rn × Rmd and strongly
semismooth at any z ∈ R×Rn×Rmd, and H(t∗, x∗, y∗) = 0 if and only if t∗ = 0 and
F (x∗, y∗) = 0.

Let p(t, y + b−ATx) = [p(t, y1 + b1 −AT1 x)T , . . . , p(t, ym + bm −ATmx)T ]T .
Lemma 4.1. For any z = (t, x, y) ∈ R++ ×Rn ×Rmd,

H ′(z) :=


 1 0 0
−x −tIn A
E(z) P (z)AT Imd − P (z)


 ,(4.3)

where

E(z) = ∇pt(t, y + b−ATx),(4.4)

and

P (z) = Diag(p′s(t, yi + bi −ATi x)),(4.5)

and H ′(z) is nonsingular.
Proof. We have that (4.3) holds by simple computation. For any z = (t, x, y) ∈

R++ ×Rn ×Rmd, in order to prove H ′(z) is nonsingular, we need to prove only that

M =

( −tIn A
P (z)AT Imd − P (z)

)

is nonsingular. For any t > 0 and (x, y) ∈ Rn × Rmd, from Proposition 3.1 P (z) is
symmetric positive definite and ‖P (z)‖ < 1. Let Mg = 0, where g = (gT1 , g

T
2 )T ∈

Rn ×Rmd. Then we have

−tIng1 +Ag2 = 0,(4.6)
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and

P (z)AT g1 + (Imd − P (z))g2 = 0.(4.7)

From (4.7) we have

g2 = −(Imd − P (z))−1P (z)AT g1.(4.8)

Then

(tIn +A(Imd − P (z))−1P (z)AT )g1 = 0.(4.9)

Let

B(z) = tIn +A(Imd − P (z))−1P (z)AT .(4.10)

Then B(z) is an n × n symmetric positive definite matrix because A has full rank.
So g1 = 0. Thus g = 0. This implies that M is nonsingular. So H ′(z) is non-
singular.

Choose t̄ ∈ R++ and γ ∈ (0, 1) such that γt̄ < 1. Let z̄ := (t̄, 0, 0) ∈ R×Rn×Rmd.
Define the merit function ψ : R×Rn ×Rmd → R+ by

ψ(z) := ‖H(z)‖2.

ψ is continuously differentiable on R++ × Rn × Rmd and strongly semismooth on
R×Rn ×Rmd. Define β : R+ ×Rn ×Rmd → R+ by

β(z) := γmin{1, ψ(z)}.

Let

Ω := {z = (t, x, y) ∈ R×Rn ×Rmd | t ≥ β(z)t̄ }.

Then, because for any z ∈ R × Rn × Rmd, β(z) ≤ γ < 1, it follows that for any
(x, y) ∈ Rn ×Rmd,

(t̄, x, y) ∈ Ω.

Algorithm 4.1.
Step 0. Choose constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let z0 := (t̄, x0, y0) ∈ R++ ×

Rn ×Rmd and k := 0.
Step 1. If H(zk) = 0, then stop. Otherwise, let βk := β(zk).
Step 2. Compute ∆zk := (∆tk,∆xk,∆yk) ∈ R×Rn ×Rmd by

H(zk) +H ′(zk)∆zk = βkz̄.(4.11)

Step 3. Let jk be the smallest nonnegative integer j satisfying

ψ(zk + δj∆zk) ≤ [1− 2σ(1− γt̄ )δj ]ψ(zk).(4.12)

Define zk+1 := zk + δjk∆zk.
Step 4. Replace k by k + 1 and go to Step 1.
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Remark. We can solve (4.11) in the following way: Let ∆tk = −tk + βk t̄. Solve

B(zk)∆xk = −A(Imd − P (zk))−1(yk − pk + ∆tkE(zk)) + (Ayk − (tk + ∆tk)xk)

(4.13)

to get ∆xk, where B(zk) is defined in (4.10) and pk = p(tk, yk + b−ATxk). Then

∆yk = −(Imd − P (zk))−1P (zk)AT∆xk − (Imd − P (zk))−1(yk − pk + ∆tkE(zk)).

Equation (4.13) is an n-dimensional symmetric positive definite linear system.
From Proposition 4.5 of [28] and Lemma 4.1 of [32] we have the following.
Proposition 4.2. Algorithm 4.1 is well defined at the kth iteration and generates

an infinite sequence {zk = (tk, xk, yk)}. Moreover, 0 < tk+1 ≤ tk ≤ t̄ and zk ∈ Ω.
For any given t ∈ R, define ψt(x, y) : Rn ×Rmd → R+ by

ψt(x, y) = ‖G(z)‖2.(4.14)

It is easy to see that for any fixed t ∈ R++, ψt is continuously differentiable with the
gradient given by

∇ψt(x, y) = 2(G′
(x,y)(z))

TG(z),(4.15)

where

G′
(x,y)(z) =

( −tIn A
P (z)AT Imd − P (z)

)
,(4.16)

and P (z) is defined in (4.5). By repeating the proof of Lemma 4.1, G′
(x,y)(z) is

nonsingular at any point z = (t, x, y) ∈ R++ × Rn × Rmd. For any z = (t, x, y) ∈
R×Rn ×Rmd,

ψ(z) = t2 + ψt(x, y).(4.17)

It follows from Lemma 2.6 that we have the following.
Lemma 4.3. The set S = {(x, y) ∈ Rn × Rmd : ψ0(x, y) = 0} is nonempty and

bounded.
Lemma 4.4.
(i) For any t > 0 and α > 0, the level set

Lt(α) = {(x, y) ∈ Rn ×Rmd : ψt(x, y) ≤ α}

is bounded.
(ii) For any 0 < t1 ≤ t2 and α > 0, the level set

L[t1,t2](α) = {(x, y) ∈ Rn ×Rmd : ψt(x, y) ≤ α, t ∈ [t1, t2]}

is bounded.
Proof. (i) For any (x, y) ∈ Lt(α),

ψt(x, y) = (Ay − tx)2 +

m∑
i=1

(
yi − p(t, yi + bi −ATi x)

)2 ≤ α.
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So

m∑
i=1

(
yi − p(t, yi + bi −ATi x)

)2 ≤ α,(4.18)

and

(Ay − tx)2 ≤ α.(4.19)

From (4.18) y is bounded. It follows from (4.19) that x is bounded. Hence Lt(α) is
bounded. Similarly, we can prove that (ii) holds.

It follows from Lemma 4.4(i) that we have the following.
Corollary 4.5. For any t > 0, ψt(x, y) is coercive, i.e.,

lim
‖(x,y)‖→+∞

ψt(x, y) = +∞.

Theorem 4.6.
(i) An infinite sequence {zk} ⊆ R × Rn × Rmd is generated by Algorithm 4.1,

and

lim
k→+∞

H(zk) = 0 and lim
k→+∞

tk = 0.(4.20)

Hence each accumulation point, say, z∗ = (0, x∗, y∗), of {zk} is a solution of
H(z) = 0, and x∗ and y∗ are optimal solutions to problems (1.1) and (2.3),
respectively.

(ii) The sequence {zk} is bounded. Hence there exists at least an accumulation
point, say, z∗ = (0, x∗, y∗), of {zk} such that x∗ and y∗ are optimal solutions
to problems (1.1) and (2.3), respectively.

(iii) If problem (1.1) has a unique solution x∗, then

lim
k→+∞

xk = x∗.

Proof. The proof of (i) and (ii) is similar to that of Theorem 4.5 in [26], so we
omit it. It is follows from (ii) that (iii) holds.

Let z∗ = (0, x∗, y∗) and define

A(z∗) = {limH ′(tk, xk, yk) : tk ↓ 0+, xk → x∗ and yk → y∗}.(4.21)

Clearly, A(z∗) ⊆ ∂H(z∗).
Lemma 4.7. If all V ∈ A(z∗) are nonsingular, then there is a neighborhood N(z∗)

of z∗ and a constant C such that for any z = (t, x, y) ∈ N(z∗) with t �= 0, H ′(z) is
nonsingular and

‖(H ′(z))−1‖ ≤ C.

Proof. From Lemma 4.1, for any z = (t, x, y) ∈ N(z∗) with t �= 0, H ′(z) is
nonsingular. If the conclusion is not true, then there is a sequence {zk = (tk, xk, yk)}
with all tk �= 0 such that zk → z∗, and ‖(H ′(zk))−1‖ → +∞. Since H is locally
Lipschitzian, ∂H is bounded in a neighborhood of z∗. By passing to a subsequence,
we may assume that H ′(zk) → V . Then V must be singular, a contradiction to the
assumption of this lemma. This completes the proof.
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Theorem 4.8. Suppose that z∗ = (0, x∗, y∗) is an accumulation point of the
infinite sequence {zk} generated by Algorithm 4.1 and all V ∈ A(z∗) are nonsingular.
Then the whole sequence {zk} converges to z∗ quadratically.

Proof. First, from Theorem 4.6 z∗ is a solution of H(z) = 0. Then, from Lemma
4.7, for all zk sufficiently close to z∗,

‖H ′(zk)−1‖ = O(1).

Because H is strongly semismooth at z∗, from Lemma 1.1, for zk sufficiently close to
z∗,

‖zk + ∆zk − z∗‖ = ‖zk +H ′(zk)−1[−H(zk) + βkz̄]− z∗‖
= O(‖H(zk)−H(z∗)−H ′(zk)(zk − z∗)‖+ βk t̄ )
= O(‖zk − z∗‖2) +O(ψ(zk)),

(4.22)

and H is locally Lipschitz continuous near z∗, i.e., for all zk close to z∗,

ψ(zk) = ‖H(zk)‖2 = O(‖zk − z∗‖2).(4.23)

Therefore, from (4.22) and (4.23), for all zk sufficiently close to z∗,

‖zk + ∆zk − z∗‖ = O(‖zk − z∗‖2).(4.24)

By following the proof of Theorem 3.1 in [27], for all zk sufficiently close to z∗, we
have

‖zk − z∗‖ = O(‖H(zk)−H(z∗)‖).(4.25)

Hence, for all zk sufficiently close to z∗, we have

ψ(zk + ∆zk) = ‖H(zk + ∆zk)‖2
= O(‖zk + ∆zk − z∗‖2)
= O(‖zk − z∗‖4)
= O(‖H(zk)−H(z∗)‖4)
= O(ψ(zk)2).

(4.26)

Therefore, for all zk sufficiently close to z∗ we have

zk+1 = zk + ∆zk.(4.27)

From (4.27) and (4.24),

‖zk+1 − z∗‖ = O(‖zk − z∗‖2).(4.28)

This completes the proof.
Next, we study under what conditions all the matrices V ∈ A(z∗) are nonsingular

at a solution point z∗ = (0, x∗, y∗) of H(z) = 0.
Proposition 4.9. Suppose that ‖bi − ATi x∗‖ > 0 for i = 1, . . . ,m. Then all

V ∈ A(z∗) are nonsingular.
Proof. Because ‖bi−ATi x∗‖ > 0 for i = 1, . . . ,m, ‖y∗i ‖ = 1 for i = 1, . . . ,m. From

(2.8) we have

‖y∗i + bi −ATi x∗‖ > 1 for i = 1, . . . ,m.
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Let si = yi+ bi−ATi x and s∗i = y∗i + bi−ATi x∗ for i = 1, . . . ,m. It is easy to see that
for any V ∈ A(z∗), there exists a sequence {zk = (tk, xk, yk)} such that

V =


 1 0 0
−x∗ 0 A
E∗ P ∗AT Imd − P ∗


 ,

where

E∗ = [E∗
1 , . . . , E

∗
m]T ,

(E∗
i )
T = lim

tk↓0+

xk→x∗
yk
i →y∗

i

∇φt(tk, ski ) for i = 1, . . . ,m,

and

P ∗ = Diag

(
1

‖s∗i ‖
Id − 1

‖s∗i ‖3
s∗i (s

∗
i )
T

)
.

Let

M =

(
0 A

P ∗AT Imd − P ∗

)
.

Hence, proving V is nonsingular is equivalent to proving M is nonsingular. Let

P ∗
i =

1

‖s∗i ‖
Id − 1

‖s∗i ‖3
s∗i (s

∗
i )
T .

From Proposition 3.3, there exists a d× d matrix B∗
i such that

P ∗
i = BiDiag(λij)B

T
i ,

where 0 < λij < 1 for j = 1, . . . , d− 1 and λid = 0, and BiB
T
i = Id.

Let B = Diag(Bi) and D = Diag
(
Diag(λij)

)
. Then

M =

(
In 0
0 B

)(
0 AB

D(AB)T Imd −D
)(

In 0
0 BT

)
.

Let

N =

(
0 AB

D(AB)T Imd −D
)
.

Then, proving M is nonsingular is equivalent to proving N is nonsingular.
Let B̄ = Diag(B̄i), where B̄i, i = 1, . . . ,m, is a d × (d − 1) matrix obtained by

deleting the dth column ofBi, and q = [qT1 , q
T
2 ]T = [qT1 , q11, . . . , q1d, . . . , qm1, . . . , qmd]

T

∈ Rn ×Rmd.
Let Nq = 0. Then we have

ABq2 = 0,(4.29)
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and

D(AB)T q1 + (Imd −D)q2 = 0.(4.30)

Let

q̄2 = [q11, . . . , q1(d−1), . . . , qm1, . . . , qm(d−1)]
T ∈ Rm(d−1),

and

D̄ = Diag
(
Diag(λij , j = 1, . . . , d− 1)

)
.

From (4.30) we have

qid = 0 for i = 1, . . . ,m,(4.31)

and

D(AB̄)T q1 + (Im(d−1) − D̄)q̄2 = 0.(4.32)

Then, from (4.29) and (4.31),

AB̄q̄2 = 0.(4.33)

By following the proof of Lemma 4.1, we have q1 = 0 and q̄2 = 0. Thus q = 0. This
implies that N is nonsingular. So V is nonsingular. This completes the proof.

Proposition 4.10. Let M0(z
∗) = {i : ‖bi − ATi x∗‖ = 0, i = 1, . . . ,m}. If

Ā = [Ai, i ∈ M0(z
∗)] is an n × n nonsingular matrix and ‖y∗i ‖ < 1 for i ∈ M0(z

∗),
then all V ∈ A(z∗) are nonsingular.

Proof. Without loss of generality, we suppose that ‖bi−ATi x∗‖ = 0 for i = 1, . . . , j
and ‖bi−ATi x∗‖ > 0 for i = j+1, . . . ,m. Then ‖y∗i ‖ < 1 for i = 1, . . . , j and ‖y∗i ‖ = 1
for i = j + 1, . . . ,m. From (2.8) we have

‖y∗i + bi −ATi x∗‖ > 1, for i = j + 1, . . . ,m.

Let si = yi+ bi−ATi x and s∗i = y∗i + bi−ATi x∗ for i = 1, . . . ,m. It is easy to see that
for any V ∈ A(z∗), there exists a sequence {zk = (tk, xk, yk)} such that

V =


 1 0 0
−x∗ 0 A
E∗ P ∗AT Imd − P ∗


 ,

where

E∗ = [E∗
1 , . . . , E

∗
m]T ,

(E∗
i )
T = lim

tk↓0+

xk→x∗
yk
i →y∗

i

∇φt(tk, ski ) for i = 1, . . . ,m,

and

P ∗ = Diag (P ∗
i ) ,
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P ∗
i = Id for i = 1, . . . , j,

P ∗
i =

1

‖s∗i ‖
Id − 1

‖s∗i ‖3
s∗i (s

∗
i )
T for i = j + 1, . . . ,m.

Let

M =

(
0 A

P ∗AT Imd − P ∗

)
.

Hence, proving V is nonsingular is equivalent to proving M is nonsingular.
Let

Ã = [Aj+1, . . . , Am],

D = Diag (P ∗
i , i = j + 1, . . . ,m) ,

and

q = [qT1 , q
T
2 , q

T
3 ]T ∈ Rn ×Rn ×Rmd−n.

Let Mq = 0. Then we have

Āq2 + Ãq3 = 0,(4.34)

ĀT q1 = 0,(4.35)

and

DÃT q1 + (Imd−n −D)q3 = 0.(4.36)

From (4.35) we have q1 = 0. Then, from (4.36), q3 = 0. It follows from (4.34) that
q2 = 0. Thus q = 0. This implies that M is nonsingular. So V is nonsingular. This
completes the proof.

By combining Theorem 4.8 and Propositions 4.9 and 4.10 we can directly obtain
the following results.

Theorem 4.11. Suppose that z∗ = (0, x∗, y∗) is an accumulation point of the
infinite sequence {zk} generated by Algorithm 4.1. If ‖bi−ATi x∗‖ > 0 for i = 1, . . . ,m,
then the whole sequence {zk} converges to z∗, and the convergence is quadratic.

Theorem 4.12. Suppose that z∗ = (0, x∗, y∗) is an accumulation point of the
infinite sequence {zk} generated by Algorithm 4.1. Let M0(z

∗) = {i : ‖bi − ATi x∗‖ =
0, i = 1, . . . ,m}. If Ā = [Ai, i ∈M0(z

∗)] is an n×n nonsingular matrix and ‖y∗i ‖ < 1
for i ∈M0(z

∗), then the whole sequence {zk} converges to z∗ quadratically.
5. Applications. In this section, we will apply the algorithm proposed in section

4 to solve the ESFL problem, the EMFL problem, and the SMT problem under a given
topology.

The ESFL problem. Let a1, a2, . . . , am be m (m ≥ 2) points in Rd, the d-
dimensional Euclidean space. Let ω1, ω2, . . . , ωm be m positive weights. Find a point
x ∈ Rd that minimizes

f(x) =

m∑
i=1

ωi‖x− ai‖.(5.1)
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This is called the ESFL problem. For more information on this problem, see [23].
The ESFL problem can be easily transformed into a special case of problem (1.1)

where bi = ωiai and ATi = ωiId, i = 1, 2, . . . ,m. Therefore, it follows from Theorems
4.6, 4.11, and 4.12 that we have the following theorem.

Theorem 5.1. For the ESFL problem, assume that an infinite sequence {zk} ⊆
R×Rd ×Rmd is generated by Algorithm 4.1. Then the following hold:

(i) There exists at least an accumulation z∗ = (0, x∗, y∗) such that x∗ is an
optimal solution to the ESFL problem.

(ii) Suppose ωi‖x∗ − ai‖ > 0 for i = 1, . . . ,M . Then the whole sequence {zk}
converges to z∗ quadratically.

(iii) Suppose ωi‖x∗ − ai‖ = 0 for some i and ωj‖x∗ − aj‖ > 0 for all j �= i, i.e.,
only the ith term is active, and ‖y∗i ‖ < 1. Then the whole sequence {zk}
converges to z∗ quadratically.

The EMFL problem. Let a1, a2, . . . , aM be M points in Rd, the d-dimensional
Euclidean space. Let ωji, j = 1, 2, . . . , N , i = 1, 2, . . . ,M , and υjl, 1 ≤ j ≤ l ≤ N , be
given nonnegative numbers. Find a point x = (x1, x2, . . . , xN ) ∈ RdN that minimizes

f(x) =
N∑
j=1

M∑
i=1

ωji‖xj − ai‖+
∑

1≤j≤l≤N
υjl‖xj − xl‖.(5.2)

This is the so-called EMFL problem. For ease of notation, we assume that υjj = 0
for j = 1, 2, . . . , N and υjl = υlj for 1 ≤ j ≤ l ≤ N .

To transform the EMFL problem (5.2) into an instance of problem (1.1), we
simply do the following. Let x = (x1, x2, . . . , xN ). It is clear that x ∈ Rn where
n = dN . For each nonzero ωji, there is a corresponding term of the Euclidean norm
‖c(ωji)−A(ωji)

Tx‖ where c(ωji) = ωjiai, and A(ωji)
T is a row of N blocks of d× d

matrices whose jth block is ωjiId and whose other blocks are zero. For each nonzero
υjl, there is a corresponding term of the Euclidean norm ‖c(υjl) − A(υjl)

Tu‖ where
c(υjl) = 0 and A(υjl)

T is a row of N blocks of d × d matrices whose jth and lth
blocks are −υjlId and υjlId, respectively, and whose other blocks are zero. Define
the index set Σ = {1, 2, . . . , τ}, where the set α = {α1, α2, . . . , ατ} is in one-to-one
correspondence with the set of nonzero weights ωji and υjl, and then write problem
(5.2) as follows.

Find a point x = (x1, x2, . . . , xN ) ∈ RdN that minimizes

f(x) =

τ∑
i=1

‖ci −ATi x‖,(5.3)

where for i = 1, 2, . . . , τ , ci ∈ Rd, and Ai ∈ RdN×d. Therefore, it follows from
Theorems 4.6, 4.11, and 4.12 that we have the following theorem.

Theorem 5.2. For the EMFL problem, assume that an infinite sequence {zk} ⊆
R×RdN ×Rτd is generated by Algorithm 4.1. Then the following hold:

(i) There exists at least an accumulation z∗ = (0, x∗, y∗) such that x∗ is an
optimal solution to the EMFL problem.

(ii) Suppose ‖bi − ATi x∗‖ > 0 for i = 1, . . . , τ . Then the whole sequence {zk}
converges to z∗ quadratically.

(iii) Let Σ0(x
∗) = {i ∈ Σ : ‖bi − ATi x∗‖ = 0}. Assume that |Σ0(x

∗)| = N , the
matrices Ai, i ∈ Σ0(x

∗) are linearly independent and ‖y∗i ‖ < 1 for i ∈ Σ0(x
∗).

Then the whole sequence {zk} converges to z∗ quadratically.
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The SMT problem. The Euclidean SMT problem is given by a set of points
P = {p1, p2, . . . , pN} in the Euclidean plane and asks for the shortest planar straight-
line graph spanning P . The solution takes the form of a tree, called the SMT, that
includes all the given points, called regular points, along with some extra vertices,
called Steiner points. It is known that there are at most N − 2 Steiner points and the
degree of each Steiner point is at most 3; see [17]. A full Steiner topology of point set
P is a tree graph whose vertex set contains P and N − 2 Steiner points and where
the degree of each vertex in P is exactly 1 and the degree of each Steiner vertex is
exactly 3.

Computing an SMT for a given set of N points in the Euclidean plane is NP-hard.
However, the problem of computing the shortest network under a given full Steiner
topology can be solved efficiently. We can transform this problem into the following
problem; see [35] for more detail.

Find a point x = (x1, x2, . . . , xN−2) ∈ R2N−4 that minimizes

f(x) =

m∑
i=1

‖ci −ATi x‖,(5.4)

where for i = 1, 2, . . . ,m, ci ∈ R2, and Ai ∈ R2(N−2)×2. Therefore, it follows from
Theorems 4.6, 4.11, and 4.12 that we have the following theorem.

Theorem 5.3. For the problem of computing the shortest network under a given
full Steiner topology, assume that an infinite sequence {zk} ⊆ R×R2N−4×R4N−6 is
generated by Algorithm 4.1. Then the following hold:

(i) There exists at least an accumulation z∗ = (0, x∗, y∗) such that x∗ is an
optimal solution to the EMFL problem.

(ii) Suppose ‖ci − ATi x∗‖ > 0 for i = 1, . . . ,m. Then the whole sequence {zk}
converges to z∗ quadratically.

(iii) Let M0(x
∗) = {i : ‖bi−ATi x∗‖ = 0, i = 1, 2, . . . ,m}. Assume that |M0(x

∗)| =
N , the matrices Ai, i ∈ M0(x

∗), are linearly independent and ‖y∗i ‖ < 1 for
i ∈M0(x

∗). Then the whole sequence {zk} converges to z∗ quadratically.
6. Numerical experiments. Algorithm 4.1 was implemented in MATLAB and

was run on a DEC Alpha Server 8200 for the following examples, where Examples
1(a)–5 and 8 are taken from [25] and Examples 6 and 7 from [35]. Throughout the
computational experiments, unless otherwise stated, we used the following parame-
ters:

δ = 0.5, σ = 0.0005, t̄ = 0.002, y0 = 0, and γ = 0.5.

We terminated our iteration when one of the following conditions was satisfied:
(1) k > 50;
(2) relgap(xk, yk) ≤ 1e-8, ‖Ay‖ ≤ 1e-12, and max

1≤i≤m
‖yi‖ ≤ 1+1e-8;

(3) ls > 20,
where ls was the number of line search at each step and

relgap(x, y) =

∣∣∑m
i=1 ‖bi −ATi x‖ − bT y

∣∣∑m
i=1 ‖bi −ATi x‖+ 1

.

The numerical results which we obtained are summarized in Table 1. In this
table, n, d, and m specify the problem dimensions, Iter denotes the number of it-
erations, which is also equal to the number of Jacobian evaluations for the function
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Table 1
Numerical results for Algorithm 4.1.

Example n d m Iter NH N0 f(xk) relgap ‖Ay‖ max
1≤i≤m

‖yi‖
1(a) 2 2 3 7 12 1 2.828427 0 1.11e-16 1.00
1(b) 2 2 3 6 12 1 2.828427 4.60e-12 1.19e-13 1.00
1(c) 2 2 3 6 12 1 2.828427 4.60e-12 1.19e-13 1.00
1(d) 2 2 3 6 12 1 2.828427 4.58e-12 1.18e-13 1.00
2 2 2 3 7 14 0 2.732051 0 0 1.00
3 2 2 3 7 12 0 2.828427 1.16e-16 0 1.00
4 2 2 3 7 12 1 2.828427 1.74e-15 1.11e-16 1.00
5 10 2 55 12 27 2 226.2084 2.84e-14 6.26e-13 1.00
6 16 2 17 9 20 4 25.35607 5.80e-15 2.40e-15 1.00
7 4 2 5 4 5 1 400.0200 3.83e-15 6.75e-15 1.00
8 3 3 100 11 44 0 558.6450 8.13e-16 3.83e-14 1.00

Table 2
Output of Algorithm 4.1 for Example 5.

k relgap ‖Ayk‖ max
1≤i≤m

‖yki ‖ tk N0 δjk

1 4.91e-01 1.47e-03 3.35e+00 1.50e-03 0 5.0e-01
2 4.72e-01 1.72e-03 3.28e+00 1.48e-03 0 3.1e-02
3 4.70e-01 1.75e-03 3.27e+00 1.48e-03 0 3.9e-03
4 1.04e-01 1.08e-02 2.84e+00 1.00e-03 0 1.0e+00
5 1.08e-03 1.07e-02 3.80e+00 1.00e-03 0 1.0e+00
6 4.27e-03 9.21e-03 1.56e+00 1.00e-03 0 1.0e+00
7 4.00e-04 3.74e-03 1.10e+00 4.07e-04 0 1.0e+00
8 7.82e-05 3.20e-04 1.03e+00 3.44e-05 0 1.0e+00
9 4.40e-06 7.91e-06 1.02e+00 9.00e-07 0 1.0e+00

10 1.66e-07 3.79e-06 1.00e+00 4.13e-07 2 1.0e+00
11 1.08e-09 1.30e-10 1.00e+00 1.44e-11 2 1.0e+00
12 2.84e-14 6.26e-13 1.00e+00 6.82e-14 2 1.0e+00

H, NH denotes the number of function evaluations for the function H, N0 indicates
the number of norms that are zero at the optimal solution, more precisely, which is
interpreted as being zero if it is less than the tolerance 10−10, f(xk) denotes the value
of f(x) at the final iteration, and relgap denotes the relative duality gap. The results
reported in Table 1 show that this method is extremely promising. The algorithm
was able to solve all examples in less than 15 iterations. Tables 2 and 3 give more
detailed results for Examples 5 and 6, which show the quadratic convergence of this
method. For Examples 6 and 7, the number of iterations required by our algorithm
is fewer than that required by the algorithm proposed in [35].

The first few examples are of the following form:

n = 2, d = 2, m = 3,
A1 = I, A2 = ωI, A3 = I,
b1 = [−1, 0]T , b2 = [0, ω]T , b3 = [1, 0]T .

(6.1)

Example 1(a). This is given by (6.1) with ω = 2 and solution x∗ = [0.0, 1.0]T .
The starting point x0 = [3.0, 2.0]T .

Example 1(b). Same as Example 1(a), except x0 = [1.0, 1.0× 10−6]T .
Example 1(c). Same as Example 1(a), except x0 = [1.000001,−1.0× 10−6]T .
Example 1(d). Same as Example 1(a), except x0 = [1.001,−1.0× 10−3]T .
Example 2. This is given by (6.1) with ω = 1 and solution x∗ = [0.0, 0.577350]T .

The starting point x0 = [3.0, 2.0]T .
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Table 3
Output of Algorithm 4.1 for Example 6.

k relgap ‖Ayk‖ max
1≤i≤m

‖yki ‖ tk N0 δjk

1 7.52e-01 1.97e-03 1.65e+00 1.75e-03 0 2.5e-01
2 5.69e-01 1.45e-02 1.62e+00 1.66e-03 0 1.2e-01
3 2.25e-01 2.60e-02 1.44e+00 1.49e-03 0 2.5e-01
4 1.77e-01 2.37e-02 1.42e+00 1.43e-03 0 1.2e-01
5 4.39e-02 1.70e-02 1.17e+00 1.00e-03 0 1.0e+00
6 5.22e-03 4.05e-03 1.03e+00 2.26e-04 0 1.0e+00
7 1.01e-04 6.83e-05 1.00e+00 3.56e-06 0 1.0e+00
8 4.10e-08 1.62e-08 1.00e+00 8.36e-10 2 1.0e+00
9 5.80e-15 2.40e-15 1.00e+00 1.34e-16 4 1.0e+00

Table 4
Weights: New to new and new to existing.

New Existing
New 1 2 3 4 5 1 2 3 4 5 6 7 8 9

1 1 1 1 1 2 2 1 1 1 1 1 1 1
2 1 10−2 10−1 1 1 2 2 1 1 1 1 1
3 10−2 10−1 1 1 1 1 2 2 1 1 1
4 10−1 1 1 1 1 1 1 2 2 1
5 1 1 1 1 1 1 1 1 2

Table 5
Existing facility locations.

1 2 3 4 5 6 7 8 9

Component 1 0 2 6 6 8 7 0 0 0
Component 2 0 4 2 10 8 7 1 2 3

Example 3. This is given by (6.1) with ω = 1.414 and solution x∗ = [0.0, 0.999698]T .
The starting point x0 = [3.0, 2.0]T .

Example 4. This is given by (6.1) with ω = 1.415 and solution x∗ = [0.0, 1.0]T .
The starting point x0 = [3.0, 2.0]T .

Example 5. This is a multifacility location problem. The objective is to choose five
new facilities in the plane (i.e., vectors in R2) to minimize a weighted sum of distances
between each pair of new facilities plus a weighted sum of distances between each of
the new facilities and each of the existing facilities (i.e., given vectors in R2). Tables
4 and 5 complete the description of the problem. The solution is

x∗ = [2.03865, 3.65117; 2.24659, 3.75886; 2.24659,
3.75886; 1.45825, 2.96083; 2.03865, 3.65117]T .

The starting point x0 = [1, 1; 1, 1; 1, 1; 1, 1; 1, 1]T .
Example 6. This is an SMT problem. This example contains 10 regular points.

The coordinates of the 10 regular points are given in Table 6. The tree topol-
ogy is given in Table 6 where for each edge, indices of its two vertices are shown
next to the index of the edge. This topology is the best topology obtained by a
branch-and-bound algorithm. Therefore, the shortest network under this topology
is actually the SMT problem for the given 10 regular points. The starting point
x0 = [1, 1; 1, 1; 1, 1; 1, 1; 1, 1; 1, 1; 1, 1; 1, 1]T .

Example 7. This is an SMT problem. This example contains four regular points.
The coordinates of the four regular points and the tree topology are given in Table 7.
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Table 6
The topology and the coordinates of the ten regular point in Example 6.

Point-index x-coord y-coord Point-index x-coord y-coord
9 2.309469 9.208211 14 7.598152 0.615836

10 0.577367 6.480938 15 8.568129 3.079179
11 0.808314 3.519062 16 4.757506 3.753666
12 1.685912 1.231672 17 3.926097 7.008798
13 4.110855 0.821114 18 7.436490 7.683284

Edge-index ea-index eb-index Edge-index ea-index eb-index
1 9 7 10 18 8
2 10 1 11 5 6
3 11 2 12 6 4
4 12 3 13 4 3
5 13 4 14 3 2
6 14 5 15 2 1
7 15 5 16 1 7
8 16 6 17 7 8
9 17 8

Table 7
The topology and the coordinates of the four regular point in Example 7.

Point-index x-coord y-coord Point-index x-coord y-coord
3 −100.0 1.0 5 −100.0 −1.0
4 100.0 1.0 6 100.0 −1.0

Edge-index ea-index eb-index Edge-index ea-index eb-index
1 3 1 4 6 2
2 4 1 5 1 2
3 5 2

The starting point x0 = [1, 1; 1, 1]T .
Example 8.

n = 3, d = 3, m = 100.

Ai = I, i = 1, 2, . . . ,m, except Ai = 100I if i mod 10 = 1.

The elements of bi, i = 1, 2, . . . ,m, are generated randomly. We use the following
pseudorandom sequence:

ψ0 = 7, ψi+1 = (445ψi + 1) mod 4096, i = 1, 2, . . . ,

ψ̄i =
ψi

4096
, i = 1, 2, . . . .

The elements of bi, i = 1, 2, . . . ,m, are successively set to be ψ̄1, ψ̄2, . . . in the or-
der (b1)1, . . . , (b1)d, (b2)1, . . . , (bm)d, except that the appropriate random number is
multiplied by 100 to given (bi)j if i mod 10 = 1.

The solution x∗ = [0.586845, 0.480333, 0.509340]T . The initial point x0 is set to
bm.

7. Conclusions. In this paper we presented a smoothing Newton method for
the problem of minimizing a sum of Euclidean norms by applying the smoothing
Newton method proposed by Qi, Sun, and Zhou [28] directly to a system of strongly
semismooth equations derived from primal and dual feasibility and a complementarity
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condition, and proved that this method was globally and quadratically convergent. It
is deserved to point out that in our method we can control the smoothing parameter
t in such a way that it converges to zero neither too quickly nor too slowly by using a
particularly designed Newton equation and a line search model; see (4.11) and (4.12).
Numerical results indicated that our algorithm was extremely promising. It will be
an interesting work to compare this method with some existing methods, e.g., the
primal-dual interior-point method proposed in [3]. However, we have been unable to
do this because no code is available.

Consider the problem of minimizing a sum of Euclidean norms subject to linear
equality constraints:

min

{
m∑
i=1

‖bi −ATi x‖, ETx = be, x ∈ Rn
}
,(7.1)

where E ∈ Rn×d is an n × d matrix with full column rank and be ∈ Rd. In [2],
Andersen and Christiansen transformed the problem (7.1) to the problem (1.1) based
on the l1 penalty function approach. So we can also apply the algorithm proposed in
section 4 to solve problem (7.1).
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1. Introduction. In this paper we consider a system of inequalities

fi(x) ≥ 0, 1 ≤ i ≤ m,

where fi : R
n → R is a polynomial or, more generally, an analytic function. As in

Cucker and Dedieu [8], we are motivated by approximate computations and finite
precision arithmetic. To know whether, on input x ∈ R

n, this system of inequalities
is satisfied, we first compute the quantities fi(x), 1 ≤ i ≤ m, and then we check their
signs. If we use finite precision arithmetic, as is often used in scientific computing, due
to round-off errors, instead of fi(x) we have computed a nearby quantity fi(x) − εi.
Here εi is a “small” real number which depends on the program computing fi(x) and
also on the characteristics of the arithmetic. Thus, instead of exact inequalities we
check the approximate system

fi(x) ≥ εi, 1 ≤ i ≤ m.

What can we deduce from this set of inequalities?
To a vector a ∈ R

m we associate its positive part a+ and its negative part a−.
The ith coordinate of a+ (resp., a−) is ai (resp., 0) when ai is nonnegative and 0
(resp., −ai) otherwise so that, as for real numbers, a = a+ − a−. In our context we
use ‖f(x)−‖ to measure the deviation of the vector f(x) from positivity.

To begin we show that when ‖f(x)−‖ is small enough, there exists a certain
y ∈ R

n close to x such that the system of inequalities is satisfied exactly at y:

fi(y) ≥ 0, 1 ≤ i ≤ m.

We also give an estimate for the distance of y from x in terms of ‖f(x)−‖ (see Theorem
1). To be as general as possible, we also study the following case of strict inequalities:

fi(x) ≥ 0, 1 ≤ i ≤ p, and fi(x) > 0, p+ 1 ≤ i ≤ m,

and we obtain in this context a similar result: when ‖f(x)−‖ is small enough, then
the corresponding exact system is satisfied at a nearby y (see Theorem 2).
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Systems of inequalities are frequently found in mathematical programming. The
sets of constraints of mathematical programs are often described by such systems.
The Lagrange multiplier rule is another example and, more generally, so is the com-
plementarity problem.

Since these systems involve equalities and inequalities, we also study the following
case of such mixed systems:

fi(x) ≥ 0, 1 ≤ i ≤ p, fi(x) > 0, p+ 1 ≤ i ≤ m, and gj(x) = 0, 1 ≤ j ≤ q.

We consider perturbations of both equalities and inequalities and we prove the exis-
tence of a nearby y satisfying exactly this system (see Theorem 3).

Next we study the exact feasibility of a system of inequalities. To the system
fi(x) ≥ 0, 1 ≤ i ≤ m we associate the partition R

n = f≥0 ∪ (Rn \ f≥0
)
, where f≥0 is

the set of vectors x ∈ R
n satisfying the system fi(x)≥ 0. Its boundary is denoted by

Σ = ∂f≥0.

The inverse of the distance of x ∈ R
n from Σ is denoted by

µ(x) = Dist(x,Σ)−1.

In Corollary 2 we deduce the exact feasibility of the system at x from its approximate
feasibility: if ‖f(x)−‖ is small enough and if µ(x) is small enough, then

fi(x) ≥ 0, 1 ≤ i ≤ m.

But let us be more precise.

2. Main results. We denote by σ the sum of the following series:

σ =
∞∑
k=0

(
1

2

)2k−1

= 1.63284 . . . .

To an analytic map f : R
n → R

m and to x ∈ R
n we associate the two following

numbers:

Γ(f, x) = sup
k≥2

∥∥∥∥Dkf(x)k!

∥∥∥∥
1

k−1

and

δ(f, x) =
∥∥∥(Df(x)Df(x)∗ + 4Diag(f(x)+))−1

∥∥∥ 1
2

.

We also let δ(f, x) = ∞ when the matrix Df(x)Df(x)∗ + 4Diag(f(x)+) is singular.
Here A∗ denotes the adjoint of the matrix A, ‖ ‖ is the operator norm associated with
the usual Euclidean norms in Rn and Rm, and Diag(d) is the diagonal matrix with
diagonal entries d1, d2, . . . . Comments about δ(f, x) are given in Remark 1 below.

Γ(f, x) is always finite because f is analytic. If we denote by R(f, x) the radius
of convergence of the Taylor series of f at x, then R(f, x) ≥ 1/Γ(f, x) : inside the ball
about x with radius 1/Γ(f, x) the Taylor series converges.

Our first result is the following.
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Theorem 1. Let x ∈ R
n be such that

‖f(x)−‖ ≤ 1

8(1 + Γ(f, x))δ(f, x)max(1, δ(f, x))
.

Then the set f≥0 is nonempty and

Dist(x, f≥0) ≤ σδ(f, x)‖f(x)−‖.

When f is a polynomial system with degree fi ≤ 2 this result holds when

‖f(x)−‖ ≤ 1

4(2 + ‖D2f(x)‖)δ(f, x)2 .

Remark 1. (1) When δ(f, x) =∞ this theorem is “empty”: f(x)− has to be equal
to 0, i.e., f(x) ≥ 0.

(2) The condition δ(f, x) = ∞ is not a “geometric” condition. By geometric we
mean a condition which depends only on the feasible set f≥0. For example, the two
systems

f1(x1, x2) = x
2
1 − x2

2 and f2(x1, x2) = x1

and

g1(x1, x2) = x1 + x2 and g2(x1, x2) = x1 − x2

define the same feasible set, but δ(f, (0, 0)) =∞ and δ(g, (0, 0)) <∞.
(3) The condition δ(f, x) = ∞ may be satisfied in the interior of the feasible set

f≥0. It is the case at x = (0, 0) for the system

f1(x1, x2) = x
2
1 + x

2
2 and f2(x1, x2) = 1− x1.

(4) The proof of Theorem 1 (given in section 6) involves the introduction of
squared slack variables. We will consider F : Rn × R

m → R
m defined by

F (x, t) = (fi(x)− t2i )1≤i≤m.

It will be shown that DF (x, t) has rank m if and only if

DF (x, t)DF (x, t)∗ = Df(x)Df(x)∗ + 4Diag(t2i )

is nonsingular. The hypothesis δ(f, x) <∞ will ensure that DF (x,
√
f(x)+) has rank

m: this fact is crucial in our proof.
In the following we consider the case of a single inequality.
Corollary 1. Let f : Rn → R and x ∈ R

n be given. If

f(x)− ≤ ‖Df(x)‖min(1, ‖Df(x)‖)
8(1 + Γ(f, x))

,

then f≥0 is nonempty and

Dist(x, f≥0) ≤ σ‖Df(x)‖−1f(x)−.
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When f is a polynomial with degree f = 2, then this inequality holds as soon as

f(x)− ≤ ‖Df(x)‖2
4(2 + ‖D2f(x)‖) .

In the following we prove that f(x) ≥ 0 as soon as ‖f(x)−‖ and µ(x) are small.
Corollary 2. Let x ∈ R

n be such that

‖f(x)−‖ ≤ 1

8(1 + Γ(f, x))δ(f, x)max(1, δ(f, x))

and

µ(x) <
1

σδ(f, x)‖f(x)−‖ .

Then f(x) ≥ 0.
In Theorem 1 we do not consider the case of strict inequalities. This is achieved

in the following.
Theorem 2. Let x ∈ R

n be such that

‖f(x)−‖ ≤ 1

8(1 + Γ(f, x))δ(f, x)max(1, δ(f, x))
.

Let us also suppose that

fi(x) > (σδ(f, x)‖f(x)−‖)2

for each i in a certain set J ⊂ {1, . . . ,m}. Then there exists y ∈ f≥0 such that

fi(y) > 0 for each i ∈ J

and

‖x− y‖ ≤ σδ(f, x)‖f(x)−‖.

Another formulation of this theorem is given below.
Corollary 3. Let x ∈ R

n and ε ∈ R
m be given. Let us denote ε<0 the vector

in R
m with the ith component equal to εi when fi(x) < 0 and 0 otherwise. When the

three following conditions are satisfied:
• fi(x) + εi ≥ 0 for each i = 1, . . . , p,
• fi(x) > (σδ(f, x)‖ε<0‖)2 for each i = p+ 1, . . . ,m,
• ‖ε<0‖ ≤ 1/(8(1 + Γ(f, x))δ(f, x)max(1, δ(f, x))),

then, there exists y ∈ R
n such that

• fi(y) ≥ 0 for each i = 1, . . . , p,
• fi(y) > 0 for each i = p+ 1, . . . ,m,
• ‖x− y‖ ≤ σδ(f, x)‖ε<0‖.

Another interesting case to consider is given by a system of inequalities f(x) ≥ 0
defined on a submanifold E ⊂ R

n or on the set

E = {x ∈ R
n : gj(x) = 0, 1 ≤ j ≤ q}
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with g : R
n → R

q an analytic function. We consider here perturbations of both the
system of inequalities and the equalities defining E. We measure the deviation to
nonnegativity by the quantity ‖f(x)−‖ and the distance to E by the number ‖g(x)‖.
As in Theorem 2, we are seeking to know that there exists y ∈ Rn close to x such
that f(y) ≥ 0, fi(y) > 0 for any i ∈ J and g(y) = 0. This is achieved in Theorem 3.
Before stating this theorem we need more notation.

Let x ∈ Rn be given. We define Γ(f, g, x) as the value of Γ corresponding to the
map (f, g) : Rn → R

m×R
q.We also consider the following (m+ q)× (m+ q) matrix:

G(x) =

(
Df(x)Df(x)∗ +Diag(4f(x)+) Df(x)Dg(x)∗

Dg(x)Df(x)∗ Dg(x)Dg(x)∗

)

and we define δ(f, g, x) = ‖G(x)−1‖ 1
2 or ∞ when G(x) is singular.

Theorem 3. Let x ∈ R
n such that

(‖f(x)−‖2 + ‖g(x)‖2)1/2 ≤ 1

8(1 + Γ(f, g, x))δ(f, g, x)max(1, δ(f, g, x))
.

Let us also suppose that

fi(x) > (σδ(f, g, x)‖f(x)−‖)2

for each i in a certain set J ⊂ {1, . . . ,m}. Then there exists y ∈ R
n such that fi(y) ≥ 0

for any i = 1, . . . ,m, fi(y) > 0 for any i ∈ J , gj(y) = 0 for any j = 1, . . . , q, and

‖y − x‖ ≤ σδ(f, g, x)(‖f(x)−‖2 + ‖g(x)‖2)1/2.
In the following corollary we suppose the equality constraints are satisfied at x.

Let us define ΣE the boundary of f
≥0 ∩ E in E and, for any x ∈ E, µE(x) the inverse

of the distance of x from ΣE. In this context we have the following.
Corollary 4. Let x ∈ E be such that

‖f(x)−‖ ≤ 1

8(1 + Γ(f, g, x))δ(f, g, x)max(1, δ(f, g, x))
and µE(x) <

1

σδ(f, g, x)‖f(x)−‖ .

Then we have f(x) ≥ 0.
3. Comparison with other results. A first result involving perturbations of a

system of inequalities is due to Hoffman who considers linear inequalities. Hoffman’s
theorem was published for the first time in 1952 [14] and reconsidered by Güler,
Hoffman, and Rothblum in 1995 [12].

Theorem 4 (Hoffman). Let A ∈ R
m×n. Then there exists a scalar K(A), such

that for each b ∈ R
m for which the set A≤b = {x′ ∈ R

n : Ax′ ≤ b} is not empty and
for each x ∈ R

n

Dist(x,A≤b) ≤ K(A)‖(Ax− b)+‖.
There have been a number of generalizations of Hoffman’s theorem to nonlinear

cases. A first class of results uses a convexity assumption and is proved via convex
analysis. Robinson [22] extended Hoffman’s bound to a system of convex inequalities
defining a convex and bounded set with nonempty interior, Mangasarian [20] consid-
ered a closed convex set defined by a system of finitely many differentiable convex
inequalities, and Auslender and Crouzeix [1] extended Mangasarian’s result to convex
nondifferentiable functions. A recent paper in these directions is Lewis and Pang [16].
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Let f : Rn → R ∪ {∞} be an extended-valued closed proper convex function and
S the closed convex set defined by f(x) ≤ 0. We denote by f ′(x, d) the directional
derivative of f at x along a direction d and by N (x,S) the normal cone of S at a
vector x ∈ S. With these notations Lewis and Pang prove the following.

Theorem 5 (Lewis–Pang). The following statements are equivalent:

• Dist(x,S) ≤ γf(x)+ for any x ∈ R
n.

• For any x ∈ f−1(0) and d ∈ N (x,S)

f ′(x, d) ≥ γ−1‖d‖.

Another generalization of Hoffman’s theorem to a nonlinear and nonconvex case
may be obtained via Lojasiewicz’s inequality. This result was proved for the first
time by Lojasiewicz [17] for semianalytic or semialgebraic sets and functions and then
extended to the subanalytic case by Hironaka [13]. A good exposé of such questions
is contained in Bierstone and Milman [6].

Definition 1. A subset X of R
n is semialgebraic if there are real polynomials

Pi,j such that

X =

r⋃
i = 1

si⋂
j = 1

{x ∈ R
n | Pi,j(x) εi,j 0},

where εi,j ∈ {<,>,=}. A function f : X → R
m is semialgebraic when its graph is

itself semialgebraic.

The class of semialgebraic sets is stable for elementary set operations (union,
intersection, set difference) and also under projection (Tarsky–Seidenberg theorem).

Definition 2. A subset X of R
n is semianalytic if for each a ∈ R

n there are a
neighborhood U of a and real analytic functions fi,j on U such that

X ∩ U =

r⋃
i = 1

si⋂
j = 1

{x ∈ U | fi,j(x) εi,j 0},

where εi,j ∈ {<,>,=}. A function f : X → R
m is semianalytic when its graph is

itself semianalytic.

The class of semianalytic sets is not stable under projections. For this reason
Hironaka introduced the concept of subanalytic sets.

Definition 3. A subset X of R
n is subanalytic if each point of a ∈ R

n admits a
neighborhood U such that X ∩ U is a projection of a relatively compact semianalytic
set: there is a semianalytic bounded set A in R

n+p such that X ∩ U = Π(A), where
Π : R

n+p → R
n is the projection. A function is subanalytic when its graph is itself

subanalytic.

Theorem 6 (Lojasiewicz). Let K be a compact and subanalytic set contained in
R
n. Let u, v : K → R be continuous subanalytic functions. If u−1(0) ⊂ v−1(0), there

exist α > 0 and an integer N > 0 such that for all x ∈ K,

α |v(x)|N ≤ |u(x)|.

Taking v(x) = Dist(x, f≥0) and u(x) = ‖f(x)−‖ in Lojasiewicz’s inequality gives
the following corollary.
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Corollary 5. Let K be a compact and subanalytic set contained in R
n. Let

f : K → R
m be a continuous subanalytic function. There exist α > 0 and an integer

N > 0 such that for all x ∈ K,

α Dist(x, f≥0)N ≤ ‖f(x)−‖.
This is a very general and powerful method. It has already been used in the

context of optimization theory by Warga [25] and Dedieu [10] (penalty functions), Luo
and Luo [18] (polynomial inequalities), and Luo and Pang [19] (analytic inequalities).

Hoffman’s theorem has also been extended by Ioffe [15] to locally Lipschitz func-
tions using Clarke’s subgradient, and more recently by Azé, Corvellec, and Lucchetti
[2] who consider the case of lower semicontinuous functions defined over Banach
spaces. Ioffe’s theorem may be seen as an extension of the mean value theorem.

Let us first define Clarke’s subgradient [7].
Definition 4. Let g : R

n → R be locally Lipschitz. For any x and v ∈ R
n the

directional derivative of f at x in the direction v is

Dg(x, v) = lim sup
y→x

λ→0+

g(y + λv)− g(y)
λ

.

The generalized gradient ∂g(x) of g at x is the set of vectors x∗ in R
n satisfying

〈v, x∗〉 ≤ Dg(x, v)
for each v ∈ R

n.
We now recall Rademacher’s theorem. It asserts that a function which is Lipschitz

on an open subset of R
n is differentiable almost everywhere on that subset. Based on

this result, the generalized gradient has the following characterization: For any set S
of measure zero, we have

∂g(x) = co
{
lim
i→∞

∇g(xi) | g is differentiable at xi, xi /∈ S, xi → x
}

where co denotes the convex hull.
Theorem 7 (Ioffe). Let g : Rn → R be locally Lipschitz, let A be the set of zeros

of g, and a ∈ A. Suppose there exist ε and c > 0 such that for each x ∈ B̄(a, ε) \ A
and x∗ ∈ ∂g(x) the inequality ‖x∗‖ ≥ c holds. Then for each x ∈ B̄(a, ε/2), we have

cDist(x,A) ≤ |g(x)|.
Taking g(x) = ‖f(x)−‖ gives, using Ioffe’s theorem, the following corollary.
Corollary 6. Given f : R

n → R
m locally Lipschitz, let x ∈ R

n with f(x) ≥ 0
and ε > 0. Let us define c = min ‖y∗‖, where the minimum is taken for ‖y − x‖ ≤ ε
with y �∈ f≥0 and y∗ ∈ ∂‖f−‖(y). Then

cDist(y, f≥0) ≤ ‖f(y)−‖
for any y with Dist(y, f≥0) ≤ ε/2.

Remark 2. (1) To our knowledge there is no analogue in the literature to Theo-
rems 2 and 3 where strict inequalities are considered.

(2) In Theorems 1, 2, and 3 we prove the exact feasibility of the corresponding
system. This exact feasibility is assumed in Hoffman’s theorem, in Lewis–Pang’s
theorem, in Lojasiewicz’s theorem, and in Ioffe’s theorem.

(3) The proofs of Theorems 1, 2, and 3 are constructive. We are able to compute
y ∈ R

n satisfying the corresponding system. See section 6.
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4. Examples.

4.1. First example. Theorem 1, Lewis–Pang’s theorem, and Ioffe’s theorem
are “empty” when 0 is a singular value of the system f(x) = 0, unlike Lojasiewicz’s
theorem. For example, with f(x) = −x2 we have

f≥0 = {0}, ‖f(x)−‖ = x2, and Dist(x, f≥0) = |x|.
The inequality

α Dist(x, f≥0)N ≤ ‖f(x)−‖
holds for any x in a neighborhood of 0 with α = 1 and N = 2. We cannot have N = 1
as it is necessarily the case in Lewis–Pang’s theorem or in Ioffe’s theorem. Theorem
1 is also empty at x = 0 because δ(f, 0) =∞.

4.2. Second example. Theorem 1 describes a neighborhood of the set f≥0 such
that

Dist(x, f≥0) ≤ σδ(f, x)‖f(x)−‖
in this neighborhood. Here the quantity σδ(f, x) depends on x unlike the constants
appearing in Theorems 4, 5, and 6. We may replace σδ(f, x) with a quantity inde-
pendent on x when supx σδ(f, x) < ∞. But this gives a weaker result and a serious
limitation on f .

Let us consider the feasible set defined by the polynomial equation f(x1, x2) =
x1x2 − 1. We have here

‖Df(x)‖ = ‖x‖, ‖D2f(x)‖ = 1, and δ(f, x) = ‖x‖−1.

Corollary 1 becomes

Dist(x, f≥0) ≤ σ‖x‖−1f(x)−

as soon as either x1x2 − 1 ≥ 0 or x1x2 − 1 < 0 and f(x)− = 1− x1x2 ≤ (x2
1 + x

2
2)/12.

See Figure 1. For any x in this set we have

0 < σδ(f, x) ≤ σ
√
7

6
.

4.3. Third example. In this example we have supx σδ(f, x) =∞. Let us con-
sider f : R2 → R

2 defined by

f1(x1, x2) = x
2
1 − x2 and f2(x1, x2) = x2.

The feasible set f≥0 is located in the plane between the curve x2 = x
2
1 and the abscissa

axis. The condition

‖f(x)−‖ ≤ 1

4(2 + ‖D2f(x)‖)δ(f, x)2

given in Theorem 1 defines a neighborhood of the set f≥0 located between the implicit
curves

x2 ≥ 0 and x2 − x2
1 =

(4x2
1 + 1)(4x2 + 1)− 1

16
(
4x2

1 + 4x2 + 2 +
√
4(x2

1 − x2)2 + 1
)
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Fig. 1.

and

x2 ≤ 0 and − x2 =
8x2

1 − 4x2

16
(
4x2

1 − 2x2 + 1 +
√
(4x2

1 − 2x2)2 + 1
) .

Notice that these two curves, together with x2 = x
2
1 and x2 = 0, have an order one

contact at the origin. It is easy to see that δ(f, 0) = ∞. See Figure 2. For any x in
this neighborhood, by Theorem 1 we have

Dist(x, f≥0) ≤ σδ(f, x)‖f(x)−‖.

The expression of δ(f, x) is given by

δ(f, x)2 =
4x2

1 + 4x2 + 2 +
√
4(x2

1 − x2)2 + 1

(4x2
1 + 1)(4x2 + 1)− 1

when x = (x1, x2) is such that f1(x1, x2) < 0 and f2(x1, x2) ≥ 0 and by

δ(f, x)2 =
4x2

1 − 2x2 + 1 +
√
(4x2

1 − 2x2)2 + 1

8x2
1 − 4x2

when f1(x1, x2) ≥ 0 and f2(x1, x2) < 0.

5. Scheme of the proofs: Alpha-theory for underdetermined systems
of equations. To prove Theorems 1, 2, and 3, we use neither convex analysis, nor
Lojasiewicz’s inequality, nor nonsmooth analysis but another powerful argument based
on Smale’s alpha-theory.
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We associate to the system of inequalities f(y) ≥ 0 the underdetermined system
Fi(y, t) = fi(y)− t2i , 1 ≤ i ≤ m,

which is a system of m equations in m + n unknowns: (y, t) ∈ R
n × R

m. We see
easily that F (y, t) = 0 implies f(y) ≥ 0. To prove the existence of a zero (y, t) for F
with y close to x, we show that Newton’s sequence (xk+1, tk+1) = NF (xk, tk) starting
at (x0, t0) = (x,

√
f(x)+) is converging. Its limit is a zero for F . This process is

interesting because it provides a very efficient way to compute y.
Such a method has already been used by Cucker and Smale in [9], where the

authors study the complexity of the feasibility of a system of polynomial equalities
and inequalities in n variables.

Newton’s method for underdetermined systems of equations was introduced for
the first time in 1966 by Ben-Israel [3]. This iteration is defined by

NF (z) = z −DF (z)†F (z), zk+1 = NF (zk),

where z0 is given. We denote here by DF (z)† the Moore–Penrose inverse of the
derivative DF (z). When DF (z) is onto and, more generally, for a surjective linear
operator L between two Euclidean spaces, its Moore–Penrose inverse is given by L† =
L∗(LL∗)−1 with L∗ the adjoint of L.

To prove the convergence of the sequence (xk+1, tk+1) = NF (xk, tk), we use a
theorem due to Shub and Smale [23] (Theorem 8 given below). See also Dedieu and
Kim [11] for a more general context and Ben-Israel [3] for a convergence result “à la
Kantorovich.”

Let F : E→ F be an analytic function between two Euclidean spaces. We suppose
here that dim E ≥ dim F. To F and a given z ∈ E we associate the three following
numbers:

α(F, z) = β(F, z)γ(F, z),
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β(F, z) = ‖DF (z)†F (z)‖,

γ(F, z) = sup
k≥2

∥∥∥∥DF (z)†DkF (z)k!

∥∥∥∥
1

k−1

.

We give the value ∞ to these three numbers when DF (z) is not onto. When DF (z)
is onto, γ(F, z) is finite because F is analytic. It can be proved (see Blum et al. [4,
Chap. 8, Prop. 6]) that the radius of convergence R of the Taylor series of F at z
satisfies R ≥ 1/γ(F, z). β(F, z) is the size of Newton’s correction at z. The following
theorem is taken from Shub and Smale [23, Theorem C1].

Theorem 8. There is a universal constant α0, approximately 1/7, with the
following property. For any z0 ∈ E with α(F, z0) < α0, all the Newton iterates

zk+1 = zk −DF (zk)†F (zk), k ≥ 0,

are defined, converge to ζ ∈ E with F (ζ) = 0, and for all k ≥ 0

‖zk+1 − zk‖ ≤
(
1

2

)2k−1

‖z1 − z0‖.

In particular,

‖ζ − z0‖ ≤ σβ(F, z0).

The numbers α, β, and γ appear for the first time in a paper by Smale [24] in the
context of well-determined systems of equations.

6. Proofs of Theorems 1, 2, 3, and Corollary 1. Theorem 1 is an easy
consequence of Theorem 2. The proof of Theorem 2 goes as follows. When δ(f, x) =
∞, we deduce from the hypothesis the equality f(x)− = 0. Thus, f(x) ≥ 0 and we
are done. When δ(f, x) <∞, let F : Rn × R

m → R
m be defined by

F (y, t) = (fi(y)− t2i )1≤i≤m.

Its derivative is given by

DF (y, t) =



Df1(y) −2t1 0 . . . 0
Df2(y) 0 −2t2 . . . 0
...

...
...

...
Dfm(y) 0 0 . . . −2tm


 = (Df(y) T ) .

DF (y, t) has rank m if and only if

DF (y, t)DF (y, t)∗ = Df(y)Df(y)∗ + T 2

is nonsingular. Since δ(f, x) is finite, the matrix

DF
(
x,
√
f(x)+

)
DF

(
x,
√
f(x)+

)∗
= Df(x)Df(x)∗ +Diag(4f(x)+)
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is nonsingular; thus DF (x,
√
f(x)+) has rank m. Its Moore–Penrose inverse is equal

to

DF † = DF ∗(DFDF ∗)−1.

To compute the operator norm of this matrix we use the classical equality ‖B‖ =
ρ(B∗B)1/2 valid for any m× n matrix, where ρ(A) denotes the spectral radius of the
matrix A. We also have ‖A‖ = ρ(A) when A is real symmetric. This yields

‖DF †‖ = ‖DF ∗(DFDF ∗)−1‖ = ρ((DF ∗(DFDF ∗)−1)∗DF ∗(DFDF ∗)−1)1/2

= ρ((DFDF ∗)−1DFDF ∗(DFDF ∗)−1)1/2 = ρ((DFDF ∗)−1)1/2

= ‖(DF (x,
√
f(x)+)DF (x,

√
f(x)+)∗)−1‖1/2 = δ(f, x).

The second derivative of F is given by

D2Fi(y, t)((u, r), (v, s)) = D
2fi(y)(u, v)− 2risi.

Thus

‖D2F (y, t)‖ ≤ ‖D2f(y)‖+ 2.

The other derivatives satisfy DkF (y, t) = Dkf(y) for any k ≥ 3 so that

Γ(F, (y, t)) ≤ 1 + Γ(f, y).

Let us now give an estimate for α(F, (x,
√
f(x)+)). According to the definition of this

number, we have

α
(
F, (x,

√
f(x)+)

)
= β

(
F, (x,

√
f(x)+)

)
γ
(
F, (x,

√
f(x)+)

)

= ‖DF (x,
√
f(x)+)†F (x,

√
f(x)+)‖ sup

k≥2

∥∥∥∥∥DF (x,
√
f(x)+)†

Dk(F, (x,
√
f(x)+))

k!

∥∥∥∥∥
1

k−1

≤ ‖DF (x,
√
f(x)+)†‖‖F (x,

√
f(x)+)‖ sup

k≥2
‖DF (x,

√
f(x)+)†‖ 1

k−1Γ(F, (x,
√
f(x)+))

≤ δ(f, x)‖f(x)−‖max(1, δ(f, x))(1 + Γ(f, x)).

From the hypothesis we get

α(F, (x,
√
f(x)+)) ≤ 1

8
< α0;

thus, by Theorem 8 there exists (y, t) ∈ R
n × R

m such that F (y, t) = 0 and

‖(y, t)− (x,
√
f(x)+)‖ ≤ σβ(F, (x,

√
f(x)+))
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≤ σ‖DF (x,
√
f(x)+)†‖‖F (x,

√
f(x)+)‖ ≤ σδ(f, x)‖f(x)−‖.

For any i we have

fi(y) = t
2
i ≥ 0.

Moreover, for any i ∈ J ,

|ti −
√
fi(x)+| ≤ ‖(y, t)− (x,

√
f(x)+)‖ ≤ σδ(f, x)‖f(x)−‖.

Since, by the hypothesis, σδ(f, x)‖f(x)−‖ < √
fi(x)+, we obtain ti > 0 so that

fi(y) = t
2
i > 0 for any i ∈ J . To finish the proof of Theorem 2 we notice that

Dist(x, f≥0) ≤ ‖x− y‖ ≤ ‖(y, t)− (x,
√
f(x)+)‖ ≤ σδ(f, x)‖f(x)−‖.

The last assertion in Theorem 1 comes from the following. When f is a polynomial
function with degree fi ≤ 2, then

γ(F, (x,
√
f(x)+)) = ‖DF (x,

√
f(x)+)†

D2F (x,
√
f(x)+)

2
‖ ≤ δ(f, x)

(
1 +
‖D2f(x)‖

2

)
.

Thus, α(F, (x,
√
f(x)+)) ≤ 1

8 < α0 as soon as

‖f(x)−‖ ≤ 1

4(2 + ‖D2f(x)‖)δ(f, x)2 .

Proof of Theorem 3. We proceed similarly to the proof of Theorem 2. When
δ(f, g, x) = ∞, then g(x) = 0 and f(x) ≥ 0. We take y = x and we are done.
When δ(f, g, x) <∞, let us define F : R

n × R
m → R

m × R
q by Fi(y, t) = fi(y)− t2i ,

1 ≤ i ≤ m, and Fj(y, t) = gj(y), 1 ≤ j ≤ q. We recall that q ≤ n. Its derivative is
given by

DF (y, t) =

(
Df(y) Diag(−2ti)
Dg(y) 0

)
.

Since δ(f, g, x) <∞, as in the proof of Theorems 1 and 2, DF (x,√f(x)+) has rank
m+n. Its Moore–Penrose inverse is equal to DF † = DF ∗(DFDF ∗)−1 and the norm
of this inverse is equal to ‖DF †‖ = δ(f, g, x). Thus

β(F, (x,
√
f(x)+)) ≤ δ(f, g, x)(‖f(x)−‖2 + ‖g(x)‖2)1/2.

We also have, as in the proof of Theorem 2,

Γ(F, (x,
√
f(x)+)) ≤ 1 + Γ(f, g, x).

This yields

α(F, (x,
√
f(x)+)) ≤ δ(f, g, x)(‖f(x)−‖2+‖g(x)‖2)1/2max(1, δ(f, g, x))(1+Γ(f, g, x))

so that, from the hypothesis, we get α(F, (x,
√
f(x)+)) < 1/8 < α0. Theorem 8

ensures the existence of a zero (y, t) for F satisfying

‖(y, t)− (x,
√
f(x)+)‖ ≤ σδ(f, g, x)(‖f(x)−‖2 + ‖g(x)‖2)1/2.
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The rest of the proof is similar to the proof of Theorem 2.
Proof of Corollary 1. Under the hypothesis, δ(f, x) = (‖Df(x)‖2+4f(x)+)− 1

2 so
that, by Theorem 1, the inequality

f(x)− ≤ (‖Df(x)‖
2 + 4f(x)+)

1
2 min(1, (‖Df(x)‖2 + 4f(x)+) 1

2 )

8(1 + Γ(f, x))

implies

Dist(x, f(x)≥0) ≤ σ(‖Df(x)‖2 + 4f(x)+)− 1
2 f(x)−.

When f(x) ≤ 0, this hypothesis is equivalent to

f(x)− ≤ ‖Df(x)‖min(1, ‖Df(x)‖)
8(1 + Γ(f, x))

and the conclusion becomes

Dist(x, f(x)≥0) ≤ σ‖Df(x)‖−1f(x)−.

In the case f(x) ≥ 0 this corollary is obvious.
Proofs of Corollaries 2 and 4. The proof of Corollary 4 is similar to the proof of

Corollary 2. The proof of Corollary 2 goes as follow. By Theorem 1 there exists a
certain y with f(y) ≥ 0 and ‖x−y‖ ≤ σδ(f, x)‖f(x)−‖. If f(x) �≥ 0, then the interval
[x, y] contains necessarily a point z ∈ Σ, the boundary of f≥0. Thus Dist(x,Σ) ≤
‖x− y‖ ≤ σδ(f, x)‖f(x)−‖ which contradicts the hypothesis

Dist(x,Σ)−1 = µ(x) <
1

σδ(f, g, x)‖f(x)−‖ .

Proof of Corollary 3. For any i = 1, . . . ,m one has either fi(x) ≥ 0 so that
fi(x)

− = 0 or fi(x) < 0. In this last case εi ≥ −fi(x) = fi(x)− > 0. Thus

‖f(x)−‖ ≤ ‖ε<0‖ ≤ 1

8(1 + Γ(f, x))δ(f, x)max(1, δ(f, x))
.

As in the proof of Theorem 2, there exists (y, t) ∈ R
n × R

m with f(y) = t2 and

‖(y, t)− (x,
√
f+(x))‖ ≤ σδ(f, x)‖f(x)−‖.

This gives f(y) ≥ 0, and
‖y − x‖ ≤ σδ(f, x)‖f(x)−‖ ≤ σδ(f, x)‖ε<0‖.

Moreover, ∣∣∣∣ti −
√
f+
i (x)

∣∣∣∣ ≤ σδ(f, x)‖f(x)−‖ ≤ σδ(f, x)‖ε<0‖

so that

ti ≥
√
f+
i (x)− σδ(f, x)‖ε<0‖.

When i = p + 1, . . . ,m, this last quantity is positive and, consequently, fi(y) =
t2i > 0.
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Abstract. In this paper, we provide a complete analysis of second-order admissible variations
to inequality-type constraints, which are given in terms of measurable set-valued functions whose
images are closed convex sets with nonempty interior. As an application, we consider optimization
problems where such constraints are present, and we deduce second-order necessary conditions for
optimality.

Key words. measurable set-valued maps, convex sets in L∞(Ω,Rm), support functional, tan-
gent and normal cones, second-order admissible variations, second-order optimality conditions
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1. Introduction. Consider the following optimization problem:

(P) Minimize F0(z) subject to E(z) = 0, F (z) ≤ 0, G(z) ∈ Q,

where F0 : D → R, E : D → Y , F : D → R
p, G : D → X, and X, Y , Z are

Banach spaces, D ⊂ Z is nonempty and open, and Q ⊂ X is a closed convex set with
nonempty interior.

The prototype of such problems arises, for instance, in optimal control theory
with control constraints in the inclusion form x(t) ∈ Q(t) (for all t ∈ Ω), where Q
is a measurable set-valued map with closed convex nonempty interior images on the
complete finite measure space (Ω,A, µ).

Better understanding of optimality conditions is an ongoing research program
for several researchers. This question is of great value in theory and in applications.
Usually, such conditions must be given in terms of the original data of the problem
and, in the context of necessity, are expected to be as strong as they can be.

In 1988, Kawasaki [11], [12] discovered, for the problem (P), where Q is a cone,
second-order necessary conditions that contain an extra term manifesting the presence
of infinitely many inequalities in the constraint G(z) ∈ Q. This phenomenon is known
as the “envelope-like effect.” Such result was generalized by Cominetti in [4]. Both
results assumed a Mangasarian–Fromovitz-type condition.

In [18] the authors have generalized the previous results in [11], [12], and [4]
to the nondifferentiable case without assuming a Mangasarian–Fromowitz condition.
The second-order admissible variation set used therein (defined first by Dubovitskii
and Milyutin in [7], [8]) is described in the following definition.

Definition. Let X be a normed space, Q ⊂ X, x ∈ Q, and d ∈ X. A vector
v ∈ X is called a second-order admissible variation of Q at x in the direction d if
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there exists ε > 0 such that

x+ εd+ ε2(v + w) ∈ Q for all 0 < ε < ε, ||w|| < ε, w ∈ X.

The set of all such variations is denoted by V (x, d|Q). It follows directly from the
definition that V (x, d|Q) is an open set. If Q is also convex, then V (x, d|Q) is convex
as well. Results related to those in [18] were obtained by Maruyama [14, Theorem
3.2], where Neustadt’s derivative was used to handle the nonsmoothness of data.

In order to derive meaningful second-order optimality conditions, it is imperative
to choose directions d that guarantee the nonemptiness of V (x, d|Q). Such directions
d ∈ X are labeled as the critical directions of Q at x and form a set called critical
direction cone to Q at x. Throughout this paper, this cone will be denoted by C(x|Q).
It can be easily seen that C(x|Q) is a convex set such that

cone(Q− x) ⊂ C(x|Q) ⊂ cone(Q− x).

In order to recall the first- and second-order necessary conditions for (P), obtained
in [18, Corollary 2], we need to introduce the following notation and notions.

• A point ẑ ∈ D is called an admissible point for (P) if E(ẑ) = 0, F (ẑ) ≤ 0,
and G(ẑ) ∈ Q hold. A point ẑ ∈ D is a solution (local minimum) of the
problem if it is admissible and there exists a neighborhood U of ẑ such that
F0(z) ≥ F0(ẑ) for all admissible points z ∈ U .

• A point ẑ ∈ D is called a regular point for (P) if
(R1) F0, F = (F1, . . . , Fp) are locally Lipschitz at ẑ;
(R2) G is strictly Fréchet differentiable at ẑ;
(R3) E is strictly Fréchet differentiable at ẑ and the range of the linear oper-

ator E′(ẑ) is a closed subspace of Y .
If Fi (i = 0, . . . , p) is locally Lipschitz at ẑ, then the expression

F oi (ẑ; y) := lim sup
(z,ε)→(ẑ,0+)

Fi(z + εy)− Fi(z)

ε

is finite and will be called Clarke’s generalized directional derivative in the direction
y. The corresponding generalized gradient ∂Fi(ẑ) is defined by

∂Fi(ẑ) := {z∗ ∈ Z∗ : 〈z∗, z〉 ≤ F oi (ẑ; z) for all z ∈ Z}.

For properties of these notions, see [2].
Let ẑ be an admissible regular point for (P) and d ∈ Z.
• A vector y ∈ Z is called a critical direction at ẑ for (P) if
(C1) F oi (ẑ; y) ≤ 0 for all i = 0, . . . , p;
(C2) G′(ẑ)y ∈ C(G(ẑ)|Q);
(C3) E′(ẑ)y = 0.
• A vector y ∈ Z is called a regular direction at ẑ for (P) if
(R4) for all i = 0, . . . , p,

F o′i (ẑ, y) := lim sup
ε→0+

2
Fi(ẑ + εy)− Fi(ẑ)− εF oi (ẑ; y)

ε2

is finite;
(R5) the second-order directional derivative of L := (G,E)
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L′′(ẑ, y) := lim
ε→0+

2
L(ẑ + εy)− L(ẑ)− εL′(ẑ)y

ε2

exists.
Clearly, the zero vector is always a regular critical direction at ẑ for (P).

Now we are ready to state the result of [18, Corollary 2].
Theorem 1.1. Let ẑ be a regular local solution of the above problem (P). Then,

for all regular critical directions y, there correspond Lagrange multipliers λi ≥ 0 (i =
0, . . . , p), x∗ ∈ X∗, and y∗ ∈ Y ∗ which depend on y, such that at least one of them is
different from zero and the following relations hold:

λiFi(ẑ) = 0 for all i = 1, . . . , p and x∗ ∈ N(G(ẑ)|Q),(1.1)

p∑
i=0

λiF
o
i (ẑ; z) + 〈x∗, G′(ẑ)z〉+ 〈y∗, E′(ẑ)z〉 ≥ 0 for z ∈ Z,(1.2)

and

p∑
i=0

λiF
o′(ẑ, y) + 〈x∗, G′′(ẑ, y)〉+ 〈y∗, E′′(ẑ, y)〉 ≥ 2δ∗

(
x∗
∣∣∣V (G(ẑ), G′(ẑ)y|Q)

)
.

(1.3)

(Here δ∗ stands for the support function and N(x|Q) denotes the adjoint cone of
T (x|Q), that is, the cone of outward normals to the set Q at the point x [24].)

We note that, using the Hahn–Banach theorem, the first-order condition (1.2)
can also be expressed as an equality: There exist linear functionals z∗i ∈ ∂Fi(ẑ)
(i = 0, . . . , p) such that

p∑
i=0

λiz
∗
i + x∗ ◦G′(ẑ) + y∗ ◦ E′(ẑ) = 0.

Throughout this paper the term to the right-hand side of inequality (1.3) will be
referred to as the extra term in the second-order condition.

Results along the line of Theorem 1.1 were obtained by Ioffe [10] and Penot [23]
for the differentiable case and in the presence of a certain qualification condition.

Two important questions naturally surface from Theorem 1.1:
(i) How can we check the nonemptiness of V (x, d|Q), that is, how can the critical

cone C(x|Q) be characterized, since otherwise the second-order optimality
conditions would be satisfied trivially?

(ii) How can we evaluate the support function of V (x, d|Q)?
In order that d be in C(x|Q), it is only necessary that Q have a nonempty interior

and that d belong to cone(Q−x) = T (x|Q), which is the tangent cone toQ at x. If d ∈
cone(Q−x), then V (x, d|Q) is nonempty and V (x, d|Q) = cone(cone(intQ−x)−d) (cf.
[18, Theorem 4]). In this case the right-hand side in the second-order condition (1.3)
vanishes. However, examples are provided by Kawasaki [11] in order to show that the
necessary conditions with extra term, that is, when d ∈ cone(Q−x), handle situations
that cannot be handled with previous results where d is taken from cone(Q − x).
Thus, one has to consider also directions d ∈ T (x|Q) \ cone(Q − x). In this case
the description of V (x, d|Q) and the characterization of its nonemptiness are far from
being trivial.
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A significant setting is the case when Q is a subset of C(T,Rr) defined by

Q = σC(Q) =: {x ∈ C(T,Rr) | x(t) ∈ Q(t) for all t ∈ T},(1.4)

where Q is a lower semicontinuous set-valued map whose images are closed, convex
sets with nonempty interior, and T is a compact Hausdorff space. The importance
of this type of constraints stems from control problems with state constraints. This
problem has been studied and a satisfactory answer to questions (i) and (ii) above
have been provided in a recent paper by the authors [22].

Another case of great interest is when Q is a subset of L∞(Ω,Rm) defined by

Q = σ∞(Q) := {x ∈ L∞(Ω,Rm) | x(t) ∈ Q(t) for almost every (a.e.) t ∈ Ω},(1.5)

where Q is a measurable set-valued map whose images are closed and have nonempty
interior, and (Ω,A, µ) is a complete finite measure space. This type of constraint is
typical for control constraints in control problems. The main goal of this paper is to
investigate this type of constraint and to obtain satisfactory necessary conditions for
the corresponding optimization problem.

In the case when Q := σ∞(Q), the two questions (i) and (ii) stated above are still
open. They can now be rephrased as follows:

(*) Characterize the critical cone C(x|σ∞(Q)). Furthermore, evaluate the sup-
port functional of V (x, d|σ∞(Q)) in terms of the images Q(t) and their sup-
port functionals δ∗(·|Q(t)).

Note that, by [20] and [21], the set σ∞(Q) defined by (1.5) is decomposable, that is,

χAx+ χΩ\Ay ∈ σ∞(Q) for all x, y ∈ σ∞(Q), A ∈ A.
(Here χA denotes the characteristic function of the set A.) Thus, V (x, d|σ∞(Q)) is
also decomposable. Therefore, the L1-closure of V (x, d|σ∞(Q)) can be identified with
a measurable set-valued function V : Ω → 2R

m

whose images are nonempty closed
sets.

The aim of this paper is to answer positively the open questions in (*) when
the values of Q are also convex sets. In section 2, the elements of C(x|σ∞(Q)) are
characterized in Theorem 2.5 by a certain boundedness condition (2.15). Furthermore,
the support function of V (x, d|σ∞(Q)) is evaluated in Theorem 2.2 and Corollaries
2.3 and 2.7 via the evaluation of the support functions associated with the pointwise
sets of second-order admissible directions

V(t) := V (x(t), d(t)|Q(t)) (t ∈ Ω).(1.6)

The results of this section differ from their counterparts established in [19] for the case
when Q = σC(Q) (defined in (1.4)). This distinction is mainly due to the continuity
requirement on the selections. In fact, the nonemptiness condition for V (x, d|σC(Q) in
[19] was also phrased in terms of a boundedness below of a lower semicontinuous map
(see [19, Theorem 3.5]). On the other hand, the pointwise sets V(t), defined above,
play no role whatsoever in the evaluation of the support function of V (x, d|σC(Q))
(see [19, Theorem 3.10]).

In section 3, we apply the results of section 2 to the abstract optimization problem
(P∗) (see section 3), where two types of parametric constraints are present, namely,

g(t, z) ∈ Q(t) for a.e. t ∈ Ω,
h(t, z) = 0 for a.e. t ∈ Ω,

(1.7)
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where Q is as required in (1.5). The main result is given in Theorem 3.1, where
the hypotheses and conditions of Theorem 1.1 are phrased in terms of t-pointwise
conditions. In particular, condition (C2) is given in terms of the pointwise tangent
cone to Q(t) (see condition (C∗

2 )) given in Theorem 2.5. The extra term

δ∗
(
x∗
∣∣∣V (G(ẑ), G′(ẑ)y|Q)

)
appearing in the second-order optimality condition is phrased as an integral of a
function associated with the set of pointwise second-order admissible variations of
Q(t). Another contribution of Theorem 3.1 lies in finding reasonably general condi-
tions (R∗

2)–(R
∗
4) which guarantee that the multipliers associated with the parametric

constraints (1.7) are in fact represented via integrable functions.

2. Second-order admissible variations. Let X = L∞
m := L∞(Ω,Rm), where

(Ω,A, µ) is a complete finite measure space, and let Q : Ω → 2R
m

be a measurable
set-valued function whose images are closed sets with nonempty interior. Define the
set σ∞(Q) ⊂ L∞

m by (1.5). Let x ∈ σ∞(Q), d ∈ L∞
m , and V := V (x, d|σ∞(Q)). In

order that V be nonempty, it is necessary that intσ∞(Q) be nonempty. This latter
condition is equivalent (by [21, Theorem 3]; see also [20]) to assuming that Q satisfies

∃r ≥ ρ > 0 and, for a.e. t ∈ Ω, ∃xt ∈ R
m such that Bρ(xt) ⊂ Q(t) ∩Br(2.1)

(where Bε(x) denotes the ball in R
m of radius ε centered at x; if x = 0, then x may

be omitted).
A preliminary characterization of V is given in the following result.
Lemma 2.1. Let v ∈ L∞

m . Then v ∈ V if and only if there exist ε > 0 and a set
A ∈ A of full measure such that, for all 0 < ε ≤ ε, u ∈ Bε ⊂ R

m, and t ∈ A,

x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t).(2.2)

Proof. Let v ∈ V. Then, by definition, there exists an ε > 0 such that for all
0 < ε ≤ ε, w ∈ L∞

m with ‖w‖ ≤ ε, there exists a set A = Aε,w of full measure that

x(t) + εd(t) + ε2(v(t) + w(t)) ∈ Q(t) for all t ∈ Aε,w.(2.3)

Let {(εn, un)|n ∈ N} be a dense subset of [0, ε] × Bε. Then defining the measurable
functions wn by wn(t) := un, we get from (2.3) that for all n ∈ N,

x(t) + εnd(t) + ε2n(v(t) + un) ∈ Q(t) for all t ∈
∞⋂
n=1

Aεn,wn
.

Using the fact that {(εn, un)} is dense and that Q(t) is closed, we obtain that (2.2)
is valid for ε ≤ ε, u ∈ Bε, and t ∈ A :=

⋂∞
n=1 Aεn,wn

.
Conversely, let v ∈ L∞

m and assume that there exists ε > 0 and A ∈ A of full
measure such that (2.2) is valid for all 0 < ε ≤ ε, u ∈ Bε, and t ∈ A. Let w ∈ L∞

m such
that ‖w‖ ≤ ε. Then there exists a set Aw ∈ A of full measure such that |w(t)| ≤ ε for
all t ∈ Aw. Hence, by (2.2), we have (2.3) with Aε,w = A ∩Aw. Therefore, v belongs
to V.

An immediate consequence of this lemma is that if v ∈ V, then

v(t) ∈ V (x(t), d(t)|Q(t)) for a.e. t ∈ Ω.(2.4)
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This inclusion motivates the study of the relationship between V and the measurable
set-valued map V defined by (1.6). Note that the measurability of V follows from
standard arguments.

It is worth noting that (2.4) remains valid when, in V, Q = σ∞(Q) is replaced
by the set defined in (1.4). In this case, the relationship between V and V is not
direct, as shown in [20], [21]. However, for the L∞ setting, a direct connection will
be established.

We recall now the notions of L1-closedness and L1-closure from [21]. A subset Q
of L∞

m is called L1-closed if whenever xn ∈ Q for n ∈ N, x ∈ L∞, and

lim
n→∞ ||xn − x||1 = 0,

then x ∈ Q. The L1-closure of a set in L∞ is the smallest L1-closed set containing it.
Another important type of closedness can be defined in the following way: A

subset Q of L∞
m is called Π-closed (closed in with respect to the so-called Pontryagin

(Π-)convergence) if whenever there exists a sequence xn ∈ Q such that

sup ||xn||∞ <∞ and lim
n→∞ ||xn − x||1 = 0,

then x has to belong to Q. The Π-closure of a set is the intersection of all Π-closed
sets containing it. Obviously, the class of L1-closed sets forms a proper subclass of the
class of Π-closed sets. However these two notions coincide in the class of decomposable
sets as shown by [21, Theorem 1] (see also [20]). The concept of Π-convergence can
also be used to define the notion of the Pontryagin (Π-)minimum; see, e.g., [5], [6],
[13], [16], [17], and the book by Milyutin and Osmolovskii [15], where necessary and
sufficient conditions for this type of minimum are investigated.

Analogously, we can speak about Π-continuity of real-valued functions defined on
a subset of L∞

m , and also about (Π,Π)-continuity of maps from L∞
m to L∞

n .
The L1-closed and decomposable set cl1 V is known (by [21, Theorem 2]) to be

represented via a measurable set-valued map. As we shall see, this set-valued map is
in fact V, that is, the set-valued map whose images are V(t) (i.e., the closure of V(t)).

Theorem 2.2. If V �= ∅, then
cl1 V = σ∞(V).(2.5)

Proof. The proof of the “⊂” inclusion is obvious since if v ∈ V, then, from (2.4),
we have v ∈ σ∞(V) ⊂ σ∞(V). Hence V ⊂ σ∞(V).

The right-hand side of this inclusion is an L1-closed set (see [20], [21]); therefore
cl1 V is also contained in it.

To prove the reversed inclusion in (2.5), assume that v0 ∈ σ∞(V). Then, for all
n ∈ N and for a.e. t ∈ Ω, the open ball U1/n(v0(t)) intersects V(t). Hence, by known
selection theorems for measurable set-valued maps (see [3]), there is a measurable
selection vn of the measurable open set-valued map

t �→ V(t) ∩ U1/n(v0(t)).

Clearly, vn ∈ σ∞(V) and ‖vn − v0‖∞ ≤ 1/n. Therefore, in order to prove that
v0 ∈ cl1 V, it is sufficient to show that vn ∈ cl1 V. Thus the proof will be completed
if we prove

σ∞(V) ⊂ cl1 V.(2.6)
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Let v ∈ σ∞(V). Then there exists a set A ∈ A of full measure such that v(t) ∈
V(t) = V (x(t), d(t)|Q(t)) for all t ∈ A. Then, for all t ∈ A, there exists εt > 0 such
that for all 0 < ε ≤ εt, u ∈ Bεt ,

x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t).

Define, for (ε, u) ∈ (0,∞)× R
m,

Aε,u := {t ∈ A | x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t)}.

Clearly, Aε,u is measurable. Let n ∈ N be fixed, and let {(εi, ui)|i ∈ N} be a dense
subset of [0, 1/n] × B1/n. Then

⋂∞
i=1 Aεi,ui

is measurable, and by the closedness of
Q(t) we have

An :=

∞⋂
i=1

Aεi,ui

=
{
t ∈ A | x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t) : for all ε ∈ [0, 1/n], for allu ∈ B1/n

}
.

For all t ∈ A, there exists n ∈ N such that εt > 1/n; hence
⋃∞
n=1 An = A. Thus

µ(An)→ µ(Ω) as n→∞.
Let v̄ be a fixed element of V (which exists by the assumption V �= ∅), and define

the sequence of functions v̄n by

v̄n(t) :=

{
v(t) if t ∈ An,
v̄(t) if t �∈ An.

Since v̄ ∈ V, and using Lemma 2.1, there exist a positive ε and a set Ā ∈ A of full
measure such that

x(t) + εd(t) + ε2(v̄(t) + u) ∈ Q(t)

for all ε ∈ [0, ε], u ∈ Bε, and t ∈ A0. Taking εn = min(ε, 1/n), we get that

x(t) + εd(t) + ε2(v̄n(t) + u) ∈ Q(t)

if ε ∈ [0, εn], u ∈ Bεn , and t ∈ A ∩ Ā. It follows from Lemma 2.1 that v̄n ∈ V. On
the other hand, the sequence v̄n converges to v in the L1-norm (since µ(An)→ µ(Ω)
as n→∞). Hence, we obtain that v ∈ cl1 V, which completes the proof.

Remark 2.1. We already know from (2.4) that

V ⊂ σ∞(V).

It is natural to investigate whether V and σ∞(V) are also related through the reverse
inclusion. In Theorem 2.2 we have shown that, by using the L1-closure of V,

σ∞(V) ⊂ cl1(V).

However, one may ask whether another relation of this type exists by using the L∞-
closure of V. As we shall show in the example below, (2.5) is the only possible such
connection. In fact, we shall show that for this example

σ∞(V) �⊂ cl∞V,



MEASURABLE SET-VALUED CONSTRAINTS 433

and thus also σ∞(V) �⊂ cl∞V. Hence (2.5) fails to hold when instead of the L1-closure
we use the L∞-closure.

Example 2.1. For t ∈ Ω := (0, 1], let

Q(t) := {(x1, x2) ∈ R
2 | 0 ≤ x2, x1 ≤

√
tx2}.

Then the values of Q are closed convex sets; furthermore, Q = σ∞(Q) has nonempty
interior because, for all t ∈ Ω,

{(x1, x2) ∈ R
2 | x1 ≤ 0, x2 ≥ 0} ⊂ Q(t).

It is obvious that x ≡ 0 ∈ Q. Define d ∈ L∞(Ω) by d(t) = (
√
t, 0). Then, d ∈ T (0|Q),

since with

dn(t) := (
√
t, εn) (t ∈ Ω, n ∈ N)

(where εn → 0+), we have that

‖d− dn‖∞ = εn and x(t) + εndn(t) = (εn
√
t, ε2n) ∈ Q(t) (t ∈ Ω, n ∈ N).

Now we show that, for all t ∈ Ω,

V (x(t), d(t)|Q(t)) = {(v1, v2) ∈ R
2 | v2 > 1}.

Let t ∈ Ω be fixed. Then (v1, v2) belongs to V (x(t), d(t)|Q(t)) if and only if there
exists ε > 0 such that, for all 0 < ε < ε, |(u1, u2)| < ε,(

ε
√
t+ ε2(v1 + u1), ε

2(v2 + u2)
)
∈ Q(t),

that is,

0 ≤ v2 + u2 and 1 +
ε(v1 + u1)√

t
≤ √v2 + u2.(2.7)

Taking the limit ε → 0, it follows that v2 + u2 ≥ 1 if |u2| < ε. Hence v2 > 1 is a
necessary condition.

Conversely, if v2 > 1 and v1 ∈ R, then there exists a constant c > 0 such that

1 ≤ v2 − c, 1 + c(v1 + c) ≤ √v2 − c.

Then, for |ui| ≤ c, we get

1 ≤ √v2 + u2, 1 + c(v1 + u1) ≤
√
v2 + u2.

Multiplying the first inequality by 1 − ε/(c
√
t), the second by ε/(c

√
t), and adding

the two inequalities so obtained, we get that (2.7) holds for 0 < ε ≤ c
√
t, |u1| ≤ c,

|u2| ≤ c. Hence, (v1, v2) ∈ V (x(t), d(t)|Q(t)).
Thus, all the constant functions v(t) = (v1, v2), where v2 > 1, belong to σ∞(V).

Now, we prove that v �∈ cl∞V for v1 > 0.
We argue by contradiction. Assume that v1 > 0, v2 > 1, and v ≡ (v1, v2) ∈ cl∞V.

Then there exists a sequence wn ∈ V with ‖wn − v‖∞ → 0. By Lemma 2.1, wn ∈ V
means that there exist 0 < εn ≤ 1 and An ⊂ Ω of full measure such that, for all
0 < ε ≤ εn, u ∈ Bεn ⊂ R

2, and t ∈ An,

0 ≤ wn,2(t) + u2, 1 +
ε√
t
(wn,1(t) + u1) ≤

√
wn,2(t) + u2.
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Hence, by taking u1 = u2 = 0 and ε = εn, we have for all n ∈ N and t ∈ A :=
⋂∞
n=1 An,

1 +
εn√
t
wn,1(t) ≤

√
wn,2(t).

Thus, due to the L∞-convergence of wn to v ≡ (v1, v2), we have for some n0 ∈ N and
Ā ⊂ Ω of full measure that wn,1(t) > v1/2 and wn,2(t) < 2v2 if t ∈ Ā and n ≥ n0.
Hence,

1 +
εnv1

2
√
t
≤ √2v2, that is, εn ≤ 2

√
t

√
2v2 − 1

v1

for t ∈ A ∩ Ā and for n ≥ n0. Therefore, εn = 0 for n ≥ n0, contradicting εn > 0.
It is worth noting that in the above example the boundary of the set Q(t) has at

(0, 0) a curvature of order 1/t, and hence it is not bounded above on Ω.
An essential result follows from Theorem 2.2 that shows how to express the sup-

port function of V in terms of that of V(t).
Corollary 2.3. Assume that V �= ∅. Then, for ϕ ∈ L1

m,

δ∗(ϕ|V) =

∫
Ω

δ∗(ϕ(t)|V(t)) dµ(t).(2.8)

Proof. Applying the previous theorem and [21, Lemma 4 and Theorem 6], which
employ results from [25], [26] and [9], we have that

δ∗(ϕ|V) = δ∗(ϕ| cl1 V) = δ∗(ϕ|σ∞(V))
=

∫
Ω

δ∗(ϕ(t)|V(t)) dµ(t) =
∫

Ω

δ∗(ϕ(t)|V(t)) dµ(t).

The above results bring up the questions of studying
(i) the characterization of the nonemptiness of V, and
(ii) the calculation of the support function of the images V(t).
If the images of the set-valued map Q are convex, then σ∞(Q) is also convex. In

this case, Theorem 2.5 below offers an important characterization for the nonempti-
ness of V. This result is based on the following characterization of the elements of V
that is more useful in this case than that given by Lemma 2.1.

To state these results concisely, we introduce the following functions. For t ∈ Ω
and ξ ∈ R

m, denote

a(t, ξ) := δ∗(ξ|Q(t))− 〈ξ, x(t)〉 , b(t, ξ) := 〈ξ, d(t)〉 .(2.9)

Lemma 2.4. Let x ∈ σ∞(Q) and d ∈ L∞
m . v ∈ V = V (x, d|σ∞(Q)) if and only if

d(t) ∈ T (x(t)|Q(t))(2.10)

for a.e. t ∈ Ω, and there exists ε > 0 such that, for a.e. t ∈ Ω,

〈ξ, v(t)〉 ≤



−ε|ξ| − [b(t, ξ)]2

4a(t, ξ)
if εb(t, ξ) > 2a(t, ξ),

−ε|ξ|+ a(t, ξ)− εb(t, ξ)

ε2
if εb(t, ξ) ≤ 2a(t, ξ)

(2.11)

for all ξ ∈ R
m \ {0}.
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Proof. Let v ∈ V. Then V is nonempty; hence d ∈ T (x|Q). Then, it follows from
[21, Theorem 4] that (2.10) is valid for a.e. t ∈ Ω.

To prove (2.11), note that for almost all t ∈ Ω, in the first domain, that is, in the
set

{ξ ∈ R
m | εb(t, ξ) > 2a(t, ξ)},

we have a(t, ξ) > 0. This implies that the function defined in the right-hand side
of the above inequality is well defined. Indeed, by (2.10), the equality a(t, ξ) =
δ∗(ξ|σ∞(Q))− 〈ξ, x(t)〉 = 0 yields b(t, ξ) = 0, contradicting εb(t, ξ) > 2a(t, ξ) = 0.

By Lemma 2.1, there exist ε > 0 and a set A ∈ A of full measure such that (2.2)
holds for all 0 < ε ≤ ε, u ∈ Bε ⊂ R

m, and t ∈ A. Therefore, for all ξ ∈ R
m, we have

〈ξ, x(t)〉+ ε 〈ξ, d(t)〉+ ε2 〈ξ, v(t) + u〉 ≤ δ∗(ξ|Q(t)),(2.12)

that is,

εb(t, ξ) + ε2 〈ξ, v(t) + u〉 ≤ a(t, ξ).

Putting u = εξ/|ξ|, we deduce

εb(t, ξ) + ε2(〈ξ, v(t)〉+ ε|ξ|) ≤ a(t, ξ)(2.13)

for all 0 < ε ≤ ε, t ∈ A, and ξ ∈ R
m \ {0}. Hence,

〈ξ, v(t)〉 ≤ −ε|ξ|+ inf
0<ε≤ε

a(t, ξ)− εb(t, ξ)

ε2
.(2.14)

Computing the infimum on the right-hand side, we get that (2.11) is valid for all t ∈ A
and ξ ∈ R

m \ {0}.
Conversely, if v ∈ L∞

m , (2.10) is valid, and there exists ε > 0 and a set A ∈ A of
full measure such that v satisfies (2.11) for all ξ ∈ (Rm \ {0}), then (2.14) and (2.13)
are also valid. Thus (2.12) holds for all u ∈ Bε. The set Q(t) being convex, this latter
inequality implies (2.2). Hence, by Lemma 2.1 again, v belongs to V.

Thus we have proved Lemma 2.4.
Remark 2.2. An interesting consequence of Lemma 2.4 is that if (2.10) is valid

and (2.11) also holds on the domain indicated, then d ∈ T (x|σ∞(Q)). The condition
(2.10) alone is only a necessary condition for d to be in the tangent cone of σ∞(Q)
at x (see [21]). If the images of Q are not convex, then (2.10) and (2.11) are only
necessary for v to be in V.

Theorem 2.5. Let Q : Ω → 2R
m

be a measurable set-valued map whose images
are closed convex sets and satisfy (2.1). Let x ∈ σ∞(Q) and let d ∈ L∞

m . Then the
set of second-order admissible variations V = V (x, d|σ∞(Q)) is nonempty if and only
if there exists a constant M > 0 such that, for a.e. t ∈ Ω, the following condition is
valid:

[b(t, ξ)]2 ≤M |ξ|a(t, ξ) whenever ξ ∈ R
m and b(t, ξ) > 0(2.15)

(where the functions a and b are defined in (2.9)).
Remark 2.3. From Theorem 2.5 it readily follows that, for a.e. t, V(t) =

V (x(t), d(t)|Q(t)) is nonempty (that is, d(t) ∈ C(x(t)|Q(t))) if and only if (2.15)
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holds for some Mt > 0 on the domain indicated. Therefore, Theorem 2.5 can be
rephrased as

d ∈ C(x|σ∞(Q))⇐⇒
{

d(t) ∈ C(x(t)|Q(t)) for a.e. t ∈ Ω uniformly, i.e.,
∃Mt, ∃M > 0 :Mt satisfies (2.15),Mt ≤M for a.e. t ∈ Ω.

Proof. Assume that v ∈ V. Then, by Lemma 2.4, there exist ε > 0, a set A ∈ A
of full measure such that (2.11) is true for all t ∈ A and ξ ∈ R

m \ {0}.
Let t ∈ A and ξ ∈ R

m such that b(t, ξ) > 0. Then, as we have seen in the proof
of Lemma 2.4, a(t, ξ) > 0. We distinguish two cases: If εb(t, ξ) > 2a(t, ξ) > 0, then,
by the first inequality in (2.11), we have

[b(t, ξ)]2

a(t, ξ)
≤ −4 〈ξ, v(t)〉 − 4ε|ξ| ≤ 4|ξ|(‖v‖ − ε).

In the other case, i.e., if εb(t, ξ) ≤ 2a(t, ξ) is valid, we have

[b(t, ξ)]2

a(t, ξ)
≤ 2b(t, ξ)

ε
=

2 〈ξ, d(t)〉
ε

≤ 2|ξ|‖d‖
ε

.

Hence with the constant M defined as

M := max

(
4(‖v‖ − ε),

2‖d‖
ε

)

we get that (2.15) holds on the indicated domain.
Conversely, assume that (2.15) is valid. Then (2.10) holds, because, if d(t) �∈

T (x(t)|Q(t)), then there exists ξ ∈ N(x(t)|Q(t)) such that 〈ξ, d(t)〉 > 0. This yields
that a(t, ξ) = 0 and, by (2.15), b(t, ξ) = 〈ξ, d(t)〉 = 0, leading to a contradiction.

Now we show that there exist w ∈ intσ∞(Q) and ε > 0 such that v ∈ L∞
m defined

by

v =
w − x− εd

ε2
(2.16)

belongs to V.
As we have noted above, by [21, Theorem 3], the condition in (2.1) yields that

σ∞(Q) has nonempty interior. Moreover the centers xt in (2.1) can be chosen in a
measurable way. Define the measurable function w by w(t) = xt. Then, from (2.1) it
results that there exists a set A of full measure such that, for all t ∈ A, we have that
w(t) +Bρ ⊂ Q(t). Hence,

〈ξ, w(t)〉+ ρ|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ A, ξ ∈ R
m.

Let M be the constant that validates (2.15). Choose ε > 0 so that ε2(ε+M/4) ≤ ρ.
Thus, we have

〈ξ, w(t)〉+ ε2(ε+M/4)|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ A, ξ ∈ R
m.

To complete the proof of the theorem, we need to show that the function v defined in
(2.16) satisfies (2.11) with this ε.

Substituting v = (w − x− εd)/ε2 into this condition, it remains to prove that

〈ξ, w(t)〉 ≤

 −ε

3|ξ| − ε2
[b(t, ξ)]2

4a(t, ξ)
+ 〈ξ, x(t)〉+ εb(t, ξ) if εb(t, ξ) > 2a(t, ξ),

−ε3|ξ|+ δ∗(ξ|Q(t)) if εb(t, ξ) ≤ 2a(t, ξ)
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for all t ∈ A, ξ ∈ (Rm \ {0}).
By the choice of ε, we have that ε3 ≤ ρ, and hence

〈ξ, w(t)〉+ ε3|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ A, ξ ∈ R
m,

that is, the second inequality above holds.
It remains to show that the first inequality holds on its domain.
If (t, ξ) belongs to this domain, then

εb(t, ξ) > 2a(t, ξ) > a(t, ξ) > 0.(2.17)

Thus, by our assumption, there exists a positive constant M such that (2.15) is valid.
Combining these inequalities, we obtain

〈ξ, w(t)〉 ≤ δ∗(ξ|Q(t))− ε2(ε+M/4)|ξ|
= a(t, ξ) + 〈ξ, x(t)〉 − ε2(ε+M/4)|ξ|
< εb(t, ξ) + 〈ξ, x(t)〉 − ε3|ξ| − ε2M |ξ|/4
≤ εb(t, ξ) + 〈ξ, x(t)〉 − ε3|ξ| − ε2

[b(t, ξ)]2

4a(t, ξ)

for all (t, ξ) satisfying εb(t, ξ) > 2a(t, ξ), that is, the needed first inequality above is
proved, and hence v is in V. Thus the nonemptiness of V is proved and the proof of
Theorem 2.5 is complete.

Remark 2.4. It follows from Theorem 2.5 that if there exists a constant M such
that (2.15) is satisfied on the domain indicated, then d ∈ T (x|σ∞(Q)).

The rest of this section is devoted to answering the question pertaining the cal-
culation of the support function of the images of V(t) in terms of x(t), d(t), and Q(t).
Thus, for fixed t, we need to calculate δ∗(ξ|V (x(t), d(t)|Q(t))). For this reason, we
recall a special case of the result derived in [22] that describes the set V (x, d|Q), for
x ∈ R

m, d ∈ T (x|Q), and Q a convex set in R
m with nonempty interior, in terms of

its support functional.
Denote

d⊥ := {ξ ∈ R
m | 〈ξ, d〉 = 0}, d> := {ξ ∈ R

m | 〈ξ, d〉 > 0},

and define from R
m to the extended reals the function

σ(x, d|Q)(ξ) :=




lim inf
ζ → ξ
ζ ∈ d>

[〈ζ, d〉]2
4[〈ζ, x〉 − δ∗(ζ|Q)] if ξ ∈ N(x|Q) ∩ d⊥,

+∞ otherwise.

(2.18)

One can see that σ(x, d|Q)(·) is a positively homogeneous function and also lower
semicontinuous on R

m \ {0}.
Define the convex regularization coσ(x, d|Q)(·) to be the largest lower semicon-

tinuous convex function below σ(x, d|Q), that is,

coσ(x, d|Q)(ξ) = sup{ϕ(ξ) | ϕ : R
m → [−∞,∞] is convex and lower semicontinuous,

ϕ(ζ) ≤ σ(x, d|Q)(ζ) for all ζ ∈ R
m \ {0}}.

It results that coσ(x, d|Q)(·) is also sublinear.
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Theorem 2.6. Let Q ⊂ R
m be closed convex with nonempty interior, let x ∈ Q,

d ∈ C(x|Q). Then a vector v ∈ R
m belongs to V (x, d|Q) if and only if

〈ξ, v〉 < coσ(x, d|Q)(ξ) for all ξ ∈ R
m \ {0}.

Furthermore, for all ξ ∈ R
m,

δ∗(ξ|V (x, d|Q)) = coσ(x, d|Q)(ξ).
The following result offers an evaluation of the support function of the set V =

V (x, d|σ∞(Q)) at linear functionals that can be represented in terms of integrable
functions.

Corollary 2.7. Let Q be a measurable set-valued map on Ω whose images are
closed convex sets that satisfy condition (2.1), let x ∈ σ∞(Q) and d ∈ C(x, d|σ∞(Q)),
and let ϕ ∈ L1(Ω,Rm). Then

δ∗(ϕ|V) =

∫
Ω

coσ
(
x(t), d(t)|Q(t)

)
(ϕ(t)) dµ(t).(2.19)

3. Applications to optimization theory. In this section we make a specifi-
cation of the optimization problem (P) and Theorem 1.1. Let Y,Z be Banach spaces,
D ⊂ Z nonempty and open, Fi : D → R (i = 0, . . . , p), and K : D → Y be given. Let
(Ω,A, µ) be a finite complete measure space, g : Ω×D → R

m, h : Ω×D → R
n, and

Q : Ω→ 2R
m

be a measurable set-valued map whose values are closed convex sets and
the condition (2.1) is satisfied. Then, as stated in the previous section, σ∞(Q) ⊂ L∞

m

has nonempty interior.
We consider the following optimization problem:

(P∗) Minimize F0(z) subject to




F (z) ≤ 0,
g(t, z) ∈ Q(t) for a.e. t ∈ Ω,
h(t, z) = 0 for a.e. t ∈ Ω,
K(z) = 0.

Introduce the functions H : D → L∞
n and G : D → L∞

m by

H(z)(t) = h(t, z) and G(z)(t) = g(t, z).(3.1)

Then, with E := (H,K) and F := (F1, . . . , Fp), the problem (P∗) reduces to (P)
described in the introduction.

The main focus of this section is to apply Theorem 1.1 to the problem (P∗) in
such a way that all of the hypotheses assumed and all the results obtained will be
phrased explicitly in terms of the data F0, F , g, Q, h, and K.

Now we define the notions of a solution, admissible and regular points, and critical
and regular directions.

• A point ẑ ∈ D is admissible for (P∗) if F (ẑ) ≤ 0, g(t, ẑ) ∈ Q(t), h(t, ẑ) = 0
for a.e. t ∈ Ω and K(ẑ) = 0. A point ẑ ∈ D is a solution (local minimum) for
this problem if there exists a neighborhood U of ẑ such that F0(z) ≥ F0(ẑ)
for all admissible point z ∈ U .

• The regularity of an admissible solution ẑ means that the assumption (R1) is
valid and, in addition, we have (R∗

1)–(R
∗
4) below.

(R∗
1) The map l(t, ·) := (g, h)(t, ·) is L∞-uniformly strictly Fréchet differen-

tiable at ẑ for a.e. t ∈ Ω, that is,

lim
z1,z2→ẑ

|l(t, z1)− l(t, z2)− l′(t, ẑ)(z1 − z2)|
||z1 − z2|| = 0
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holds L∞-uniformly for t ∈ Ω. (Then the maps G, H defined by (3.1)
are strictly Fréchet differentiable at ẑ.)

(R∗
2) There exist a mapping A : L∞

m → Z and a bounded linear operator
B : L∞

n → Z such that A(0) = 0,

H ′(ẑ)B = I, H ′(ẑ) ◦A = 0,

and

G′(ẑ)
(
A(w)

)
− w ∈ T

(
G(ẑ)|σ∞(Q)

)
for all w ∈ L∞

m .

Moreover, the operator G′(ẑ) ◦ B is a (Π,Π)-continuous map at zero
from L∞

n to L∞
m .

(R∗
3) F0 and F are locally Lipschitz at ẑ and the functions F ◦

i (ẑ, A(·)) and
F ◦
i (ẑ, B(·)) are Π-continuous at zero for all i = 0, . . . , p.

(R∗
4) K is strictly Fréchet differentiable at ẑ, K ′(ẑ) ◦ A and K ′(ẑ) ◦ B are

weakly Π-continuous, and K ′(ẑ)◦ (IZ −B ◦H ′(ẑ)) : Z → Y has a closed
range (where IZ is the identity on Z).

• A direction y ∈ Z is critical for (P∗) at an admissible regular point ẑ if (C1)
is valid, and
(C∗

2 ) g′(t, ẑ)(y) ∈ C(g(t, ẑ)|Q(t)) for a.e. t ∈ Ω uniformly, that is, there exists
a constant M such that for a.e. t ∈ Ω,

[〈ξ, g′(t, ẑ)(y)〉]2 ≤M |ξ|
(
δ∗(ξ|Q(t))− 〈ξ, g(t, ẑ)〉

)
for all ξ ∈ R

m such that 〈ξ, g′(t, ẑ)(y)〉 > 0.
(C∗

3 ) h′(t, ẑ)(y) = 0 for a.e. t ∈ Ω and K ′(ẑ)(y) = 0.
• The vector y is a regular direction if (R4) and the following hold:
(R∗

5) The following second-order directional derivative exists for the function
l := (g, h) for a.e. t ∈ Ω,

l′′(t, ẑ, y) := lim
ε→0+

2
l(t, ẑ + εy)− l(t, ẑ)− εl′(t, ẑ)y

ε2
,

and the limit is L∞-uniform in t; furthermore, K satisfies the same
assumption as the function E in (R5).

The main result of the section is the following theorem. Its proof employs the results
derived in section 2 and Theorem 1.1.

Theorem 3.1. Let ẑ be a regular solution of the above problem (P∗). Then, for all
regular critical directions y, there correspond Lagrange multipliers λ0, λ1, . . . , λp ≥ 0,
ϕ ∈ L1

m, ψ ∈ L1
n, and y∗ ∈ Y ∗ (depending on y) that do not vanish simultaneously,

and the following relations hold:

λiFi(ẑ) = 0 (i = 1, . . . , p), λiF
o
i (ẑ; y) = 0 (i = 0, . . . , p)(3.2)

for a.e. t ∈ Ω,

ϕ(t) ∈ N(g(t, ẑ)|Q(t)), 〈ϕ(t), g′(t, ẑ)(y)〉 = 0,(3.3)

p∑
i=0

λiF
o
i (ẑ; z) + 〈y∗,K ′(ẑ)(z)〉(3.4)

+

∫
Ω

[
〈ϕ(t), g′(t, ẑ)(z)〉+ 〈ψ(t), h′(t, ẑ)(z)〉

]
dµ(t) ≥ 0 for z ∈ Z,
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and

p∑
i=0

λiF
o′
i (ẑ; y) + 〈y∗,K ′′(ẑ)(y)〉(3.5)

+

∫
Ω

[
〈ϕ(t), g′′(t, ẑ)(y)〉+ 〈ψ(t), h′′(t, ẑ)(y)〉

]
dµ(t),≥ 2

∫
Ω

γ(t, ϕ(t)) dµ(t),

where γ(t, ξ) := coσ
(
g(t, ẑ), g′(t, ẑ)y|Q(t))(ξ).

Observe that, using the Hahn–Banach theorem, the first-order condition (3.4) can
be written as an equality: There exist linear functionals z∗i ∈ ∂Fi(ẑ) (i = 0, . . . , p)
such that

p∑
i=0

λi 〈z∗i , z〉+ 〈y∗,K ′(ẑ)(z)〉

+

∫
Ω

[
〈ϕ(t), g′(t, ẑ)(z)〉+ 〈ψ(t), h′(t, ẑ)(z)〉

]
dµ(t) = 0 for z ∈ Z.

Proof. We intend to apply Theorem 1.1 to our problem (P∗). First we verify
that all the hypotheses of Theorem 1.1 concerning ẑ and the critical direction y are
satisfied.

From (R∗
1), it follows that G and H are strictly Fréchet differentiable at ẑ. Thus,

(R1)–(R3) will be satisfied if we show that, for E := (H,K), the operator E′(ẑ) has
a closed range in L∞

n × Y .
From (R∗

2) we have the surjectivity of H ′(ẑ). Then, by [1, Lemma 2.1.6], the
result follows if we show that K ′(ẑ)

(
KerH ′(ẑ)

)
is a closed subspace. By (R∗

2), B is
the right inverse of H ′(ẑ). Then the image of IZ −B ◦H ′(ẑ) is KerH ′(ẑ) and hence
(R∗

4) yields the closedness of the image of E′(ẑ).
The criticality condition (C2) follows from (C∗

2 ) and Theorem 2.5.
Conditions (R4) and (R5) are immediate. Hence, Theorem 1.1 applied to (P)∗

yields the existence of nontrivial multipliers λi ≥ 0 (i = 0, . . . , p), w∗ ∈ (L∞
m )∗,

v∗ ∈ (L∞
n )∗, and y∗ ∈ Y ∗ such that the first equation of (3.2) holds and

w∗ ∈ N
(
G(ẑ)|σ∞(Q)

)
,(3.6)

p∑
i=0

λiF
o
i (ẑ; z) + 〈y∗,K ′(ẑ)z〉+ 〈w∗, G′(ẑ)z〉+ 〈v∗, H ′(ẑ)z〉 ≥ 0 for z ∈ Z(3.7)

and

p∑
i=0

λiF
o′
i (ẑ; y) + 〈y∗,K ′′(ẑ)(y)〉(3.8)

+ 〈w∗, G′′(ẑ)(y)〉+ 〈v∗, H ′′(ẑ)(y)〉 ≥ 2δ∗
(
w∗
∣∣∣V (G(ẑ), G′(ẑ)y|σ∞(Q))

)
.

First we shall show that w∗ and v∗ are in fact represented in terms of integrable
functions.

Let (v, w) ∈ L∞
n × L∞

m . Set

z = z(v, w) := A(w −G′(ẑ)Bv) +Bv,
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where A is given in (R∗
2), which implies

G′(ẑ)
(
A(w −G′(ẑ)Bv)

)
−
(
w −G′(ẑ)Bv

)
∈ T

(
G(ẑ)|σ∞(Q)

)
.

Hence, by (3.6),

〈
w∗, G′(ẑ)

(
A(w −G′(ẑ)Bv)

)
−
(
w −G′(ẑ)Bv

)〉
≤ 0.

Due to this inequality and (R∗
2), we obtain

〈w∗, G′(ẑ)z〉+ 〈v∗, H ′(ẑ)z〉
=
〈
w∗, G′(ẑ)

(
A(w −G′(ẑ)Bv)

)
+
(
G′(ẑ)Bv − w

)
+ w

〉
+
〈
v∗, H ′(ẑ)

(
A(w −G′(ẑ)Bv)

)
+H ′(ẑ)(Bv)

〉
≤ 〈w∗, w〉+ 〈v∗, v〉 .

Substituting z = z(w, 0) and z = z(0, v) into (3.7), respectively, we get that

p∑
i=0

λiF
o
i (ẑ;A(w)) + 〈y∗,K ′(ẑ)A(w)〉+ 〈w∗, w〉 ≥ 0(3.9)

for w ∈ L∞
m , and

p∑
i=0

λiF
o
i

(
ẑ;A(−G′(ẑ)Bv) +Bv

)
+
〈
y∗,K ′(ẑ)

(
A(−G′(ẑ)Bv) +Bv

)〉
+ 〈v∗, v〉 ≥ 0

(3.10)

for v ∈ L∞
n .

Replacing w and v by (−w) and (−v), respectively, in the above inequalities, we
also get lower estimates for the linear functionals w∗ and v∗. Using the Π-continuity
assumptions of (R∗

2), (R
∗
3), and (R∗

4), we obtain that v∗ and w∗ are Π-continuous
at the origin. Then, by the Hewitt–Yosida decomposition theorem [27], there exist
ϕ ∈ L1

m and ψ ∈ L1
n such that

〈w∗, w〉 =
∫

Ω

〈ϕ(t), w(t)〉 dµ(t) and 〈v∗, v〉 =
∫

Ω

〈ψ(t), v(t)〉 dµ(t)(3.11)

for all w ∈ L∞
m and v ∈ L∞

n , respectively. Clearly, these equations reduce (3.7) to
(3.4).

Using Corollary 2.7 and (3.11), the second-order necessary condition (3.8) now
reduces to (3.5).

Since by (3.11) the functional w∗ is represented by the L1
m-function ϕ, then [21,

Theorem 9] and (3.6) yield that the first equation of (3.3) holds true. Furthermore,
by replacing z = y in (3.7) and by using the criticality of y, we obtain the second
equations of (3.2) and (3.3). Therefore, the proof of the theorem is completed.
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Abstract. The SQAP-polytope was associated to quadratic assignment problems with a certain
symmetric objective function structure by Rijal (1995) and Padberg and Rijal (1996). We derive
a technique for investigating the SQAP-polytope that is based on projecting the (low-dimensional)
polytope into a lower dimensional vector-space, where the vertices have a “more convenient” coordi-
nate structure. We exploit this technique in order to prove conjectures by Padberg and Rijal on the
dimension of the SQAP-polytope as well as on its trivial facets.

Key words. quadratic assignment problem, symmetric model, polyhedral combinatorics
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1. Introduction. For many classicalNP-hard combinatorial optimization prob-
lems like, e.g., the traveling salesman problem (TSP), the max cut problem, or the sta-
ble set problem, the methods of polyhedral combinatorics have yielded a lot of struc-
tural insight that led to big improvements in practical problem solving via cutting-
plane-based methods like branch&cut. However, the quadratic assignment problem
(QAP)—where the task is to find a permutation π that minimizes

∑
i

∑
k aikbπ(i)π(k)+∑

i ciπ(i) for some matrices A = (aik), B = (bjl), and C = (cij)—was merely consid-
ered from a polyhedral point of view until the work of [24, 21] and [14] (which is a
preliminary version of [16]). These papers defined the QAP-polytope via a well-known
mixed integer programming (MIP) formulation of the QAP and proved some basic
properties of that polytope, in particular its dimension (which was also proved in [5]).

There might be two reasons why the QAP-polytope had not been considered be-
fore. One is the fact that this polytope looks in some sense “nasty,” which can be
overcome by mapping it in a certain way into a different space (cf. [16]). The other
reason is computational. The MIP-formulation on which the QAP-polytope is based
has a lot of variables such that (at least) in former times it might have seemed im-
practical to solve the arising linear programs (LPs), for instance, within a branch&cut
algorithm. However, the LP-solvers have improved a lot during the last few years,
especially due to the success of interior point methods. Now, it seems promising to
attack QAP-instances of size about 20 or 25 (and maybe even larger) by cutting-
plane-based algorithms that use structural insight into the QAP-polytope. When
considering these orders of magnitudes, one has to note that existing branch&bound
algorithms (mostly using the Gilmore–Lawler bound) need a large amount of (parallel)
computer power to solve instances of size about 20, since they produce branch&bound
trees with a lot of nodes (cf. [8]). In the meantime during the submission of this pa-
per and the preparation of the final version, powerful branch&bound codes have been
developed that rely on more elaborate lower bounding procedures [12, 6]. Neverthe-
less, these algorithms also produce large branch&bound trees. Due to this fact, it
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sounds attractive to try to reduce this “tendency to implicit enumeration” by ex-
ploiting structural information about the problem that results from the polyhedral
investigations.

Actually, the kind of QAP we defined above is a so-called Koopmans–Beckmann
problem (KB-QAP). It was introduced in [19] in order to model the situation of a
set of n facilities that have certain amounts of “flow” between them and a set of n
locations having certain distances, and the requirement is to assign the facilities to
the locations in such a way that the sum of the products of flows and the respective
distances is minimized. The cij model fixed costs that arise when placing facility
i to location j independently from the assignment of the other facilities. One calls
matrix A the flow matrix, matrix B the distance matrix, and matrix C the matrix
of the linear costs. Clearly, this problem is NP-hard, since it has many NP-hard
optimization problems as special cases, e.g., the TSP.

We call symmetric such instances with the property that assigning object i to
location j and object k to location l always causes the same costs as assigning i to
l and k to j. For example, all instances having a symmetric distance or flow matrix
are symmetric in that sense. It turns out (first observed by [24, 21]) that for such
symmetric instances one can drop nearly 50% of the variables in the MIP-formulation
underlying the polyhedral approach. (Doing this, the quality of the LP-relaxation
decreases slightly, as we will show in section 6.) This yields a different polytope, the
symmetric QAP-polytope (SQAP-polytope). In [24] and [21] a set of valid equations
for that polytope is derived and the dimension of the SQAP-polytope is conjectured.

In this paper, we present some basic properties of the SQAP-polytope including
a proof of that conjecture. The main tool we use is a transformation that is similar to
the one that allowed us to derive basic results about the QAP-polytope in a (relatively)
simple way [16]. In section 2 we explain a formulation of the QAP as a minimization
problem in a certain graph. Using that terminology, we give the MIP-formulations
for QAP and SQAP that underlie the polyhedral approaches. In section 3 we give
definitions of both the QAP- and SQAP-polytopes and describe connections between
them. Then we map these polytopes isomorphically to other spaces, where they “look
much nicer.” (When saying a certain polytope P is isomorphic to a polytope P ′, we
always mean that there is an affine transformation from aff(P ) to aff(P ′) mapping P to
P ′. In particular, this implies that the two polytopes are combinatorially isomorphic,
i.e., they have isomorphic face lattices.) In section 4 the dimension of the SQAP-
polytope as well as the fact that the nonnegativity constraints on the variables define
facets of it are established. In section 5 we present a first class of nontrivial facets of
the SQAP-polytope. Some computational results concerning a lower bound obtained
by exploiting these first results about the SQAP-polytope are reported in section 6.
Finally we give some conclusions in section 7.

2. Problem definition. We will define the QAP as the problem of finding
among certain cliques in a special graph one of minimal node and edge weight. The
SQAP will be defined as a similar problem in a closely related hypergraph. We use
the symbol

(
M
k

)
for the set of all subsets of cardinality k of a set M .

Let the graph Gn = (Vn, En) have nodes
Vn :=

{
(i, j)

∣∣ i, j ∈ {1, . . . , n}}
and edges

En :=
{{(i, j), (k, l)} ∈ (Vn

2

) ∣∣ i 	= k, j 	= l
}
.
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Fig. 2.1. The graph Gn has all possible edges except the “horizontal” and the “vertical” ones.

Fig. 2.2. A pair of edges that can be identified in the symmetric case.

We define [i, j, k, l] := {(i, j), (k, l)} for all edges {(i, j), (k, l)} ∈ En. This implies
[i, j, k, l] = [k, l, i, j]. We usually draw Gn as shown in Figure 2.1.

The graph Gn has clique-number ω(Gn) = n, and the n-cliques of Gn correspond
to the (n× n)-permutation matrices. We denote the set of (node sets of) k-cliques of
Gn by

CLQnk := {C ⊆ Vn | C k-clique of Gn}.

For any S ⊆ Vn, we denote by En(S) := {{v, w} ∈ En | v, w ∈ S} the set of edges
having both endpoints in S. As usual, for a subset N ⊆ M of a finite set M and a
vector a ∈ R

M , we define a(N) :=
∑
e∈N ae.

The QAP is to solve

min g(C) + h(En(C))
subject to C ∈ CLQnn

(QAPg,h)

for given node weights g ∈ R
Vn and edge weights h ∈ R

En . (If we have a KB-QAP
defined by the matrices A = (aik), B = (bjl), and C = (cij), we choose g(i,j) =
cij + aiibjj and h[i,j,k,l] = aikbjl + akiblj .)

The nodes and edges of Gn will correspond to variables in the polyhedral approach.
If the instance (g, h) is symmetric in the sense that h[i,j,k,l] = h[i,l,k,j] for all pairs of
edges {[i, j, k, l], [i, l, k, j]} (cf. Figure 2.2), then we can identify these two edges in our
formulation, and hence reduce the number of variables by nearly 50%.

This observation (first made by [24, 21]) gives the motivation to study also a
specific formulation for the special case of symmetric instances of the QAP, the SQAP.
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In order to derive an appropriate formulation for SQAP, we model the described
identification of edges by passing from the graph Gn having nodes Vn and edges En to
the hypergraph Hn having the same nodes Vn, but hyperedges

Fn :=
{{(i, j), (k, l), (i, l), (k, j)} ∈ (Vn

4

)∣∣i 	= k, j 	= l
}
.

There will be no hypergraph theory involved; we simply use the notions of “hyper-
graph” and “hyperedges.” For i 	= k and j 	= l, we write 〈i, j, k, l〉 := {(i, j), (k, l), (i, l),
(k, j)}. This implies 〈i, j, k, l〉 = 〈k, l, i, j〉 = 〈i, l, k, j〉 = 〈k, j, i, l〉 for all i 	= k and
j 	= l. For an edge [i, j, k, l] ∈ En we call the edge τ([i, j, k, l]) := [i, l, k, j] the mate of
[i, j, k, l]. Then we can assign to every edge e ∈ En a hyperedge HYP(e) := e∪ τ(e) ∈
Fn. For a subset R ⊆ En, we denote HYP(R) := {HYP(e) | e ∈ R}. For a subset
S ⊆ Vn, we define the set Fn(S) := HYP(En(S)). We refer to a subset C ⊂ Vn as a
clique of Hn if and only if C is a clique of the graph Gn.

Because we need to express relationships between the asymmetric and the sym-
metric versions of the problem, we introduce the map

symn : R
Vn × R

En −→ R
Vn × R

Fn

by defining symn(x, y) = (x, z) via ze∪τ(e) := ye + yτ(e) for all e ∈ En.
If (g, h) ∈ R

Vn ×R
En and h is symmetric, then (QAPg,h) is equivalent to solving

SQAP

min g(C) + ĥ(Fn(C))
subject to C ∈ CLQnn

(SQAP
g,̂h
)

with ĥHYP(e) := he for all e ∈ En.
In the rest of this section, we will develop MIP-formulations for QAP and SQAP.

These formulations are the starting points for the polyhedral approach. The MIP-
formulation for QAP was introduced by [13] and [1] (using a general linearization
technique due to [2]). It is similar to a formulation by [9], which, however, was
demonstrated by [13] and [1] to give a weaker LP-relaxation. The one for SQAP is
due to [24] and [21]. Nevertheless, we will give short proofs of the respective theorems
in our notational setting.

We need the notion of a characteristic vector χN ∈ {0, 1}M for a subset N ⊆ M
of a (finite) set M , defined by setting χNp := 1 for p ∈ M if and only if p ∈ N . We
will denote characteristic vectors of subsets of

Vn by x(... ),
En by y(... ), and
Fn by z(... ).

Define VERTn := {(xC , yEn(C) | C ∈ CLQnn} and SVERTn := {(xC , zFn(C) | C ∈
CLQnn}, i.e., VERTn and SVERTn are the characteristic vectors of feasible solutions
to QAP and SQAP, respectively.

We denote by row
(n)
i := {(i, j) ∈ Vn | j = 1, . . . , n} the ith row and by col(n)

j :=
{(i, j) ∈ Vn | i = 1, . . . , n} the jth column of the nodes Vn. The next two theorems
provide the desired MIP-formulations for QAP and SQAP, respectively. As usual, for
any two disjoint subsets S, T ⊆ Vn, (S : T ) is the set of all edges in En having one
endpoint in S and the other one in T . For a singleton {v}, in this as well as in some
other contexts, we often omit the brackets and simply write v.
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Fig. 2.3. Equations (2.3) and (2.4).

Figures 2.3 and 2.4 illustrate the used equations. We draw a hyperedge from Fn
simply by drawing both mates from En belonging to that hyperedge. In all our figures,
dashed nodes or (hyper)edges indicate coefficients −1, solid ones stand for +1.

Theorem 2.1. A vector (x, y) ∈ R
Vn × R

En is a member of VERTn if and only
if it satisfies the following conditions:

x(row
(n)
i ) = 1 (i = 1, . . . , n),(2.1)

x(col
(n)
j ) = 1 (j = 1, . . . , n),(2.2)

−x(i,j) + y((i, j) : row
(n)
k ) = 0 (i, j, k = 1, . . . , n, i 	= k),(2.3)

−x(i,j) + y((i, j) : col
(n)
l ) = 0 (i, j, l = 1, . . . , n, j 	= l),(2.4)

ye ≥ 0 (e ∈ En),(2.5)

xv ∈ {0, 1} (v ∈ Vn).(2.6)

We make one more notational convention in order to increase the readability of
the following equations. For any pair v, w ∈ Vn of nodes belonging to the same row
or column of Vn, we denote by ∆wv := {f ∈ Fn | v, w ∈ f} the set of all hyperedges in
Fn containing both v and w (cf. Figure 2.4).

Theorem 2.2. A vector (x, z) ∈ R
Vn ×R

Fn is a member of SVERTn if and only
if it satisfies the following conditions:

x(row
(n)
i ) = 1 (i = 1, . . . , n),(2.7)

x(col
(n)
j ) = 1 (j = 1, . . . , n),(2.8)

−x(i,j) − x(k,j) + z(∆
(k,j)
(i,j) ), = 0 (i, j, k = 1, . . . , n, i < k),(2.9)

−x(i,j) − x(i,l) + z(∆
(i,l)
(i,j)), = 0 (i, j, l = 1, . . . , n, j < l),(2.10)

ze ≥ 0 (e ∈ Fn),(2.11)

xv ∈ {0, 1} (v ∈ Vn).(2.12)

Proof of Theorem 2.1. The “only if” part is clear. To see the other direction, let
(x, y) ∈ R

Vn × R
En satisfy conditions (2.1)–(2.6). Obviously, x is the characteristic

vector of an n-clique of Gn, and one deduces (e.g., using two equations from (2.3)
and the nonnegativity of y) that y[i,j,k,l] > 0 implies x(i,j) = x(k,l) = 1. These two
facts imply that it is impossible for two components of y belonging to mates to be
both nonzero. Observing that symn(x, y) satisfies the conditions of Theorem 2.2, one
obtains Theorem 2.1 from Theorem 2.2.
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Fig. 2.4. Equations (2.9) and (2.10).

Proof of Theorem 2.2. Again, the “only if” part is obvious. Let (x, z) ∈ R
Vn×R

Fn

satisfy conditions (2.7)–(2.12); hence x is the characteristic vector of an n-clique
C ∈ CLQnn. Considering four appropriate equations from (2.9) and (2.10) (and noting
the nonnegativity of z), one gets that z〈i,j,k,l〉 > 0 implies x(i,j) = x(k,l) = 1 or
x(i,l) = x(k,j) = 1. But then, in each of (2.9) and (2.10), there is at most one
hyperedge involved corresponding to a nonzero component of z. This leads to the fact
that z〈i,j,k,l〉 > 0 implies z〈i,j,k,l〉 = 1, and that x(i,j) = x(k,l) = 1 implies z〈i,j,k,l〉 = 1.
Hence, z must be the characteristic vector of Fn(C).

3. The SQAP-polytope and some relatives. Theorems 2.1 and 2.2 give us
the starting points for deriving and exploiting further structural information on the
problems QAP and SQAP. As with many other combinatorial optimization problems,
the hope is to achieve this by investigating the convex hulls of the sets of feasible
solutions to the respective MIPs.

We shall define the quadratic assignment polytope as

QAPn := conv
({(xC , yEn(C)) | C ∈ CLQnn}

)
and the symmetric quadratic assignment polytope as

SQAPn := conv
({(xC , zFn(C)) | C ∈ CLQnn}

)
.

Before starting to consider the connection between these two polytopes, we want to
mention the following facts.

Observation 1. The two polytopes QAPn and SQAPn are invariant under
permutations of the rows, permutations of the columns, and “transposition” of the
node set Vn. In particular, for each of the two polytopes, all the cones induced at the
vertices are isomorphic.

For the first one, the QAP-polytope, investigations were started by [24, 21, 14,
16]. There is not much known about the second one, the SQAP-polytope. Basically,
there is only a conjecture of [24] and [21] concerning the dimension of SQAPn, which
we will prove to be valid in Theorem 4.2.

This paper is concerned with the SQAP-polytope. However, it turns out that
SQAPn and QAPn are closely related—although they are not isomorphic (e.g., we
will see that they have different dimensions). The situation is quite similar to the
relationship between the asymmetric and the symmetric traveling salesman polytope.
While it is difficult to carry over results from the symmetric to the asymmetric case,
this is (sometimes) possible for the opposite direction.
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Next, we want to explain the relationship between the QAP- and the SQAP-
polytope. Formally, the two polytopes are connected by

SQAPn = symn(QAPn).
(Just consider the vertices to see this.)

We define an inequality (equation) (u, v)T (x, y) ≤ (=)ω with (u, v) ∈ R
Vn × R

En

and ω ∈ R to be symmetric if and only if components of v that belong to mates are
equal, i.e., ve = vτ(e) for all e ∈ En. A face of QAPn is called symmetric if there
is a symmetric inequality defining that face. Even if a face of QAPn is defined by
a nonsymmetric inequality, it may be symmetric. This is because in general a face
is defined by many different inequalities (even in the case of a facet, due to the low-
dimensionality of QAPn), but in order to be symmetric it is required that there exists
only one among these inequalities which is symmetric.

Let (u, v)T (x, y) ≤ (=)ω be a symmetric valid inequality (equation) for the poly-
tope QAPn. It induces a valid inequality (equation) (u,w)T (x, z) ≤ (=)ω for SQAPn
with wHYP(e) := ve for all e ∈ En. Conversely, every valid inequality (equation) for
SQAPn induces a symmetric valid inequality (equation) for QAPn. From this, we
obtain the following.

Observation 2. There is a one-to-one correspondence between the symmetric
faces of QAPn and the faces of SQAPn. If we identify the faces of QAPn and
SQAPn with the node sets of the cliques corresponding to their vertices, then that
correspondence is inclusion-preserving.

This observation translates into the relationship between the face lattices of the
QAP- and the SQAP-polytopes.

Theorem 3.1. The face lattice of SQAPn arises by restricting the face lattice
of QAPn to the symmetric faces. (Note that ∅ and QAPn itself are symmetric faces
of QAPn.)

Corollary 3.2. A symmetric proper face of QAPn induces a facet of SQAPn
if and only if there are only nonsymmetric faces strictly between itself and QAPn in
the face lattice of QAPn.

In general, it will be difficult to show that strictly between a certain symmetric
face and the whole polytope there are only nonsymmetric faces of QAPn, because it
is hard to prove that a set of faces is the complete set of faces containing a given face.
However, in the special case that the face under consideration is a ridge of QAPn
(i.e., a face of two dimensions less than the whole polytope), the chances are better
since it is a well-known fact that any ridge is the unique intersection of two facets.

Corollary 3.3. If a symmetric ridge of QAPn is the intersection of two non-
symmetric facets of QAPn, then it induces a facet of SQAPn.

When investigating more closely the structure of a polytope defined as the convex
hull of some points, one is very soon confronted with tasks such as computing the rank
of a subset of these points or showing that such a subset spans a certain subspace. In
both cases, one has to deal with linear combinations of the points, which one hopes to
be sparse and to look somehow nice. Working with QAPn and SQAPn, it turns out
that such nice combinations are hard to obtain. This is mainly due to the facts that
the coordinate vectors of the vertices look all the same up to certain permutations of
the coordinates, and that there are no pairs among them having only slightly differing
supports. On the other hand, for both of the polytopes a lot of equations are holding,
indicating some redundancy in the problem definition. This motivated us to try to
map the polytopes isomorphically into other spaces (of lower dimensions) in such a
way that the coordinate vectors of the resulting vertices have nicer structures.
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Let A ⊂ R
Vn × R

En be the affine subspace of R
Vn × R

En defined by (2.1)–(2.4),
i.e., A ⊆ R

Vn × R
En is the set of solutions to the equation system

x(row
(n)
i ) = 1 (i = 1, . . . , n),

x(col
(n)
j ) = 1 (j = 1, . . . , n),

−x(i,j) + y((i, j) : row
(n)
k ) = 0 (i, j, k = 1, . . . , n, i 	= k),

−x(i,j) + y((i, j) : col
(n)
l ) = 0 (i, j, l = 1, . . . , n, j 	= l),

and let Â ⊂ R
Vn ×R

Fn be the affine subspace of R
Vn ×R

Fn defined by (2.7)–(2.10),

i.e., Â ⊆ R
Vn × R

Fn is the set of solutions to the system

x(row
(n)
i ) = 1 (i = 1, . . . , n),

x(col
(n)
j ) = 1 (j = 1, . . . , n),

−x(i,j) − x(k,j) + z(∆
(k,j)
(i,j) ) = 0 (i, j, k = 1, . . . , n, i < k),

−x(i,j) − x(i,l) + z(∆
(i,l)
(i,j)) = 0 (i, j, l = 1, . . . , n, j < l).

We will show that in both cases for the affine subspaces defined above all variables
corresponding to vertices and edges, respectively, hyperedges involving the nth row
or the nth column (the same holds for any row and any column) are redundant in the
sense that the projections onto the linear subspaces of the original spaces obtained
by setting all these variables to zero produce isomorphic images of these two affine
subspaces. Since the two polytopes under consideration are contained in the respective
affine subspaces, this implies that these projections yield isomorphic images of the
polytopes.

Let W := row
(n)
n ∪ col(n)

n , E := {e ∈ En | e ∩ W 	= ∅}, and F := {f ∈ Fn |
f ∩W 	= ∅}. Define U := {(x, y) ∈ R

Vn × R
En | xW = 0, yE = 0} and Û := {(x, z) ∈

R
Vn×R

Fn | xW = 0, zF = 0}. Let π : R
Vn×R

En −→ U be the orthogonal projection
onto U , and π̂ : R

Vn × R
Fn −→ Û be the orthogonal projection onto Û .

Proposition 3.4. π(A) is affinely isomorphic to A and π̂(Â) is affinely isomor-
phic to Â.

Proof. We prove only the symmetric part of the proposition. The nonsymmetric
part can be shown quite similarly [16].

First, we show that there is a way to express the components of points in Â
belonging to elements in W and F linearly by the components belonging to elements
in Vn \W and Fn \ F .

The first observation is that this is possible for the elements inW using equations

of the type x(row
(n)
i ) = 1 and x(col

(n)
j ) = 1. Now, we consider F . Here, it suffices to

consider three possibilities for a hyperedge 〈i, j, k, l〉 ∈ F . The first two are i, j, k <

n, l = n and i, j, l < n, k = n. Using −x(i,j) − x(k,j) + z(∆
(k,j)
(i,j) ) = 0, respectively,

−x(i,j) − x(i,l) + z(∆
(i,l)
(i,j)) = 0, the first two possibilities are done. The possibility

remains that i, j < n, k = n, l = n. Here, we consider (e.g.) −x(i,j) − x(i,n) +

z(∆
(i,n)
(i,j) ) = 0, which allows to express z〈i,j,n,n〉 since we can already express z〈i,j,k,n〉

for k < n.
Up to now, we have shown that there is a linear function ψ̂ : R

Vn\W ×R
Fn\F −→

R
W × R

F such that for all (x, z) ∈ Â we have (xW , zF ) = ψ̂(xVn\W , zFn\F ). Hence
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Fig. 3.1. The effect of the projection.

φ̂ : R
Vn × R

Fn −→ R
Vn × R

Fn defined via φ̂(x, z) = (x′, z′) with

(x′W , z′F ) := (xW , zF )− ψ̂(xVn\W , zFn\F ),
(x′Vn\W , z′Fn\F ) := (xVn\W , zFn\F )

is an affine transformation (note that the corresponding matrix is an upper triangular

one having 1’s everywhere on the main diagonal) of R
Vn ×R

Fn that induces on Â the
orthogonal projection onto Û .

We identify the linear spaces U and Û with the spaces R
Vn−1×R

En−1 and R
Vn−1×

R
Fn−1 , respectively. Hence,

QAP�n−1 := π(QAPn) ⊂ R
Vn−1 × R

En−1

is a polytope in R
Vn−1 × R

En−1 that is isomorphic to QAPn, and
SQAP�n−1 := π̂(SQAPn) ⊂ R

Vn−1 × R
Fn−1

is a polytope in R
Vn−1 × R

Fn−1 that is isomorphic to SQAPn.
Since the vertices of these two polytopes arise as the projections of the vertices

of the two original polytopes, one obtains that they are the respective characteristic
vectors of the (n− 1)- and the (n− 2)-cliques of Gn−1 (cf. Figure 3.1).

We want to make the isomorphism betweenQAPn andQAP�n−1 as well as the one
between SQAPn and SQAP�n−1 a little more explicit. We denote by κ : CLQnn −→
CLQn−1

n−1 ∪ CLQn−1
n−2 the map defined by removing from a given n-clique in Gn the

node(s) in the nth row and in the nth column. Notice that κ is one to one.
Remark 1. If two faces of QAPn and QAP�n−1, respectively, SQAPn and

SQAP�n−1, correspond to each other with respect to the isomorphism induced by π,
respectively, π̂, then their vertices (identified with cliques) correspond to each other by
the bijection κ.

This remark describes the relationship between the faces from the “inner view,”
i.e., in terms of the vertices. Next, we want to describe the “outer relationship,” i.e.,
the relationship between inequalities defining corresponding faces.

Remark 2.
(i) If a face of QAPn, respectively, SQAPn, is defined by an inequality that has

zero coefficients for all elements in W ∪ E, respectively, W ∪ F , then an in-
equality defining the corresponding face of QAP�n−1, respectively, SQAP�n−1,
is obtained by projecting the coefficient vector of that inequality via π, respec-
tively, π̂. (Note that for every face of QAPn, respectively, SQAPn, there is a
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defining inequality having zero coefficients at W and E, respectively F . This
is due to the fact that the columns of the equation system defining the affine
subspace A, respectively, Â, corresponding to W ∪E, respectively, W ∪F , are
linearly independent, as shown in the proof of Proposition 3.4.)

(ii) From every inequality defining a face of QAP�n−1, respectively, SQAP�n−1,
one obtains an inequality defining the corresponding face of QAPn, respec-
tively, SQAPn, by zero-lifting.

The following “star-analogons” to some facts observed for QAPn and SQAPn
hold. First, also the “star-polytopes” are invariant under permutations of rows, per-
mutations of columns, or “transposition” of the node set Vn. Second, as in the rela-
tionship between QAPn and SQAPn, by identifying mates any symmetric inequality
(equation) for QAP�n gives rise to an inequality (equation) for SQAP�n, and any in-
equality (equation) for SQAP�n gives rise to a symmetric inequality (equation) for
QAP�n.

Theorem 3.5. The face lattice of SQAP�n arises by restricting the face lattice
of QAP�n to the symmetric faces.

Corollary 3.6. A symmetric proper face of QAP�n induces a facet of SQAP�n
if and only if there are only nonsymmetric faces strictly between itself and QAP�n in
the face lattice of QAP�n.

Corollary 3.7. If a symmetric ridge of QAP�n is the intersection of two non-
symmetric facets of QAP�n, then it induces a facet of SQAP�n.

We close this section by the following “inductive construction” of SQAPn+1. It
establishes a kind of “self-similarity” that shows another symmetry of the SQAP-
polytope. The proof of the theorem can be found in [17].

Theorem 3.8. For n ≥ 1 there are n + 1 affine maps ια : R
Vn × R

Fn −→
R

Vn+1 × R
Fn+1 (α = 0, . . . , n) such that for the n + 1 images Qα := ια(SQAPn)

(α = 0, . . . , n) of SQAPn the following hold:
(i) Every Qα is isomorphic to SQAPn.
(ii) Each Qα is a face of SQAPn+1.
(iii) The Qα have pairwise empty intersection.
(iv) SQAPn+1 = conv (

⋃n
α=0Qα) .

4. Dimension and trivial facets of SQAPn. In this section, we will present
some basic results concerning the facial structure of the SQAP-polytope. First, we
examine two sets of equations that will turn out to describe the affine hulls of QAP�n,
respectively, SQAP�n. For this, we make another notational convention. For two
disjoint subsets S, T ⊂ Vn, S ∩ T = ∅, we define 〈S : T 〉 := {{v, w} ∪ τ({v, w}) |
{v, w} ∈ (S : T )}. Remembering that the vertices of both QAP�n and SQAP�n
correspond to the n- and (n− 1)-cliques of Gn, one verifies that

x(row
(n)
i ) + x(row

(n)
k )− y(row

(n)
i : row

(n)
k ) = 1 (i < k)(4.1)

and

x(col
(n)
j ) + x(col

(n)
l )− y(col

(n)
j : col

(n)
l ) = 1 (j < l)(4.2)

are valid for QAP�n, and
x(row

(n)
i ) + x(row

(n)
k )− z(〈row(n)

i : row
(n)
k 〉) = 1 (i < k)(4.3)

and

x(col
(n)
j ) + x(col

(n)
l )− z(〈col(n)

j : col
(n)
l 〉) = 1 (j < l)(4.4)
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Fig. 4.1. The equations (4.1), (4.3) and (4.2), (4.4).

hold for SQAP�n (cf. Figure 4.1).
We denote the system (4.1), (4.2) by D(x, y) = d and the system (4.3), (4.4) by

D̂(x, z) = d̂.
By saying that 〈i, j, k, l〉 (i < k, j < l) is smaller than 〈i′, j′, k′, l′〉 (i′ < k′, j′ < l′)

if and only if (i, k, j, l) is lexicographically smaller than (i′, k′, j′, l′), we introduce an
ordering on the hyperedges Fn. After permutation of the columns with respect to
this order the “z-part” of the matrix D̂ has the following shape (n = 3):



1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1



.

But this is the node-edge-incidence matrix of the complete bipartite graph on
n(n−1)

2 + n(n−1)
2 nodes, where the left shore corresponds to the (unordered) pairs of

rows, and the right shore corresponds to the (unordered) pairs of columns of Vn. The
bases of the node-edge-incidence matrix of the complete bipartite graph on m + m
nodes are well known to correspond to the spanning trees of that graph [4]. Using

the observation that D̂ does not have full row-rank (since, e.g., the sum of all equa-
tions in (4.3) equals the sum of all equations in (4.4)), this leads to the following

characterization of all bases of D̂ that do not intersect the “x-part” of D̂.
Proposition 4.1.
(i) Precisely one (arbitrary) equation in D̂(x, z) = d̂ is redundant, in particular

rank(D̂) = n(n− 1)− 1.
(ii) A subset B ⊆ Fn of hyperedges corresponds to a basis of D̂ if and only if

(a) |B| = n(n− 1)− 1;
(b) there is no sequence (f0, f

′
0, f1, f

′
1, . . . , fk−1, f

′
k−1) (k ≥ 2) of hyperedges

in B such that fα and f ′
α connect the same rows of Vn and f ′

α and
f(α+1) mod k connect the same columns of Vn for all α = 0, . . . , k − 1.

In [16] we showed that D(x, y) = d is a complete equation system for QAP�n. But
the system D(x, y) = d consists only of symmetric equations. Hence, we can deduce

that D̂(x, z) = d̂ must be a complete system of equations for SQAP�n, since the
equations for SQAP�n correspond precisely to the symmetric equations for QAP�n.
(In fact, one can deduce the “completeness” of D̂(x, z) = d̂ also from the proof of
Theorem 4.4.)
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Consequently, the dimension of SQAP�n is n2+ n2(n−1)2

4 − (n(n− 1)− 1). By the
isomorphism between SQAPn and SQAP�n−1, one obtains the following theorem.

Theorem 4.2.

dim(SQAPn) = (n− 1)2 + (n− 1)
2(n− 2)2
4

− ((n− 1)(n− 2)− 1).

[24] and [21] proved that the rank of the system (2.7)–(2.10) equals (n − 1)2 +
n2(n−3)2

4 (which is equal to (n−1)2+ (n−1)2(n−2)2

4 −((n−1)(n−2)−1)) and conjectured
that this might be the dimension of SQAPn. Theorem 4.2 proves this conjecture.
Moreover, knowing that the rank of this system equals dim(SQAPn), one can even
conclude that the system (2.7)–(2.10) describes the affine hull of SQAPn. In addition,
we want to give another simple proof that does not compute the rank of the system
explicitly.

Theorem 4.3.

aff(SQAPn) = {(x, z) ∈ R
Vn × R

Fn | (x, z) satisfies (2.7), . . . , (2.10)}.
Proof. It suffices to show that one can linearly combine the zero-liftings of (4.3)

and (4.4) (for n− 1) from (2.7)–(2.10) (for n), since then it is clear that the solution
space of (2.7)–(2.10) for n—which is Â (containing SQAPn)—is mapped isomorphi-
cally (cf. Proposition 3.4) by the projection π̂ into the solution space of (4.3), (4.4)
for n − 1, which we know from our considerations to have the same dimension as
SQAPn.

Hence, by symmetry arguments, it suffices to exhibit a linear combination of
(2.7)–(2.10) that yields

x(row
(n)
1 \{(1, n)})+x(row(n)

2 \{(2, n)})−z(〈row(n)
1 \ {(1, n)} : row(n)

2 \ {(2, n)}〉) = 1.

But this is obtained by adding x(row
(n)
1 ) = 1, x(row

(n)
2 ) = 1, x(1,j)+x(2,j)−z(∆(2,j)

(1,j)) =

0 for all 1 ≤ j ≤ n− 1, and −x(1,n) − x(2,n) + z(∆
(2,n)
(1,n)) = 0, and finally dividing the

resulting equation by 2.
We just mention that the system (2.1)–(2.4) describes aff(QAPn) [24, 21, 16].
There is another nice gain when changing to the “star-polytopes.” We pointed out

in Corollary 3.2 that it is of interest to know that certain faces of the QAP-polytope
are nonsymmetric. As mentioned above, this might not be directly seen, since a
symmetric face of QAPn can be defined by a nonsymmetric inequality. However, this
is much easier for QAP�n.

Observation 3. Due to the fact that all equations holding for QAP�n are sym-
metric, in order to show that a given face of QAP�n is nonsymmetric, it suffices to
exhibit any nonsymmetric inequality defining it.

For the nonsymmetric QAP-polytope, the nonnegativity constraints on y define
facets, while 0 ≤ x ≤ 1 and y ≤ 1 are already implied by D(x, y) = d and y ≥ 0
[24, 21, 16]. For the SQAP-polytope, the situation is a little bit different, as the
following theorem shows.

Theorem 4.4. Let n ≥ 3.
(i) The nonnegativity constraints x ≥ 0 and z ≥ 0 define facets of SQAPn.
(ii) The upper bounds x ≤ 1 and z ≤ 1 are implied by (2.7)–(2.10) and x ≥ 0,

z ≥ 0.
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Proof. Part (ii) follows from the observation that (2.7) and (2.8) together with
the nonnegativity of x imply x ≤ 1. Furthermore, (2.7) and (2.8) even imply that the
sum of any two x-variables that belong to the same row or column must be less than
or equal to 1. Thus, from (2.9), (2.10), and the nonnegativity of z one obtains z ≤ 1
as well.

To show part (i), it suffices to prove that x ≥ 0 and z ≥ 0 define facets of
SQAP�n (for all n ≥ 3). We will show this only for n ≥ 5, since this simplifies the
proof. However, the claim is also true for n = 3, 4, as one may check by computer,
for instance.

At this point, we introduce some techniques which we will also refer to in later
proofs. Our usual way of proving that some inequality defines a facet of SQAP�n is
an indirect one. We denote by L ⊆ CLQnn ∪ CLQnn−1 the set of cliques corresponding

to the vertices of the considered face and by L := {(xC , zFn(C)) − (xC′
, zFn(C′)) |

C,C ′ ∈ L} the set of all difference vectors of vertices of that face, i.e., lin(L) is the
subvectorspace belonging to the affine hull of the face. We choose a subset B ⊂ Fn
that corresponds to a basis of the equation system D̂(x, z) = d̂ as well as one extra
element v0 ∈ Vn or f0 ∈ Fn \ B. Setting B := {xv0} ∪ {zf | f ∈ B}, respectively,
B := {zf0} ∪ {zf | f ∈ B}, and providing that the face is a proper one, it remains to
show that lin(L ∪ B) = R

Vn × R
Fn , since this implies that the dimension of lin(L),

which equals the dimension of the face, is at least dim(SQAP�n) − 1. We show
lin(L ∪ B) = R

Vn × R
Fn by successively combining the canonical unit vectors of

R
Vn × R

Fn from elements in L ∪ B.
For constructing the necessary linear combinations, the following two lemmas are

useful. For a subset S ⊆ Vn we denote by Hn/S = (Vn/S,Fn/S) the hypergraph
obtained from Hn by deleting all nodes lying in a common row or column with a
node in S and all hyperedges involving such nodes. Note that if S intersects the same
number of rows as of columns, Hn/S is isomorphic to an Hk for some k ≤ n.

Lemma 4.5. Let C ∈ CLQnn be an n-clique and v ∈ C a node in C such that
C,C \ {v} ∈ L. Then we have

xv + z〈v:C\{v}〉 ∈ lin(L).
Proof. This is due to xv + z〈v:C\{v}〉 = (xC , zFn(C)) − (xC\{v}, zFn(C\{v}))

∈ lin(L).
Lemma 4.6. Let 1 ≤ r, r1, r2 ≤ n be pairwise distinct, and let 1 ≤ c, c1, c2 ≤ n be

pairwise distinct. If there is an (n − 3)-clique C in Hn/{(r1, c1), (r, c), (r2, c2)} such
that

(4.5) {(r1, c1), (r, c), (r2, c2)} ∪ C, {(r1, c2), (r, c), (r2, c1)} ∪ C,
{(r1, c1), (r2, c2)} ∪ C, {(r1, c2), (r2, c1)} ∪ C ∈ L

or

(4.6) {(r1, c), (r, c2)} ∪ C, {(r, c2), (r2, c)} ∪ C,
{(r2, c), (r, c1)} ∪ C, {(r, c1), (r1, c)} ∪ C ∈ L,

then

z〈r1,c1,r,c〉 + z〈r,c,r2,c2〉 − z〈r1,c2,r,c〉 − z〈r,c,r2,c1〉 ∈ lin(L)
(cf. Figure 4.2).
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r1

r2

c1 c 2

Fig. 4.2. Notations of Lemma 4.6.

Proof. In the first case, observe that

z〈r1,c1,r,c〉 + z〈r,c,r2,c2〉 − z〈r1,c2,r,c〉 − z〈r,c,r2,c1〉

= z{(r1,c1),(r,c),(r2,c2)}∪C − z{(r1,c1),(r2,c2)}∪C

− z{(r1,c2),(r,c),(r2,c1)}∪C + z{(r1,c2),(r2,c1)}∪C ∈ lin(L).
For the second case, we have

z〈r1,c1,r,c〉 + z〈r,c,r2,c2〉 − z〈r1,c2,r,c〉 − z〈r,c,r2,c1〉

=− z{(r1,c),(r,c2)}∪C + z{(r,c2),(r2,c)}∪C

− z{(r2,c),(r,c1)}∪C + z{(r,c1),(r1,c)}∪C ∈ lin(L).
Now, we proceed with the proof of Theorem 4.4. First, note that all trivial

inequalities define proper faces of SQAP�n. To show that the nonnegativity constraints
on x define facets of SQAP�n, it suffices to show this for x(n,n) ≥ 0. Hence, L
consists of all n- and (n − 1)-cliques of Hn that do not contain (n, n). We choose

B := 〈row(n)
1 : row

(n)
2 〉 ∪ 〈col(n)

1 : col
(n)
2 〉 (cf. Proposition 4.1) and the extra element

as v0 := (n, n).
Since in Hk there is always a k-clique not involving a prescribed node as long as

k ≥ 2, we can apply Lemma 4.6 for every choice of r, r1, r2, c, c1, c2. (Recall that we
assume n ≥ 5.) We combine all canonical unit vectors in R

Vn × R
Fn successively in

five steps that are illustrated in Figure 4.3. For a number a ∈ {1, 2}, we denote by a
the number with {a} = {1, 2} \ {a}.

Step 1. z〈i,j,k,l〉 ∈ lin(L ∪ B) for i, j ∈ {1, 2}.
The case k ∈ {1, 2} or l ∈ {1, 2} is already clear by the choice of B. Hence,

assume k, l /∈ {1, 2}. Choosing r := i, r1 := i, r2 := k, c := j, c1 := j, and c2 := l

Lemma 4.6 yields z〈i,j,i,j〉 + z〈i,j,k,l〉 − z〈i,l,i,j〉 − z〈i,j,k,j〉 ∈ lin(L). Since all involved
unit vectors but z〈i,j,k,l〉 are in B, we are done.

Step 2. z〈i,j,k,l〉 ∈ lin(L ∪ B) for i ∈ {1, 2}, j, k, l ≥ 3.
With r := i, r1 := i, r2 := k, c := j, c1 := 1, c2 := l one obtains from Lemma 4.6

that z〈i,1,i,j〉 + z〈i,j,k,l〉 − z〈i,l,i,j〉 − z〈i,j,k,1〉 ∈ lin(L). All involved unit vectors but
z〈i,j,k,l〉 are either in B or already shown to be in lin(L ∪ B) in Step 1.

Step 3. z〈i,j,k,l〉 ∈ lin(L ∪ B) for j ∈ {1, 2}, i, k, l ≥ 3.
This is done analogously to Step 2.
Step 4. z〈i,j,k,l〉 ∈ lin(L ∪ B) for i, j, k, l ≥ 3.
This time, we choose r := i, r1 := 1, r2 := k, c := j, c1 := 1, and c2 := l.

Lemma 4.6 gives z〈1,1,i,j〉 + z〈i,j,k,l〉 − z〈1,l,i,j〉 − z〈i,j,k,1〉 ∈ lin(L), which proves the
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Fig. 4.3. Examples for the hyperedges considered in Steps 1–4 of the proof of Theorem 4.4. The
hyperedges inside the “angled box” are those forming the set B.

claim, since all involved unit vectors but z〈i,j,k,l〉 are already shown to be in lin(L∪B)
in Steps 1, 2, or 3.

Step 5. xv ∈ lin(L ∪ B) for all v ∈ Vn.
If v = (n, n), we are done since x(n,n) ∈ B. So assume, v 	= (n, n). Let C ∈ CLQnn

be any n-clique involving v but not (n, n). Using Lemma 4.5, we can combine xv, since
all unit vectors corresponding to hyperedges are already known to be in lin(L ∪ B).

It remains to show that z ≥ 0 define facets of SQAP�n. It suffices to show this for
z〈n,n−1,n−1,n〉 ≥ 0. Now, L is the set of all n- and (n−1)-cliques of Hn that contain at
most one node from {(n, n−1), (n−1, n), (n−1, n−1), (n, n)}. Note that it is always
possible to find a k-clique inHk that intersects {(k, k−1), (k−1, k), (k−1, k−1), (k, k)}
in at most one node as long as k ≥ 3.

We choose B as above, and as the extra element, we take the hyperedge 〈n, n −
1, n − 1, n〉. Then, Steps 1, 2, and 3 work analogously. The only case in which
Step 4 does not work is the case of the hyperedge 〈n, n − 1, n − 1, n〉, but this time
this one is covered by the extra element. In Step 5, now we do not need an extra
element anymore, since we can extend every node (also one from {(n, n − 1), (n −
1, n), (n − 1, n − 1), (n, n)}) to an n-clique not containing more than one node from
{(n, n− 1), (n− 1, n), (n− 1, n− 1), (n, n)}.

There is an alternative way of proving that the nonnegativity constraints z ≥ 0
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Fig. 5.1. The curtain inequalities.

define facets of SQAP�n. In [16] we showed that y ≥ 0 define facets of QAP�n. By a
slight modification of that proof, one can show that ye + yτ(e) ≥ 0 defines a ridge of
QAP�n for any edge e ∈ En. Since that symmetric ridge is the intersection of the two
nonsymmetric (cf. Observation 3) facets defined by ye ≥ 0 and yτ(e) ≥ 0, the claim
follows from Corollary 3.7.

5. The curtain facets. For any subset S ⊆ {1, . . . , n}, we define for i ∈
{1, . . . , n} the restriction of row(n)

i to S as row
(n)
i |S := {(i, j) ∈ row(n)

i | j ∈ S}, and
for j ∈ {1, . . . , n}, we define col(n)

j |S := {(i, j) ∈ col(n)
j | i ∈ S} to be the restriction

of col
(n)
j to S.

One immediately verifies that the row curtain inequalities

−x(row(n)
i |S) + z(〈row(n)

i |S : row(n)
k |S〉) ≤ 0 (i 	= k, S ⊆ {1, . . . , n})(5.1)

and the column curtain inequalities

−x(col(n)
j |S) + z(〈col(n)

j |S : col(n)
l |S〉) ≤ 0 (j 	= l, S ⊆ {1, . . . , n})(5.2)

are valid for SQAPn (cf. Figure 5.1).
These inequalities dominate the inequalities

−x(row(n)
i |S) + z(〈(i, j) : row(n)

k |S〉) ≤ 0 (i 	= k, S ⊆ {1, . . . , n}, j ∈ S)(5.3)

and

−x(col(n)
j |S) + z(〈(i, j) : col(n)

l |S〉) ≤ 0 (j 	= l, S ⊆ {1, . . . , n}, i ∈ S)(5.4)

proposed by [24] and [21].
The proof of the following theorem (which again uses the isomorphism between

SQAPn and SQAP�n−1) can be found in [17].
Theorem 5.1. All curtain inequalities with 3 ≤ |S| ≤ n − 3 define facets of

SQAPn.
We conclude this section with a consideration of the separation problem associated

with the class of curtain inequalities. For this, let a (fractional) point (x̃, z̃) ∈ R
Vn ×

R
Fn be given. We want to find, e.g., a row curtain inequality using rows 1 and 2
(ordered) that “cuts off” the point (x̃, z̃). Hence, we want to find a subset S ⊆
{1, . . . , n} such that −x̃(row(n)

1 |S) + z̃(〈row(n)
1 |S : row(n)

2 |S〉) > 0. But this is exactly
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the task to find a characteristic vector ξ of {1, . . . , n} that solves the (unconstrained)
Boolean quadratic 0/1 problem (BQP)

max

n∑
j=1

n∑
l=j+1

αjlξjξl +

n∑
j=1

βjξj

subject to ξ ∈ {0, 1}n

with αjl := z̃〈1,j,2,l〉 and βj := −x̃(1,j).
Hence, for each (ordered) pair of rows, respectively, columns, a BQP has to be

solved. Although this is known to be NP-hard in general, the special case of our
separation problem, where all coefficients of quadratic terms are nonnegative, can be
solved in polynomial time by computing a (directed) s-t minimum cut in a suitably
defined graph (with nonnegative edge weights). This was first discovered by [23] (who
formulated an algorithm in terms of flows) and further considered by [3] and other
authors.

6. Lower bounds. For any instance of the QAP, the minimum the objective
function achieves over the intersection of aff(QAPn) and the nonnegative orthant
is a lower bound for the optimal value of the respective QAP, called the equation
bound (EQB). This bound can be computed by solving the linear program arising
from (2.1)–(2.4) and the nonnegativity constraints on the y-variables. Similarly, if
the instance is symmetric, the minimum over the intersection of aff(SQAPn) and
the nonnegative orthant gives a lower bound, called the symmetric equation bound
(SEQB). This may be computed by solving the linear program defined by (2.7)–(2.10)
and the nonnegativity constraints on x and z.

Let (x, y) ∈ aff(QAPn) ∩ (RVn

≥0 × R
En

≥0) have value θ with respect to a symmetric

objective function. Then symn(x, y) ∈ aff(SQAPn)∩(RVn

≥0×R
Fn

≥0) is a vector that also
has value θ (with respect to the corresponding objective function for the symmetric
formulation). Hence, SEQB can never be tighter than EQB.

It is possible to strengthen SEQB by the curtain inequalities. However, again one
cannot obtain a lower bound that is tighter than EQB, since the curtain inequalities
induce symmetric inequalities for the nonsymmetric problem that are already implied
by the equations defining aff(QAPn) and by the nonnegativity of the y-variables.

Hence, do the curtain inequalities have any computational value at all? Poten-
tially, they do. By changing (in case of a symmetric instance) from the nonsymmetric
problem formulation to the symmetric one, the number of variables is approximately
divided by two. This leads to easier linear programs on the one hand, but to a po-
tentially weaker bound SEQB on the other hand. So the question is, Can the curtain
inequalities improve (empirically) the bound SEQB significantly toward EQB without
losing too much of the efficiency gain made by the transition?

We want to mention at this point that EQB has turned out to be a very good
lower bound for the QAP. The theoretical basis for this is a result due to [13] and
[1] (extending work of [9]) which shows that EQB is always at least as good as the
classical Gilmore–Lawler Bound, proposed independently by [10] and [20]. The prac-
tical indication for the quality of EQB was given most extensively in a computational
study by [22]. They solved the linear programs that give the EQB for all instances in
the quadratic assignment problem library (QAPLIB) [7] of size not exceeding n = 30
and found that EQB turned out to be the best-known lower bound in most cases.

Besides the more or less negligible weakening of the bound, there is one more
important drawback when dealing with the symmetric instead of the nonsymmetric
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model. It has been observed and exploited by different people [1, 11] that the LP
that has to be solved in order to compute EQB has a nice structure which allows one
to design efficient heuristics to solve its dual, and thus to compute bounds that are
nearly as good as EQB much faster than by evoking an LP-solver. Unfortunately,
this nice structure is lost when changing to the symmetric model. However, once one
starts to strengthen the bound by adding cutting planes (i.e., by exploiting polyhedral
knowledge—see the remarks at the end of section 7), this structure is lost immediately,
and the nonsymmetric model loses its advantage.

In order to investigate empirically the relative behavior of EQB, SEQB, and
bounds obtained by adding some curtain inequalities to the (symmetric) formulation,
we implemented a rudimentary cutting plane procedure for symmetric QAPs. This
procedure initially solves the linear program that yields SEQB and afterward performs
up to five cutting plane iterations with curtain inequalities. At each cutting plane
iteration, we try to separate the current (fractional) solution by solving heuristically
(i.e., repeating 100 times to guess a solution and improving it by a 2-opt procedure)
a BQP for each ordered pair of rows/columns. If such a BQP ends with value greater
than zero then we add the corresponding curtain inequality to the current linear
program. This way, up to 2n(n− 1) curtain inequalities may be added per iteration.
It turned out that this naive (and fast) separation heuristic typically found many
different violated inequalities per iteration.

The results show that in most cases, SEQB is not significantly worse than EQB.
In fact, over all instances from the QAPLIB of sizes at most n = 20 the average ratio
of SEQB and EQB is .986 (and the average ratio between the EQBs and the optimal
solutions, known from the literature for all tested instances, is .859). Consequently,
the curtain inequalities cannot improve SEQB very much. Usually, after five itera-
tions the gap between SEQB and EQB is closed by about 30–40%. Regarding the
quite small gaps between SEQB and EQB, the curtain inequalities do not seem to
be computationally attractive. Therefore, we have not tried to improve the bounds
by implementing an exact separation procedure for the curtain inequalities by the
methods mentioned at the end of section 5.

The CPU times that are needed to compute SEQB are about three to four times
smaller than the corresponding ones for EQB. They range from about 30 seconds
for small (n = 12) instances up to about one hour for the hardest large (n = 20)
instances. For more details on these experiments, we refer to [17].

7. Conclusion. We briefly discuss the context in which the work presented in
this paper is located, in our opinion. Clearly, what we are finally concerned with
is the exact (or at least provably good) solution of QAPs. The hope is that deeper
polytopal knowledge of the problem will yield the necessary very good lower bounding
procedures. Important steps that had already been performed were

• the evidence that EQB is empirically and theoretically a good lower bound,
• the basic polyhedral results on the QAP-polytope, and
• the definition of the SQAP-polytope.

The steps for the (quite natural) symmetric QAP that are done by the present paper
are, from our point of view, the following.

• Our computational results indicate that changing the LP giving EQB in case
of a symmetric instance in the natural way to a “symmetric LP” yielding
SEQB does not decrease the quality of the lower bound significantly while
accelerating the computations by a factor between three and four.

• It is useless to search for additional equations in order to improve the quality
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of SEQB, since the used equation system is already complete.
• The curtain inequalities (strengthening inequalities proposed by [24] and [21])
seem to be computationally not very attractive (and they cannot be strength-
ened, since they already define facets).

• The methods presented in this paper, in particular the star-polytopes, provide
possibilities for further investigations of the facial structure of the SQAP-
polytope.

In particular, the last point in this list seems to be important. In fact, in the time
between the submission of the first version and the preparation of the revised version
of this paper, we have identified (using the techniques presented in this paper) a large
class of facet-defining inequalities for the SQAP-polytope, the box-inequalities. They
have turned out to be quite useful within cutting plane procedures for (symmetric)
QAPs. Indeed, using these inequalities, it was for the first time possible to solve
several instances from the QAPLIB to optimality by pure cutting plane algorithms,
including three instances of size n = 32. We refer to [17, 15, 18] for details.
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Abstract. Problems of maximizing or minimizing monotonic functions of n variables under
monotonic constraints are discussed. A general framework for monotonic optimization is presented
in which a key role is given to a property analogous to the separation property of convex sets. The
approach is applicable to a wide class of optimization problems, including optimization problems
dealing with functions representable as differences of increasing functions (d.i. functions).
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1. Introduction. One of the most active current research areas in global op-
timization is concerned with solution methods for specially structured nonconvex
problems arising from applications. Despite the inherent difficulty of most of these
problems, significant progress has been achieved in recent years in the development
of special solution strategies adapted to special mathematical structures.

By their very nature, many functions encountered in mathematical modeling of
real world systems in a broad range of activities, including economics and engineering,
exhibit monotonicity with respect to some variables (partial monotonicity) or to all
variables (total monotonicity). The analysis of monotonicity properties has led to
the formulation of a number of “monotonicity principles” that in several cases have
enabled the authors to reduce originally difficult problems to a form amenable to
effective solution methods. Quite a few works (e.g., [6], [20], [15], [19], [21], [36],
[2], [3], [8], [9]) have demonstrated the usefulness of monotonicity principles in the
approach to optimal design problems.

Close scrutiny also reveals hidden monotonicity in the structure of many noncon-
vex global optimization problems. Attempts to exploit mathematical structure for
numerical purposes have been particularly successful when monotonicity is coupled
with convexity or complementary convexity as happens in the class of so-called low
rank nonconvex problems [14]. In fact, parametric methods and other duality-based
decomposition approaches developed in recent years (see [12], [14], [27], [32], [30], [28])
have proved to be quite efficient tools in the study of these problems.

There is, however, a wide class of important problems with a monotonic structure
not necessarily coupled with convexity or complementary convexity. These are prob-
lems described by means of functions which are monotone nondecreasing on every
half line {a + λu| λ ≥ 0} with a, u ∈ Rn

+. (Following some authors, e.g., [1], [23],
[24], these functions will be called increasing in what follows.) To understand the
potential advantage offered by such a monotonic structure one should bear in mind
that, since local information is generally insufficient for verifying the global optimal-
ity of a given feasible solution, the search for the global optimum has to be carried
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out, generally speaking, on the entire feasible set. If, however, the objective function
is increasing, then, once a feasible point z is known one can ignore the whole cone
z +Rn

+ because no better feasible solution can be found in this set (for minimization
problems). Analogously, if the function g(x) in a constraint like g(x) ≤ 1 is increasing,
then once a point z is known to be infeasible to this constraint, the whole cone z+Rn

+

can be discarded from further consideration. Such information is very useful and may
sometimes help to simplify the problem drastically by limiting the global search to a
much restricted region of the feasible domain. The difficulty that remains, of course,
is how to implement this idea computationally, i.e., how to incorporate this idea in
suitable solution procedures.

The aim of the present paper is to develop a mathematical framework for solving
optimization problems dealing with increasing functions, and more generally, functions
representable as differences of increasing functions (d.i. functions). It turns out that
to implement the above idea one can exploit a property of level sets of increasing
functions which is analogous to, but not quite the same as, the classical separation
property of convex sets. Specifically, if a function g(x) is quasi-convex on Rn

+, then
it is well known that its level set G := {x ∈ Rn

+| g(x) ≤ 1} is convex and any
point z outside the closure of G can be strictly separated from it by a half-space.
As a result, G can be approximated, as closely as desired, by a nested sequence
of polyhedrons. It is this property that lies in the foundation of various variants of
polyhedral outer approximation methods for maximizing a quasi-convex function over
a convex set. Now, if g(x) is increasing, then any point z outside the closure of G
can be separated from G not by a half-space but by a cone which is a translate of the
nonnegative orthant. Interestingly enough, from this it follows that a normal set G
(i.e., roughly speaking, the level set of an increasing function) can be approximated
by a nested sequence of sets of a particular kind, which we will call “polyblocks.” Just
as the approximation of convex sets by polyhedrons is the basis of polyhedral outer
approximation methods for quasi-convex maximization, the approximation of level
sets of increasing functions by polyblocks can be used to devise specific “polyblock
approximation methods” for monotonic optimization.

An early variant of this approach was first proposed in [24] for maximizing an
increasing function over the level set of another increasing function, and was subse-
quently improved and applied in [33] to solve convex programs with an additional
monotonic constraint. Computational experiments reported in [24] and [33] have
shown the efficiency of the proposed method, at least for the class of problems stud-
ied in these papers, including mathematical programs with multiplicative constraints.
(For the latter it seems even to outperform most existing methods.) The general
framework for monotonic optimization to be presented in what follows can be consid-
ered as a further development and extension of many basic ideas and results in [24]
and [33].

As was mentioned in [24], the idea of approximating a certain set by a union of
hyperrectangles was already put forward in [13], though in an implicit form. (The
set considered in that paper is actually “normal” and a union of hyperrectangles
is a “polyblock” in our terminology.) However, the method in [13] was confined
to a special problem and no attempt was made to obtain general results. Also, it
should be noticed that the separation property of normal sets has been noticed and
utilized in some previous works for the development of analytical tools for monotonic
analysis, in the context of abstract convex analysis ([23], [22], and references therein).
The approach we will take here is more geometrical and directly oriented toward
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computational applications.
The paper is organized as follows. After the introduction, section 2 will present

the concepts of increasing functions and normal sets. Section 3 will describe the
basic problems of monotonic optimization and give some typical examples. Next,
section 4 will introduce and study the concept of polyblock and the approximation of
normal sets by polyblocks. Sections 5, 6, and 7 will present the polyblock and reverse
polyblock approximation methods and their extension to the most general problem
of d.i. optimization. Finally, to illustrate the usefulness of the proposed approach,
section 8 will discuss some possible applications to various difficult global optimization
problems of current interest and section 9 will present some computational results.

2. Increasing functions and normal sets. Increasing functions and normal
sets were first introduced in mathematical economics [17] for the modeling and analysis
of production activities within an economic system. Recently they were discussed in
[24], [33], and especially in [29] as important tools for studying monotonic optimization
problems. In this section we review the basic concepts and results on increasing
functions and normal sets which will be needed later. We will omit most of the
proofs, which are almost straightforward.

Throughout the following, borrowing the terminology from multicriteria optimiza-
tion (see, e.g., [37] and references therein), for any two vectors x′, x ∈ Rn we write
x′ ≥ x and say that x′ dominates x if x′

i ≥ xi ∀i = 1, . . . , n. We write x′ > x and say
that x′ strictly dominates x if x′

i > xi ∀i = 1, . . . , n. Let Rn
+ = {x ∈ Rn| x ≥ 0} and

Rn
++ = {x ∈ Rn| x > 0}. For x ∈ Rn

+ let I(x) = {i| xi = 0} and denote

Kx = {x′ ∈ Rn
+| x′

i > xi ∀i /∈ I(x)}, clKx = {x′ ∈ Rn
+| x′ ≥ x}.(1)

If a ≤ b, we define the box (hyperrectangle) [a, b] to be the set of all x such that
a ≤ x ≤ b. We also write (a, b] := {x| a < x ≤ b}, [a, b) := {x| a ≤ x < b}. As usual e
is the vector of all ones and ei the ith unit vector of the space under consideration.

A function f : Rn → R is said to be increasing on Rn
+ if f(x) ≤ f(x′) whenever

0 ≤ x ≤ x′; it is said to be increasing on a box [a, b] ⊂ Rn
+ if f(x) ≤ f(x′) whenever

a ≤ x ≤ x′ ≤ b. Many functions encountered in various applications are increasing
in this sense. Outstanding examples are the production functions and the utility
functions in mathematical economics (under the assumption that all goods are useful),
polynomials (in particular quadratic functions) with nonnegative coefficients, and
posynomials

m∑
j=1

cj

n∏
i=1

(xi)
aij with cj ≥ 0 and aij ≥ 0

(e.g., Cobb–Douglas function f(x) =
∏

i x
αi
i , αi ≥ 0).

The following obvious proposition shows that the class of increasing functions
includes a large variety of functions.
Proposition 1. (i) If f1, f2 are increasing functions, then for any nonnegative

numbers λ1, λ2 the function λ1f1 + λ2f2 is increasing.
(ii) The pointwise supremum of a bounded above family (fα)α∈A of increasing

functions and the pointwise infimum of a bounded below family (fα)α∈A of increasing
functions are increasing.

Other nontrivial examples of increasing functions are functions of the form f(x) =
supy∈a(x) g(y), where g : Rn

+ → R is an arbitrary function and a : Rn
+ → Rn

+ is a set-
valued mapping with bounded images such that a(x′) ⊃ a(x) for x′ ≥ x.
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A set G ⊂ Rn
+ is called normal if for any two points x, x′ ∈ Rn

+ such that x′ ≤ x,
if x ∈ G, then x′ ∈ G, too. The empty set, the singleton {0}, and Rn

+ are special
normal sets which we will refer to as trivial subsets of Rn

+. If G is a normal set, then
G ∪ {x ∈ Rn

+| xi = 0 for some i = 1, . . . , n} is still normal.
Proposition 2. Given any set D ⊂ Rn

+ the set N [D] := (D − Rn
+) ∩ Rn

+ is the
smallest normal set containing D. If D is compact, then so is N [D].

Clearly N [D] is also the intersection of all normal sets that contain D. It is called
the normal hull of D.
Proposition 3. The intersection and the union of a family of normal sets are

normal sets.
Proposition 4. Every normal set is connected. A normal set G has a nonempty

interior if and only if it contains a point u ∈ Rn
++. The closure of a normal set is

normal.
The next proposition shows that a bounded normal set is essentially the lower

level set of an increasing function.
Proposition 5. For any increasing function g(x) on Rn

+ the set G = {x ∈
Rn

+| g(x) ≤ 1} is normal and it is closed if g(x) is lower semicontinuous. Conversely,
for any closed normal set G ⊂ Rn

+ with nonempty interior there exists a lower semi-
continuous increasing function g : Rn

+ → R+ such that G = {x ∈ Rn
+| g(x) ≤ 1}.

Proof. We prove only the second assertion. Let G be a closed normal set with
nonempty interior. For every x ∈ Rn

+ define g(x) = inf{λ > 0| x ∈ λG}. From the
assumption intG �= ∅ there is u > 0 such that [0, u] ⊂ G (Proposition 4). Then the
half line {αx| α ≥ 0} intersects (0, u] ⊂ G; hence 0 ≤ g(x) < +∞. Since for every
λ > 0 the set λG is normal, if x ≤ x′ ∈ λG, then x ∈ λG, too, so g(x′) ≥ g(x),
i.e., g(x) is increasing. We show that G = {x ∈ Rn

+| g(x) ≤ 1}. In fact, if x ∈ G,
then obviously g(x) ≤ 1. Conversely, if x /∈ G, then since G is closed there exists
α > 1 such that x /∈ αG; hence, since G is normal, x /∈ λG ∀ λ ≤ α, which means
that g(x) ≥ α > 1. Consequently, x ∈ G if and only if x ∈ Rn

+ and g(x) ≤ 1, i.e.,
G = {x ∈ Rn

+| g(x) ≤ 1}. It remains to prove the lower semicontinuity of g(x). Let
{xk} ⊂ Rn

+ be a sequence such that xk → x0 and g(xk) ≤ α ∀k. Then for any given
α′ > α we have inf{λ| xk ∈ λG} < α′} ∀k, i.e., xk ∈ α′G ∀k; hence x0 ∈ α′G in view
of the closedness of the set α′G. This implies that g(x0) ≤ α′ and since α′ can be taken
arbitrarily near to α, we must have g(x0) ≤ α. Therefore, the set {x ∈ Rn

+| g(x) ≤ α}
is closed, as was to be proved.

A point y ∈ Rn
+ is called an upper boundary point of a bounded normal set G if

y ∈ clG while Ky ⊂ Rn
+ \G. The set of upper boundary points of G is called the upper

boundary of G and is denoted by ∂+G. If G is closed, then obviously ∂+G ⊂ G.
Proposition 6. Let G ⊂ [0, b] be a compact normal set with nonempty interior.

For every point z ∈ Rn
+ \ {0} the half line from 0 through z meets ∂+G at a unique

point πG(z), which is defined by

πG(z) = λz, λ = max{α > 0| αz ∈ G}.(2)

Proof. Since intG �= ∅ there exists α > 0 such that αz ∈ G. The compactness
of G then implies that the number λ defined by (2) satisfies 0 < λ < +∞ and that
y := λz ∈ G. Furthermore, if x ∈ Ky, i.e., xi > yi ∀i /∈ I(y) while xi ≥ yi = 0 ∀i ∈
I(y), then, since for any z′ = αz with α > λ one has z′i = αzi > yi ∀i /∈ I(y) and
z′i = 0 ∀i ∈ I(y), there exists α > λ such that z′ = αz satisfies y ≤ z′ ≤ x; hence, by
normality of G, z′ ∈ G, conflicting with the definition of λ. Therefore, Ky ∩ G = ∅,
and so y ∈ ∂+G. If y′ = λ′z with λ′ > λ, then y′ ∈ Ky, hence y′ /∈ G. This means
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that if y′ = λ′z ∈ ∂+G, then necessarily λ′ ≤ λ. By interchanging the roles of y and
y′ one must also have λ ≤ λ′; hence y = λz is the unique intersection point of ∂+G
with the half line from 0 through z.

A set H ⊂ Rn
+ is called reverse normal if x′ ≥ x ∈ H implies x′ ∈ H. It is said

to be reverse normal in a box [0, b] if b ≥ x′ ≥ x ≥ 0, x ∈ H, implies x′ ∈ H or,
equivalently, if x /∈ H whenever 0 ≤ x ≤ x′ ≤ b, x′ /∈ H. Clearly, a set H is reverse
normal if and only if the set H� = Rn

+ \H is normal.
For any set D ⊂ Rn

+ the set D +Rn
+ is obviously the smallest reverse normal set

containing D. We call it the reverse normal hull of D and denote it by rN [D].
The following propositions are analogous to Propositions 5 and 6 and can be

proved by similar arguments:
(i) For an increasing function h(x) on Rn

+ the set H = {x ∈ Rn
+| h(x) ≥ 1} is

reverse normal and it is closed if h(x) is upper semicontinuous. Conversely, for any
closed reverse normal set H such that Rn

+ \ H has a nonempty interior there exists
an upper semicontinuous increasing function such that H = {x ∈ Rn

+| h(x) ≥ 1}.
A point y ∈ Rn

+ is called a lower boundary point of a reverse normal set H if
y ∈ clH and x /∈ H ∀x < y. The set of lower boundary points of H is called the lower
boundary of H and is denoted by ∂−H. If H is closed, then obviously ∂−H ⊂ H.

(ii) Let H be a closed reverse normal set and b ∈ intH. For every point z ∈ [0, b]\H
the half line from b through z meets ∂−H at a unique point ρH(z), which is defined
by

ρH(z) = b+ µ(z − b), µ = max{α > 0| b+ α(z − b) ∈ H}.(3)

3. Basic problems of monotonicoptimization. Many optimization problems
encountered in applications can be formulated as the maximization or minimization
of an increasing function over an intersection of normal and reverse normal sets. We
shall refer to this class of problems as monotonic optimization problems. In this
section we state two basic problems of monotonic optimization and give some typical
examples.

3.1. Maximizing an increasing function. Consider the problem

(A) max{f(x)| x ∈ G ∩H},
where G ⊂ [0, b] ⊂ Rn

+ is a compact normal set with nonempty interior, H is a closed
reverse normal set, and f(x) is an increasing function on [0, b].
Proposition 7. The maximum of f(x) over G ∩ H, if it exists, is attained on

∂+G ∩H.
Proof. Since intG �= ∅, if G ∩ H �= ∅, then necessarily (G ∩ H) \ {0} �= ∅, and

hence, since f(x) is increasing, if f(x) attains a maximum on G ∩ H, there exists a
maximizer z �= 0. By Proposition 6 the half line from 0 through z meets ∂+G at some
point y = πG(z). Since z ∈ G we must have z ≤ y, and this in turn implies that y ∈ H
because z ∈ H. Therefore, y ∈ ∂+G ∩H. On the other hand, since f(x) is increasing
and y ≥ z, it follows that f(y) ≥ f(z), i.e., y is a maximizer of f(x) over G∩H.

Often the sets G and H are defined through increasing functions gi(x), hj(x) :

G = {x ∈ Rn
+| gi(x) ≤ 1, i = 1, . . . ,m1},

H = {x ∈ Rn
+| hj(x) ≥ 1, j = m1 + 1, . . . ,m}.

Setting g(x) = max{g1(x), . . . , gm1(x)}, h(x) = min{hm1+1(x), . . . , hm(x)}, we can
write

G = {x ∈ Rn
+| g(x) ≤ 1}, H = {x ∈ Rn

+|h(x) ≥ 1}.(4)
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From Proposition 7 we easily see the following.
Corollary 1. If the sets G,H are given by (4), where g(x) and h(x) are con-

tinuous increasing functions such that g(0) < 1, then problem (A) is equivalent to

max{f(x)| g(x) = 1, h(x) ≥ 1, x ≥ 0}.

Heuristically f(x) may be a profit, h(x) some utility which has to be achieved
at a certain required level, while g(x) ≤ 1 may express limitation on some scarce
resources.
Proposition 8. If D is an arbitrary compact set in Rn

+, then the problem
max{f(x)| x ∈ D} (where f(x) is increasing) is equivalent to max{f(x)| x ∈ N [D]}
where, as was already defined, N [D] is the normal hull of D.

Proof. Let z be a maximizer of f(x) on D. Then for every x ∈ D : f(z) ≥ f(x),
hence f(z) ≥ f(x′) ∀x′ ∈ (x − Rn

+) ∩ Rn
+. That is, f(z) ≥ f(x) ∀x ∈ N[D]. The

converse is obvious since D ⊂ N[D].
Example 1.

max{ϕ(u(x))| x ∈ D},(5)

where D ⊂ Rn is a nonempty compact convex set, ϕ : Rm
+ → R is an increasing func-

tion, u(x) = (u1(x), . . . , um(x)), ui : D → R+ being nonnegative-valued continuous
functions on D. By Proposition 8, this problem can be written as max{ϕ(y)| y ∈
u(D)} = max{ϕ(y)| y ∈ N [u(D)]}, i.e.,

max{ϕ(y)| y ∈ G},

where G := N [u(D)] = {y ∈ Rm
+ | y ≤ u(x), x ∈ D}. This is of course a problem (A),

with H = Rm
+ (u(D) is compact by the continuity of u(x), so N [u(D)] is contained in

some box [0, b]). Furthermore, without loss of generality we can assume

max
x∈D

ui(x) > 0 ∀i = 1, . . . ,m.(6)

Indeed, if, e.g., ui(x) = 0 ∀x ∈ D and ∀i > m1, then the problem reduces to

max{ϕ(u1(x), . . . , um1
(x), 0, . . . , 0)| x ∈ D}

which is a problem of the same type as (5) but with ϕ : Rm1
+ → R and such that

max
x∈D

ui(x) > 0 ∀i = 1, . . . ,m1.

Under assumption (6) it is easily checked that there is a y ∈ G ∩Rn
++, i.e., intG �= ∅.

Also for every z ∈ (0, b] \ G the point πG(z) = λz defined by (2) can be determined
by computing λ = max{α|αz ≤ u(x), x ∈ D}, which is not difficult if u1(x), i =
1, . . . , um(x) are concave or convex.

Example 2.

max{〈c, x〉| x ∈ D, ϕ(u(x)) ≤ 1},(7)

where D,ϕ, and u(x) are as previously. Observe that the set

H = {y ∈ Rm
+ | u(x) ≤ y for some x ∈ D}
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is closed and reverse normal, since H = u(D) +Rm
+ = rN [u(D)]. Define

θ(y) =

{
sup{〈c, x〉| x ∈ D, u(x) ≤ y} if y ∈ H
−M otherwise,

(8)

where M > 0 is an arbitrary number such that −M < min{〈c, x〉| x ∈ D}. Since D is
nonempty compact, clearly −∞ < θ(y) < +∞ ∀y ∈ Rm

+ .
Proposition 9. The function θ(y) is increasing and upper semicontiuous on Rm

+ .
If u1(x), . . . , um(x) are convex then θ(y) is concave on the convex set H = u(D)+Rm

+ .
Proof. If y ≤ y′ and y /∈ H, then θ(y) = −M while θ(y′) ≥ −M = f(y). But if

y ≤ y′ and y ∈ H, then ∅ �= {x ∈ D| u(x) ≤ y} ⊂ {x ∈ D| u(x) ≤ y′}, and hence
θ(y) ≤ θ(y′). Therefore θ(y) is increasing. We now show the upper semicontinuity
of θ(y). Since H is closed and θ(y) = −M ∀y /∈ H, it suffices to show the upper
semicontinuity of θ(y) on H. Let yk → y0 (where yk ∈ H) and for each k let xk be such
that xk ∈ D, u(xk) ≤ yk, 〈c, xk〉 = θ(yk). Since D is compact and u(x) is continuous
we can assume xk → x0 ∈ D,u(x0) ≤ y0. Then θ(y0) ≥ 〈c, x0〉 = limk〈c, xk〉 =
limk θ(y

k), as desired. Finally, if every function u1, . . . , um is convex and θ(y1) =
〈c, x1〉, θ(y2) = 〈c, x2〉 where xi ∈ D, u(xi) ≤ yi, i = 1, 2, then for any α ∈ (0, 1) we
have x := αx1+(1−α)x2 ∈ D and u(x) ≤ αu(x1)+(1−α)u(x2) ≤ y1+(1−α)y2 = y;
hence θ(αy1 + (1−α)y2) ≥ 〈c, αx1 + (1−α)x2〉 = αθ(y1) + (1−α)θ(y2), proving the
concavity of θ(y) on H = u(D) +Rm

+ .
Proposition 10. Problem (7) is equivalent to

max{θ(y)| ϕ(y) ≤ 1, y ∈ H}(9)

in the sense that if x̄ solves (7), then ȳ = u(x̄) solves (9), and conversely, if ȳ solves
(9) and θ(ȳ) = 〈c, x̄〉 for an optimal solution x̄ of (8) (where y = ȳ), then x̄ solves
(7).

Proof. Let x̄ solve (7) and ȳ = u(x̄). Then ϕ(ȳ) ≤ 1, ȳ ∈ H. Furthermore, for
every y ∈ H such that ϕ(y) ≤ 1 we have θ(y) = 〈c, x〉 for some x ∈ D satisfying
u(x) ≤ y; hence ϕ(u(x)) ≤ 1. Therefore θ(y) ≤ 〈c, x̄〉, so ȳ solves (9). Conversely, let
ȳ solve (9) and θ(ȳ) = 〈c, x̄〉 for an optimal solution x̄ of (8). Then for every x ∈ D
such that ϕ(u(x)) ≤ 1 we have for y = u(x) : ϕ(y) ≤ 1, y ∈ H, hence, on the one
hand, θ(y) ≤ θ(ȳ) = 〈c, x̄〉, and on the other hand, 〈c, x〉 ≤ θ(y), hence 〈c, x〉 ≤ 〈c, x̄〉,
so x̄ solves (9).

Again (9) is a problem (A) in Rm, with G = {y ∈ Rm
+ | ϕ(y) ≤ 1}. Note that if

ui(x), i = 1 . . . ,m, are convex then θ(y) is the optimal value in a convex program.

3.2. Minimizing an increasing function. Consider the problem

(B) min{f(x)| x ∈ G ∩H},
where G ⊂ [0, b] ⊂ Rn

+ is a compact normal set, H is a closed reverse normal set with
b ∈ intH, and f(x) is an increasing function on [0, b]. By setting x = b− y and

f̃(y) = −f(b− y), G̃ = b−G, H̃ = b−H,

we convert this problem to a problem (A), namely,

max{f̃(y)| y ∈ G̃ ∩ H̃},
where H̃ ⊂ [0, b] is a compact normal set with nonempty interior, G̃ is a closed reverse
normal set in [0, b] and f̃(y) is increasing on [0, b]. Therefore we have the following.
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Proposition 11. The minimum of f(x) over G ∩H, if it exists, is attained on
G ∩ ∂−H.
Corollary 2. If the sets G,H are given by (4), where g(x) and h(x) are con-

tinuous increasing functions, such that h(0) < 1, then problem (B) is equivalent to

min{f(x)| g(x) ≤ 1, h(x) = 1, x ≥ 0}.
Heuristically, f(x) may be a cost, h(x) ≥ 1 expresses a constraint on the required

minimum utility level, while g(x) ≤ 1 expresses a limitation of some scarce resource.
Analogously to Proposition 8, it is easily seen that for any set E ⊂ Rn

+

min{f(x)| x ∈ E} = min{f(x)| x ∈ rN [E]}.
Example 3.

min{ϕ(u(x))| x ∈ D},(10)

where D,ϕ, u(x) are as previously. This problem can be written as

min{ϕ(y)| y ∈ u(D)} = min{ϕ(y)| y ∈ rN [u(D)]},
or, equivalently,

min{ϕ(y)| y ∈ H}
with H := rN [u(D)] = {y ∈ [0, b]| x ∈ D, y ≥ u(x)}, so this is a problem (B) where
G = [0, b]. The reverse normal set H is closed in view of the compactness of D and
the continuity of u(x).

Example 4.

min{〈c, x〉| x ∈ D, ϕ(u(x)) ≥ 1}(11)

with D,ϕ, h as previously. Observe that the set

G = {y ∈ Rm
+ | y ≤ u(x) for some x ∈ D}

is normal and compact, since G = Rm
+ ∩ (u(D)−Rm

+ ) = N [u(D)]. Define

θ(y) =

{
min{〈c, x〉| x ∈ D, y ≤ u(x)} if y ∈ G,
M otherwise,

(12)

where M > 0 is an arbitrary number satisfying M > max{〈c, x〉| x ∈ D}. Since D
is nonempty and compact, clearly −∞ < θ(y) < +∞ ∀y ∈ Rm

+ and it can easily be
verified that the function θ(y) is lower semicontinuous and increasing (proof analogous
to that of Proposition 9). Also θ(y) < M ⇔ y ∈ G.
Proposition 12. Problem (11) is equivalent to

min{θ(y)| ϕ(y) ≥ 1, y ∈ G}(13)

in the sense that if x̄ solves (11), then ȳ = u(x̄) solves (13) and conversely, if ȳ solves
(13) and θ(ȳ) = 〈c, x̄〉 for an optimal solution x̄ of (12) (where y = ȳ), then x̄ solves
(11).

Proof. This proof is analogous to the proof of Proposition 10.
Thus, (11) appears to be a problem (B) in Rm, with H = {y ∈ Rm

+ | ϕ(y) ≥ 1}. If
ui(x), i = 1 . . . ,m, are concave, then θ(y), for y ∈ G, is the optimal value in a convex
program.
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4. Polyblocks and approximation of normal sets. The approach we pro-
pose for the solution of monotonic optimization problems is based on the approxima-
tion of compact normal sets by simpler normal sets, called polyblocks, which were
first introduced in [29].

A set P ⊂ Rn
+ is called a polyblock in [a, b] ⊂ Rn

+ if it is the union of a finite number
of boxes [a, z], z ∈ T ⊂ [a, b] (|T | < +∞). The set T is called the vertex set of the
polyblock; we also say that the polyblock P is generated by T. A vertex z ∈ T is said
to be proper if it is not dominated by any other z′ ∈ T, i.e., if z /∈ [0, z′] ∀z′ ∈ T \ {z}.
A point z ∈ T which is not a proper vertex is also called an improper element of
T. Of course a polyblock is fully determined by its proper vertices. Furthermore, an
increasing function f(x) achieves its maximum over a polyblock at a proper vertex.
Proposition 13. Any polyblock is closed and normal. The intersection of finitely

many polyblocks is a polyblock.
Proof. The first assertion follows from the fact that any box [a, z] ⊂ Rn

+ is closed
normal and the union of a finite family of closed normal sets is closed normal. The
second assertion follows from the equalities (∪iAi) ∩ (∪jBj) = ∪i,j(Ai ∩ Bj) and
[a, p] ∩ [a, q] = [a, u] with ui = min{pi, qi}.
Proposition 14. Let G ⊂ [0, b] be a compact normal set. For any z ∈ [0, b] \G

there exists a point x such that z ∈ Kx and Kx ⊂ Rn
+ \G.

Proof. Since 0 ∈ G while z /∈ G, by Proposition 6 the half line from 0 through z
meets ∂+G at x = πG(z). Then z ∈ Kx and Kx ∩G = ∅.
Proposition 15. If x̄ ∈ [0, b] and z̄ ∈ [0, b] ∩ Kx̄, then P = [0, z̄] \ Kx̄ is a

polyblock in [0, b] with vertices

zi = z̄ − (z̄i − x̄i)e
i, i /∈ I(x̄).

Proof. Let Ki = {x ∈ Rn
+| x̄i < xi}. Since Kx̄ = ∩i/∈I(x̄)Ki, we have P =

[0, z̄] \Kx̄ = ∪i/∈I(x̄)([0, z̄] \Ki). But

[0, z̄] \Ki = {x| 0 ≤ xi ≤ x̄i, 0 ≤ xj ≤ z̄j ∀j �= i} = [0, zi],

where zi denotes the vector such that zij = z̄j ∀j �= i, zii = x̄i, that is, zi = z̄ −
(z̄i − x̄i)e

i.
Proposition 16. Let G be a compact set contained in a box [0, b] ⊂ Rn

+. Then
the following assertions are equivalent:

(i) G is normal.
(ii) For any point z ∈ G� := [0, b] \G there exists a polyblock in [0, b] separating z

from G (i.e., containing G but not z).
(iii) G is the intersection of a family of polyblocks in [0, b].
Proof. (i)⇒ (ii). By Proposition 14 if z ∈ G�, then there is x such that z ∈ Kx

while Kx ∩G = ∅, i.e., P := [0, b] \Kx contains G but not z. On the other hand, by
Proposition 15, P is a polyblock.

(ii)⇒ (iii) Let E be the intersection of all polyblocks containing G. Clearly G ⊂ E.
If (ii) holds, then for any z ∈ E \ G there is a polyblock containing G but not z, so
E ⊂ G.

(iii)⇒ (i) Obvious by Proposition 3 because any polyblock is closed and nor-
mal.

It follows from the above that normal sets and increasing functions are analogous
to convex sets and convex functions in several respects pertinent to optimization
theory. Namely, a compact normal (convex, resp.) set can be approximated as closely
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as desired by a polyblock (polytope). Furthermore, the maximum of an increasing
(convex, resp.) function over a polyblock (polytope) is attained at a vertex of the
polyblock (polytope). This suggests a conceptual scheme for maximizing an increasing
function over a compact set similar to the standard outer approximation scheme for
convex maximization [30]. Specifically, to solve the problem

max{f(x)| x ∈ Ω},

where Ω is a compact set in Rn
+ and f(x) is an increasing function, we attempt to

construct a nested sequence of polyblocks outer approximating Ω : P1 ⊃ P2 ⊃ · · · ⊃ Ω
in such a way that

max{f(x)| x ∈ Pk} ↘ max{f(x)| x ∈ Ω}.(14)

At iteration k, the point

zk ∈ argmax{f(z)| z ∈ Tk},

where Tk is the proper vertex set of Pk, is a maximizer of f(x) over Pk. If z
k ∈ Ω, zk

solves the problem. Otherwise, we find a polyblock Pk+1 contained in Pk \ {zk} but
still containing Ω, and we continue the procedure.

Proposition 17. Let xk = π(zk). Then the polyblock Pk+1 obtained from Pk by
replacing [0, zk] with [0, zk]\Kxk , i.e., Pk+1 = ([0, zk]\Kxk)∪z∈Tk\{zk} [0, z], satisfies

Ω ⊂ Pk+1 ⊂ Pk \ {zk}.
Proof. Since zk is a proper vertex of Pk, it is not contained in any box [0, z], z ∈

Tk \ {zk}, hence zk /∈ Pk+1.

Note that I(xk) = I(zk), so by Proposition 15 the above defined polyblock Pk+1

is generated by the set

Vk+1 = (Tk \ {zk}) ∪ {zk,1, . . . , zk,n}, zk,i = zk − (zki − xki )e
i.(15)

Proposition 18. The proper vertex set of Pk+1 = ([0, zk]\Kxk)∪z∈Tk\{zk} [0, z]
is obtained from Vk+1 by removing the improper members according to the following
rule:

For every z ∈ Tk \ {zk} : If z ≥ xk while zi < zki for exactly one i ∈ {1, . . . , n}
(i.e., zi < zki and zj ≥ zkj ∀j �= i), then remove zk,i.

Proof. Clearly any zk,i removed by this rule is improper. Conversely, since
Tk \ {zk} has no improper members, and zk,i ≤ zk ∀i, any improper member of
Vk+1 must be one zk,i for which there is a z ∈ Tk \ {zk} such that z ≥ zk,i ≥ xk, and

zj ≥ zk,ij = zkj ∀j �= i and zi < zki (because one cannot have zj ≥ zkj ∀j).
In practice, it may be more efficient to take as Pk+1 the polyblock Pk \ Kxk

obtained from Pk by replacing every box [0, z], z ∈ Tk ∩ Kxk , with the polyblock
[0, zk] \ Kxk . The proper vertex set of this polyblock can easily be computed using
Propositions 17 and 18.

5. Polyblock outer approximation algorithm. From the above development
we now derive solution methods for the basic problems of monotonic optimization
formulated in section 3. First consider the problem (A):

(A) max{f(x)| x ∈ G ∩H},
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where G ⊂ [0, b] is a compact normal set, H is a closed reverse normal set while f(x)
is increasing on [0, b] and upper semicontinuous on H. We will assume, additionally,
that

G ∩H ⊂ Rn
++(16)

which implies, in particular, that intG �= ∅ (see Proposition 4). In view of the com-
pactness of the set G ∩ H the above assumption amounts, in fact, to requiring the
existence of a vector a such that 0 < a < b and

0 < a ≤ x ∀x ∈ G ∩H.(17)

Also it is easily seen that (17) in turn is equivalent to a seemingly stronger condition,
namely,

0 < a ≤ x ∀x ∈ H.

Indeed, if condition (17) holds, then the problem does not change by replacing H with
Ha := {x ∈ H| x ≥ a}.

Let ε ≥ 0 be a given tolerance. A feasible solution x̄ such that f(x̄) ≥ f(x)−ε ∀x ∈
G∩H is called an ε-optimal solution. According to the outer approximation approach
outlined in the preceding section, for finding an ε-optimal solution we proceed as
follows.

First of all, if b /∈ H then since H is reverse normal, [0, b]∩H = ∅; hence G∩H = ∅,
and the problem is infeasible. Therefore we may assume b ∈ H. As initial polyblock
we take P1 = [0, b] with vertex set T1 = {b}.

At iteration k we have a polyblock Pk with proper vertex set Tk. Observe that
every vertex z ∈ Tk \Ha can be deleted since for these z we have [0, z] ∩ (Ha) = ∅,
and hence, by (17), [0, z] ∩ (G ∩ H) = ∅. Furthermore, if x̄k is the best feasible
solution known so far, and CBV = f(x̄k) (current best value), then every z ∈ Tk
such that f(z) ≤ CBV + ε can also be deleted because for all these z we have
f(x) ≤ f(x̄k) + ε ∀x ∈ [0, z].

Let T̃k be the set that remains from Tk after removing all z ∈ Tk \ Ha and all
z ∈ Tk such that f(z) ≤ CBV + ε. Since P1 = [0, b] ⊃ G ∩ H it follows from the
construction of P2, . . . , Pk that if any solution x exists such that f(x) > CBV + ε, it
can be found only in the polyblock P̃k with vertex set T̃k. Therefore, if T̃k = ∅, this
means that no feasible solution x exists with f(x) > CBV + ε, so the procedure can
be stopped: x̄k is an ε-optimal solution if CBV > −∞, or the problem is infeasible
otherwise.

If T̃k �= ∅, let

zk ∈ argmax{f(z)| z ∈ T̃k} = argmax{f(x)| x ∈ P̃k}.

Since zk ∈ H, if zk ∈ G, then zk is feasible and hence it solves the problem because
f(x) ≤ CBV + ε < f(zk) ∀x ∈ (G ∩ H) \ P̃k. On the other hand, if zk /∈ G, let
xk = πG(zk) be the point computed according to (2). (Note that zk ∈ (a, b] \ G.)
Then, by Proposition 17 we can define the polyblock Pk+1 with vertex set Vk+1 =
(T̃k \{zk})∪{zk− (zki −xki )e

i, i = 1, . . . , n} (see (15)) and compute its proper vertex
set Tk+1 according to Proposition 18.

We can thus state the following algorithm which will be referred to as the Polyblock
Outer Approximation Algorithm for problem (A).
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Algorithm 1.
Initialization. Select ε ≥ 0 (tolerance). If a /∈ G the problem is infeasible (because
then G ∩ H = ∅). Otherwise, let T1 = {b}. Let x̄1 be the best feasible solution
available, CBV = f(x̄1). If no feasible solution is available, let CBV = −∞. Set
k = 1.
Step 1. From Tk remove all z ∈ Tk such that z /∈ Ha and all z such that f(z) ≤
CBV + ε. Let T̃k be the set of remaining elements of Tk.
Step 2. If T̃k = ∅, terminate: if CBV = −∞, the problem is infeasible; if CBV >
−∞, the current best feasible solution x̄k is accepted as an ε-optimal solution of
(A).
Step 3. If T̃k �= ∅, select zk ∈ argmax{f(z)| z ∈ T̃k}.
Compute xk = πG(zk) (last point of G on the ray from 0 through zk). If xk = zk,
i.e., zk ∈ G, then zk is an optimal solution. Otherwise, determine the new current
best value CBV and the new current best feasible solution x̄k+1.
Step 4. From Vk+1 = (T̃k \ {zk}) ∪ {zk − (zki − xki )e

i, i = 1, . . . , n} remove the
improper elements (using the rule indicated in Proposition 18) and let Tk+1 be the
resulting set.
Step 5. Set k ← k + 1 and return to Step 1.
Theorem 1. If Algorithm 1 is infinite, each of the generated sequences {zk}, {xk}

contains a subsequence converging to an optimal solution.
Proof. Let us agree to call any vector zk,i obtained from zk by formula (15)

a child of zk. If Algorithm 1 is infinite, it generates at least one infinite sequence
zl1 , zl2 , . . . , zlh , . . . contained in Ha such that zlh+1 is a child of zlh , i.e.,

zlh+1 = zlh − (zlhih − xlhih)e
ih ,(18)

where xlh = πG(zlh) and ih ∈ {1, . . . , n}. (Such a sequence can be obtained by taking
zl1 = b, and for h ≥ 1, selecting zlh+1 among the children of zlh that have infinitely
many descendants.)

We show that any sequence satisfying (18) converges to an optimal solution.
Clearly zl1 ≥ zl2 ≥ · · · ≥ zlk ≥ · · · ≥ 0. Let z̃ be an accumulation point of this
bounded sequence (zk ∈ [0, b] ∀k). Since ‖zl1− z̃‖ ≥ ‖zl2− z̃‖ ≥ · · · and a subsequence
of this decreasing sequence tends to zero, it follows that limh→+∞ ‖zlh − z̃‖ = 0, i.e.,

z̃ = limh→+∞ zlh . This implies zlh − zlh+1 → 0, and hence, since z
lh+1

ih
= xlhih ,

zlhih − xlhih = |zlhih − z
lh+1

ih
| ≤ ‖zlh − zlh+1‖ → 0 (h→ +∞).

But zlh − xlh = λhz
lh , so zlhih − xlhih = λhz

lh
ih
→ 0. On the other hand, in view of the

fact zlh ∈ Ha, we have zlhi ≥ minj=1,...,n aj > 0 ∀i; hence λh = (zlhih − xlhih)/z
lh
ih
→ 0.

Therefore, zlh − xlh → 0, and consequently, z̃ = limh→+∞ xlh = limh→+∞ zlh . Since
xlh ∈ G ∀h while zlh ∈ H ∀h, we can conclude z̃ ∈ G ∩ H. Furthermore, since
f(zlh) ≥ f(x) ∀x ∈ G ∩H and {zlh} ⊂ H, it follows from the upper semicontinuity
of f(x) on H that f(z̃) ≥ f(x) ∀x ∈ G ∩H; i.e., z̃ is a global maximizer of f(x) over
G ∩H.

Implementation issues. 1. If the set G is robust (i.e., any point of G is the
limit of a sequence of points in int(G)), then by replacing, if necessary, the set H by
H ′ = {x ∈ H| x ≥ ηe}, where η > 0 is small enough, one obtains a problem satisfying
condition (17), while differing only slightly from the original problem. In the general
case, condition (17) can always be made to hold by simple manipulations. In fact, let
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η be any positive number and define

f̃(x) =

{
f(x− ηe) if x ≥ ηe,
−M otherwise,

(19)

G̃ = Rn
+ ∩ (G+ ηe−Rn

+), H̃ = H + ηe,

where M > 0 is a sufficiently large number. Then f̃(x) is increasing, G̃ (normal hull
of G+ ηe) is normal, H̃ is reverse normal, and the original problem is equivalent to

(Ã) max{f̃(x)| x ∈ H̃ ∩ G̃}.

Clearly H̃ satisfies condition (17) for a = ηe.
2. To avoid storage problems in connection with the growth of the set Tk as the

algorithm proceeds, and also to preclude possible jams, it may be useful to restart the
algorithm whenever |Tk| > L, where L is a user supplied fixed number. Specifically,
Step 5 of Algorithm 1 should be modified as follows. Let z̃ be the point where we
would like to restart the algorithm (usually, z̃ = xk or current best solution).

Step 5. If |Tk+1| ≤ L, then set k ← k + 1 and return to Step 1.
Otherwise go to Step 6.
Step 6. Redefine xk = π(z̃), Tk+1 = {b − (bi − xki )e

i, i = 1, . . . , n},
(i.e., Pk+1 = [0, b] \ (xk, b]), then set k ← k+1 and return to Step 1.

With this modification, an occurrence of Step 6 means a restart, i.e., the beginning
of a new cycle of iterations.

3. In many cases (for instance when H = a + Rn
+ with 0 < a < b), xk is feasible

for large values of k. Then, since zlh − xklh → 0, for any given ε > 0 an ε-optimal
solution can be obtained in a finite number of iterations. In the general case, this may
not be possible by Algorithm 1, but the fact zkh −xkh → 0 implies that for any given
δ > 0 we must have ‖zk − xk‖ ≤ δ for sufficiently large k. Then zk is a maximizer of
f(x) over (G∩H)+ δe and so it can be accepted as a δ-approximate optimal solution
of the problem. Thus, to make the above algorithm finite the stopping criterion
‖zk − xk‖ ≤ δ should be added in Step 2. (Since xk = λkz

k and ‖zk‖ ≤ ‖b‖, this
occurs if (1− λk)‖b‖ ≤ δ.)

4. Step 4 amounts to replacing the box [0, zk] with the polyblock [0, zk] \ Kxk .
As was mentioned at the end of the previous section, to delete a larger part of Pk we
can do the same for every z ∈ T̃k ∩Kxk . However, the advantage of having a smaller
polyblock Pk+1 may be offset by the disadvantage of having too numerous a vertex
set.

5. In Step 2, instead of taking xk = πG(zk), where πG(z) is defined by formula
(2), one can also take xk = πv

G(xk), where v is a fixed vector in Rn
++, e.g., v = b, and

πv
G(z) is the first point of G on the half line from zk in the direction −v, i.e.,

πv
G(z) = z − λv with λ = min{α| z − αv ∈ G}.(20)

With xk = πv
G(zk) defined by (20) the convergence of Algorithm 1 will still be guar-

anteed and may sometimes be even better. The convergence of this variant of Al-
gorithm 1 can be established by an argument which is only a slight modification
of the proof of Proposition 1 in the last part. Specifically, based on the relation
zk − xk = λkv ≥ λk(mini=1,...,n vi), one can prove that zlh − xlh → 0, hence zlh

and xlh tend to a common limit z̃. Since zlh ∈ H ∀h one must have z̃ ∈ H. On the



MONOTONIC OPTIMIZATION 477

other hand, for xk defined from (20) we have xk ∈ G whenever xk > 0. Noting that
xlh → z̃ ∈ H, we deduce from the assumption (17) that, for all sufficiently large h,
xlh > 0, and hence xlh ∈ G. This implies that z̃ ∈ G; hence z̃ ∈ G ∩H.

6. Algorithm 1 can also be viewed as a branch and bound procedure, in which
the root of the associated tree is represented by the vertex b of the initial box P1 =
[0, b] containing all feasible solutions. At iteration k the pending nodes of this tree
correspond to the proper vertices of the polyblock Pk. Each vertex z represents the
set of feasible solutions contained in the box [0, z] and an upper bound for the values
of f(x) over the feasible solutions contained in this box is f(x) if z ∈ Ha, or −∞
if z /∈ Ha (since in the latter case there is no feasible solution in the box [0, z]).
After “fathoming” the pending nodes with upper bound inferior to the current best
value (Step 1), if no pending node remains for consideration (T̃k = ∅), the algorithm
terminates (Step 2). Otherwise, a node zk ∈ T̃k with maximal upper bound is split
into n new nodes (its “children”) zk,i = zk − (zki − xki )e

i, i = 1, . . . , n (Steps 3 and
4), and the process is repeated. It should be noted, however, that in each iteration
the boxes in the current polyblock determine a covering rather than a partition of the
feasible set as in usual branch and bound procedures.

7. In Step 3 it is not necessary to always select zk according to the criterion

zk ∈ argmax{f(z)| z ∈ T̃k}.(21)

In fact the proof of Theorem 1 shows that the bounding used in the above branch
and bound interpretation of the algorithm is consistent. Therefore, according to the
general theory of branch and bound procedures for global optimization [11, Theorem
IV.3], to ensure convergence of the algorithm, it suffices that the selection of zk be
“bound improving,” i.e., that the criterion (21) be used each time after a finite number
of iterations. This flexibility in the selection of zk may sometimes help to speed up
the convergence.

Another fact worth noticing is that, given any (hyper)rectangle [p, q] ⊂ [0, b], a
bound for max{f(x)| x ∈ G ∩ H, p ≤ x ≤ q] can be obtained at cheap cost by
applying just one or a few iterations of Algorithm 1 to the problem max{f(p+y)| y ∈
(G − p) ∩ (H − p), 0 ≤ y ≤ q − p}. By incorporating this bounding method in a
rectangular partitioning procedure, we obtain a branch and bound algorithm in a
more usual sense.

6. Reverse polyblock approximation algorithm. We now turn to problem
B:

(B) min{f(x)| x ∈ G ∩H},

where G ⊂ [0, b] is a compact normal set and H is a closed reverse normal set while
f(x) is increasing on [0, b] and lower semicontinuous on G. We will assume, addition-
ally, that there exists a vector c such that 0 < c < b and

0 ≤ x ≤ c ∀x ∈ G ∩H.(22)

(The latter assumption is innocuous since it can always be satisfied by replacing b
with a vector b′ > b.)

As we saw in subsection 3.2, problem (B) can be converted to problem (A) by
the transformation x = b− y. It may be useful, however, to see how this problem can
be treated directly.
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A set P ⊂ Rn
+ is called a reverse polyblock in [0, b] if it is the union of a finite

family of boxes [z, b], z ∈ T, where T ⊂ [0, b], |T | < +∞. The set T is called the vertex
set of P. A point z ∈ T is called a proper vertex of P (or a proper element of T ) if it
does not dominate any other z′ ∈ T. Of course a reverse polyblock is fully determined
by its proper vertices and an increasing function achieves its minimum over a reverse
polyblock at a proper vertex.

To solve problem (B) we construct a nested sequence of reverse polyblocks outer
approximating the set G ∩ H, or rather, outer approximating a subset of G ∩ H
containing at least an optimal solution. As initial reverse polyblock we take P1 = [0, b]
with vertex set T1 = {0}. At iteration k, we have a reverse polyblock Pk with proper
vertex set Tk. Since z /∈ (G∩ [0, c]) implies [z, b]∩(G∩H) = ∅, every z ∈ Tk \(G∩ [0, c]
can be deleted. Furthermore, if x̄k is the best feasible solution known so far, and
CBV = f(x̄k) then, any z ∈ Tk such that f(z) ≥ f(x̄k)− ε can also be deleted.

Let T̃k be the set that remains from Tk after removing all z ∈ Tk \ (G ∩ [0, c])
and all z ∈ Tk such that f(z) ≥ CBV − ε. From the construction of P1 and Ph for
1 ≤ h ≤ k it easily follows that every feasible solution x such that f(x) < CBV − ε
must be found in the reverse polyblock P̃k with vertex set T̃k. Therefore, if T̃k = ∅,
this means no such feasible solution exists and the procedure terminates (with the
conclusion that the best feasible solution so far obtained is an ε-optimal solution).

If T̃k �= ∅, let zk ∈ argmin{f(z)| z ∈ T̃k} = argmin{f(x)| x ∈ P̃k}. Since zk ∈ G,
if zk ∈ H, then zk ∈ G∩H and zk is an optimal solution because f(x) ≥ CBV − ε >
f(zk) ∀x ∈ (G∩H)\ P̃k. On the other hand, if zk /∈ H, then xk > zk for xk = ρH(zk)
(last point of H on the half line from b through zk; see (3)), so [zk, b] \ [0, xk) is a
reverse polyblock with vertex set {zk,i = zk+(xki −zki )ei, i = 1, . . . , n}. Then we go to
the next iteration, with Tk+1 defined as the proper vertex set of the reverse polyblock
Pk+1 generated by Vk+1 = (T̃k\{zk})∪{zk,1, . . . , zk,n}, i.e., the set obtained from Vk+1

by removing all improper members according to the rule that for every z ∈ Tk \ {zk},
if z ≤ xk while zi > zki for exactly one i ∈ {1, . . . , n}, then remove zk,i.

We can thus state the Reverse Polyblock Approximation Algorithm for problem
(B).

Algorithm 2.
Initialization. Select ε ≥ 0 (tolerance). Let T1 = {0}. Let x̄1 be the best feasible
solution available (the current best feasible solution), CBV = f(x̄1). If no feasible
solution is available, set CBV = +∞. Set k = 1.
Step 1. From Tk remove all z ∈ Tk \ (G ∩ [0, c]) and all z ∈ Tk such that f(z) ≥
CBV − ε. Let T̃k be the set of remaining elements of Tk.
Step 2. If T̃k = ∅, terminate: if CBV = +∞, the problem is infeasible; if CBV <
+∞, x̄k is an ε-optimal solution.
Step 3. If T̃k �= ∅, select zk ∈ argmin{f(x)| x ∈ T̃k}.
Compute xk = ρH(zk) (the last point of H on the half line from b through zk). If
xk = zk, i.e., zk ∈ H, terminate: zk is an optimal solution. Otherwise, determine
the new CBV and the new current best feasible solution x̄k+1.
Step 4. From Vk+1 = (T̃k \ {zk}) ∪ {zk + (xki − zki )e

i, i = 1, . . . , n} remove the
improper elements and let Tk+1 be the resulting set.
Step 5. Set k ← k + 1 and return to Step 1.

Theorem 2. If Algorithm 2 is infinite, each of the generated sequences {zk}, {xk}
contains a subsequence converging to an optimal solution.

Proof. We omit the proof, which is similar to that of Theorem 1.
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Implementation issues. 1. The efficiency of the above algorithms may depend
on the choice of the initial box [0, b]. For example, for problem (B) if a value γ ∈
f(G ∩ H), (i.e. γ = f(x̄) for some feasible solution x̄) is known from the beginning
one can reset G← G ∩ {x| f(x) ≤ γ}. After that let

βi = sup{β > 0| βei ∈ G}, b
′
= β1e

1 + · · ·+ βne
n,(23)

αi = sup{α > 0| b′ − αei ∈ H}, a = b
′ −

n∑
i=1

αie
i.(24)

Since for each i = 1, . . . , n, the set {β ≥ 0| βei ∈ G} is a segment, βi can be computed,
for instance, by the Bolzano bisection method. Analogously, αi can be computed
easily. Then clearly G ∩ H ⊂ [a, b′]. Further, by resetting G ← G ∩ [a, b′], H ←
H ∩ [a, b′], and selecting b > b′ then shifting the origin to a, we finally have (22), but
now with a box [0, b] which is a tighter approximation of G ∩H.

To select the initial reverse polyblock P1, observe that [0, x̄) ⊂ [0, b] \H (since H
is reverse normal), so we can take P1 = [0, b] \ [0, x̄) (see Proposition 15).

2. Just as with Algorithm 1, to avoid storage problems in connection with the
growth of Tk, and to preclude possible jams, it is advisable to make a restart when
Tk exceeds a critical size L. Step 5 should then be modified as follows (z̃ may be xk

or the current best solution).

Step 5. If |Tk+1| ≤ L, then set k ← k + 1 and return to Step 1.
Otherwise go to Step 6.
Step 6. Redefine xk = ρH(z̃), Tk+1 = {xki ei, i = 1, . . . , n} (i.e.,
Pk+1 = [0, b] \ [0, xk)), then set k ← k + 1 and return to Step 1.

3. In Step 2, instead of taking xk = ρH(zk), where ρH(z) is defined by formula
(3), one can also take xk = ρvH(zk), where v ∈ Rn

++ is a fixed vector (e.g., v = e) and
ρvH(z) is the first point of H on the half line from zk in the direction v, i.e.,

ρvH(z) = z + µv, µ = min{α| z + αv ∈ H}.(25)

Sometimes, as, e.g., in the problem in subsection 8.2 below, v can be chosen so that
ρvH(z) ∈ H whenever z ∈ Rn

+ \ H. In that case, the convergence of the algorithm is
ensured without requiring (22).

7. Optimization of differences of increasing functions. The above ap-
proach can easily be extended to solve a very broad class of problems dealing with
(d.i. functions).

First observe that, like the class of difference of two convex (d.c. functions),
the class of d.i. functions is a linear space, closed under the operations of taking
the pointwise minimum and the pointwise maximum. In this linear space the set of
increasing functions forms a convex cone.

Proposition 19. If f1(x), . . . , fm(x) are d.i. then

(i) for any αi ∈ R the function
∑m

i=1 αifi(x) is also d.i.;

(ii) the functions (∨mi=1fi)(x) := max{f1(x), . . . , fm(x)} and (∧mi=1fi)(x) =
min{f1(x), . . . , fm(x)} are also d.i.

Proof. (i) is trivial. To prove (ii) let fi = pi(x)− qi(x) with pi(x), qi(x) increasing
on Rn

+. Since fi = pi+
∑

j �=i qj−
∑

j qj we have (∨mi=1fi)(x) = (∨i[pi+
∑

j �=i qj ])(x)−∑
j qj(x), where ∨i[pi +

∑
j �=i qj ] and

∑
j qj are increasing functions (see Proposition

1).
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Thus with respect to the operations ∨ and ∧ defined as above, the linear space
of d.i. functions is a vector lattice. Note that the set of increasing functions is also a
lattice with respect to these operations.

Proposition 20. Any polynomial P (x1, . . . , xn) on Rn
+ is a difference of two

increasing functions.

Proof. By grouping separately the terms with positive coefficients and those with
negative coefficients, one can write P (x) = P1(x) − P2(x), where each P1, P2 is a
polynomial with nonnegative coefficients, hence an increasing function.

Corollary 3. The set of continuous d.i. functions on a box [0, b] ⊂ Rn
+ is

dense in the space C[0, b] of continuous functions on [0, b] with the norm ‖f(x)‖ =
max0≤x≤b |f(x)|.

Proof. By the Weierstrass approximation theorem, for any continuous function
f(x) on [0, b] and any given ε > 0, one can find a polynomial P (x) such that
max0≤x≤b |f(x)−P (x)| ≤ ε. By Proposition 20, P (x) is a difference of two increasing
functions.

Remark 1. It is well known that a function of bounded variation of a real variable t
can always be decomposed into a difference of two monotone nondecreasing functions.
Hence if f(x) =

∑n
i=1 fi(xi), where each fi(t), i = 1, . . . , n, is a function of bounded

variations, then f(x) is a difference of two increasing functions.

7.1. Maximization. Consider the problem

max{f(x)− g(x)| x ∈ G ∩H},(26)

where G is a normal set contained in a box [0, b] ⊂ Rn
+, H is a reverse normal set in

[0, b], while f(x), g(x) are increasing functions on [0, b].

For every x ∈ [0, b], since g(x) ≤ g(b) we have g(x)+ t = g(b) for t = g(b)−g(x) ≥
0. Hence, we can write the problem as

max{f(x) + t− g(b)| x ∈ G ∩H, t = g(b)− g(x)}

and by adding the constant g(b) to the objective function we obtain the problem

max{f(x) + t| x ∈ G ∩H, 0 ≤ t ≤ g(b)− g(x)}, i.e.,

max{f(x) + t| (x, t) ∈ D ∩ E},

where

D = {(x, t)| x ∈ G, t+ g(x) ≤ g(b), 0 ≤ t ≤ g(b)− g(0)},
E = {(x, t)| x ∈ H, 0 ≤ t ≤ g(b)− g(0)}.

(Since any optimal solution must satisfy t = g(b) − g(x) ≤ g(b) − g(0), one can add
this constraint to the problem.) Clearly, E is reverse normal in [0, b]× [0, g(b)− g(0)].
Also, since t+ g(x) is increasing on [0, b]× [0, g(b)− g(0)] the set D is normal in this
box. Furthermore,

F (x, t) := f(x) + t

is obviously increasing on [0, b] × [0, g(b) − g(0)], so the problem (26) reduces to a
problem (A) in Rn+1.
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7.2. Minimization.

min{f(x)− g(x)| x ∈ G ∩H},(27)

where G,H, and f(x), g(x) are as in Problem (26). Similar transformations to the
above can be applied to convert problem (27) into a problem (B). Specifically, by
adding the constant g(b) to the objective function, we reduce the problem to the
following:

min{f(x) + t| x ∈ G ∩H, 0 ≤ t ≤ g(b)− g(0), t ≥ g(b)− g(x)},
or, equivalently, by setting F (x, t) = f(x, t) and D = {(x, t)| x ∈ G, 0 ≤ t ≤
g(b)− g(0)}, E = {(x, t)| x ∈ H, t+ g(x) ≥ g(b), 0 ≤ t ≤ g(b)− g(0)} :

min{F (x, t)| (x, t) ∈ D ∩ E}.
This is a problem (B) because E is a reverse normal set in [0, b] × [0, g(b) − g(0)],
and D is a normal set in the same box. (Since any optimal solution must satisfy
t = g(b)− g(x) ≤ g(b)− g(0) one can add this constraint to the problem.)

7.3. General monotonic constraints. The most general problem of mono-
tonic optimization is

(GMOP)
min f1(x)− f2(x),
subject to (s.t.) gi(x)− hi(x) ≤ 0, i = 1, . . . ,m,

x ∈ Ω ⊂ Rn
+,

where f1, f2, gi, hi are increasing on Rn
+ and Ω is a normal set contained in a box

[0, b] ⊂ Rn
+. This general problem can easily be reduced to the canonical form (B).

In fact, by using, if necessary, transformations similar to those described earlier in
this section, and by changing the notation, one can always assume, without loss of
generality, that f2(x) = 0. Further, the set of m constraints gi(x) − hi(x) ≤ 0, i =
1, . . . ,m, can be written as a single inequality

max
i=1,...,m

{gi(x)− hi(x)} ≤ 0.(28)

By Proposition 19 this inequality in turn is equivalent to

g(x)− h(x) ≤ 0,

where g(x) = maxi[gi(x) +
∑

j �=i hj(x)] and h(x) =
∑

i hi(x) are both increasing
functions. By adding a positive constant to both g(x), h(x) one can assume g(b) > 0.
Now, since g(x) ≤ g(b) (g(x) is increasing), we have for every x ∈ [0, b] : g(x) + t ≤
g(b), t ≥ 0. Therefore the inequality g(x) − h(x) ≤ 0 for x ∈ Ω can be split into two
inequalities:

g(x) + t ≤ g(b), h(x) + t ≥ g(b)

for x ∈ Ω ⊂ Rn
+ and t ∈ R+. The problem (GMOP) where f2(x) = 0 thus reduces to

min{f1(x)| g(x) + t ≤ g(b), h(x) + t ≥ g(b), x ∈ Ω, 0 ≤ t ≤ g(b)− g(0)}
which is a problem (B) with G = {(x, t)|x ∈ Ω, g(x) + t ≤ g(b), 0 ≤ t ≤ g(b) −
g(0)}, H = {(x, t) ∈ Rn

+ ×R+| h(x) + t ≥ g(b)}, and G ⊂ [0, b]× [0, g(b)− g(0)].
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8. Applications. Numerous global optimization problems can be reformulated
as monotonic optimization problems. Let us mention in this section some of the most
noticeable possible applications.

8.1. Multiplicative programming. Optimization problems involving prod-
ucts of several convex or concave functions in the objective or in the constraints are
often termed multiplicative programming problems. Examples are given by problems
(5), (7), (10), and (11) in which ϕ(y) =

∏m
i=1 yi :

max

{
m∏
i=1

ui(x)| x ∈ D

}
,(29)

min

{
m∏
i=1

ui(x)| x ∈ D

}
,(30)

max

{
〈c, x〉| x ∈ D,

m∏
i=1

ui(x) ≤ 1

}
,(31)

min

{
〈c, x〉| x ∈ D,

m∏
i=1

ui(x) ≥ 1

}
.(32)

It is well known that if ui(x) are positive concave functions onRn
+, then (

∏m
i=1 ui(x))

1
m

is a concave function (see, e.g., [30]), and hence
∏m

i=1 ui(x) is a quasi-concave func-
tion. Therefore, in this case problems (29) and (32) are essentially convex problems.
By contrast, when ui(x) are convex, the function

∏m
i=1 ui(x) is neither convex nor

concave but a d.c. function. The above problems (29) through (32) are then highly
nonconvex.

In recent years much research efforts has been devoted to multiplicative program-
ming problems ([12], [14], [13]; see also [26] and references therein). Different methods
(combining the parametric, branch and bound, outer approximation, and duality ap-
proaches) have been developed which have proved to be quite practical for solving
low rank problems [14], involving products of m ≤ 5 affine or convex functions. For
problems with m > 5 these methods often encounter serious difficulties and, to the
knowledge of the author, so far no computational result has been reported in the
literature.

However, as we saw, all the problems (29) through (32) are typically monotonic
optimization problems and can be approached by the polyblock approximation meth-
ods. As shown by numerical experiments recently reported in [33] for problems of
type (31), where ui(x) are affine, the polyblock approach can solve without diffi-
culty problem instances with m up to 10, which could hardly be handled by existing
methods.

Many multiplicative programs can be converted into one of the forms (29) through
(32). Consider, for instance, the problem [25], [12]

min[f0(x) + f1(x)f2(x)] s.t. x ∈ D,(33)

where f0, f1, f2 are affine functions and D is a polytope in Rn
+.

Define

αi = min{fi(x)| x ∈ D}, i = 1, 2.
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Then

f0(x) + f1(x)f2(x) = f0(x) + α1f2(x) + α2f1(x) + (f1(x)− α1)(f2(x)− α2) + α1α2

and setting

ui(x) = fi(x)− αi, i = 1, 2,

u0(x) = f0(x) + α1f2(x) + α2f1(x)− α0,

where

α0 = min{f0(x) + α1f2(x) + α2f1(x)| x ∈ D},
we have

f0(x) + f1(x)f2(x) = u0(x) + u1(x)u2(x) + α0 + α1α2.

Therefore the problem can be rewritten as

min{u0(x) + u1(x)u2(x)| x ∈ D},
where the functions ui(x), i = 0, 1, 2 are affine and nonnegative on D.

Clearly the function ϕ(y) = y0 + y1y2 is increasing on R3
+, so this is a problem of

the same type as (10) (Example 3).

8.2. Indefinite quadratic programming. Consider the problem

max{f(x)| x ∈ D},(34)

where f(x) is an indefinite quadratic function and D is a compact normal set in Rn
+

such that D ⊂ [a, b] ⊂ Rn
++. As was already noticed, by grouping separately the

terms with positive and the terms with negative coefficients, we can write f(x) =
f1(x)− f2(x) where f1, f2 are quadratic functions with nonnegative coefficients, i.e.,
increasing on Rn

+. Taking a constant γ > f2(b), we have f2(x) ≤ f2(b) < γ, i.e.,
f2(x) + t = γ for 0 < t = γ − f2(x) ≤ γ − f2(a); hence, by adding γ to the objective
function, we can rewrite (34) as

max{f1(x) + t| x ∈ D, f2(x) + t ≤ γ, 0 < t ≤ γ − f2(a)}.
For any optimal solution (x, t) we have t = γ − f2(x) ≥ γ − f2(b) > 0. Consequently,
by setting z = (x, t), f̃(z) = f1(x) + t,

G = {z = (x, t)| x ∈ D, f2(x) + t ≤ γ, 0 ≤ t ≤ γ − f2(a)},
H = {z = (x, t)| x ≥ a, t ≥ γ − f2(b)},

the problem becomes a problem (A):

max{f̃(z)| z ∈ G ∩H},
where f̃(z) is an increasing function on Rn+1

+ , G is a compact normal set, and H
is a reverse normal set satisfying (x, t) ≥ (a, γ − f2(b)) > (0, 0) ∀ (x, t) ∈ H (i.e.,
condition (17)). For any given z = (x, t) ∈ H \ G, the point πG(z) is defined by
πG(z) = λz with λ = max{α| αz ∈ G} (see (2)). Clearly, 0 < λ < 1 (because z /∈ G)
and λ = min{λ1, λ2}, where λ1 = max{α| αx ∈ D}, λ2 = max{α| f2(αx) + αt ≤ γ}.
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Since the function Pz(α) := f2(αx) + αt is quadratic, monotone increasing for α > 0,
and Pz(0) < γ, we have λ2 = 1 if Pz(1) ≤ γ and λ2 is the unique root of the quadratic
equation Pz(λ) = γ if Pz(1) > γ.

A special case of problem (34) is the maximum clique problem in the Motzkin–
Strauss formulation (see [18], [7]):

max

{
1

2
xTQx| eTx = 1, x ≥ 0

}
,

where Q is the adjacency matrix of a given graph Γ. As is known [18], the global
optimal value of this problem equals 1

2 (1− 1/ω(Γ)) where ω(Γ) is the clique number
of Γ. Since the matrix Q has only nonnegative entries, the function f(x) := 1

2x
TQx

is increasing. By setting x = y − a, where a > 0, and defining a function f(y) equal
to 1

2 (y − a)TQ(y − a) if y ≥ a and equal to 0 otherwise, we convert this problem into
a problem (A), namely,

max{f(y)| y ∈ G ∩H},

where f(y) is increasing on the orthant y ≥ 0 and G = {y| eT (y − a) ≤ 1, y ≥ 0}
is normal, H = {y| y ≥ a} is reverse normal, and y ≥ a > 0 ∀y ∈ G ∩H (condition
(17)).

8.3. Polynomial programming. A polynomial programming problem is a prob-
lem of the general form

min{P0(x)| Pi(x) ≤ 0 (i = 1, . . . ,m), x ∈ [0, b] ⊂ Rn
+},

where P0, P1, . . . , Pm are polynomials. By expressing each polynomial as a difference
of two polynomials with nonnegative coefficients, this problem becomes

(PLP)
min P0,1(x)− P0,2(x),
s.t. Pi,1(x)− Pi,2(x) ≤ 0, i = 1, . . . ,m,

x ∈ [0, b] ⊂ Rn
+,

where P0,1, P0,2, and Pi,1, Pi,2 (i = 1, . . . ,m) are polynomials with nonnegative coef-
ficients. Adding P0,2(b) to the objective function, we rewrite the problem as

min P0,1(x) + xn+1,
P0,2(x) + xn+1 ≥ P0,2(b),
Pi,1(x)− Pi,2(x) ≤ 0, i = 1, . . . ,m,
0 ≤ x ≤ b, 0 ≤ xn+1 ≤ P0,2(b)− P0,2(0).

Changing the notations, we thus have a problem of the form

min{f(x)| gi(x)− hi(x) ≤ 0 (i = 1, . . . , p), x ∈ [0, c] ⊂ Rn+1
+ },

where f, gi, hi are polynomials in x ∈ Rn+1 with nonnegative coefficients. Next,
setting g(x) = maxi[gi(x) +

∑
j �=i hj(x)], h(x) =

∑
i hi(x), we can replace the set of

inequalities gi(x) − hi(x) ≤ 0, i = 1, . . . , p, by the single inequality g(x) − h(x) ≤ 0
which in turn is equivalent to the system

g(x) + t ≤ g(c), h(x) + t ≥ g(c), 0 ≤ t ≤ g(c)− g(0).
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By defining then

G = {(x, t)| g(x) + t ≤ g(c), 0 ≤ x ≤ c, 0 ≤ t ≤ g(c)− g(0)},
H = {(x, t)| h(x) + t ≥ g(c)},

and selecting a vector b > 0 and a constant η > 0. b > c, h(b) > g(0), η > g(c)−g(0),
we finally reduce the problem to the following problem (B):

min{f(x)| (x, t) ∈ G ∩H, 0 ≤ x ≤ b, 0 ≤ t ≤ η}.
It is easily verified that condition (22) is fulfilled, namely,

0 ≤ (x, t) < (b, η) ∀(x, t) ∈ G ∩H.

For solving this problem (B) we can apply the variant of Algorithm 2 using ρvH(z)
defined by (25) with v = (b, η). Then for every z = (x, t) /∈ H we have to compute
ρvH(z) = (x+ µb, t+ µη), where µ satisfies

Qz(µ) := h(x+ µb) + t+ µη = g(c), 0 < µ < 1.

Since Qz(µ) is a polynomial in µ with nonnegative coefficients, hence a monotone
increasing function of µ, this equation is very easy to solve. Thus, solving (PLP) by
Algorithm 2 reduces to solving a connected sequence of polynomial equations of one
variable.

An important special case of (PLP) is the general nonconvex quadratic program-
ming problem, a subject which has attracted considerable interest in the last few years
(see, e.g., [31]). In this case Pi,1(x), Pi,2(x), i = 1, . . . ,m are quadratic functions, so
every equation Qz(µ) = η is a mere quadratic equation of one variable. In other
words, Algorithm 2 reduces a nonconvex quadratic program to a connected sequence
of quadratic equations of one variable.

8.4. Lipschitz optimization. A Lipschitz optimization problem over a simplex
can be reduced to a monotonic optimization problem, due to the following result [22].
Proposition 21 (see [22]). Let f(x) be a Lipschitz function on the simplex S =

{x ∈ Rn
+|

∑n
i=1 xi = 1}, with Lipschitz constant K > 0, s.t. α := minx∈S f(x) > 0.

Then the function

g(x) =




f

(
x∑n

i=1 xi

)( n∑
i=1

xi

)p

, x �= 0,

0, x = 0,

extends f(x) to the whole of Rn
+ and is increasing, provided p ≥ max{1, 2K

α }.
Proof. This proposition was proved in [22]. We give a shorter proof here . Clearly

g(x) = f(x) ∀x ∈ S, and g(λx) = λpg(x) ∀λ > 0. We must show that g(z) ≥ g(x)
for any x ∈ Rn

+ and z ≥ x. Let
∑n

i=1 xi = θ > 0. Without loss of generality we may
assume θ = 1, i.e., x ∈ S, so λ :=

∑n
i=1 zi > 1. Let y be the point on the ray from

0 through z such that y ∈ S. Then z = λy, so g(z) = λpg(y) = λpf(y). But by the
Lipschitz property of f(x)

g(x) = f(x) ≤ f(y)+K‖y−x‖ = f(y)

[
1 +

K‖y − x‖
f(y)

]
≤ g(y)

[
1 +

K‖y − x‖
α

]
.

(35)
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On the other hand,

‖y − x‖ ≤ ‖y − z‖+ ‖z − x‖,

where ‖y−z‖ = (λ−1)‖y‖ ≤ (λ−1) (because ‖y‖ ≤ 1) and ‖z−x‖ ≤ (λ−1) because
z − x is contained in the simplex (λ− 1)S. Hence

‖y − x‖ ≤ 2(λ− 1)

which, by virtue of (35), implies that

g(x) ≤ g(y)

[
1 +

2K(λ− 1)

α

]
.(36)

It suffices now to compare the function s(λ) = λp and the affine function t(λ) =

1 + 2K(λ−1)
α . Since s(1) = t(1) = 1 and s′(1) = p ≥ 2K

α = t′(1), it follows that
s(λ) ≥ t(λ) ∀ λ > 1. Therefore, by (36), g(x) ≤ g(y)λp = g(z), as was to be
proved.

Since S = G ∩H, where G = {x ∈ Rn
+|
∑n

i=1 xi ≤ 1} is normal and H = {x ∈
Rn

+|
∑n

i=1 xi ≤ 1} is reverse normal, it follows from Proposition 21 that maximizing
(or minimizing) a Lipschitz function f(x) over the simplex S = {x ∈ Rn

+|
∑n

i=1 xi =
1} reduces to solving a problem (A) (or (B), resp.).

8.5. Optimization under network constraints. Many optimization prob-
lems over a network have the following form:

(PTP)

min ϕ(y) + 〈c, x〉,
s.t. y ∈ Y,

Qx = y,
Bx = d, x ≥ 0,

where ϕ : Rp
+ → R is an increasing function, Y is a polytope in Rp

+, c, x ∈ Rn, d ∈
Rm, Q is a p × n matrix of rank p, B is an m × n matrix. For instance, if y
denotes a production program to be chosen from a set Y of technologically feasible
production programs, and x a distribution flow over a given network, then the problem
is to determine a production program y and a distribution program x so as to meet
specified requirements with a minimum total cost ϕ(y)+〈c, x〉. Let θ(y) be the optimal
value of the subproblem

(TP(y))
min 〈c, x〉,
s.t. Qx = y,

Bx = d, x ≥ 0.

Clearly θ(y) is a convex increasing function and it is easily verified that (PTP) is
equivalent to the problem

min{ϕ(y) + θ(y)| y ∈ Y }.(37)

Often the function ϕ(y) is concave (by economy of scale), so (37) is a d.c. optimization
problem. However, by setting

G = {y ∈ Rp
+| y ≤ Qx, Bx = d, x ≥ 0}, H = {y ∈ Rp

+| y ≥ u, u ∈ Y },
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we see that this is actually a problem (B):

min{ϕ(y) + θ(y)| y ∈ G ∩H},(38)

where G is a normal closed set in Rp
+, H is a reverse normal closed set, and the

objective function ϕ(y) + θ(y) is increasing. Note that θ(y) = +∞ for y /∈ G but
we can make θ(y) a finite increasing function, lower semicontinuous on G, by setting
θ(y) = M ∀y /∈ G, where M is a sufficiently large positive number. Assuming Y ⊂
[0, b] it is easily seen that for every z ∈ Rp

+\H the determination of the point ρH(z) =
b+ µ(z − b) with µ = sup{α > 0| b+ α(z − b) ∈ Y } is straightforward. For instance,
if Y = {y ∈ Rp

+|
∑p

i=1 yi = 1, y ≥ 0} (so that b = e), then ρH(z) = e+µ(z− e) with
µ = 1/(1−∑p

i=1 zi).

8.6. Fekete points problem. One of the most challenging problems of global
optimization consists in determining the distribution of Fekete points on a sphere (see,
e.g., [5]). This problem can be formulated as follows:

min
∑

1≤i<j≤N

1

‖xi − xj‖ s.t. ‖xi‖ = 1, i = 1, . . . , N.

By rewriting it as

min




∑
1≤i<j≤N

yij | yij ≥ 1

‖xi − xj‖ (1 ≤ i < j ≤ N), ‖xi‖ = 1 (i = 1, . . . , N)




we see that this problem has the form of a monotonic optimization problem, namely,

min




∑
1≤i<j≤N

yij | y = (yij) ∈ H


 with(39)

H =

{
y = (yij) | yij ≥ 1

‖xi − xj‖ (1 ≤ i < j ≤ N), ‖xi‖ = 1 (i = 1, . . . , N)

}
.

Here the objective function is obviously increasing for y = (yij) ≥ 0, while H is a
reverse normal set because y′ ≥ y ≥ 0 and y ∈ H imply y′ ∈ H. Let M > 0 be
the sum of the inverse of the mutual distances of any N chosen distinct points on
the unit sphere. Since the distance between any two points on the unit sphere is
at most 2, we have, for any optimal solution y of the problem and any fixed (i, j),
M ≥ 1

2 [N(N − 1)/2− 1] + yij ; hence

yij ≤ η := M − 1

2
[N(N − 1)/2− 1].

Therefore, if we define the compact normal set G = {y = (yij)| 0 ≤ yij ≤ η}, then
the problem (39) is the same as

min




∑
1≤i<j≤N

yij | y = (yij) ∈ G ∩H
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which is exactly a problem (B). In solving this problem by the version of Algorithm 2
using ρvH(z) (with v = ηe), the determination of ρvH(z) for each given z = (zij) ∈ G\H
amounts to solving nonconvex quadratic programs of the form

max{α | (zij + αη)‖xi − xj‖ ≥ 1 (1 ≤ i < j ≤ N), ‖xi‖ = 1 (i = 1, . . . , N)}.

These programs in turn can be solved by the method discussed in the two preceding
subsections.

8.7. Lennard–Jones potential energy function. An important problem in
computer simulations of molecular conformation and protein folding consists in finding
the global minimum of the Lennard–Jones potential energy associated with a cluster
of N particles. Its mathematical formulation is (see, e.g., [35])

min



∑
i<j

[
1

r12
ij

− 2

r6
ij

]
| rij = ‖xi − xj‖, xi ∈ R3, i, j = 1, . . . , N


 .(40)

One way to solve this problem is to convert it into a d.c. program [34]. However,
in view of the large size of this d.c. program the global minimum is very difficult to
compute exactly. Therefore the following two-stage strategy is proposed for finding
an approximate global minimum.

Stage I. Compute a good lower bound for the global minimum
It has been proved in [35] that a global optimal solution must satisfy rij = ‖xi −

xj‖ ≥ 0.5 ∀(i < j), so we can add this constraint to the problem. Setting sij = 1
r6
ij

we can then rewrite the problem as

min

{
f(s)− g(s) | 0 ≤ sij ≤ 26, sij =

1

‖xi − xj‖6 , xi ∈ R3, (i, j = 1, . . . , N)

}
,

(41)
where

f(s) =
∑
i<j

s2
ij , g(s) = 2

∑
i<j

sij .

A lower bound for the optimal value of (40) can thus be computed by solving the
relaxed problem obtained from (41) by replacing the constraint sij = 1/‖xi − xj‖6
with sij ≤ 1/‖xi − xj‖6 :

θ := min

{
f(s)− g(s) | 0 ≤ sij ≤ 26, sij ≤ 1

‖xi − xj‖6 , (1 ≤ i < j ≤ N)

}
.(42)

Let b = (bij) with bij = 26, 1 ≤ i < j ≤ N. Proceeding as in subsection 7.2 (see (27)),
with γ being a positive constant s.t. γ > g(b) = [N(N − 1)]26, we rewrite (42) as

min{f(s) + t | g(s) + t ≥ γ, 0 ≤ t ≤ γ,

0 ≤ sij ≤ 26, sij ≤ 1

‖xi − xj‖6 , xi ∈ R3 (1 ≤ i < j ≤ N)}.

This is a problem (B):

min{f(s) + t | (s, t) ∈ G ∩H}(43)
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with

G =

{
(s, t) | 0 ≤ t ≤ γ, 0 ≤ sij ≤ 26, sij ≤ 1

‖xi − xj‖6 , xi ∈ R3

}
,(44)

H = {(s, t) | g(s) + t ≥ γ, xi ∈ R3}.(45)

Therefore, Algorithm 2 can be applied to solve this problem. For every z = (s, t) /∈ H,
the point ρeH(z) = z + µe is computed by determining µ from the linear equation∑

i<j

(sij + µ) + t+ µ = γ.

Another subproblem which has to be solved in each iteration of Algorithm 2 is to
verify whether a given point z = (x, t) belongs to G. This is done by verifying, aside
from the inequalities 0 ≤ t ≤ γ, 0 ≤ sij ≤ 26, 1 ≤ i < j ≤ N (which are immediate),
also the feasibility of the convex system of inequalities (where sij are given):

sij‖xi − xj‖ ≤ 1, xi ∈ R3, 1 ≤ i < j ≤ N.(46)

If instead of replacing the constraint sij = 1/‖xi − xj‖6 with sij ≤ 1/‖xi − xj‖6
we simply omit it, then the set G in (44) does not involve this nonlinear constraint.
In this case, no system (46) has to be considered for verifying the inclusion z ∈ G;
however, the lower bound may be worsened.

Stage II. Solve a distance geometry problem to derive a feasible solution close to
the global minimum.

Let sij = 1
δ6
ij

be an optimal solution of (42). Now solve the following distance

geometry problem:

min



∑
i<j

(δij − ‖xi − xj‖)2| xi ∈ R3, i = 1, . . . , N


 .(47)

By writing this problem as

min


∑

i<j

‖xi − xj‖2 − 2
∑
i<j

δij‖xi − xj‖

 s.t. xi ∈ R3, i = 1, . . . , N,

we obtain a quadratic optimization problem which can be solved by a generic branch
and bound algorithm described in [31] or by the method discussed in subsection 8.4.

9. Computational results. We have presented a theory of monotonic opti-
mization and shown its potential wide applicability. Since the model is very general,
it is unlikely that the method can be uniformly efficient for every problem of the class
considered. Nevertheless, from preliminary computational experience it appears that
this approach may help to better handle many problems so far resistant to known
methods.

As was mentioned in the introduction, computational results on testing earlier
variants of Algorithms 1 and 2 on some classes of monotonic optimization problems
have been quite encouraging. Experiments are reported in [24] where instances of
problems (A) of the form (8) (Example 1), of dimension around 10, which are usually
considered beyond the practical capability of existing algorithms (see, e.g., [14]), were
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solved fairly quickly on conventional PCs. Similar results have been obtained in [33]
on solving problems of the form (9) (Example 2) and in [16] on problems (B) of
the form (13) (Example 4). It should be noted that in most cases the monotonic
optimization problem considered comes from some large nonconvex problem via a
number of transformations and its dimension is very small compared to the total
number of variables of the original problem.

As an illustration, we present in this final section two small, but nontrivial, nu-
merical examples of problems which have been used for testing Algorithms 1 and 2 in
[33] and [16], respectively.

Example 5. Consider the following linear program with an additional multiplica-
tive constraint (Kuno–Yajima [5]):

max x3,
s.t. 5x1 + 10x2 + 5x3 ≤ 28,

8x1 + 4x2 + 5x3 ≤ 28,
−130x1 − 40x2 + 90x3 ≤ 9,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,
(3x1 − x2 + 3)(−x1 + 3x2 + 4)− 18 ≤ 0.

(48)

This is a problem of the form (7) with D ⊂ R3
+ being the polytope defined by the

linear constraints, ϕ(y) = y1y2, and u1(x) = x1 − 1
3x2 + 1, u2(x) = − 1

6x1 + 1
2x2 + 2

3 .
By Proposition 10 it is equivalent to

max{θ(y)| y ∈ H ⊂ R2
+, y1y2 ≤ 1},(49)

where

H = {y ∈ R2
+| u(x) ≤ y, x ∈ D},

θ(y) =

{
max{x3| x ∈ D,u(x) ≤ y} if y ∈ H,
−M otherwise

(M being a sufficiently large positive number which does not need to be specified). It
can easily be verified that

u(D) ⊂ [0, b] for b = (4.5, 2.0667).

Hence for initialization we take

z1 = (4.5, 2.0667), T1 = T̃1 = {(4.5, 2.0667)},
y1 = π(z1) = (1.4756, 0.6777), ȳ1 = y1, CBV = θ(ȳ1) = 0.9751.

(To compute y = π(z), note that y = µz with (µz1) × (µz2) = 1; hence y =
(
√
z1/z2,

√
z2/z1).)

Iteration 1. θ(z1) = 2.7095, θ(z̄1) = 0.9751.
Members of T2 (vertices of the rectangle [y1, z1] which are adjacent to z1); and

associated values of θ(.) :

vectors z θ(z)
(1.4756, 2.0667) 2.0192
(4.5000, 0.6777) 2.7095

No z ∈ T2 can be removed, so T̃2 = T2.
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Computing z2 = argmax{θ(z)|z ∈ T̃2} yields z2 = (4.5000, 0.6777), with y2 =
π(z2) = (2.5769, 0.3881). Since θ(y2) = −M, we have ȳ2 = ȳ1 = y1, and CBV =
0.9751.

Iteration 2. θ(z2) = 2.7095, θ(z̄2) = 0.9751.
Members of T3 and associated values of θ(.) :

vectors y θ(.)
(1.4756, 2.0667) 2.0192
(2.5769, 0.6777) 2.6643
(4.500, 0.3881) 2.7095

No z ∈ T3 can be removed, so T̃3 = T3.
Computing z3 = argmax{θ(z)|z ∈ T̃3} yields z3 = (2.5769, 0.6777) with y3 =

π(z3) = (3.4053, 0.2937), θ(y3) = 2.0192 > θ(ȳ2), so ȳ3 = y3 with CBV = θ(ȳ3) =
2.0192.

Continuing this way, with a tolerance ε = 0.0001 (relative error), the algo-
rithm terminates after 52 iterations, yielding 2.400 as the optimal value, with yopt =
(3.0002, 0.3333) as optimal solution of problem (49) and xopt = (2.000, 0.000, 2.400)
as optimal solution of problem (48). Note that, though the number of iterations may
seem a bit high, the computational time is very small because each iteration involves
only very simple computations.

For more detail on computational results of testing Algorithm 1 on problems (7),
we refer the interested reader to [33].

Example 6. Given a polytope D = {x ∈ Rn| Ax ≤ b, x ≥ 0} and a p × n-
matrix U, a point x ∈ D is said to be weakly efficient with respect to U if there is
no x′ ∈ D satisfying Ux′ > Ux. Let Dwe be the set of all weakly efficient points (the
weakly efficient set) and c ∈ Rn. Consider the problem of optimization over the weakly
efficient set

max{〈c, x〉| x ∈ Dwe}.(50)

If we define

ϕ(y) = max{t| Ux− te ≥ y, x ∈ D},(51)

then, as was shown in [16], problem (50) can be written as

max{〈c, x〉| x ∈ D,ϕ(Ux) ≤ 0}(52)

or, equivalently, as

max{θ(y)| ϕ(y) ≤ 0, y ∈ G},(53)

where

θ(y) =

{
max{〈c, x〉| x ∈ D,Cx ≥ y} if y ∈ G,
−M otherwise,

(54)

G = {y ∈ Rp
+| ∃x ∈ X Cx ≥ y}(55)

(M being a sufficiently large positive number). But it is easily seen that both functions
θ(y) and ϕ(y) are decreasing on Rp

+, while G is a closed normal set in Rp
+. Furthermore,

it can be shown that ϕ(y) is continuous and concave [16] . Therefore, (53) is a problem
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of the form (13) considered in Example 4, subsection 3.2. By Proposition 12, if x̄ solves
(50) then ȳ = Ux̄ solves (53) and conversely, if ȳ solves (53) and θ(ȳ) = 〈c, x̄〉 for an
optimal solution x̄ of (54) (where y = ȳ), then x̄ solves (50).

Now let us solve problem (53) or, equivalently, (50), with the following data:
Vector c ∈ R15 :

c = ( 0.40, −0.97, −0.16, −0.13, −0.15, 0.98, 0.25, −0.80
−0.55, 0.34, −0.48, 0.55, 0.70, 0.90, −0.68 ).

Matrix A (5× 15) :

2.50 7.60 3.00 3.50 1.70 −1.40 −2.20 4.80
9.90 0.10 8.30 3.70 −6.30 −3.20 −8.10

8.60 −9.40 8.50 1.40 8.40 0.70 6.50 3.50
−8.00 −1.70 −4.30 −1.40 0.00 8.60 0.30

−1.20 −0.80 8.20 0.20 −7.00 −7.10 7.50 −0.10
−3.30 7.10 3.80 −6.80 −2.50 1.10 9.30

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00

4.00 −6.90 3.20 −5.90 −7.00 −1.50 −1.90 6.50
5.50 0.50 4.50 3.10 4.30 −6.10 4.20

vector b ∈ R5 :
b = ( 5.61, 4.72, 3.47, 6.90, −3.40 ).

Matrix U (3 × 15) :

0.52 0.14 0.18 0.63 0.94 0.49 0.80 0.67
0.08 0.21 0.49 0.31 0.81 0.68 0.28

0.78 0.16 0.06 0.85 0.14 0.02 0.86 0.93
0.24 0.74 0.61 0.96 0.34 0.34 0.14

0.92 0.53 0.84 0.29 0.84 0.99 0.53 0.64
0.84 0.27 0.85 0.80 0.84 0.58 0.23

With tolerance 0.001, Algorithm 2 found the optimal value 6.743 after 4 iterations.
An optimal solution for the corresponding problem (53) is

yopt = (0.040, 0.040, 6.829)

and the associated optimal solution for problem (50) is

xopt = (0.000, 0.000, 0.000, 0.000, 0.000, 6.887, 0.000, 0.000,

0.013, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000).

Details of computational results on solving problems (13) by Algorithm 2 can be found
in [16].
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Abstract. This research is devoted to the numerical solution of constrained optimal control
problems governed by elliptic partial differential equations. The main purpose is a comparison
between a recently developed Moreau–Yosida-based active set strategy involving primal and dual
variables and two implementations of interior point algorithms.
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1. Introduction. In recent years significant research efforts were focused on de-
veloping numerical techniques to solve optimal control problems governed by partial
differential equations. For unconstrained problems a high level of sophistication was
reached. We refer to the contributions in [AM, GT, KS] and many further references
given therein. For constrained optimal control problems the level of research is less
complete. Common approaches are based on applying a quasi-Newton or sequential
quadratic programming (SQP) technique to the constrained, possibly nonlinear op-
timal control problem and to resolve the resulting quadratic subproblems by some
standard methods. Frequently the constrained quadratic subproblems can be the
most costly part in this approach.
In this note we focus on a comparison of two efficient methods to solve quadratic

constrained optimal control problems governed by elliptic partial differential equa-
tions. One of them is based on a generalized Moreau–Yosida formulation of the
constrained optimal control problem which results in an active set strategy involving
primal and dual variables. The second approach is based on interior point meth-
ods. We sorted out two of the most successful versions and developed efficient codes
utilizing the structure of the underlying partial differential equation.
Optimal control problems are infinite-dimensional problems which require dis-

cretization before they can be solved numerically. Once discretized they can, in
principle, be treated as generic minimization problems whose numerical solution has
received a significant amount of attention. Interior point methods are considered to
be extremely efficient in solving such convex minimization problems and are therefore
a natural choice to compare with the newly developed Moreau–Yosida-based primal-
dual active set strategies.
A comparison of algorithmic methods is a delicate matter and thus a word de-

scribing the approach is in order. Both the second and the third authors wrote
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independent codes following different trends in interior point methods. Both codes
are predictor-corrector central path-following codes. While Haddou’s code parallels
closely the theory developed in [BG, BPR, M, MTY, P] for which computational com-
plexity estimates are available provided that the iterates stay sufficiently close to the
central path, Hintermüller’s code follows the concepts of [Meh, V1, Wr, ZZ, Z2] which
favor minimizing the number of iterates over satisfying assumptions which guarantee
complexity estimates.
Upon completion both interior point codes were compared to the primal-dual

active set codes described in [BIK, BK2]. Finally the two interior point algorithms
were compared against each other. This last comparison led to several improvements
of the two interior point algorithms in their own right. We emphasize, however, that
the focus of this contribution is the comparison of two significant representatives of
interior point algorithms to the primal-dual active set strategy.
To describe the optimal control problems for which comparisons were carried out

let Ω denote a bounded subset of R
2 with boundary Γ. Further let α > 0, zd, ud ∈

L2(Ω) and ϕ ∈ L2(Ω), ψ ∈ L2(Ω). We consider optimal control problems with dis-
tributed control of the type

(P)



minimize J(y, u) =

1

2

∫
Ω

(y − zd)2dx+ α
2

∫
Ω

(u− ud)2dx
subject to −∆y = u in Ω, y = 0 on Γ,

(y, u) ∈ K1 ×K2,

where

K1 =
{
y ∈ L2(Ω) | y(x) ≤ ϕ(x) almost everywhere (a.e.) in Ω } ⊂ L2(Ω) ,

K2 =
{
u ∈ L2(Ω) | u(x) ≤ ψ(x) a.e. in Ω } ⊂ L2(Ω).

Many generalizations of the problem concerning the cost functional, the differential
equation, or the constraints are possible. But these are not the focus of this note
and thus we limit ourselves from the start to problems of the type (P). If in (P)
only the state variable y or the control variable u are constrained and K2 = L

2(Ω)
or K1 = L2(Ω), then we refer to (P) as a state constrained or control constrained
problem, respectively. Let us note the difference with respect to regularity of the
variables y and u in (P). While u ∈ L2(Ω), the state variable y is in the Sobolev
space H1

o (Ω) ∩ H2(Ω). Moreover it will follow from the optimality systems to be
presented in section 2 that there are distinct differences with respect to the regularity
properties of the dual variables for the control and state constrained problems. This
distinction gets lost if we consider (P) only in its discretized form.
In this research we consider problems with distributed control in spite of the fact

that boundary control problems may be more practical. From the optimization point
of view the distributed control problem involves a higher-dimensional problem and a
more complicated active set structure. In this case the control space is significantly
larger and the decision whether a point is active or not has to be made for a much
larger set of points than in the case of boundary controls.
The remaining sections are organized as follows. In section 2 we give precise

statements for the control and the state constrained cases separately. Section 3 is
devoted to a description of algorithms based on an active set strategy involving primal
and dual variables. The following section 4 contains presentations of the interior point
algorithms which served as algorithms with respect to which the primal-dual active
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set algorithm was compared. The last section 5 contains a limited number of selected
numerical examples that illustrate our numerical findings and which are part of the
basis for our conclusions.

2. Problem statement and optimality conditions. In this section we de-
scribe the control and the state constrained optimal control problems and the corre-
sponding first-order necessary optimality conditions. The separate treatment of the
two cases is motivated by the fact that the analytical properties of their solutions
and subsequently the behavior of the numerical algorithms differ significantly. Since
our main goal is the comparison of the generalized Moreau–Yosida-based algorithm
to interior point algorithms we prefer to keep separate the phenomena due to other
types of constraints.
We shall focus our attention on constrained optimal control problems with quad-

ratic cost and affine constraints. Besides their independent interest they are also an
essential building block in Newton and SQP algorithms applied to general nonlinear
optimal control problems for partial as well as after time discretization unstationary
partial differential equations; see, for instance, [GT, JS, LS]. In each iteration of such
an algorithm a constrained linear-quadratic subproblem of the type considered below
must be solved. It is frequently the most time-consuming part of the whole SQP or
Newton algorithm.
The control constrained problem is given by

(Pc)



minimize J(y, u) =

1

2

∫
Ω

(y − zd)2dx+ α
2

∫
Ω

(u− ud)2dx
subject to −∆y = u in Ω, y = 0 on Γ,

u ∈ K2,

with zd, ud,Ω,Γ, α,K2, and ψ as in section 1. This problem admits a unique solution
that we denote by (y∗, u∗) ∈ (H1

o (Ω)∩H2(Ω)
)×L2(Ω). Associated to u∗ we define the

active set A∗ = {x : u∗(x) = ψ(x) a.e.}, and the inactive set I∗ = Ω\A∗. To describe
the optimality condition let IK2 denote the indicator function of K2 and let ∂IK2

stand for its subdifferential. Recall that for u ∈ K2 we have λ ∈ ∂IK2(u) ⊂ L2(Ω) if
and only if

IK2
(u) + (λ, v − u)L2(Ω) ≤ IK2(v) for all v ∈ L2(Ω)

or, equivalently,

(λ, v − u)L2(Ω) ≤ 0 for all v ∈ K2 ,

where (·, ·)L2(Ω) denotes the L
2(Ω)-inner product. The optimal solution (y∗, u∗) is

characterized by the existence of (p∗, λ∗) ∈ (
H1
o (Ω) ∩ H2(Ω)

) × L2(Ω) such that
(y∗, u∗, p∗, λ∗) satisfies

(Sc)




−∆y∗ = u∗ in Ω, y∗ ∈ H1
o (Ω),

−∆p∗ = −(y∗ − zd) in Ω, p∗ ∈ H1
o (Ω),

u∗ = ud +
1

α
(p∗ − λ∗) in Ω,

λ∗ ∈ ∂IK2
(u∗).

This result is well known; see, for instance, [Ba], [BIK, Theorem 1.1]. The differen-
tial inclusion appearing as the last condition in (Sc) is not amenable to numerical
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realization, and we therefore replace it by

λ∗ = c
(
u∗ +

λ∗

c
−ΠK2

(
u∗ +

λ∗

c

))
= cmax

(
0, u∗ +

λ∗

c
− ψ

)
(2.1)

for any c > 0. Here ΠK2 denotes the Hilbert space projection of L
2(Ω) onto K2, and

max stands for the pointwise maximum as x varies in Ω. The equivalence between
λ∗ ∈ ∂IK2

(u∗) for u∗ ∈ K2 and (2.1) can easily be verified by a direct computation
[IK]. A short computation also shows that (2.1) holds for some c > 0 if and only if it
holds for all c > 0. In particular (2.1) does not depend on a specific choice of c > 0.
Let us also observe that (2.1) is equivalent to

u∗ = ΠK2

(
u∗ +

λ∗

c

)

for c > 0, which is a form of the optimality condition familiar from the projected
gradient method. Here we prefer to use (2.1) since it is more suggestive of the update
strategy which will be used.
Let us next turn to the state constrained problem given by

(Ps)



minimize J(y, u) =

1

2

∫
Ω

(y − zd)2dx+ α
2

∫
Ω

(u− ud)2dx
subject to −∆y = u in Ω, y = 0 on Γ ,

u ∈ L2(Ω), y ∈ K1,

where zd, ud, Ω, Γ, α,K1, and ϕ are defined as in section 1. We assume the existence of
at least one u ∈ L2(Ω) such that the solution y ∈ H1

o (Ω)∩H2(Ω) to −∆y = u satisfies
y ∈ K1. This implies that the set of feasible pairs (y, u) satisfying the constraints in
(Ps) is nonempty. The existence of a solution (y∗, u∗) ∈ (H1

o (Ω) ∩H2(Ω)
)×L2(Ω) can

then easily be proved. Using techniques from [BK1, C, BC], for example, the following
optimality system can be derived: There exists a pair (p∗, λ∗) ∈ L2(Ω)×M(Ω) such
that

(Ss)




−∆y∗ = u∗ in Ω, y∗ ∈ H1
o (Ω),

(p∗,−∆v)L2(Ω)+〈λ∗, v〉+ (y∗ − zd, v)L2(Ω)= 0 for all v∈H1
o (Ω)∩H2(Ω),

u∗ = ud +
1

α
p∗ in Ω,

〈λ∗, y − y∗〉 ≤ 0 for all y ∈ K1.

HereM(Ω) is the set of Radon measures on Ω and 〈·, ·〉 denotes the duality product
betweenM(Ω) and the set of continuous functions on Ω.
Let us note that the regularity of the primal variables is such that (y∗, u∗) ∈

H2(Ω)×L2(Ω) for both (Pc) and (Ps). In fact all admissible pairs of primal variables
for (Pc) and (Ps) satisfy (y, u) ∈ H2(Ω) × L2(Ω). The extra regularity of y over u
explains the higher accuracy of the interior point methods for the y components with
respect to the u components recorded in Tables 5.2, 5.4, 5.5, and 5.6 of section 5.
On the other hand the regularity of the adjoint variables (p∗, λ∗) is very different for
(Pc) and (Ps) with (p∗, λ∗) ∈ H4(Ω) × L2(Ω) in the control constrained case and
(p∗, λ∗) ∈ L2(Ω)×M(Ω) in the state constrained case. The roughness of the adjoint
variables suggests that the numerical solutions exhibit oscillatory behavior. Besides
initialization it is most likely the main reason that the Moreau–Yosida-based active
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set strategy requires in general more iterations for (Ps) than for (Pc) before it stops
at the exact solution of the discretized versions of (Sc), respectively, (Ss).

3. Generalized Moreau–Yosida-based algorithms. This section is devoted
to the description of the Moreau–Yosida-based algorithms for control and state con-
strained problems. Before we commence with the description of the algorithms we
acknowledge the fact that (Pc) and (Ps) are infinite-dimensional problems whose
numerical realization requires discretization.

For this purpose Ω is endowed with a uniform grid Ωh with mesh-size h. We
proceed in general terms with finite differences and finite element realizations in mind.
Let zdh, yh, ϕh, udh, uh, ψh ∈ R

N be finite-dimensional approximations to zd, y, ϕ,
ud, u, and ψ, respectively. Further let Ah ∈ R

N×N stand for a symmetric positive-
definite approximation to −∆. The discretized control constrained problem is given
by

(P ch)

{
minimize Jh(yh, uh)
subject to Ahyh = uh, uh ≤ ψh ,

where

Jh(yh, uh) =
1

2
(yh − zdh)tM1h(yh − zdh) + α

2
(uh − udh)tM2h(uh − udh)(3.1)

and M1h ∈ R
N×N is positive-semidefinite and M2h ∈ R

N×N is positive-definite. The
matrices M1h and M2h result from the numerical integration of the cost functional J .
For finite difference approximation with integration based on the trapezoidal rule,M1h

and M2h are positive-definite diagonal matrices. It is simple to derive the optimality
system for (P ch). Note that the discretized version of (2.1) is given by

λ∗h = cmax
(
0, u∗h +

λ∗h
c

− ψh
)
, c > 0 ,(3.2)

where the max operator is understood componentwise. The essential ingredient of
the Moreau–Yosida-based algorithm to solve (P ch) is a primal-dual active set strategy
that is motivated by (3.2); see [BIK]. To describe the key step of this algorithm let
us assume that (uh,n−1, λh,n−1) is available from the previous iteration level. Then
(3.2) suggests to define

An =

{
i |

(
uh,n−1 +

λh,n−1

c

)
i

> (ψh)i

}
and In = Ωh \ An ,(3.3)

i.e., An consists of the set of indices i such that the ith coordinate of uh,n−1 +
c−1λh,n−1−ψh is positive, and In is its complement. We refer toAn as the active set at
the nth iteration level and to In as the inactive set. In the statement of the algorithm
below, the subscript h will be dropped for the problem variables (uh, yh, ph, λh). We
remain to indicate the discretization for the problem data Ωh, zdh, ψh, udh, M1h, and
M2h.

Algorithm (BIKc).

1. Initialization: choose yo, λo, uo ∈ R
N , c > 0, and set n = 1.

2. Determine the subset of active/inactive indices according to (3.3).
3. If n ≥ 2 and An = An−1, then STOP; otherwise go to step 4.
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4. Find (yn, pn) such that

(Ahyn)i =

{
(ψh)i for i ∈ An,(
udh +

1
αM

−1
2h pn

)
i
for i ∈ In,

Ahpn = −M1h(yn − zdh),
and set

(un)i =

{
(ψh)i for i ∈ An,(
udh +

1
αM

−1
2h pn

)
i
for i ∈ In.

5. Set λn = pn − αM2h(un − udh), n = n+ 1, and go to step 2.
Algorithm (BIKc) was first analyzed and tested in [BIK]. Before we recapitulate

some of its basic properties let us turn to the discretized state constrained problem

(P sh)

{
minimize Jh(yh, uh)
subject to Ahyh = uh, yh ≤ ϕh ,

where Jh is defined in (3.1). The optimality system for (P
s
h) is given by



Ahyh = uh,

Ahph +M1h(yh − zdh) + λh = 0,
αM2h(uh − udh) = ph,
λth(ȳh − yh) ≤ 0 for all ȳh ∈ R

N , ȳh ≤ ϕh.
In analogy to (3.3) the active and inactive sets are now updated according to

An =

{
i |

(
yh,n−1 +

λh,n−1

c

)
i

> (ϕh)i

}
and In = Ωh \ An .(3.4)

The Moreau–Yosida-based algorithm for the discretized state constrained problem
(P sh) is specified next. Again we drop the subscript h for problem variables and keep
it for problem data.

Algorithm (BIKs).
1. Initialization: choose yo, λo, uo ∈ R

N , c > 0, and set n = 1.
2. Determine the subset of active/inactive indices according to (3.4).
3. If n ≥ 2 and An = An−1, then STOP; otherwise go to step 4.
4. Find (yn, un, pn, λn) as the solution to

Ahyn = un,

Ahpn + λn +M1h(yn − zdh) = 0,
pn = αM2h(un − udh),
(yn)i = (ϕh)i for i ∈ An, (λn)i = 0 for i ∈ In.

5. Set n = n+ 1 and go to step 2.
For finite element discretizations the relationship between (Pc) and (Ps) to the

discretized problems (P ch) and (P
s
h) was treated in several publications; see [Be, TT],

for instance. In [Ba] general conditions on finite element discretizations are discussed
which guarantee that limh→0(‖u∗h−u∗‖L2(Ω)+‖y∗h−y∗‖H1

o(Ω)) = 0, where (y
∗
h, u

∗
h) de-

note the solutions to (P ch) and (P
s
h), respectively. For finite difference discretizations,

convergence for the control constrained case will be discussed elsewhere.
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Sufficient conditions for the convergence of (BIKc) and (BIKs) in finitely many
steps were given in [BIK, BK2, BK3]. For the control constrained problem, conver-
gence could also be proved for the infinite-dimensional analogue of (BIKc); see [BIK,
section 3.1]. Due to the difficulties related to the fact that in the state constrained
case the Lagrange multiplier is only a measure, convergence of the infinite-dimensional
version of (BIKs) was not yet analyzed successfully.

Let us summarize some properties of (BIKc) and (BIKs):

• The iterates can be infeasible (both primal and dual variables).
• The algorithms do not rely on a globalization strategy.
• For n > 1 the algorithms are independent of c.
• If the algorithms stop in step 3, then the exact solution of the discretized
problems are obtained [BIK, BK2].

• Utilizing (yh)i = (ϕh)i for i ∈ An the primal system in step 4 of (BIK
s) need

only be solved for i ∈ In.
• If (ȳh, ūh) = argmin{Jh(yh, uh) : Ahyh = uh} satisfies ūh ≤ ψh and Ao = ∅,
then (BIKc) computes the solution in one step. An analogous statement holds
for (BIKs).

• In our numerical tests we found that (BIKc) or (BIKs) typically terminate in
step 3. The exceptional cases will be addressed in section 5.

• Both (BIKc) and (BIKs) have the property that from one iteration to the
next many coordinates of the discretized control or state vector can move
from An−1 to In and vice versa, respectively. This correction process is
especially efficient for control constrained problems where it may change the
(discrete) interior of An−1 or In−1 from one iteration to the next. For state
constrained problems changes from active to inactive sets occur primarily
along the boundary between active and inactive sets. This is due to the fact
that λh for (BIK

s) is the discretization of the measure λ∗ ∈ M(Ω) whose
singular part is concentrated at the boundary of the active set [BK2].

• For the iterates un of (BIKc) it is typically the case that they are all infeasible
except the last one, i.e., (BIKc) stops at the first feasible iterate (except for
uo).

• For (BIKs), on the other hand, the iterates are mostly feasible and the ac-
tive sets An typically approximate A∗

h from outside. This approximation
is typically monotone with respect to the cardinality of the active set but
nonmonotone in the setwise sense.

For several examples we observed that (BIKc) converged in only a very few
iterations—possibly in one. If the solution leaves the inequality constraints inac-
tive and Ao = ∅, then this is clear from the structure of the algorithms. But one-step
convergence can be proved under more general conditions. This is the contents of the
following result for which we decompose the active set A∗

h = {i|(u∗h)i = (ψh)i} into
the strongly and weakly active set, i.e.,

A∗,+
h = {i ∈ A∗

h|(λ∗h)i > 0} and A∗,0
h = {i ∈ A∗

h|(λ∗h)i = 0} .

By I∗
h = {i|(u∗h)i < (ψh)i} we denote the inactive set. Note that A∗,0

h is the set where
strict complementarity is violated.

Theorem 3.1 (for BIKc). Assume that Ah is an M -matrix; uo ≤ ψh is chosen
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such that(
λ∗h + αM2h(u

∗
h − uo) +A−1

h M1hA
−1
h (u

∗
h − uo)

)
i
> c(ψh − uo)i for all i ∈ A∗,+

h ,(
αM2h(u

∗
h − uo) +A−1

h M1hA
−1
h (u

∗
h − uo)

)
i
≤ c(ψh − uo)i for all i ∈ I∗

h ∪ A∗,0
h ,

(3.5)
where c > 0, and the remaining variables yo, po, and λo are initialized by solving

Ahyo = uo,(3.6)

Ahpo = −M1h(yo − zdh),(3.7)

λo = max{po − αM2h(uo − udh), 0} .(3.8)

Then (BIKc) is one-step convergent.
Proof. The discrete first-order optimality conditions for (P ch) are

Ahy
∗
h = u

∗
h,(3.9)

Ahp
∗
h = −M1h(y

∗
h − zdh),(3.10)

αM2h(u
∗
h − udh) = p∗h − λ∗h,(3.11)

λ∗h = max{u∗h + c−1λ∗h − ψh, 0} .(3.12)

From (3.9)–(3.11) we derive

udh = u
∗
h + α

−1M−1
2h

(
λ∗h +A

−1
h M1h(A

−1
h u

∗
h − zdh)

)
.(3.13)

Using (3.13) and po = −A−1
h M1h(A

−1
h uo − zdh) (cf. (3.6) and (3.7)) in (3.8) yields

λo = max{λ∗h + αM2h(u
∗
h − uo) +A−1

h M1hA
−1
h (u

∗
h − uo), 0} .(3.14)

Thus (3.5) yields

(λo)i =
(
λ∗h + αM2h(u

∗
h − uo) +A−1

h M1hA
−1
h (u

∗
h − uo)

)
i
> c(ψh − uo)i ≥ 0

for all i ∈ A∗,+
h , and (λo)i ≤ c(ψh − uo)i for all i ∈ I∗

h ∪ A∗,0
h . Therefore the

determination of A1 and I1 in algorithm (BIK
c) yields

A1 = {i|(uo + c−1λo)i > (ψh)i} = A∗,+
h ,

I1 = {i|(uo + c−1λo)i ≤ (ψh)i} = I∗
h ∪ A∗,0

h .

Hence, (λ1)i = (λ
∗
h)i = 0 is set for all i ∈ I1 = I∗

h ∪A∗,0
h and (u1)i = (u

∗
h)i = (ψh)i is

set for all i ∈ A1
h = A∗,+

h . From step 4 of (BIKc) we obtain y1 = y
∗
h and p1 = p

∗
h. From

u1 = udh + α
−1M−1

2h (p1 − λ1) we get (λ1)i = (λ
∗
h)i for all i ∈ A1 and (u1)i = (u

∗
h)i

for all i ∈ I1.
Corollary 3.2. Assume that Ah is an M -matrix, that the trapezoidal rule is

applied for discretizing J(y, u), and that the algorithm is initialized by uo = ψh ∈ R
N

and (3.6)–(3.8). Then if

(λ∗h)i +
(
αM2h(u

∗
h − ψh) +A−1

h M1hA
−1
h (u

∗
h − ψh)

)
i
> 0 for all i ∈ A∗,+

h(3.15)

is satisfied, (BIKc) is one-step convergent.
Proof. Since Ah is M-matrix, from a standard result about the inverse of M-

matrices, we obtain A−1
h ≥ 0. Applying the trapezoidal rule for discretizing J yields

M1h =M2h = h
2I. Hence, from ψh = uo we obtain A

−1
h M1hA

−1
h (u

∗
h − uo) ≤ 0 and(

αM2h +A
−1
h M1hA

−1
h

)
(u∗h − uo) ≤ 0 = c(ψh − uo) .



MOREAU–YOSIDA-BASED VERSUS INTERIOR POINT METHODS 503

Thus, (3.5) is satisfied and Theorem 3.1 yields the result.
To interpret (3.15) note that λ∗h is nonnegative and u

∗
h = uo on A∗,+

h . Thus (3.15)
is a condition on the influence of the negative values of u∗h − ψh on I∗

h, which are
distributed and strongly damped by the action of the approximation A−1

h to ∆−1.
Thus (3.15) represents a type of strict complementarity condition.
For the state constrained case the conditions

(yo − y∗h)i > 0 for all i ∈ A∗,+
h and (yo − y∗h)i ≤ 0 for all i ∈ I∗

h ∪ A∗,0
h(3.16)

are sufficient for one-step convergence of (BIKs) provided that the algorithm is ini-
tialized with the solution of (P sh) without the inequality constraint and λo := 0. Here

A∗,+
h , A∗,0

h , and I∗
h denote the strongly, weakly, and inactive sets, respectively, anal-

ogously defined to the corresponding sets for the control constrained case. These
conditions are highly unlikely to be satisfied unless A∗,+

h = Ωh. In section 5 we dis-
cuss a test problem which nearly satisfies (3.16) and for which (BIKs) shows one-step
convergence.

4. Primal-dual path-following interior point methods. In this section, we
outline two different representatives of interior point methods applied to the class
of constrained optimal control problems considered in this paper. Both algorithms
fall into the framework of primal-dual path-following methods, which turn out to be
robust techniques; see, for instance, [VY]. Moreover, both algorithms are based on
predictor-corrector strategies; see [BG, BPR, G, LMS, Meh, MTY, V2, Wr, Y, Z2] and
the references therein. We shall go into some details describing the linear algebra spe-
cific for such problems involving two sets of independent variables, namely, the state
variable yh and the control variable uh. We stress the fact that the first interior point
algorithm is exemplarily derived for control constrained problems, but it can read-
ily be accommodated to state constraints, whereas the second interior point method
is exemplarily derived for state constraints, and it can readily be accommodated to
control constraints as well.
As interior point methods are developed in the finite-dimensional context, the

starting point of our application of primal-dual path following are the discretized,
finite-dimensional versions of (Pc) and (Ps) given by (P ch) and (P sh), respectively.
Concerning the matrices Ah, M1h, and M2h we henceforth utilize the following as-
sumption:

(A)



Ah is sparse banded, symmetric, and positive-definite,
M1h is sparse banded and positive-semidefinite,
M2h is sparse banded and positive-definite .

We remark that the discretization of −∆ by the well-known five-point star scheme
implies that Ah is a symmetric positive-definite banded M-matrix. Applying the
trapezoidal rule for approximating J implies that M1h and M2h are positive-definite
and diagonal.
Following the convention already used in section 3 we omit h for problem variables

and keep it for problem data throughout this section.

4.1. First interior point algorithm. We start by deriving a primal-dual path-
following interior point algorithm for the control constrained problem (P ch). The
subsequent algorithm is a modification of the algorithms in [Meh], [Wr, Algorithm
MPC]. The difference consists essentially in adaptation to convex quadratic program-
ming problems, including linear algebra issues taking advantage of the special problem
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structure considered in this paper. We have already mentioned that the subsequent
technique can readily be applied to state constrained problems. Numerical results for
both types of constraints can be found in section 5.
Introducing a vector of slack variables w ≥ 0, w ∈ R

N in the inequality constraint
in (P ch) and splitting up the free variable y we obtain

u+ w = ψh, w ≥ 0,(4.1)

y − g + t = 0, g, t ≥ 0 .(4.2)

Let us note that splitting techniques for general purpose optimization are also revisited
by Vanderbei and are incorporated in his code LOQO; see [V1] for a brief discussion
on the splitting of free variables. We shall resume this discussion later in this section.
The modifications (4.1) and (4.2) of (P ch) lead to

(P c,mod
h )




minimize 1
2 (y − zdh)tM1h(y − zdh) + α

2 (u− udh)tM2h(u− udh)
subject to Bhy − h2u = 0,

ψh − u− w = 0,
y − g + t = 0,
w, g, t ≥ 0,

where Bh := h2Ah ∈ R
N×N . Note further that there exist feasible solutions of

(P c,mod
h ). Thus, the convex problem (P c,mod

h ) admits an optimal solution. The corre-
sponding first-order Karush–Kuhn–Tucker conditions are equivalent to



Bhy − h2u = 0,
ψh − u− w = 0,
y − g + t = 0,
w, g, t ≥ 0,

M1h(y − zdh)−Bhp− r1 = 0,
αM2h(u− udh) + h2p+ λ = 0,

r1 + r2 = 0,
λ, r1, r2 ≥ 0,

WΛe = 0,
GR1e = 0,
TR2e = 0,

(4.3)

where we used the common convention thatW,G, T,Λ, R1, and R2 are diagonal matri-
ces with elements (w)i, (g)i, (t)i, (λ)i, (r1)i, (r2)i, where i = 1, . . . , N , and e denotes
the vector of all ones in R

N .
Next define the orthant O = {(y, u, . . . , r2) | w ≥ 0, g ≥ 0, t ≥ 0, λ ≥ 0, rj ≥

0, j = 1, 2} in primal-dual space, and let Oo denote its strict interior. The defining
equations for a point (y, . . . , r2) ∈ Oo on the primal-dual central path (which was
introduced in [Meg]) are



Bhy −h2u = 0,
u +w = ψh,

y −g +t = 0,
M1hy −Bhp −r1 =M1hzdh,

αM2hu +h2p +λ = αM2hudh,
r1 +r2 = 0,

WΛe = µe, GR1e = µe, TR2e= µe ,

(4.4)
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where µ denotes a strictly positive parameter. Observe that (4.4) is obtained from
(4.3) by relaxing the last three equations and neglecting nonnegativity, which is en-
forced by the definition of O. Further note that (4.4) is a nonlinear system of 9N
equations in 9N unknowns and has a unique solution in Oo. (To see this consider the
fact that (4.4) denotes the first-order conditions for a strictly convex barrier problem.)
A motivation and comprehensive discussion of the primal-dual central path can be
found, for example, in [Meg, V2, Wr, Y] and the references therein.
Suppose that we have decided on the target value for µ and that (y, u, . . . , r2) is

the actual point in Oo. Let (y + ∆y, u + ∆u, . . . , r2 + ∆r2) ∈ Oo denote the point
on the central path corresponding to the value of µ. Thus (y + ∆y, . . . , r2 + ∆r2)
satisfies (4.4), from which, after negating and rearranging certain rows, we obtain the
following symmetric system for the increments (∆y, . . . ,∆r2):



I I
−G−1R1 −I

−W−1Λ −I
−αM2h −h2I −I

−M1h Bh I
−h2I Bh

−I −I
I R−1

2 T
I −I I







∆t
∆g
∆w
∆u
∆y
∆p
∆λ
∆r2
∆r1



=




β3

−γ2
−γ1
−β2

−β1

α1

α2

γ3
α3



,(4.5)

where

α1 =−Bhy + h2u, β1 =−M1h(y − zdh) +Bhp+ r1,
α2 =−ψh + u+ w, β2 =−αM2h(u− udh)− h2p− λ,
α3 =−y + g − t, β3 =−r1 − r2,

γ1 = µ(W
−1 − Λ−W−1∆Λ∆W )e,

γ2 = µ(G
−1 −R1 −G−1∆R1∆G)e,

γ3 = µ(R
−1
2 − T −R−1

2 ∆R2∆T )e.

The predictor-corrector idea pursued in Algorithm (IP1) below consists in ob-
taining an estimate of a suitable target value µ from the predictor step (affine scaling
direction), and then in using this target value for the corrector step, which improves
centrality and compensates some of the nonlinearity. For a detailed discussion on
predictor-corrector algorithms (of this type) we refer to [LMS, Meh, V1, Wr, ZZ, Z2]
and the references therein.
Next we describe the primal-dual path-following predictor-corrector algorithm

where we use the following notation: zn := (un, yn), vn := (tn, gn, wn), ωn :=
(r2,n, r1,n, λn) with subscript n denoting the actual iteration level. In the algorithm
we use µn = (v

t
nωn)/(3N), which is a common way to obtain an estimate of the

central path parameter; see, for instance, [LMS, Meh, V1, Wr, VY, Z2].
Algorithm (IP1).
1. Initialization: Choose vo > 0, ωo > 0, zo, po, a stopping tolerance εs > 0,
ef ∈ N+, and set n := 0.

2. Check stopping criteria: If

resp :=
‖(α1,n, α2,n, α3,n)

t‖1

1 + ‖ψh‖1
≤ εs, resd := ‖(β1,n, β2,n, β3,n)

t‖1

1 + ‖(M1hzdh, αM2hudh)t‖1
≤ εs,
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and fn := max{− log10[(Jn−φn)/(1+ |Jn|)], 0} ≥ ef , then STOP; otherwise
go to step 3.

3. Predictor step ∆za,∆va,∆pa,∆ωa: Solve (4.5) with right-hand side (β3,n,
r1,n, λn, −β2,n, −β1,n, α1,n, α2,n, −tn, α3,n)

t. Calculate the step τa to the
boundary along ∆va, ∆ωa and the estimate µa by

τpa := argmax{τ ∈ [0, 1]|vn + τ∆va ≥ 0},
τda := argmax{τ ∈ [0, 1]|ωn + τ∆ωa ≥ 0},
τa := min{τpa , τda},

µa :=
(vn + τa∆va)

t(ωn + τa∆ωa)

3N
, σ :=

(
µa
µn

)3

.

4. Corrector step ∆zc,∆vc,∆pc,∆ωc: Solve (4.5) with right-hand side rc :=
rce + rco, where

rce:=(0,−σµnetG−1
n ,−σµnetW−1

n , 0, 0, 0, 0, σµne
tR−1

2,n, 0)
t,

rco:=(0, e
tG−1

n ∆R1,a∆Ga, e
tW−1

n ∆Λa∆Wa, 0, 0, 0, 0,−etR−1
2,n∆Ta∆R2,a, 0)

t.

5. Search direction and step: Put

(∆zn,∆vn,∆pn,∆ωn) := (∆za,∆va,∆pa,∆ωa) + (∆zc,∆vc,∆pc,∆ωc)

and compute the step length τn by

τpn := argmax{τ ∈ [0, 1]|vn + τ∆vn ≥ 0},
τdn := argmax{τ ∈ [0, 1]|ωn + τ∆ωn ≥ 0},
τpdn := min{τpn, τdn}, τn := min{0.99τpdn , 1}.

Calculate the new iterates (vn+1, zn+1) := (vn, zn) + τn(∆vn,∆zn), (pn+1,
ωn+1) := (pn, ωn) + τn(∆pn,∆ωn). Set n := n+ 1, and go to step 2.

A few remarks and motivations concerning Algorithm (IP1) are in order:
• The first two stopping criteria in step 2 check the smallness of the relative
primal and dual residuals, i.e., of resp and resd, respectively. The crite-
rion fn ≥ ef checks the number of digits of coincidence between the pri-
mal objective value, i.e., Jn = Jh(yn, un), and the dual objective value, i.e.,
φn = −Jn+ptn(h2udh−Bhzdh)+λt(udh−ψh)−rt2zdh . Note that by standard
duality theory the difference between the optimal primal and dual objective
values vanishes.

• The computation of the centering parameter σ in step 3 follows a heuristic
suggested in [Meh]; see also [Wr, Z2]. Moreover, we also impose an upper
bound on σ in each iteration in order to limit σ to a value strictly smaller
than one.

• At each iteration (in steps 3 and 4) an efficient solution of the primal-dual
systems is of extreme importance. Note that the extra cost of the corrector
direction is small since we only have to consider the same system with different
right-hand sides. Moreover, due to the sparsity structure of the system matrix
of (4.5) (recall also assumption (A)), we realize the so-called normal equations
approach [Mes, V1, Wr], i.e., by choosing specific pivots in advance we reduce
the large indefinite system (4.5) to the form

(
M1h+D +Ah(αM2h+W

−1Λ)Ah
)
∆y=

1

h2
Ah(αM2h+W

−1Λ)α1+β,(4.6)
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where β = −β̃1 −Ahβ̃2, with β̃1 and β̃2 given by

β̃1 = −β1 −D(α3 − γ3 +GR−1
1 γ2 + TR

−1
2 β2) , β̃2 = −β2 + γ1 +W

−1Λα2 ,

where D = (TR−1
2 + GR−1

1 )
−1. In the special case of M1h and M2h being

positive-semidefinite and positive-definite diagonal matrices, respectively, one
can alternatively use

Ã(H + D̃)−1Ãt∆p = α1 + Ã(H + D̃)
−1(β̃2, β̃1)

t ,(4.7)

where

D̃ :=

[
W−1Λ

D

]
, Ã := [−h2I Bh ], and H :=

[
αM2h

M1h

]
.

Note that the approach (4.7) is defined only in cases where that splitting
is applied. In fact, if no splitting is used, then D = 0, and due to the
semidefiniteness of M1h the inverse (H + D̃)

−1 is not defined in general. On
the contrary, (4.6) is always applicable.
Observe that in (4.6) the system matrix is sparse banded and positive-definite
due to assumption (A). The system matrix in the alternative case is sparse
banded and positive-definite since M1h and M2h are diagonal, respectively.
Thus, in each case the system matrix can be factorized efficiently by ap-
plying sparse Cholesky techniques (see, for instance, [Z2]) or by multilevel
techniques. In the case of (4.6), after having obtained ∆y the remaining un-
knowns ∆u, ∆p, ∆λ, ∆t, ∆r1, ∆w, ∆r2, and ∆g are computed by efficient
backward substitution in the order given here. In the case of (4.7) the roles
of p and y in the order given before change.
In our numerical tests we prefer to use—if possible—(4.7). A partially heuris-
tic explanation is as follows: Suppose that cond(M1h) = O(1), where
cond(M1h) denotes the condition number of M1h, and that Ah comes from
a five-point star finite difference approximation to −∆. Then it is well
known that cond(Bh) = O(h−2). In the case of (4.6) without splitting,
the condition number of the system matrix M1h + Ah(αM2h + W

−1Λ)Ah
is dominated by Ah(αM2h +W

−1Λ)Ah. We have cond(Ah) ≈ O(h−2) and
cond(A2

h) ≈ O(h−4), which becomes even worse sinceW−1Λ becomes increas-
ingly ill-conditioned in the course of the iteration. In the case of (4.7), let
us first analyze (H + D̃)−1, which is diagonal and consists of the two blocks
(αM2h+W

−1Λ)−1 and (M1h+D)
−1. Thus, the system matrix can be written

as h4(αM2h +W
−1Λ)−1 + Bh(M1h + D)

−1Bh. The first term suffers from
the ill-conditioning of W−1Λ only. For the second term we observe that the
diagonal elements of (M1h +D)

−1 are

(a)i :=
(t)i(r1)i + (g)i(r2)i

(m1h)i[(t)i(r1)i + (g)i(r2)i] + (r1)i(r2)i
≤ 1

(m1h)i
,

where M1h = diag(m1h) with (m1h)i > 0 for all i = 1, . . . , N . In our numeri-
cal tests we typically observe that the dual variables (r1)i and (r2)i approach
zero faster than the corresponding primal variables (g)i and (t)i, respectively;
see [V1] for a similar observation in the case of general convex quadratic prob-
lems. Therefore, (an)i → 1/(m1h)i > 0 for all i. Due to cond(M1h) = O(1),
we have that cond(Bh(M1h + D)

−1Bh) approaches O(h
−4) in the course of
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the iteration. In conclusion, we see that the alternative approach (4.7) usu-
ally results in better-conditioned system matrices (than for (4.6)) during the
iterations.

• If the iterates prematurely get too close to the boundary of O (and hence
some of the pairwise products (vn+1)i(ωn+1)i are much smaller than their
average value µn+1), then only little progress can be made along the search
directions computed there. Typically, the step sizes tend to be rather small
in order to keep the iterates in the interior of O. To avoid such behavior, in
step 5 we consider a specific neighborhood of the central path, i.e.,

N−∞(γ) :=
{
(v, ω) > 0 | (v)i(ω)i ≥ γµ, i = 1, . . . , 3N, where µ= v

tω

3N

}
.

(4.8)
A reasonable value for the positive quantity γ is γ := 0.001. Whenever
(vn+1, wn+1) fails to be in N−∞(γ) (preassuming that (vn, ωn) ∈ N−∞(γ)),
the step length τn is reduced such that (vn+1, wn+1) ∈ N−∞(γ) is satisfied.
In order to make the requirement that the iterates have to stay in N−∞(γ)
less stringent during later iterations (and thus allowing fast progress), we
decrease γ whenever a significant step along the actual direction is taken,
i.e., γ := (1 − κ)γmin + κγ if τn > 1 − τ̄ . Typical values are γmin = 0.0001,
0 < κ ≤ 0.5, and τ̄ := 0.4. Usually we start with γ = 0.01. Note that the
requirement (vn, ωn) ∈ N−∞(γ) for all n is similar to the centering conditions
in [ZZ, Z1], and is implemented (with a small but fixed γ) in LIPSOL [Z2].

• Let us note that the key assumptions of [ZZ] (see also [Z1]) for proving conver-
gence and complexity results of Algorithm (IP1) (with a slightly more specific
step-size rule for the centered corrector direction in step 4) are satisfied. In
fact, there exist points satisfying (4.4) except for the last three equations.

This can be seen from feasibility of (P c,mod
h ) and its dual. Further, after

eliminating y, u, and p, the homogeneous version of (4.4) without the last
three equations becomes
 I Ah −Ah

−αAhM2h M1h −M1h

0 0 0




 w
g
t


+


 0 0 0
Ah −I 0
0 I I




 λ
r1
r2


 =


 00
0


 ,

implying wtλ+ gtr1 + t
tr2 ≥ 0 due to assumption (A).

4.2. Second interior point algorithm. The second representative of interior
point algorithms is a (large neighborhood) modification of the algorithm in [MTY].
See also [BPR], where the corresponding convergence analysis can be found. It will be
exemplarily presented for state constrained problems. However, adaptation to control
constraints is straightforward. At the end of this subsection we shall discuss some
of the fundamental differences between Algorithm (IP1) and the algorithm presented
subsequently.
Introducing a vector of slack variables denoted by w ∈ R

N in the inequality
constraint in (P sh), we obtained the following modification:

(P s,mod
h )



minimize Jh(y, u)
subject to Bhy − h2u = 0,

y + w = ϕh,
w ≥ 0 ,
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with Bh as in section 4.1. By similar arguments as in section 4.1 we see that the
convex problem (P s,mod

h ) admits an optimal solution, which is characterized by the
following system equivalent to the first-order Karush–Kuhn–Tucker conditions:

(4.9)




Bhw + h
2u−Bhϕh = 0,

w ≥ 0,

M1hw +Bhp− λ−M1h(ϕh − zdh) = 0,
αM2h(u− udh) + h2p = 0,

λ ≥ 0,

ΛWe = 0 .

Note that the variable u is subject to no splitting.
The defining equations for a point on the primal-dual central path are obtained

by replacing the last equation in (4.9) by ΛWe = µe, with µ being some positive
parameter. By similar arguments as before it can be seen that the resulting (4N ×
4N)-system admits a unique solution. As in section 4.1 we suppose that we have
decided on a target value for µ, that (w, u, p, λ) ∈ R

4N satisfies w, λ > 0, and that
(w+∆w, . . . , λ+∆λ) denotes the point on the primal-dual central path corresponding
to µ. Thus, we obtain the following system for the increments (∆w, . . . ,∆λ):

(Ss(w, λ))



αM2h h2I

M1h Bh −I
h2I Bh

Λ W





∆u
∆w
∆p
∆λ


 =



β2

β1

α1

γ1


 ,

with

α1 = Bh(ϕh − w)− h2u, β1 = M1h(ϕh − zdh − w)−Bhp+ λ,
β2 = αM2h(udh − u)− h2p, γ1 = µe−WΛe−∆W∆Λe .

We introduce the (large) neighborhood of the central path:

N (ν) = {(w, λ, µ) ∈ R
N × R

N × R+|νµe ≤ ΛWe ≤ ν−1µe} ,
where 0 < ν < 1 is a given constant. Typical values for ν are ν = 0.01 and ν = 0.001.
In our experiments these values give essentially the same results.
Next we describe the second primal-dual path-following predictor-corrector inte-

rior point algorithm. Again, the subscript n denotes the iteration level.
Algorithm (IP2).
1. Initialization: Choose 0 < ν < 1 and (wo, λo, µo) > 0, with (wo, λo, µo) ∈

N (ν), a stopping tolerance εs > 0 and ef ∈ N+. Set n := 0.
2. Check stopping criteria: If

resp=
‖α1,n‖1

1 + ‖Bhϕh‖1
≤ εs, resd=

‖(β1,n, β2,n)
t‖1

1 + ‖(M1h(ϕh − zdh), αM2hudh)t‖1
≤ εs,

and fn = max{− log10[(Jn − φn)/(1 + |Jn|)], 0} ≥ ef , then STOP; otherwise
go to step 3.

3. Corrector step ∆uc,∆wc,∆pc,∆λc: Solve S
s(wn, λn) with right-hand side

(0, 0, 0, µne−WnΛne)
t. Compute τc ∈ (0, 1] such that ((wn, λn)+τc(∆wc,∆λc),

µn) ∈ N (ν) , and put
(un+ 1

2
, wn+ 1

2
, pn+ 1

2
, λn+ 1

2
) = (un, wn, pn, λn) + τc(∆uc,∆wc,∆pc,∆λc) .
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4. Predictor step ∆ua,∆wa,∆pa,∆λa: Solve S
s(wn+ 1

2
, λn+ 1

2
) with right-hand

side (β2,n, β1,n, α1,n,−∆Wn+ 1
2
∆Λn+ 1

2
e)t. Compute τa, the largest value in

(0, 1) such that ((wn+ 1
2
, λn+ 1

2
) + τa(∆wa,∆λa), (1 − τa)µn) ∈ N (ν). Put

µn+1 = (1− τa)µn and
(un+1, wn+1, pn+1, λn+1) = (un+ 1

2
, wn+ 1

2
, pn+ 1

2
, λn+ 1

2
)

+τa(∆ua,∆wa,∆pa,∆λa) .

Set n = n+ 1, and go to step 2.
Let us remark that the stopping criteria in step 2 have the same meaning as the

corresponding criteria in Algorithm (IP1). Moreover, the systems in step 3 and 4 are
reduced in advance by choosing specific pivots; see also the discussion below. Due to
(A) the key assumptions of [BPR] for proving convergence and complexity results for
Algorithm (IP2) are satisfied. This follows from arguments analogous to those at the
end of section 4.1.
Finally, we point out some of the fundamental differences between (IP1) and

(IP2).
• Algorithm (IP2) is based on a more conservative choice of neighborhoods of
the central path than (IP1). In fact, the iterates of (IP1) are not restricted
to staying close to the central path. In general, smaller neighborhoods result
in better complexity-estimates while larger ones in many cases yield better
numerical results. For a detailed discussion of the complexity of interior
point methods, we refer to [Wr]. Complexity results for (IP1) and (IP2) can
be found in [ZZ] and [BPR], respectively.

• Algorithm (IP1) utilizes information of the predictor step in order to adjust
the centrality parameter σ appropriately in the corrector step. Algorithm
(IP2) performs intermediate updates of the variables and does not adjust the
duality measure within one iteration.

• The intermediate update procedure of Algorithm (IP2) results in two matrix
factorizations per iteration needed by (IP2), while for (IP1) it suffices to
factorize once per iteration.

• The linear system of (IP1) is symmetrized and can be reduced to the sparse
symmetric positive-definite system (4.6), or (4.7) in the alternative case. The
ill-conditioning introduced by symmetrization is well understood (see [W] and
the references therein) and poses no problem in solving the system. On the
other hand, the linear system of (IP2) is not symmetrized, and it can be
reduced to the sparse system

(Λ +WM1h + αWAhM2hAh)∆w = r
s ,(4.10)

where rs ∈ R
N denotes the appropriate right-hand side.

5. Numerical experiments. All algorithms that we presented above were tested
for one- and two-dimensional domains, with Ω = (0, 1) and Ω = (0, 1) × (0, 1), re-
spectively. Here we present in some detail selected results from two-dimensional test
examples. Results with one-dimensional examples will be briefly discussed. For the
sake of achieving an accurate comparison all final tests were performed on the same
machine (DEC-alpha 500 with machine precision εM ≈ 1.11 · 10−16) under MATLAB
5.1.
The discretization of the infinite-dimensional problems was based on a finite dif-

ference approximation with equidistant grid with mesh-length h and a five-point star
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finite difference approximation to the Laplace operator. The matrices M1h and M2h

were chosen as identity matrices of dimension R
N×N . Unless otherwise specified,

the stopping tolerances εs and ef of the interior point algorithms were chosen to be
εs =

√
εM and ef = 8.

Next we describe the initialization schemes for (BIKc), (BIKs), (IP1), and (IP2).
Unless otherwise specified (BIKc) was initialized by setting uo = ψh and determining
(yo, po, λo) from (3.6)–(3.8). An alternative is given by solving (P

c
h) without the

inequality constraint uh ≤ ψh, i.e., to determine (uo, yo, po, λo) from the optimality
system

(OS)


Ahyo = udh + α

−1po,
Ahpo = zdh − yo,
uo = udh + α

−1po, λo = 0 .

The latter choice has the advantage that the first iteration of (BIKc) will stop at
the exact solution to (P ch) if uo ≤ ψh. On the other hand using (OS) requires
solving a coupled system of equations, as opposed to the first initialization strategy,
which depends only on two uncoupled equations. Together with the fact that the
first initialization required slightly fewer iterations than the second in the cases when
the inequality constraint is active, it is suggested to use the first initialization as
the default strategy. – As canonical initialization for (BIKs) we solved (P sh) without
the inequality constraint for (yo, uo, po) and set λo = 0. We remark that we also
tested (BIKc) and (BIKs) with several other initializations and observed that both
algorithms are very robust with respect to different initializations. – The start-up
routine for (IP1) sets all variables which initially have to be strictly positive equal
to one, i.e., vo := e3N and ωo := e3N , with e3N the vector of all ones in R

3N . For
the unconstrained variables the following initialization was used: uo := ψh − wo,
yo := A−1

h uo, po :=
α
h2M2h(udh − uo) − λo. The choice of vo and ωo is intended

to provide a well-centered starting point while uo and yo satisfy the primal equality
constraints without splitting. For this initialization scheme the residuals of the primal
and dual equality constraints in our test examples are not too large, and hence it
provides a good start-up configuration for fast progress toward the solution [Wr].
The seemingly natural start-up uo = yo = po = 0 led to no enhancement. For other
reasonable choices the algorithm proved to be rather independent of the initialization.
We point out that due to r1,o > 0 and r2,o > 0 and the constraint r1+r2 = 0 no strictly
feasible starting point for (IP1) is available. – Contrary to the last statement, there
exist feasible start-up choices for (IP2). For reasons of comparison and simplicity of
initialization we used (the infeasible choice) λo = eN , wo = eN , and uo = Ah(ϕh−wo),
po =

α
h2M2h(udh − uo), which again yields rather small primal and dual residuals.
In what follows we denote by (yIP i, uIP i) , i = 1, 2, the state-control solution

pair obtained from (IPi) and by (yBIK , uBIK) the solution pair obtained from either
(BIKc) or (BIKs). We further set du∞,i = ‖uBIK − uIP i‖∞, dy∞,i = ‖yBIK − yIP i‖∞,
and dJi = |Jh(yBIK , uBIK) − Jh(yIP i, uIP i)| for i = 1, 2, where ‖ · ‖∞ denotes the
:∞-norm.

5.1. Presentation of the examples. In this subsection we specify the exam-
ples for which numerical tests will be documented.

5.1.1. Example: Control constraints. The data are α = 0.01, c = 0.1, ψ ≡ 0,
ud ≡ 0, and zd(x1, x2) = sin(2πx1) sin(2πx2) exp(2x1)/6. The optimal state and
control are depicted in Figure 5.1.
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Fig. 5.1. Optimal state (left graph) and optimal control (right graph) for Example 5.1.1.

5.1.2. Example: Control constraints. The data are α = 0.01, c = 0.1, ψ ≡ 1,
ud ≡ 0, and

zd =

{
200 x1x2 (x1 − 0.5)2 (1− x2) if 0 < x1 ≤ 0.5,
200 x2 (x1 − 1)(x1 − 0.5)2 (1− x2) if 0.5 < x1 ≤ 1.

For the optimal state and control, see Figure 5.2.
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Fig. 5.2. Optimal state (left graph) and optimal control (right graph) for Example 5.1.2.

5.1.3. Example: State constraints. The data are α = 0.001, c = 0.01,
ϕ ≡ 0.1, ud ≡ 0, and zd(x, y) = sin(2πx y). For the optimal state and control,
see Figure 5.3.
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Fig. 5.3. Optimal state (left graph) and optimal control (right graph) for Example 5.1.3.

The following examples are depicted for discussing one-step convergence and lack
of strict complementarity, respectively.
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5.1.4. Example: Control constraints. This example satisfies (3.15) of Corol-
lary 3.2. Thus, one-step convergence of (BIKc) is expected. The data are α = 0.1,
c = 0.5, zd ≡ 1,

ψ(x1, x2) =

{ −1 if (x1, x2) ∈ Ω1,
−(x1 − 0.5)2 − (x2 − 0.5)2 else,

and ud = u
† + α−1(λ† +∆−2u† −∆−1zd), where

λ†(x1, x2) =

{
0.05 if (x1, x2) ∈ Ω1,
0 else,

u†(x1, x2) =

{
ψ(x1, x2) if (x1, x2) ∈ Ω1,
10ψ(x1, x2) else,

and Ω1 = {(x1, x2) ∈ Ω : ‖(x1, x2) − (0.5, 0.5)‖�2 ≤ 0.25}. We have u∗ = u† and
λ∗ = λ†, with A∗ = Ω1.

5.1.5. Example: Control constraints. This example is constructed such that
no strict complementarity holds at the solution. We put zd ≡ 0, ud = u† + α−1(λ† −
∆−2u†),

ψ(x1, x2) =

{
(x1 − 0.5)8 if (x1, x2) ∈ Ω1,
(x1 − 0.5)2 else,

u†(x1, x2) =

{
ψ(x1, x2) if (x1, x2) ∈ Ω1 ∪ Ω2,
−1.01ψ(x1, x2) else,

λ†(x1, x2) =

{
2.25(x1 − 0.75) · 10−4 if (x1, x2) ∈ Ω2,
0 else,

where Ω1 = {(x1, x2) ∈ Ω : ‖(x1, x2)− (0.5, 0.5)‖�2 ≤ 0.15} and Ω2 = {(x1, x2) ∈ Ω :
x1 ≥ 0.75}. We have u∗ = u† and λ∗ = λ†. Notice that the strongly active set is
A∗,+ = Ω2 and the weakly active set is A∗,0 = Ω1 ∪ {(x1, x2) ∈ Ω|x1 = 0.5}, where
strict complementarity is not satisfied. The optimal state and control are displayed
in Figure 5.4.
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Fig. 5.4. Optimal state (left graph) and optimal control (right graph) for Example 5.1.5.

5.1.6. Example: State constraints. This is an example for state constraints
with lack of strict complementarity at the solution. The data are α = 0.01, c = 0.1,
ud ≡ 0, zd = λ† + y† + α∆2y†, and ϕ = β[x1x2(1− x1)(1− x2)]

5, where β = 1e3,

λ† =
{
0 if x1 /∈ [0.5 , 0.7],
x1 − 0.5 if 0.5 ≤ x1 ≤ 0.7, y† =

{
ϕ(x1, x2) if x1 ≤ 0.7,
ϕ(x1, x2)(1.7− x1) if 0.7 < x1 ≤ 1.

The exact solution is y∗ = y† and λ∗ = λ†. Note that strict complementarity does
not hold for x1 ≤ 0.5.
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5.1.7. Example: State constraints. The example is chosen such that we nu-
merically observe one-step convergence. The data are α = 1e-10, c = 0.01, ud ≡ 0,
zd = λ

† + y† + α∆2y†, and ϕ = β [x1x2(1− x1)(1− x2)]
5, where β = 5e4,

λ† =
{
0 if 0 < x1 ≤ 0.5,
(x1 − 0.5)10 if 0.5 < x1 ≤ 1, y† =

{
0.999 · ϕ(x1, x2) if 0 < x1 ≤ 0.5,
ϕ(x1, x2) if 0.5 < x1 ≤ 1.

We have y∗ = y† and λ∗ = λ†. Note that strict complementarity holds on all of Ω,
and that due to λ∗ = λ† a remarkable degree of degeneracy can be observed, i.e., λ∗

is close to zero near the interface between the active and inactive sets and, in addition
here, y∗ − ϕ is close to zero on a subset of the inactive set.

5.2. Dependence on the mesh-size. In Tables 5.1–5.4 we document the re-
sults for Examples 5.1.1 and 5.1.3. Control constrained problems are considered in
Tables 5.1 and 5.2. Here (BIKc) and (IP1) refer to the algorithms of sections 3 and
4.1, and (IP2) stands for an adaptation of the interior point algorithm for state con-
strained problems to the control constrained case. Similarly, in Tables 5.3 and 5.4,
(IP1) denotes an adaptation of the algorithm in section 4.1 to the state constrained
case.
The stopping rules for interior point methods included in the description of the

algorithms in sections 4.1 and 4.2 represent standard criteria which terminate the
algorithms at approximate solutions. The results reported in the subsequent subsec-
tions were computed according to these generic rules. However, if exact solutions (as
computed by (BIK) for the examples in this subsection) are available, it is natural
to consider the performance of interior point methods in dependence on the distance
of the interior point solutions to the exact solutions. Therefore, for the test runs
reported in Tables 5.1–5.4 the following procedure was designed: We computed the
exact solution by running (BIK). Then we ran (IP2) with εs =

√
εM and ef = 8.

Afterward (IP1) was started and stopped at the first iteration n, where

|||zBIK − zIP1
n ||| ≤ |||zBIK − zIP2||| ≤ |||zBIK − zIP1

n−1||| ,(5.1)

where zBIK= (yBIK , uBIK , Jh(y
BIK , uBIK)) and zIP in = (yIP in , uIP in , Jh(y

IP i
n , uIP in )),

i = 1, 2. Thus (IP1) was stopped when the distance of the (n−1)st iterate of (IP1) to
the exact solution exceeded the corresponding distance of the solution of (IP2), but
the nth iterate of (IP1) was closer to the exact solution than the solution of (IP2).
The solution for (IP1) documented in Tables 5.1–5.4 corresponds to (yIP1

k , uIP1
k ),

k ∈ {n− 1, n}, for which∣∣|||zBIK − zIP2||| − |||zBIK − zIP1
k |||∣∣(5.2)

was smaller. This additional procedure is motivated by the fact that for nondegenerate
problems, interior point methods converge very rapidly during the final stages of the
iteration. Combining (5.1) and (5.2), solutions of the interior point algorithms are
obtained which approximate the exact solution approximately equally well.
Based on the results displayed in Tables 5.1–5.4 which are typical from within a

list of test examples we can draw the following conclusions:
• The algorithms behave quite differently for control and state constrained
problems. This concerns primarily the Moreau–Yosida-based algorithms and
only to a lesser degree interior point methods.

• For control constrained problems (BIKc) is significantly faster than interior
point methods. Except for certain cases with lack of strict complementarity
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Table 5.1
Comparison of number of iterations and CPU-time (s) for Example 5.1.1.

(BIKc) (IP1) (IP2)

h−1 #it CPU (s) #it CPU (s) #it CPU (s)
20 3 0.2 13 0.8 7 0.7
30 3 0.9 15 3.2 8 3.3
40 3 2.5 15 8.2 8 8.9
50 3 5.5 15 18.6 8 20.2
60 3 10.8 15 35.1 8 40.2
70 4 23.8 15 63.7 8 73.4
80 4 39.6 16 116.0 8 123.8
90 4 62.2 16 182.8 8 197.3
100 3 75.0 16 268.7 8 296.5
110 4 133.4 16 381.9 8 413.9
120 4 186.1 16 532.1 8 575.7

Table 5.2
Accuracies of IP solutions for Example 5.1.1.

(IP1) (IP2)

h−1 du∞,1 dy∞,1 dJ1 du∞,2 dy∞,2 dJ2

20 8.24e-07 7.86e-10 1.16e-13 5.32e-07 4.99e-10 1.01e-13
30 3.50e-08 2.78e-11 2.96e-15 2.30e-07 1.78e-10 1.78e-14
40 3.78e-08 1.76e-11 1.48e-14 1.48e-07 6.87e-11 1.01e-13
50 1.91e-05 5.97e-09 3.07e-14 1.63e-05 5.13e-09 3.06e-14
60 2.40e-05 5.03e-09 1.39e-13 1.98e-05 4.28e-09 1.55e-13
70 7.12e-05 1.38e-08 1.89e-13 4.42e-05 8.17e-05 9.31e-13
80 3.99e-05 5.30e-09 5.08e-14 6.49e-05 8.80e-09 1.73e-12
90 7.08e-06 7.78e-10 5.65e-13 2.49e-05 2.98e-09 1.12e-13
100 4.32e-05 3.83e-09 9.09e-13 7.30e-05 7.20e-09 9.52e-13
110 1.87e-05 1.41e-09 8.44e-13 4.41e-05 3.85e-09 6.45e-13
120 3.32e-05 2.36e-09 1.25e-12 5.96e-05 4.80e-09 3.29e-12

or of degeneracy the algorithm stopped in step 3 at the exact solution of
the discretized problem. The cases of lack of strict complementarity and
degeneracy are discussed below.

• For state constrained problems (BIKs) is slower than interior point methods.
This can be due to the fact that changes from the active to the inactive sets
and vice versa for (BIKs) occur primarily along the boundary of active and
inactive sets in layers of only one pixel depth. If an algorithm similar to
(BIKs) is used to solve obstacle problems, then this can be proved rigorously;
see [KKT]. In all nondegenerate test examples (BIKs) terminated at the
exact solution in step 3. For the latter we refer to section 5.4.

• We observe numerically that (BIKc) is mesh-independent for control con-
strained problems. This is not the case for (BIKs) for state constrained
problems.

• Interior point methods are mesh-independent for control constrained prob-
lems and significantly more mesh-independent for state constrained problems
than (BIKs).

• For the control constrained problem of Table 5.1 (IP1) and (IP2) require
about the same CPU-time with (IP2) taking half as many iterations as (IP1).
This behavior can be attributed to the fact that one iteration of (IP2) utilizes
two linear equation solves (due to an intermediate update in step 3 of (IP2)),
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Table 5.3
Comparison of number of iterations and CPU-time (s) for Example 5.1.3.

(BIKs) (IP1) (IP2)

h−1 #it CPU (s) #it CPU (s) #it CPU (s)
20 11 1.2 13 1.0 8 0.8
30 17 8.1 14 3.4 9 3.3
40 21 30.3 16 9.9 11 11.1
50 26 89.3 15 21.0 11 25.3
60 32 207.4 17 42.2 11 49.9
70 36 423.9 18 79.5 12 101.2
80 41 800.9 14 102.3 12 186.9
90 46 1417.9 16 188.9 13 287.8
100 51 2388.9 16 274.7 14 472.4
110 58 3920.5 16 401.5 14 661.8

Table 5.4
Accuracies of IP solutions for Example 5.1.3.

(IP1) (IP2)

h−1 du∞,1 dy∞,1 dJ1 du∞,2 dy∞,2 dJ2

20 7.85e-05 8.17e-08 9.02e-12 1.13e-04 1.26e-07 6.76e-10
30 2.96e-06 1.43e-07 3.98e-12 3.02e-04 1.62e-07 4.51e-10
40 1.26e-06 3.53e-10 7.74e-15 1.72e-05 3.84e-08 7.56e-12
50 1.90e-06 3.35e-10 2.21e-14 5.94e-05 1.15e-08 3.51e-11
60 1.08e-05 2.08e-08 8.19e-15 2.16e-04 4.62e-07 5.60e-10
70 4.33e-05 5.24e-09 1.73e-14 1.13e-04 1.44e-07 4.79e-11
80 9.03e-04 8.09e-08 2.04e-11 8.12e-04 1.16e-07 8.61e-10
90 6.19e-06 3.39e-10 4.38e-14 5.71e-05 4.05e-09 2.12e-11
100 7.53e-04 6.85e-08 4.33e-13 6.87e-04 6.57e-08 4.47e-11
110 1.06e-03 3.59e-08 1.84e-12 1.49e-03 8.62e-08 4.55e-10

whereas (IP1) requires only one. For state constrained problems (IP1) gives
better results with respect to CPU-time than (IP2).

• For Tables 5.1–5.4 the default start-up routines as described above were cho-
sen. The algorithms behave robustly with respect to other choices of start-up
values.

• Tests with related problems suggest that (BIKs) can be sped up significantly
by multilevel techniques. However, we do not want to pursue a comparison
for a multilevel environment.

5.3. Sensitivity with respect to the α value. The degree of positive def-
initeness of the cost functional is determined by the value of α > 0. The smaller
the value of α, the more singular the optimal control problems are. It is therefore
a natural question to ask whether the performance of the algorithms deteriorates as
α becomes smaller. As can be seen from Table 5.5, which corresponds to Example
5.1.2, and Table 5.6, which gives the results for Example 5.1.3, this is not the case.
(BIKc) as well as (BIKs) find exact solutions, and the interior point methods find
approximate solutions of rather uniform accuracy for a wide range of α-values. We do
not report the CPU-times, since they are essentially linear with respect to the number
of iterations.

Let us now consider Tables 5.5 and 5.6 in some detail. For the control constrained
case reported in Table 5.5 the iteration numbers increase with decreasing α. For
(BIKc) a possible explanation is given by Corollary 3.2. Let Dh be the set of indices
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Table 5.5
Example 5.1.2 (control constraints) for (IP1) and h−1 = 60.

α 1e-01 1e-02 1e-03 1e-04 1e-05

#it (IP1/BIKc) 9 / 2 12 / 3 13 / 5 13 / 6 16 / 8
du∞,1 7.75e-11 6.14e-04 2.15e-03 2.05-02 2.61e-05

dy∞,1 1.13e-11 1.98e-07 2.56e-07 3.39e-06 8.13e-09

dJ1 2.00e-12 1.60e-11 1.73e-11 2.21e-11 8.48e-12

α 1e-06 1e-07 1e-08 1e-09 1e-10

#it (IP1/BIKc) 18 / 13 19 / 28 20 / 29 21 / 30 21 / 30
du∞,1 6.41e-02 4.03e-01 4.34e-02 3.07-02 1.21e-02

dy∞,1 6.14e-06 3.60e-05 3.17e-06 1.95e-06 6.80e-07

dJ1 3.54e-12 1.53e-11 2.05e-11 1.86e-11 1.98e-11

Table 5.6
Example 5.1.3 (state constraints) for (IP2) and h−1 = 60.

α 1e-01 1e-02 1e-03 1e-04 1e-05

#it (IP2/BIKs) 4 / 1 13 / 29 11 / 32 10 / 20 9 / 13
du∞,2 3.85e-07 1.31e-06 2.16e-04 7.75-05 3.83e-03

dy∞,2 1.37e-10 6.47e-10 4.62e-07 1.81e-08 4.56e-07

dJ2 5.55e-17 1.41e-12 5.60e-10 2.41e-10 4.52e-10

α 1e-06 1e-07 1e-08 1e-09 1e-10

#it (IP2/BIKs) 8 / 7 8 / 4 8 / 3 8 / 3 8 / 2
du∞,2 2.31e-02 2.00e-03 1.02e-03 6.13e-02 3.13e-03

dy∞,2 2.87e-06 1.98e-07 7.90e-08 4.43e-06 2.20e-07

dJ2 1.36e-09 2.51e-11 5.25e-12 5.82e-11 6.83e-12
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Fig. 5.5. Evolution of Dh for Example 5.1.2 as α varies.

where (3.15) is violated. Figure 5.5 shows the evolution of this set as a function
of α. In our test runs we clearly see that the larger Dh is, the more iterations are
required by (BIKc) to find the optimal solution. Thus, |Dh| can be seen as a degree of
discrepancy to the ideal situation of Dh = ∅, for which Corollary 3.2 guarantees one-
step convergence. The interior point method is slightly less affected by changes of α.
This may be due to the fact that the interior methods unlike active set methods do not
estimate the active set, but rather they drive the complementarity product to zero
while approaching the optimal solution. Nevertheless there remains a dependence
of the iteration numbers on the values of α for which, however, we cannot offer a
satisfactory explanation that is supported by a wide range of test examples.
Considering Table 5.6 the influence of changes in α on the iteration numbers

is reversed. The case α = 1e-1 is special, since here the unconstrained minimum



518 BERGOUNIOUX, HADDOU, HINTERMÜLLER, AND KUNISCH
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Fig. 5.6. Evolution of Dh for Example 5.1.3 as α varies.

gives the optimal solution to the constrained problem as well. Again the interior
point algorithm is much less affected by changes in α than is (BIKs). To explain the
behavior of (BIKs) an analysis analogous to Corollary 3.2 suggests the introduction
of the set

Dh = {i ∈ A∗,+
h |(yo)i ≤ (y∗h)i} ∪ {i ∈ A∗,0

h ∪ I∗
h|(yo)i > (y∗h)i},

where we have taken into consideration that (BIKs) is initialized by solving (P sh)
without the inequality constraint. Again, the smaller |Dh| the closer we are to one-
step convergence, which holds for Dh = ∅. Figure 5.6 shows the evolution of the set
Dh for Example 5.1.3 for various choices of α. The measure of Dh decreases as α
decreases, and therefore the decrease of iterations of (BIKs) comes as no surprise.

5.4. Lack of strict complementarity and degeneracy. Examples 5.1.5 and
5.1.6 are constructed such that no strict complementarity holds at the exact solu-
tion, and Example 5.1.7 is chosen such that a high degree of degeneracy can be
observed. Here the degree of degeneracy is measured by the smallness of the quanti-
ties min{(λ∗h)i : i ∈ A∗,+

h }, min{|(u∗h − ψh)i| : i ∈ I∗
h} in the control constrained case,

respectively, min{|(y∗h − ϕh)i| : i ∈ I∗
h} in the state constrained case. In fact, the

smaller one of the quantities above is, the higher is the degree of degeneracy. These
situations are of interest as for (BIK) numerical problems when determining the active
and inactive sets at each iteration may arise: Let us demonstrate this for the control
constrained case with lack of strict complementarity. For this purpose assume that the
optimal control is u∗h ≡ 0 with corresponding optimal multiplier λ∗h ≡ 0. Let ε ≥ εM
denote the relative accuracy in un and λn. Near the optimal numerical solution both
iterates are small. In fact, for i ∈ In we put (λn)i = 0 and obtain (un)i ≈ ±ε from
the numerical solution of the linear system. For i ∈ An we set (un)i = 0 and obtain
(λn)i ≈ ±ε from the calculation. Therefore, the signs of the computed components
of the iterates decide on the active and inactive sets of the next iteration. Since these
signs are influenced, for instance, by round-off errors in finite precision calculations
the active and inactive sets may start to chatter. The objective value Jn remains on
the order ε2 (� εM typically). A similar situation occurs for degenerate problems.
In order to cope with this difficulty we add a stopping criterion to step 3 of (BIK).
We develop this criterion for the discretized algorithm (BIKc). For this purpose we
introduce

Scn = {i ∈ An | (λn)i ≤ 0} and T c
n = {i ∈ In | (un)i > (ψh)i},
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which are the subsets of Ωh that change from active to inactive sets and inactive to
active sets from the nth to the (n+ 1)st iteration. Moreover, define

rSn := max
i∈Sc

n

{|(λn)i|} and rTn := max
i∈T c

n

{|(ψh)i − (un)i|}

if Scn != ∅ and T c
n != ∅, and rSn = 0, respectively, rTn = 0 otherwise. If we find that

rSn and r
T
n are of the order of the accuracy expected for the solution of the linear

system in step 4 of the discretized algorithm (BIKc), then we cannot rely on the
determination of the inactive and active sets in the following iteration, and hence we
stop the algorithm. This criterion can readily be carried over to the state constrained
case.
We report first on two test runs of (BIKc) and (IP1), respectively, for Exam-

ple 5.1.5 with h = 1/50, ε = 1e-10, ef = 10, and c = 0.1. For the first run we
choose α = 1e-5. Algorithm (BIKc) stops after 6 iterations at the exact solution,
i.e., the algorithm terminates in step 3. Algorithm (IP1) needs 16 iterations to sat-
isfy the stopping criterion in step 2. Moreover, du∞,1 = 3.96e-3, d

y
∞,1 = 1.11e-5, and

dJ1 = 9.67e-12. For the second run we fix α = 0.01. In this case (BIK
c) approaches

the optimal solution after 2 iterations but starts to chatter at iterates satisfying the
first-order conditions of (P ch) with a residual of order 1e-13. The additional stopping
rule developed above stops the algorithm at the third iteration. Algorithm (IP1)
needs 15 iterations to satisfy the stopping criteria.
For Example 5.1.6 with h = 1/60 (BIKs) the new stopping criterion terminates the

algorithm at iteration 61. Algorithm (IP2) needs 16 iterations to satisfy its stopping
criteria. In this case, we have du∞,2 = 2.31e-5, d

y
∞,2 = 2.12e-7, and d

J
2 = 3.94e-13.

As for the interior point methods our tests confirm theoretical results [MW],
which assert linear rate of convergence in the case of lack of strict complementarity.
For problems with strict complementarity we obtained superlinear convergence rates.
In conclusion, from our test runs we may state that the convergence speed of

the Moreau–Yosida-based active set strategies is not affected by degeneracy or lack
of strict complementarity. In fact, the predominant factor influencing the number
of iterations is the discrepancy set Dh. However, an additional stopping rule has
to be implemented which guarantees that the algorithm stops at a solution which
satisfies the first-order conditions to a high degree of accuracy. We also point out
that there exist several test problems for degenerate examples and examples with
lack of strict complementarity where the solution obtained with the modified stopping
criterion satisfied An = An+1, and therefore the exact solution was obtained. Interior
point algorithms, on the other hand, are slowed down in the case of lack of strict
complementarity and only converge with a linear rate.

5.5. One-step convergence. Theorem 3.1 and Corollary 3.2 give sufficient
conditions for (BIKc) to terminate after 1 iteration at the exact solution. Exam-
ple 5.1.4 satisfies (3.15) of Corollary 3.2. For (BIKc) we indeed observe one-step
convergence. Algorithm (IP1) stops with the following result (for h = 1/60): 11
iterations, du∞,1 = 4.32e-10, d

y
∞,1 = 1.52e-10, and d

J
1 = 1.81e-10.

If we change λ† to λ†|Ω1
= 0.01, then (3.15) is no longer satisfied and (BIKc)

needs two iterations to compute the exact solution. The result for (IP1) (again for
h = 1/60) is 12 iterations, du∞,1 = 5.04e-9, d

y
∞,1 = 3.23e-10, and d

J
1 = 3.22e-10. Thus,

we can see that criterion (3.15) is quite accurate.
In the state constrained case, condition (3.16) is sufficient for one-step conver-

gence of (BIKs) with the initialization discussed at the beginning of this section. For



520 BERGOUNIOUX, HADDOU, HINTERMÜLLER, AND KUNISCH

Example 5.1.7 we observe that (3.16) is satisfied numerically in the sense that the
first part of condition (3.16) is violated on a layer of maximum two-pixels depth at
the interface between the active and inactive sets. The order of the violation is about
1e-17. Moreover, yo − y∗h ≈ λ∗h. The additional stopping rule developed in section 5.4
terminates the algorithm after 1 iteration at an approximate solution ỹ∗h satisfying
‖ỹ∗h − y∗h‖∞ ≤ 5.56 · 1e-17 (for h = 1/50).

5.6. One-dimensional problems. One-dimensional test examples for both con-
trol and state constrained problems with mesh-size 10−3 and smaller were successfully
computed, and similar properties as for the two-dimensional examples were observed.
Especially mesh-independence for (BIKc) with very fine resolution can be confirmed.

6. Conclusion. Detailed numerical comparisons between generalized Moreau–
Yosida-based algorithms and two independent interior point algorithms for a class of
control and state constrained optimal control problems were carried out. Depending
on whether the control or the state are constrained, and depending further on the
value of the cost parameter α and on the mesh-size, generalized Moreau–Yosida-based
algorithms or interior point algorithms can be more efficient from the point of view
of CPU-time. The generalized Moreau–Yosida-based algorithms have the advantage
that under certain conditions they provide exact solutions, whereas it is inherent
to the interior point approach that approximate solutions are computed. Finally
the generalized Moreau–Yosida-based algorithms are significantly simpler to program
than the interior point methods.

Acknowledgments. The authors are indebted to the referees for numerous help-
ful comments and suggestions.
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Abstract. We study the problem of approximating binary images that are accessible only
through few evaluations of their discrete X-ray transform, i.e., through their projections counted
with multiplicity along some lines. This inverse discrete problem belongs to a class of generalized
set partitioning problems and allows natural packing and covering relaxations. For these (NP-hard)
optimization problems we present various approximation algorithms and provide estimates for their
worst-case performance. Further, we report on computational results for various variants of these
algorithms. In particular, the corresponding integer programs are solved with only small absolute
error for instances up to 250, 000 binary variables.
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1. Introduction. The present paper studies various algorithms for finding ap-
proximate solutions for an inverse discrete problem that is most prominently moti-
vated by the demand in material science for developing a tool for the reconstruction
of 3-dimensional crystalline structures that are accessible only through some images
provided by high resolution transmission electron microscopy. In fact, the articles [13]
and [18] describe a new technique called QUANTITEM for the quantitative analysis
of the information provided by transmission electron microscopy that can effectively
measure the number of atoms lying on each line parallel to a given set of directions.

Mathematically, this is the inverse problem of reconstructing certain discrete den-
sity functions from their discrete X-rays in certain directions. More precisely, the basic
question is the following. Can a finite set of points in the integer lattice Z

3 be (approx-
imately) reconstructed from measurements of the number of its points lying on each
line parallel to one of a small prescribed number of directions specified by nonzero
vectors in Z

3? Here small means 3, 4, or 5 since the energy that is needed to produce
the images is about 200 keV so that after a few exposures the object is damaged.

Various approaches have been suggested for solving the general reconstruction
problem, and various theoretical results are available; see, e.g., [9] for a survey. In the
present paper we concentrate on approximative solutions. Even though most of the
resulting combinatorial optimization problems are NP-hard, we prove in section 3 that
some (relatively) simple algorithms yield already very good worst-case bounds. As
section 4 indicates, these algorithms perform even better in computational practice.

Let us close the introduction with a word of warning. Typically, when one is
dealing with optimization problems in practice it is completely satisfactory to pro-
duce solutions that are close to optimal. For instance, a tour for a given instance of the
traveling salesman problem that is off by only a few percents is for many practical pur-
poses almost as good as an optimal tour. This is because the particular optimization
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is typically just part of a much more complex real world task, and the improvement
over existing methods is governed by so many much harder to influence factors that
a small error in the optimization step does not really matter by any practical means.
This is different in the context of our prime application. The relevant measure for
the quality of an approximation to a binary image would of course be the deviation
from this image. Hence, in order to devise the most appropriate objective function
one would have to know the underlying solution of the given inverse problem. How-
ever, the whole point is of course to find this unknown solution. Hence, one can only
consider objective functions, with respect to which the approximation is evaluated,
that are based on the given input data. While a good approximation in this sense is
close to a solution in that its X-ray images in the given directions are close to those
of the original set, the approximating set itself may be off quite substantially. In fact,
the inverse discrete problem is ill-posed and it is precisely this property that causes
additional difficulties. In particular, if the input data do not uniquely determine the
image, even a “perfect” solution that is completely consistent with all given data may
be quite different from the unknown real object.

Obviously there is more work to be done to handle the ill-posedness of the problem
in practice. Hence, the results of this paper should be regarded only as a first (yet
reassuring!) step in providing a computational tool that is adequate for the real world
applications outlined above. In particular, our approximate algorithms can be used
to provide lower bounds in branch-and-cut approaches that incorporate strategies to
handle the nonuniqueness of solutions and the presence of noise in the data.

The paper is organized as follows. Section 2 provides the basic notation, states
the problems and algorithmic paradigms that are most important in the context of the
present paper, and gives a brief overview of our main results. Section 3 studies various
polynomial-time iterative improvement strategies for inner and outer approximation.
We derive performance ratios that show that in this model the optimum can be ap-
proximated up to a relative error that depends only on the number m of directions
in which the X-ray data are available. The analysis is based on work of Hurkens and
Schrijver [12], Goldschmidt, Hochbaum, and Yu [8], and Halldórsson [11] for set pack-
ing and set covering heuristics. Our theoretical worst-case bounds are complemented
by extremely satisfactory computational results described in section 4.

2. Preliminaries and results.

2.1. Basics of discrete tomography. We use the general setting of a d-
dimensional Euclidean space E

d, with d ≥ 2, though only the cases d = 2, 3 are
relevant in practice. Let S1,d be the set of all 1-dimensional subspaces in E

d, and let
Fd denote the family of finite subsets of Z

d. For F ∈ Fd let |F | be the cardinality of
F . A vector v ∈ Z

d \ {0} is called a lattice direction; L1,d denotes the subset of S1,d

spanned by a lattice direction. For S ∈ S1,d let A(S) denote the family of all lines
parallel to S. The (discrete) 1-dimensional X-ray parallel to S of a set F ∈ Fd is the
function XSF : A(S)→ N0 = N ∪ {0} defined by

XSF (T ) = |F ∩ T | for T ∈ A(S).

Since F is finite, the X-ray XSF has finite support T ⊂ A(S).
In the inverse reconstruction problem, we are given data functions φi : A(Si) →

N0, i = 1, . . . ,m, with finite support, and we want to find a set F ⊂ Z
d with corre-

sponding X-rays. More formally, for S1, . . . , Sm ∈ L1,d pairwise different, the most
important algorithmic task in our context can be stated as follows.
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Reconstruction(S1, . . . , Sm).
Given data functions φi : A(Si) → N0 for i = 1, . . . ,m, find a finite
set F ⊂ Z

d such that φi = XSi
F for all i = 1, . . . ,m or decide that

no such F exists.

Clearly, when investigating the computational complexity of the above problem
in the usual binary Turing machine model one has to describe suitable finite data
structures. We do not go into such details here but refer the reader to [5]. For the
purpose of this paper, handling an input ofm data functions φ1, . . . , φm with supports
T1, . . . , Tm, respectively, is facilitated with the aid of a set G ⊂ Z

d of candidate points.
This set G consists of the intersection of all (finitely many) translates of

⋂m
i=1 Si that

arise as the intersection of m lines parallel to S1, . . . , Sm with Z
d, respectively, whose

data function value is nonzero, i.e.,

G = Z
d ∩

m⋂
i=1

⋃
T∈Ti

T.

To exclude trivial cases, in the following we will always assume that G �= ∅ and that⋂m
i=1 Si = {0}. Hence, in particular m ≥ 2.
The incidences of G and Ti can be encoded by an incidence matrix Ai. To fix the

notation, let G consist of, say, N points, and let Mi = |Ti| and M =M1 + · · ·+Mm.
Then the incidence matrices Ai ∈ {0, 1}Mi×N can be joined together to form a matrix
A ∈ {0, 1}M×N . Identifying a subset of G with its characteristic vector x ∈ {0, 1}N ,
the reconstruction problem amounts to solving the integer linear feasibility program

Ax = b s.t. x ∈ {0, 1}N ,(1)

where bT = (bT1 , . . . , b
T
m) contains the corresponding values of the data functions

φ1, . . . , φm as the right-hand sides of A1, . . . , Am, respectively.
Let us point out here in passing that more general inverse discrete problems can

be modeled in a similar way. In fact, query sets (which are lines in the present
paper) could be chosen in various different and meaningful ways. (For instance, if the
lines are replaced by the translates of some k-dimensional subspaces, we obtain the
reconstruction problem for discrete k-dimensional X-rays.)

It is not difficult to see that the matrix A is totally unimodular when m = 2.
In particular, for m = 2 the integer linear program (1) and its linear programming
relaxation

Ax = b s.t. x ∈ [0, 1]N ,(2)

where the condition x ∈ {0, 1}N is replaced by the weaker constraint x ∈ [0, 1]N , are
equivalent in the sense that all vertices of the polytope {x : Ax = b ∧ x ∈ [0, 1]N} are
0-1 vectors anyway; see, e.g., [17] for an exposition of the underlying theory. Hence,
for m = 2 the reconstruction problem is solvable in polynomial time; see [15], [1], and
[7] for different proofs that do not rely on the fact that linear programming problems
can be solved in polynomial time. Reconstruction(S1, . . . , Sm) becomes NP-hard,
however, when m ≥ 3; see [5]. (For an introduction to the theory of computational
complexity see [6].) This means that (unless P = NP) exact solutions of (1) require
(in general) a superpolynomial amount of time. In polynomial time only approximate
solutions can be expected. We will henceforth always assume that m ≥ 3.
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Let us stress the fact that while the solutions of the polynomial-time solvable
LP-relaxation (2) do provide some information about (1) (see [3]), it is our goal
to solve (1) rather than (2), since the objects underlying our prime application are
crystalline structures forming (physical) sets of atoms rather than “fuzzy” sets; see
[10] for some additional discussion of this point.

2.2. Two optimization problems. For measuring the quality of approxima-
tion methods, we introduce objective functions so as to formulate the reconstruction
problem as optimization problems. Two very natural such formulations are the fol-
lowing problems, Best-Inner-Fit and Best-Outer-Fit.

Best-Inner-Fit(S1, . . . , Sm) [BIF].
Given data functions φ1, . . . , φm, find a set F ⊂ G of maximal cardi-
nality such that

XSiF (T ) ≤ φi(T ) for all T ∈ Ti and i = 1, . . . ,m.

Equivalently, [BIF] can be formulated as the integer linear program

max 11Tx s.t.(3)

Ax ≤ b and x ∈ {0, 1}N ,

where 11 is the all-ones vector.
The “outer counterpart” of this inner approximation is defined as follows.

Best-Outer-Fit(S1, . . . , Sm) [BOF].
Given data functions φ1, . . . , φm, find a set F ⊂ G of minimal cardi-
nality such that

XSiF (T ) ≥ φi(T ) for all T ∈ Ti and i = 1, . . . ,m.

Again, the problem is equivalent to an integer linear program, precisely to

min 11Tx s.t.(4)

Ax ≥ b and x ∈ {0, 1}N .

Note that while for any given instance of [BIF] ∅ is a feasible solution, [BOF]
may be infeasible. In order to exclude this degeneracy, we will in the following always
assume that

φi ≤ XSiG for i = 1, . . . ,m.

The two problems [BIF] and [BOF] are then complementary to each other in the
following sense. The complement F̄ = G\F of a solution F ⊂ G of an instance of one
problem is a solution of the instance with complementary data functions φ̄i defined by
φ̄i(T ) = |G∩T |−φi(T ) of the other problem. This reflects the fact that reconstructing
the “positive” or the “negative” of a binary picture are equivalent. However, as the
direct conversion of an approximation result for [BIF] of the form |V |/|F | ≥ α (F is an
optimal solution and V is some solution) yields a bound |V̄ |/|F̄ | ≤ α+(1−α)|G|/|F̄ |
for [BOF] that is dependent on the “density” |F |/|G| of an optimal solution in the
underlying candidate grid, bounds for the relative error of one problem are usually
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not “identical” to bounds for the other. More importantly, our algorithms for [BOF]
are actually insertion methods rather than “dual” deletion methods. Hence, we will
consider [BIF] and [BOF] separately in section 3.

Let us remark in passing that one can of course consider other kinds of optimiza-
tion problems related to Reconstruction(S1, . . . , Sm). For instance, rather than
measuring the approximability in terms of the points inserted into the candidate grid
one may count the number of lines on which an X-ray of a solution coincides with the
given value of the corresponding data function. An intractability result for this kind
of approximation can be found in [10].

2.3. The basic algorithmic paradigm. In this section we describe a general
algorithmic scheme for solving [BIF] and [BOF] that provides the framework for the
subsequent approximation algorithms studied in sections 3 and 4. See [10] for a
discussion of some other algorithmic paradigms that comprise most of the methods for
solving Reconstruction(S1, . . . , Sm) that have been suggested by various authors
in the past.

In the present paper we give a theoretical and computational analysis of various
iterative improvement strategies that are built on some greedy method. In the simplest
classes of local search algorithms for [BIF] and [BOF] the neighborhood of a set S is
defined as the collection of all supersets of S of cardinality |S| + 1 or of all subsets
of cardinality |S| − 1, respectively, and the choice is based on some greedy strategy
(that may or may not use weights for breaking ties).

In order to increase the performance of such iterative insertion or deletion algo-
rithms, one can apply r-improvements for r ∈ N0, where an r-point 〈(r + 1)-point〉
subset of a current feasible solution F ⊂ G for the given instance of [BIF] 〈[BOF]〉
is deleted and r + 1 〈r〉 points of (G \ F ) are inserted while maintaining feasibil-
ity. A feasible set F ⊂ G is called t-optimal for the given instance of [BIF] 〈[BOF]〉
if no r-improvement is possible for any r ≤ t. Note that 0-optimality agrees with
the common greedy-optimality (no point can be inserted without destroying feasibil-
ity for [BIF] and no point can be removed without destroying feasibility for [BOF]).
However, since our algorithms for [BOF] are based on greedy-type insertions rather
than greedy-deletions, the greedy algorithm of section 3.3 need not produce 0-optimal
solutions per se.

The following paradigm comprises a large class of iterative improvement methods
for [BIF]. A similar paradigm can be formulated for [BOF]. (A symbolic formulation
in the realm of commutative algebra of a general reduction process involving a set of
binomials in an appropriate toric ideal is given in [20].)

Paradigm 2.1 (iterative inner approximation).
• INPUT: Data functions φ1, . . . , φm for the given lines S1, . . . , Sm, respec-

tively.
• OUTPUT: A feasible set F ⊂ G for the given instance of [BIF].
• COMPUTATION:

Start with F = ∅ and successively apply r-improvements for r ≤ t for
some fixed constant t ∈ N0 until no further improvement is possible.

Since it is not specified how to select the points for insertion and deletion,
Paradigm 2.1 is so general and flexible that it covers a large number of algorithms
that incorporate promising refinements. For example, the X-ray data can be used for
back-projection-like techniques to express preferences between points to be chosen; see
Algorithm 3.7. In addition, connectivity of the solution (in a sense that is justified
by the physical structure of the analyzed material) can be rewarded by introducing
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adjustable weights. Similarly, information from neighboring layers can be taken into
account in a layerwise reconstruction of a 3-dimensional object. In fact, the positive
results of section 3 will apply to the general paradigm.

2.4. Main results. The simplest algorithm for [BIF] within the framework of
Paradigm 2.1 is the plain greedy algorithm which considers the positions of the grid
in an arbitrary order and successively fills in points. We will refer to it as GreedyA.
GreedyB and GreedyC will be variants with refined insertion order. As a first result
(Theorem 3.1, with t = 0), we see that

|V |/|F | ≥ 1/m,

where V is the set obtained by GreedyA (or GreedyB or GreedyC), and F is an
optimal solution. Recall that m is the number of directions, whence the sharp and
(considering that it is hard to think of any algorithm that is simpler than GreedyA)
surprisingly good lower bound 1/m reflects the fact that the more data are given, the
harder it is for a greedy strategy to satisfy them. In our experiments, it turns out
that |V |/|F | is typically greater than 0.9 and for large instances greater than 0.96
even for m = 5; see section 4.

There are two natural ways to improve this algorithm:
(a) using a better order to visit the candidate points and
(b) using 1-improvements, 2-improvements, etc.

In terms of (a) we use a strategy (GreedyB) that is motivated by a method of [16]
for solving consistent [BIF]-instances exactly for m = 2. In our computational study
GreedyB clearly outperforms GreedyA for all m considered; see Figures 9 and 10.

In GreedyC weights are assigned dynamically to the candidate points to represent
the “changing importance” of a point to be included in a solution. Our computational
study shows that GreedyC gives smaller relative errors than GreedyA and GreedyB;
see Figure 9. In fact, even the absolute errors are small; the average case for GreedyC
for 250, 000 positions and density 50%, i.e., solutions of cardinality 125, 000 being
21.62, 64.13, 111.88 missing atoms for 3, 4, 5 directions, respectively. The price to
pay for this excellent performance is GreedyC’s considerably longer running time; see
section 4.

In terms of (b), Theorem 3.1 shows that, for a t-optimal solution V ,

|V |
|F | ≥

2

m
− εm(t),

where εm(t) is given explicitly and approaches 0 exponentially fast. Computationally,
it turns out that performing 1-improvements after GreedyA, GreedyB, or GreedyC
typically yields substantial improvements. In fact, in our computational study the
absolute errors go down for ImprovementC to 1.07, 23.28, 64.58 for 3, 4, 5 directions,
respectively; see Figure 10.

Theorem 3.9 provides worst-case guarantees for [BOF]. Part (a) shows that a
simple greedy-type insertion algorithm yields a solution U such that

|U |/|F | ≤ H(m),

where H(m) = 1 + 1/2 + · · · + 1/m is the mth harmonic number. If additional
matching techniques are applied to obtain a stronger optimality condition (“matching-
optimality”), then

|U |/|F | ≤ H(m)− 1/6;
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see Theorem 3.9(b).

Theorem 3.10(a) shows that the t-optimality of a solution U guarantees that

|U |/|F | ≤ m/2 + εm(t),

where again εm(t) is given explicitly and tends to 0 exponentially fast. If, finally, the
solution is matching-optimal and (what will be defined later) effect-3-t-optimal for
t ≥ 5, then

|U |/|F | ≤ H(m)− 1/3;

see Theorem 3.10(c). That is, for m = 3, 4, 5 the bounds are 3
2 ,

7
4 , and

39
20 .

Note that in the case of single coverings, there is a slightly better bound for a
certain semi-local search algorithm due to Duh and Fürer [2]. If their approach could
be extended to [BOF] it would read |U |/|F | ≤ H(m)− 1/2. However, currently it is
not known whether such an extension is possible.

Let us close this section with two remarks. First, all our results are formulated
within the realm of discrete tomography due to its main objective. It goes without
saying that the theoretical performance ratios apply also to more general multiple
packing and multiple covering problems. Second, as already pointed out in the in-
troduction, our analysis makes substantial use of ideas of Hurkens and Schrijver [12],
Goldschmidt, Hochbaum, and Yu [8], and Halldórsson [11] for set packing and set
covering heuristics. There may be a way to axiomize how to extend results for simple
packings and coverings to more general settings including our discrete tomography to
evoke some of their results directly. In general, however, multiple packing and mul-
tiple covering appear to be harder: general reductions to single packing or covering
problems are not known and not likely to exist. For this reason (and as a service to
the reader) we give a full direct analysis of each of the considered algorithms.

3. Worst-case performance guarantees for iterative improvement
algorithms.

3.1. Effects. Let V ⊂ G and g ∈ G \V . The effect eV (g) of g with respect to V
is the number of lines g+Si through g for which the X-ray bound is not yet achieved
by V , i.e.,

eV (g) = |{i ∈ {1, . . . ,m} : XSiV (g + Si) < φi(g + Si)}|.

Clearly, the effect of a point is an integer between 0 and m. The notion can easily be
extended to subsets of G \ V . More precisely, let V ′ ⊂ G \ V ; then the effect eV (V

′)
of V ′ with respect to V is defined by

eV (V
′) =

m∑
i=1

∑
T∈Ti

eV,V ′,i(T ),

where

eV,V ′,i(T ) =



|V ′ ∩ T | if |(V ∪ V ′) ∩ T | ≤ φi(T );
φi(T )− |V ∩ T | if |V ∩ T | < φi(T ) and |(V ∪ V ′) ∩ T | ≥ φi(T );
0 if |V ∩ T | ≥ φi(T ).
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Clearly, eV (g) = eV ({g}); also eV (V ′) lends itself to a successive evaluation. In fact,
if V ′ = {g1, . . . , gl},

eV (V
′) =

l∑
i=1

eV ∪{g1,...,gi−1}(gi).

Furthermore,

e =
m∑
i=1

∑
T∈Ti

φi(T )

is called the total effect of the given instance. Clearly, if L and U are feasible for the
given instance of [BIF] and [BOF], respectively, then m|L| ≤ e ≤ m|U |. In particular,
if F is an exact solution of Reconstruction(S1, . . . , Sm), then e = m|F |.
3.2. Inner approximation algorithms. The following result gives worst-case

performance guarantees for a wide class of primal algorithms for [BIF] that fit into
Paradigm 2.1. In particular, all algorithms of section 4 are covered.

Theorem 3.1. Let t ∈ N0, let V be t-optimal for a given instance of [BIF], and
let F be an optimal solution for that instance. Then

|V |
|F | ≥

2

m
− εm(t),

where

εm(t) =




m− 2

m((m− 1)s+1 − 1)
if t = 2s;

2(m− 2)

m(m(m− 1)s − 2)
if t = 2s− 1.

Observe that εm(t) → 0 as t → ∞. To give an impression of how t enters the
bound on the right-hand side of Theorem 3.1, we point out that for t = 0, . . . , 5 the
values of 2/m − εm(t) are 1

3 ,
1
2 ,

5
9 ,

3
5 ,

13
21 ,

7
11 when m = 3 and 1

4 ,
2
5 ,

7
16 ,

8
17 ,

25
52 ,

26
53

when m = 4.
For the proof of the case t > 0 of Theorem 3.1 we need the following combinatorial

result of Hurkens and Schrijver [12, Theorem 1].
Proposition 3.2 (Hurkens and Schrijver). Let p, q ∈ N, let V be a set of size

q, and let E1, . . . , Ep be subsets of V. Furthermore, let m, t ∈ N with m ≥ 3 such that
the following hold:

(i) Each element of V is contained in at most m of the sets E1, . . . , Ep.
(ii) For any r ≤ t, any r of the sets among E1, . . . , Ep cover at least r elements

of V .
Then

p

q
≤



m(m− 1)s −m
2(m− 1)s −m if t = 2s− 1;

m(m− 1)s − 2

2(m− 1)s − 2
if t = 2s.

It is convenient to regard V and E = {E1, . . . , Ep} as a hypergraph (V, E). It is
clear that under the hypothesis of (i) and (ii) there is some bound on the quotient
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p/q. The bounds given in Proposition 3.2, however, are not that obvious and were
proved by a quite involved induction. (In addition, [12] shows that these bounds are
tight.)

Let us point out that Hurkens and Schrijver [12] apply Proposition 3.2 to derive
bounds for the approximation error of certain set packing heuristics, while in [11]
Halldórsson utilizes it for set covering. Our subsequent analysis is based on the ideas
of these papers.

Proof of Theorem 3.1. For a direct proof of the case t = 0, note that the effect of
V has to be at least |F | since otherwise the effect of F \V with respect to V would be
greater than (m− 1)|F |. In this case some point of F would have effect m and could
hence be added to V without violating the constraints of [BIF], in contradiction to
the assumption. Since the effect of V is exactly m|V |, the result follows.

Turning now to the general result, we note first that it suffices to give a proof
under the additional assumption that V ∩ F = ∅. The general case then follows via a
reduction of the data functions by the X-rays of V ∩ F with the aid of the inequality

|V |
|F | ≥

|V | − |V ∩ F |
|F | − |V ∩ F | for |V | < |F |.

We define a hypergraph H = (V, E) on the vertex set V with exactly |F | hyper-
edges (one for each element of F ) that satisfies the conditions (i) and (ii) of Proposi-
tion 3.2. Let F = {f1, . . . , fp} and V = {v1, . . . , vq}. The family E of hyperedges is
defined by associating to each k = 1, . . . , p with fk ∈ F a set Ek ⊂ V which encodes
the conflicts which the insertion of fk would cause with respect to {f1, . . . , fk−1} and
V .

For each line T ∈ T define a map ιT : F ∩ T �→ (F ∪ V ) ∩ T. Let F ∩ T =
{fi1 , fi2 , . . . , fia} and V ∩ T = {vj1 , vj2 , . . . , vjb}.

Let k = |F ∩ T | − |V ∩ T |. If k ≤ 0, we set ιT (fil) = vjl . If k > 0, let

ιT (fil) =

{
fjl : for l ≤ k and
vil−k

: otherwise.

Now we define the improvement set Ef for a given f ∈ F by

Ef = {ιT (f) : T � f} ∩ V.
We show that the assumptions of Proposition 3.2 are satisfied for t′ = t + 1. To

verify (i) recall that a point v ∈ V lies in a set Ef if and only if there is a line Tv with
ιTv (f) = v. This can happen only once for each line through v; hence v is contained
in at most m different sets Ef .

Next, we show thatH has property (ii) of Proposition 3.2. Assume on the contrary
that there are sets Ek1 , . . . , Ekr+1 that cover at most r elements of V for some r ≤ t.
(Here we write Eki for Efki

to avoid triple indices.) By choosing r to be minimal with
this property, we can assume that Ek1 , . . . , Ekr+1 cover exactly r elements of V .

Let us consider the set

S =
(
V \ (Ek1 ∪ · · · ∪Ekr+1)

) ∪ {fk1 , . . . , fkr+1}.
We show that the set S is feasible for the given instance of [BIF]. Let T ∈ T . If
|F ∩ T | ≤ |V ∩ T |, we have

|S ∩ T | ≤ |V ∩ T | ≤ φ(T ).
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Fig. 1. The greedy bound is tight. (Grey points belong to F ; the black point constitutes V .)

On the other hand, |F ∩ T | > |V ∩ T | yields

|S ∩ T | ≤ |F ∩ T | ≤ φ(T ).

(The latter inequalities |V ∩ T | ≤ φ(T ) and |F ∩ T | ≤ φ(T ) follow from the fact that
both V and F are feasible solutions.) This shows that S is indeed feasible for the
given instance of [BIF].

Since S is obtained from V by deleting the r elements of Ek1 ∪ · · · ∪ Ekr+1 and
inserting the r+1 elements {fk1 , . . . , fkr+1}, S facilitates an r-improvement, which is
a contradiction to the assumption of t-optimality of V.

Summarizing, we have seen that (i) and (ii) of Proposition 3.2 hold for H and
t′ = t+ 1, and we obtain

p

q
=
|F |
|V | ≤




m(m− 1)s −m
2(m− 1)s −m : t+ 1 = 2s− 1,

m(m− 1)s − 2

2(m− 1)s − 2
: t+ 1 = 2s.

Hence

|V |
|F | =

2

m
−
(

2

m
− |V ||F |

)
≥ 2

m
− εm(t)

which yields the assertion.
Deterministic polynomial-time algorithms that meet the requirements of Theo-

rem 3.1 include the greedy algorithm (for t = 0), or any other algorithm, according to
Paradigm 2.1. In case that t-optimality is guaranteed for some t ∈ N0 when the algo-
rithm stops, the results, however, also extend to techniques like simulated annealing
where, with some probability, changes are allowed that replace a current feasible set
by an inferior one.

The following examples show that the bounds given in Theorem 3.1 are tight in
the worst case already in the most basic situations.

Example 3.3. Let m ≥ 3 and let u1, . . . , um ∈ Z
d be m pairwise different

lattice directions in E
d. Let F = {ν1u1, . . . , νmum} ⊂ Z

d for some scaling factors
ν1, . . . , νm ∈ Z \ {0}. The X-rays of F in the directions u1, . . . , um are taken as data
functions for an instance of [BIF]. If the factors νi are chosen so that G = F ∪ {0},
then V = {0} is a greedy-optimal solution for [BIF]. Of course |V |

|F | =
1
m ; see Figure 1.
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◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ ◦

Fig. 2. The 1-optimality bound is tight for three directions. (Black points denote F in the left
picture and V in the right picture.)
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Fig. 3. The 1-optimality bound is tight for four directions. (Black points denote F in the left
picture and V in the right picture.)
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◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

Fig. 4. The 1-optimality bound is tight for five directions. (Black points denote F in the left
picture and V in the right picture.)

Example 3.4. Let m = 3 and let u1, u2, u3 ∈ Z
2 be the directions (1, 0), (0, 1),

(1, 1). The X-rays of F = {(0, 1), (1, 1), (2, 2), (3, 2)} in the directions u1, u2, u3 are
taken as data functions for an instance of [BIF]. Then V = {(1, 2), (2, 1)} is 1-optimal

and |V |
|F | =

1
2 = 2

3 − ε3(1); see Figure 2.

Example 3.5. Let m = 4 and let u1, u2, u3, u4 ∈ Z
2 be the directions (1, 0), (0, 1),

(1, 1), (1, 2). The X-rays of F = {(0, 0), (1, 5), (3, 4), (4, 3), (5, 3)} in the directions
u1, u2, u3, u4 are taken as data functions for an instance of [BIF]. Then V = {(1, 0),
(5, 5)} is 1-optimal and |V |

|F | =
2
5 = 2

4 − ε4(1); see Figure 3.

Example 3.6. Let m = 5 and let u1, . . . , u5 ∈ Z
2 be the directions (1, 0), (0, 1),

(1, 1), (1, 2), (2, 1). The X-rays of F = {(0, 0), (0, 3), (1, 3), (2, 5), (4, 3), (5, 4)} in the
directions u1, . . . , u5 are taken as data functions for an instance of [BIF]. Then V =

{(2, 4), (5, 5)} is 1-optimal and |V |
|F | =

1
3 = 2

5 − ε5(1); see Figure 4.

Clearly, there are smarter ways to insert points into the grid than by just greedily
putting one in when it fits. A more natural strategy is, for example, to apply a back-
projection technique, where each candidate point gets a weight based on the X-ray
values of all lines through this point. A typical example is given in Algorithm 3.7
below. In this algorithm, a specific direction S1 is chosen, which dictates the order in
which candidate points are considered for insertion into the set of points L that will
eventually form V and the set of holes E (that is disjoint from V ). For a fixed line
T parallel to S1, each point g on T gets a weight which depends on the number of
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points still to be inserted and on the number of candidate points still available on the
lines g+Si for i ≥ 2; cf. step 2.1 of Algorithm 3.7. The corresponding ratio is a value
in [0, 1]. A value of 0 for a line g + Si indicates that the point g cannot be inserted
into L and a value of 1 indicates that the point must be inserted into L. Therefore,
the product over all m−1 other lines is a natural indicator for comparing the relative
importance of the points on line T .

Algorithm 3.7 (weighted greedy strategy).
• INPUT: Data functions φ1, . . . , φm for the given lines S1, . . . , Sm.
• OUTPUT: A set L ⊂ G feasible for the given instance of [BIF].
• COMPUTATION:

1. Initialize L = E = ∅ and choose a specific direction, say S1.
2. For all T ∈ T1 do:

2.1. For all g ∈ G ∩ T determine

wg =

m∏
i=2

φi(g + Si)− |(g + Si) ∩ L|
|(G \ (L ∪ E)) ∩ (g + Si)| .

2.2. Sort G ∩ T according to decreasing weights wg, g ∈ G ∩ T , and add
the

min{φ1(g + S1), |{g ∈ G ∩ T : wg > 0}|}
first elements of G ∩ T to L and the remaining ones to E.

It is a well-known result, and already known by Lorentz [14], that a similar strat-
egy (with a proper ordering of the lines) leads to an exact algorithm for m = 2 direc-
tions for consistent instances in the plane; cf. [16]. This suggests that Algorithm 3.7
might be substantially better for arbitrary m than the pure greedy algorithm, an
expectation that is confirmed by the experiments stated in section 4.

Let us point out that the solutions produced by the variant of Algorithm 3.7 that
is obtained by replacing the weights wg by

w′
g =

m∏
i=1

φi(g + Si)− |(g + Si) ∩ L|
|(G \ (L ∪ E)) ∩ (g + Si)|

coincide with the solutions produced by Algorithm 3.7. In fact, while w′
g usually differs

from wg, the order of points on a line in direction S1 produced by these weights are
the same.

3.3. Greedy-type insertion for outer approximation. By changing the
stopping rule in Paradigm 2.1, an algorithm for solving [BIF] can be extended to
an algorithm for solving [BOF]. Instead of inserting points into a set U ⊂ G only as
long as all constraints of [BIF] are satisfied, such an algorithm inserts points until the
constraints of [BOF] are satisfied for the first time. As one would never insert a point
into the set U that has effect 0, any such heuristic approximates [BOF] by a factor of
at most m. This seems to be the dual result to Theorem 3.1 for the case t = 0 but it
is not since the final set U is not 0-optimal in general.

Algorithm 3.8 (greedy insertion strategy for [BOF]).
• INPUT: Data functions φ1, . . . , φm for the given lines S1, . . . , Sm.
• OUTPUT: A set U ⊂ G feasible for the given instance of [BOF].
• COMPUTATION:

1. Initialize U = ∅ and l = m.
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2. Repeat the following step until l = 0:
2.1. Add points of effect l to U as long as such points exist.
2.2. Decrease l by 1.

In what follows it will often be necessary to regard the points of U as ordered.
This underlying order will always be the point insertion order produced by Algorithm
3.8.

The performance guarantees given in the next theorem are derived by a careful
analysis of the m iterations of step 2.1 in Algorithm 3.8. Further, an additional
slight refinement of the algorithm is analyzed. This refinement consists of a combined
treatment of points of effects 1 and 2 by means of matching techniques. More precisely,
for l = 1, . . . ,m let Ul ⊂ U be the set of points constructed for the parameter l in
step 2.1. Then, in the modified version, Um, . . . , U1 are first constructed by step 2 of
Algorithm 3.8 and, subsequently, the following computation is appended as step 3 in
order to decrease |U1 ∪ U2|.

3. Repeat the following procedure until no further improvements occur:
3.1. Define a graph (V,E) on the vertex set V = ∪mi=1Ti of all lines as follows:

For a vertex v ∈ Ti, 1 ≤ i ≤ m, define the degree

bv = max{0, φi(v)−XSi(U3 ∪ · · · ∪ Um)(v)}.

The edges E are given by means of the set G′ = G \ (U3 ∪ · · · ∪ Um)
in the following way: For g ∈ G′ let eg = {v ∈ V : g ∈ v and bv > 0}.
(Note that |eg| ≤ 2 since there are no points of effect at least 3 left
in G′.) Now construct a minimum b-edge-cover M for (V,E) and set
U1,2 = {g ∈ G′ : eg ∈M} and U = U1,2 ∪ U3 ∪ · · · ∪ Um.

Algorithm 3.8 can be implemented so as to have a polynomial running time.
Using, e.g., Gabow and Tarjan’s [4] weighted perfect matching algorithm to solve the
capacitated b-matching problem and the b-edge cover problem, step 3.1 can also be
carried out in polynomial time. A feasible set U (together with an insertion order)
which does not allow any further improvements by means of the procedure in step 3.1
is called matching-optimal (with respect to that order). Note that the iteration of step
3 terminates in one step, since after one call upon 3.1 no further improvements are
possible. This will be different after another refinement of Algorithm 3.8 is appended
as step 3.2 in subsection 3.4.

Theorem 3.9. Let U be a set of points constructed by Algorithm 3.8 and let F
be any feasible solution for [BOF].

(a) Then

|U |
|F | ≤ 1 +

1

2
+ · · ·+ 1

m
= H(m) < 1 + log(m).

(b) If U is matching-optimal, e.g., constructed by Algorithm 3.8 extended by step
3, then

|U |
|F | ≤

5

6
+

1

2
+ · · ·+ 1

m
= H(m)− 1

6
<

5

6
+ log(m).

The bounds for |U |/|F | in Theorem 3.9(a) are 11
6 ,

25
12 ,

137
60 for m = 3, 4, 5, respec-

tively. In (b) they are 5
3 ,

23
12 ,

127
60 .

Proof of Theorem 3.9. (a) Let Ul be again the set of points inserted in step
2.1 of Algorithm 3.8 for parameter l, i.e., the points which yield an effect of l upon



APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 535

insertion, and let ul be the cardinality of Ul. The effect el of U1∪· · ·∪Ul with respect
to Ul+1, . . . , Um is given by el = u1 + 2u2 + · · · + lul. On the other hand, we show
that el is bounded from above by l|F | for some l.

To this end, let e be the total effect to be attained and suppose to the contrary
that el > l|F |. Consider the set F ′ = F \ (Ul+1 ∪ · · · ∪ Um). The union of F ′ and
Ul+1∪· · ·∪Um contains F , which is feasible for the given instance of [BOF], and thus
has effect e. Therefore, the effect of F ′ with respect to Ul+1 ∪ · · · ∪ Um is exactly el
and hence, by our assumption, greater than l|F |. Since |F ′| ≤ |F |, this implies by
the pigeonhole principle that there is at least one point g ∈ F ′ with effect at least
l + 1. This, however, means that the algorithm would have chosen g rather than
some point in U1 ∪ · · · ∪Ul since all these points have effect at most l with respect to
Ul+1 ∪ · · · ∪ Um, a contradiction. Thus

el = u1 + 2u2 + · · ·+ lul ≤ l|F |(5)

for l = 1, . . . ,m. Denoting the inequality (5) for parameter l ∈ {1, . . . ,m} by Il we
consider the positive linear combination

1

m
Im +

m−1∑
l=1

1

l(l + 1)
Il(6)

of I1, . . . , Im. Collecting the terms on the left and on the right of (6) we obtain

m∑
i=1

ui ≤ |F |+
m−1∑
l=1

1

l + 1
|F |,

which is equivalent to the assertion in (a).

The proof of (b) uses the same arguments as that of (a) with the difference that
appending step 3.1 to Algorithm 3.8 allows us to improve inequality I2 to u1+u2 ≤ |F |
(instead of u1 + 2u2 ≤ 2|F |).

To prove the new inequality, note that the subset U1,2 of G′ is determined in
step 3.1 as a minimum b-edge-cover of (V,E). By construction it follows that U =
U1,2 ∪ U3 ∪ · · · ∪ Um is feasible for the given instance of [BOF]. Moreover, with F ′ =
F \ (U3 ∪ · · · ∪ Um) the set {eg : g ∈ F ′} is also a b-edge-cover of (V,E). Since U1,2

is the disjoint union of (the new sets) U1 and U2 and is a minimum b-edge-cover, it
follows that

|U1,2| = u1 + u2 ≤ |F ′| ≤ |F |.(7)

With this inequality (instead of inequality I2) we are led to consider a positive linear
combination of type (6) with the coefficient 1/2 of I1 replaced by 1/3. This reduces
the contribution of I1 to the coefficient of F on the right-hand side by 1/6. Since the
other factors remain unchanged, the bound of (b) follows.

3.4. Outer approximation via r-improvements. The aim of this subsection
is to analyze an additional refinement of Algorithm 3.8 by means of r-improvements.
The first step on the way to improved bounds is to study the impact of r-improvements
separately (Theorem 3.10(a)). Afterwards, the additional gain of r-improvements ap-
plied to a matching-optimal configuration is considered by appending to Algorithm 3.8
the following step 3.2 for some (fixed) t ∈ N0.
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3.2. Apply all r-improvements for r ≤ t to U1 ∪ U2 ∪ U3 that decrease U
without destroying its feasibility.

Note that the notation U1, U2, U3 refers to the updated sets that are produced in
the course of the algorithm. As in this variant r-improvements are applied only to
the set U1 ∪ U2 ∪ U3, the resulting algorithm is faster than a general r-improvement
algorithm.

Clearly, since t ∈ N is a fixed parameter, step 3.2 can be performed in polynomial
time. A trivial upper bound for the running time is O(|G|2t+2). The geometry of
discrete tomography, however, allows us to significantly reduce this bound for many
values of t. The reason is that we do not need to consider all pairs of t- and t+1-subsets
of U1 ∪ U2 ∪ U3 but only those which satisfy certain compatibility conditions.

A set U ⊂ G (together with an insertion order) is called effect-3-t-optimal (with
respect to this order), if it cannot be decreased by the procedure of step 3.2 above,
i.e., by any r-improvement, on the points of effects 1, 2, and 3.

Theorem 3.10. Let F be a minimum solution for a given instance of [BOF] and
let t ∈ N0.

(a) Let U be t-optimal for that instance; then

|U |
|F | ≤

m

2
+ εm(t) , where εm(t) =




m(m− 2)

4(m− 1)s+1 − 2m
: if t = 2s;

(m− 2)

2(m− 1)s − 2
: if t = 2s− 1.

(b) Let m = 3 and t = 2s+ 1, s ∈ N. Furthermore, assume that U is matching-
optimal and t-optimal (that is, effect-3-t-optimal); then

|U |
|F | ≤

7

5
+ ε′(t) , where ε′(t) =




6

25 · 2r+1 − 15
: if s = 2r − 1;

2

5(5 · 2r − 1)
: if s = 2r.

(c) Let t ≥ 5 and let U be matching-optimal and effect-3-t-optimal; then

|U |
|F | ≤

2

3
+

1

2
+ · · ·+ 1

m
<

2

3
+ log(m).

The values of m/2 + εm(t) in Theorem 3.10(a) for m = 3 and t = 0, . . . , 5 are
3, 2, 9

5 ,
5
3 ,

21
13 ,

11
7 and for m = 4 they are 4, 5

2 ,
16
7 ,

17
8 ,

52
25 ,

53
26 . The values of 7/5+ε

′(t) for
t = 3, 5, 7, 9, 11 in (b) are 11

7 ,
3
2 ,

25
17 ,

13
9 ,

53
37 . Note that εm(t), ε′m(t) → 0 for t → ∞ for

all m ≥ 3. The upper bound for |U |/|F | in (c) is 3
2 ,

7
4 ,

39
20 for m = 3, 4, 5, respectively.

Proof of Theorem 3.10. (a) is proved by defining a hypergraph H = (V, E) on
the vertex set V = F with edges defined for each g ∈ U that satisfies (i) and (ii) of
Proposition 3.2. As in the proof of Theorem 3.1, it suffices to prove the result for
U ∩F = ∅. Again, we define a map ιT : U ∩T �→ (U ∪F )∩T . This time ιT (u) encodes
the information which point on T is added to compensate the deletion of u. For each
line T ∈ T let U ∩ T = {ui1 , ui2 , . . . , uia} and F ∩ T = {fj1 , fj2 , . . . , fjb}.

If |F ∩T | ≥ |U ∩T | we set ιT (uil) = fjl for l = 1, 2, . . . , a. If |F ∩T | < |U ∩T | let

ιT (uil) =

{
fjl : for l ≤ |F ∩ T | and
uil : otherwise.
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Now we define the “improvement sets” Eu for a given u ∈ U by

Eu = {ιT (u) : T � u} ∩ F.
As in the proof of Theorem 3.1, the number m of directions gives the bound in (i)
and the t-optimality implies condition (ii) of Proposition 3.2 for t′ = t + 1. Thus
Proposition 3.2 can be applied, and the bound given in (a) follows.

In order to prove (b), let U = U1 ∪ U2 ∪ U3 be a partition of U into subsets of
points of effect 1, 2, and 3, respectively. As each point u of U1 has effect 1 we can
associate with it the line T (u) to which it contributes. For T ∈ T let

UT = {u ∈ U1 ∩ T : T = T (u)}.
Since |UT | ≤ φ(T ) ≤ |F ∩ T | for T ∈ T we can define an injection κT : UT �→ F ∩ T .
Now U1 =

⋃
T∈T UT , and let κ : U1 �→ F be the map induced by the injections κT .

We show that κ is injective. In fact, if there were u1, u2 ∈ U1 with κ(u1) = κ(u2),
then T (u1) �= T (u2), whence

(U \ {u1, u2}) ∪ {κ(u1)}
was feasible for the given instance of [BOF] contradicting the 1-optimality of U . It
follows that

|U1| = |F1|,(8)

where F1 = κ(U1).
For the set of remaining points F0 = F \ F1, we use the fact that there is no

r-improvement for U for any r ≤ 2s+ 1 in order to show

|U2|+ |U3| ≤
(
3

2
+ ε3(s− 1)

)
|F0|.(9)

To this end, let us first define the reduced X-ray functions

γi(T ) = min{φi(T ), XSiF0(T )} for T ∈ Ti and i = 1, 2, 3,

set U2,3 = U2 ∪ U3, and note that U2,3 is feasible for the instance I = {γ1, γ2, γ3}
of [BOF]. Next we define a hypergraph H = (F0, E) with |U2,3| edges, again with
the aid of maps ιT for T ∈ T . This time ιT : U2,3 ∩ T �→ (U2,3 ∪ F0) ∩ T , and
ιT (u) encodes the information which point on T is added to compensate for the
deletion of u in the reduced problem. Let T ∈ T and U2,3 ∩ T = {ui1 , ui2 , . . . , uia},
F0 ∩ T = {fj1 , fj2 , . . . , fjb}.

If |F0∩T | ≥ |U2,3∩T |, we set ιT (uil) = fjl for l = 1, 2, . . . , a. If |F0∩T | < |U2,3∩T |,
let

ιT (uil) =

{
fjl : for l ≤ |F0 ∩ T | and
uil : otherwise.

Now we define the “improvement sets” Eu for a given u ∈ U2,3 by

Eu = {ιT (u) : T � u} ∩ F0.

To obtain (9), we want to apply Proposition 3.2 to H. Clearly, condition (i)
of Proposition 3.2 holds with m = 3. Next we show that condition (ii) holds with
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parameter s. Assume on the contrary that there are l + 1 sets Eui1
, . . . , Euil+1

, with

l + 1 ≤ s, that cover only l elements f1, . . . , fl ∈ F0, and let l be minimal with this
property.

Let Û = {ui1 , . . . , uil+1
}, F̂ = {f1, . . . , fl} and set S = (U2,3 \ Û) ∪ F̂ . Of course,

S results from U2,3 via an l-improvement. Let eU2,3\Û (Û) 〈eU2,3\Û (F̂ )〉 denote the

effect of Û 〈F̂ 〉, with respect to U2,3 \ Û and the original data (φ), and let ē be the
corresponding effect-function for the reduced data (γ). We show that

eU2,3\Û (Û) ≤ eU2,3\Û (F̂ ) + l + 3.(10)

Of course, eU2,3\Û (Û) ≤ 3l+3 and, since S is feasible for I, ēU2,3\Û (Û) = ēU2,3\Û (F̂ ).

Further, it follows from the minimality of l that ēU2,3\Û (Û) ≥ 2l. In fact, if ēU2,3\Û (Û)

≤ 2l − 1, then there must exist an f ∈ F̂ of effect 1 with respect to U2,3 \ Û and the
reduced data; hence

(U2,3 \ (Û \ {uf}) ∪ (F̂ \ {f}),

where uf is an element of Û on the line T that carries the effect of f , would constitute
an (l − 1)-improvement. This contradiction implies that

eU2,3\Û (F̂ ) + l + 3 ≥ ēU2,3\Û (F̂ ) + l + 3 = ēU2,3\Û (Û) + l + 3 ≥ 3(l + 1),

as claimed.
Next we want to lift the l-improvement for U2 ∪ U3 to an r-improvement for

U1∪U2∪U3 with r ≤ 2l. From (10) we know that e∅(((U1 ∪ U2,3)\Û)∪F̂ ) ≥ e−(l+3).
Hence, it suffices to add at most l+3 suitable elements {g1, g2, . . . , gl′} of F1 to ensure
that (

(U1 ∪ U2,3) \ Û
)
∪
(
F̂ ∪ {g1, g2, . . . , gl′}

)
is feasible. Furthermore, the points κ−1(g1), . . . , κ

−1(gl) can be deleted from U1 with-
out destroying feasibility; i.e.,(

(U1 ∪ U2,3)
∖(
Û ∪ {h1, h2, . . . , hl′}

))
∪
(
F̂ ∪ {g1, g2, . . . , gl′}

)
is feasible for the (original) data (φ). Let r = l + l′; then r ≤ 2l + 3 ≤ 2s + 1 = t.
Hence, the existence of this lifted r-improvement contradicts the t-optimality of U .
So, property (ii) holds, Proposition 3.2 can be applied, and (9) follows.

In order to derive the bound of (b), inequality (8), matching-optimality (i.e.,
inequality (7)), and the bound 3|F | on the total effect of U are combined to obtain

3|U | = |U1|+ (|U1|+ |U2|)︸ ︷︷ ︸
≤|F |

+(|U1|+ 2|U2|+ 3|U3|)︸ ︷︷ ︸
≤3|F |

≤ |F1|+ 4|F |.(11)

Furthermore, inequality (9) implies

|U | = |U1|+ (|U2|+ |U3|) ≤ |F1|+
(
3

2
+ ε3(s− 1)

)
|F0|.(12)
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Multiplying (11) with 1
2 + ε3(s−1), adding (12), and using |F0|+ |F1| = |F | then give

(
5

2
+ 3ε3(s− 1)

)
|U | ≤

(
7

2
+ 5ε3(s)

)
|F |,

which implies assertion (b).

Note that the proof provides a result that is slightly stronger than assertion (b). In
fact, the argument does not use the assumption m = 3 “globally” but only “locally.”
More precisely, let m ≥ 3, s ∈ N, t = 2s + 1, and let U be matching-optimal and
effect-3-t-optimal. Then

|U1| = |F1| and
|U1|+ |U2|+ |U3| ≤ |F |+ ( 1

2 + ε3(s− 1)
) |F0|.(13)

Finally, we turn to assertion (c). First, we form the positive linear combination

1

m
Im +

m−1∑
l=4

1

l(l + 1)
Il

of the inequalities (5) derived in the proof of Theorem 3.9. Collecting terms for
U1, . . . , Um yields

1

4
|U1|+ 2

4
|U2|+ 3

4
|U3|+ |U4|+ · · ·+ |Um| ≤

(
1 +

1

5
+ · · ·+ 1

m

)
|F |.

Thus it remains to show that

3

4
|U1|+ 2

4
|U2|+ 1

4
|U3| ≤ 3

4
|F |.

Since 5 ≤ t = 2s+ 1, we can apply (13) for s = 2. This yields

2|U1|+ |U2|+ |U3| ≤ 2|F |.

Matching-optimality implies again

|U1|+ |U2| ≤ |F |,

whence addition of these inequalities gives

3|U1|+ 2|U2|+ |U3| ≤ 3|F |.

This concludes the proof of Theorem 3.10.

4. Computational results. In this section we report on computational results
for implementations of the different algorithms outlined in the previous sections.

4.1. Description of the implementations. We implemented six different al-
gorithms for [BIF]. The first algorithm (GreedyA) is the plain greedy algorithm (see
Figure 5) which considers all positions in a random order and tries to place atoms
at these positions. The second algorithm (GreedyB) is a variant of the line following
greedy algorithm, Algorithm 3.7 (Figure 6). The algorithm chooses a direction with
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procedure GreedyA
Calculate a random permutation of all points
For each point in the order of this permutation do

Check whether any line passing through this point is saturated
If no line is saturated then

Add the point to the solution set
Update the sums of the lines passing through this point

Fig. 5. The plain greedy solver.

maximal support |Ti|. Suppose—in accordance with the notation in Algorithm 3.7—
that i = 1. The lines T ∈ T1 are then considered with respect to decreasing line-weights

φ1(T )/|G ∩ T |.

The algorithm usually performs quite well. However, if one regards the “en block”
point insertion procedure successively, i.e., as a point-by-point insertion, then the
adapted line-weights change and at some point—possibly long before the last point
of the block has been inserted—another line might be more profitable. This idea
is pursued in a third greedy algorithm (GreedyC) which changes the weights of all
lines and uninspected points after a new point is placed; see Figure 7. The initial
problem is, of course, that after each insertion a complete search for the next position
of maximum weight is necessary. This increases the computation times dramatically.
A good data structure for keeping the points (partially) ordered according to their
weights is a heap. After a point insertion, it suffices to update the weights of points
on lines through the new point. While a heap can perform this quite efficiently, this
procedure is still pretty time consuming since the weights of points change frequently,
without the element even being close to the top of the heap. We decided therefore to
use a lazy-update. For this we take the top element of the heap and recompute its
weight. Then we compare its stored weight with its actual weight (they might differ
due to recent insertions). If the weights are equal, this is still the top element of the
heap, and we can try to insert it. If the weights differ, the candidate point gets the
new weight and the heap needs to be restructured. After the restructuring we start
again with the (new) top element.

The last type of algorithm is the 1-improvement algorithm according to Paradigm
2.1. We tried three different variants (ImprovementA, ImprovementB, ImprovementC)
depending on the greedy algorithm (GreedyA, GreedyB, GreedyC) used first; see Fig-
ure 8 As the 1-improvement algorithm already needs 22 minutes on average for some
instances and the results are very good, we did not implement higher improvement
algorithms (like 2-improvement, etc.).

4.2. Performance of the implemented algorithms. In this subsection we
report on different experiments we conducted with the algorithms described in the
previous section. We performed several tests for problems of size 20×20 to 500×500,
with 2 to 5 directions and of density between 10% and 90%. After analyzing the
different experiments, we observed that the experiments with varying numbers of
directions, but a fixed density of 50%, are most representative and the other series
behave similarly. (For more data on the computational performance of the evaluated
heuristics for other densities of 1%, 5%, and 20% see de Vries [19].)

Even though our program can solve problems in three dimensions and on arbitrary
crystal-lattices, we decided to present here only results for 2-dimensional problems on
the square lattice, as in the physical application all directions belong to a single plane
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procedure GreedyB
Determine a direction with maximal support
Sort the lines parallel to that direction by descending line-weights
For each of these lines (T ) in this order do

For each point on T do
Calculate its weight (the product of the line-weights)

Sort the points on T with respect to descending weights
For each point in this order do

Check whether any line passing through this point is saturated
If no line is saturated then

Add the point to the solution set
Update the sums of the lines passing through this point

Fig. 6. The line following greedy solver.

procedure GreedyC
For each point do

Calculate the weight of the point (the product of the relative line capacities)
and insert it into the heap

While there are still points in the heap do
Find the maximum weight and a corresponding point and remove it from the heap
Check whether any line passing through this point is saturated
If no line is saturated then

Add the point to the solution set
Update the sums of the lines passing through this point

Fig. 7. The dynamically reordering greedy solver.

(therefore the problem can be solved in a slice-by-slice manner); furthermore, this
restriction should facilitate the comparison with other, less general codes currently
under development by various research groups.

Whenever we report either running-times or performances, we report the average
of 100 randomly generated instances. We decided to use random instances for two
reasons. The first reason is that we still lack sufficient experimental data from the
physicists. On the other hand, it is typically easy to detect and then eliminate invari-
ant points, i.e., points that either must belong to every solution or do not belong to
any solution. Since the invariant points carry much of the physical a priori knowledge,
the reduced problem tends to be quite unstructured.

To obtain a random configuration of prescribed density, we generate a random
permutation of the positions of the candidate grid and then place atoms in this order
until the described density is reached. After calculating the lines and their sums we
discard the configuration itself. Then we preprocessed the problem by calculating the
incidence tables, which are necessary for all algorithms. The running-times we report
were obtained on an SGI Origin 200 computer with four MIPS R10000 processors at
225MHz with 1GB of main memory and by running three test programs at the same
time.

Note that all instances are consistent. There are two reasons for this. First,
for inconsistent problems we need the exact solution to evaluate the performance of
the heuristics. But for the relevant dimensions there are at present no algorithms
available that produce exact solutions in reasonable time. The second reason is that
the true nature of the error distribution for the real physical objects has not yet been
experimentally determined by the physicists. So it is not clear how to perturb an
exact instance to obtain inconsistent problems in a physically reasonable manner.

The performance plotted in Figure 9 is the quotient of the cardinality of the
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procedure Improvement[ABC]
Calculate a solution U according to GreedyA, GreedyB, or GreedyC
Repeat

For each point (p1) of the candidate grid do
If p1 ∈ U then continue with the next point
If no line passing through p1 is saturated then

Add p1 to U
Update the sums of the lines passing through p1
Continue with the next point

If more than one line passing through p1 is saturated then continue with the next point
For each point (p2) of U on the saturated line do

For each nonsaturated line (T1) through p1 do
Calculate the line (T2) parallel to T1 passing through p2
For each point (p3) on T2 not in U do

If the lines passing through p3 and
not containing p1 or p2 are nonsaturated and
the line passing through p3 and p1 (if existent)
has at least one point not in U then
Perform the improvement:

Remove p2 from U
Add p1 to U
Add p3 to U

Update the sums of all lines passing through p1, p2, or p3
Continue with the next point

Until no improvement was done in the last loop

Fig. 8. The improvement solvers.

approximate solution to that of an optimal solution. The closer it is to 1 the better
the result. It turns out that the larger the problems, the better every algorithm
performs in terms of relative errors (see Figure 9). Obviously, postprocessing the
output of some greedy algorithm with an improvement algorithm cannot decrease
the performance (usually it improves the performance). However, it turns out that
GreedyB outperforms ImprovementA (for four and five directions) and that GreedyC
performs better than ImprovementB (for five directions; for four directions they are
similar and for three directions ImprovementB is better).

The running-times for the algorithms GreedyA and GreedyB are less than 4 sec-
onds for all instances (of size up to 500×500). The application of the 1-improvements
to their results increases the running-time to up to 110 seconds.

The running-times of GreedyC and ImprovementC increase much faster than
those for the other algorithms. Still, they take only up to 1320 seconds. This is
long, but in fact these algorithms provide very close approximations, while presently
available exact algorithms seem incapable of solving 500× 500 problems in less than
a century. Furthermore, knowing a solution for a neighboring slice should speed up
the solution of the next slice by a good amount; so there is hope of solving even
500× 500× 500 real world problems in time that is acceptable in practice.

The better of the presented algorithms are so good that we also compare their
absolute errors (see Figure 10). As can be seen, the absolute error for ImprovementC
seems constant for three directions. (Of course, it follows from [5] that asymptotically
there must be a more than constant worst-case error unless P = NP.) For four and
five directions the absolute error appears to be O(

√|G|).
Another (practically) important issue is that of the distribution of errors among

different lines. For this we counted for 100 problems of size 500 × 500 how many
constraints were satisfied with equality, how many needed only one more point for
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Fig. 9. Relative performance for 3 (top), 4 (middle), and 5 (bottom) directions on instances of
50% density for GreedyA ( ), ImprovementA ( ), GreedyB ( ), ImprovementB ( ), GreedyC ( ),
and ImprovementC ( ). The abscissa depicts the number of variables in thousands at a quadratic
scale and the ordinate depicts the relative performance.

equality, and so on. Again, it turned out that the algorithms GreedyC and Improve-
mentC have the best error distribution. In particular, for GreedyC no line occurred
with error greater than 1 for 3 and 4 directions; for 5 directions the worst case was
1 instance with a single line of error 2. For ImprovementC the worst cases were 3
instances with one line of error 2 for 3 directions, for 4 directions 1 instance with a
single line of error 4, and for 5 directions 1 instance with a single line of error 5. Of
course, while 1-improvements never decrease the number of points placed, the varia-
tion of errors over the single lines may increase, as it may happen that in a number
of improvement steps atoms from the same line are removed.
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Fig. 10. Absolute error for 3 (top), 4 (middle), and 5 (bottom) directions on instances of 50%
density for GreedyA ( ), ImprovementA ( ), GreedyB ( ), ImprovementB ( ), GreedyC ( ), and
ImprovementC ( ). The abscissa depicts the number of variables in thousands at a quadratic scale
and the ordinate depicts the absolute error at a logarithmic scale.

For GreedyC only lines with error at most 2 occur, while for ImprovementC
a single instance with a line of error 5 came up. In contrast, GreedyA, GreedyB,
ImprovementA, and ImprovementB always have a couple of lines with a huge error (see
Figure 11). For instance, for GreedyA, ImprovementA, GreedyB, and ImprovementB
instances occurred with lines of error 67, 130, 109, and 66. These huge errors do seem
inappropriate in the physical application since it is more likely that many lines occur
with small error rather than with very large error.
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Fig. 11. Distribution of error for 100 instances with 5002 variables, density 50%, and 3 (.),
4 (◦), and 5 (×) directions. Depicted are: GreedyA (top left), ImprovementA (top right), GreedyB
(middle left), ImprovementB (middle right), GreedyC (bottom left), and ImprovementC (bottom
right). The abscissa depicts the absolute error on a line at a logarithmic scale and the ordinate
depicts the average number of lines with this error at a logarithmic scale.
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Abstract. We consider a general class of convex functions having what we call primal-dual
gradient structure. It includes finitely determined max-functions and maximum eigenvalue functions
as well as other infinitely defined max-functions. For a function in this class, we discuss a space
decomposition that allows us to identify a subspace on which the function appears to be smooth.
Moreover, using the special structure of such a function, we compute smooth trajectories along which
certain second-order expansions can be obtained. We also give an explicit expression for the Hessian
of a related Lagrangian.
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1. Introduction. Motivation. The problem of minimization of a convex max-
function f arises in many applications. Well-known examples occur in Chebyshev’s
best polynomial approximation, decomposition approaches using Lagrangian relax-
ation, exact penalty methods for nonlinear programming, and shape optimization [4],
[2]. Another important application that has been studied intensively in the past few
years is the minimization of the maximum eigenvalue function (mef); see [16], [8].

One of the main difficulties with such problems is that f is not differentiable
at those points, where more than one underlying function defining the max is ac-
tive. Furthermore, there is no well-defined Hessian, or second-order object, and a
straightforward application of a Newton-type method is not possible.

However, the mef has “good” structural properties: under certain regularity con-
ditions its nonsmoothness may be dealt with by formulating a locally equivalent con-
strained problem that has a smooth trajectory leading to an optimal solution. This
is the essential idea in [16] which is further studied in [17]. Along the same lines, a
deep second-order analysis of the mef class was done in [21].

More recently, mefs have been considered in [14], this time in light of the VU-
space decomposition theory developed in [7]. In this context, VU-theory yields a
superlinearly convergent bundle-type method [15], [14] provided enough eigenvectors
at each point are known. For quite general convex functions of one variable, there
is a rapidly convergent VU-algorithm [6] that requires only one subderivative at each
iterate. Using the implementation of this last algorithm in [9] it would be possible to
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solve the single variable eigenvalue problem in [18] which is equivalent to an n-variable
equality constrained trust region subproblem.

The general idea in [7] is to decompose R
n into two orthogonal subspaces V and

U in such a way that, near x̄ ∈ R
n, all of f ’s nonsmoothness is concentrated in V:

V := lin(∂f(x̄)− g) and U := V⊥,(1.1)

where g is any subgradient in the subdifferential of f at x̄ denoted by ∂f(x̄) . Here
linY denotes the linear hull of a set Y and (sub)gradients are considered to be column
vectors.

As a result, f appears to be smooth on the U-subspace and may have some kind
of related Hessian. When f is structured and qualified enough such a second-order
object exists; we call it a “U-Hessian” and denote it by HUf . Moreover, it is possible
to find smooth trajectories, tangent to U , yielding a second-order expansion for f .

In Definition 2.1 below we give a precise meaning to the wording “structured
enough” by introducing the concept of primal-dual gradient (pdg) structure. The
class of pdg-structured functions is quite large and includes mefs as well as other
convex functions such as some that are pointwise maxima of finite [10], [1] or infinite
[11] collections of smooth functions. For piecewise affine functions the structure of
subdifferentials is discussed in detail in [23], [12], and [13].

The pdg structure provides us with one or more so-called basic index sets whose
associated vectors span a subspace of V and generate an implicit function therein from
which a smooth trajectory tangent to U can be defined. We express our qualification
conditions in the form of what we call V-optimality conditions on such a trajectory,
gathering together the concepts of primal feasibility, dual feasibility, and transversal-
ity. These conditions play a role similar to that of constraint qualification conditions
in nonlinear programming. When they are satisfied for some basic index set, f has a
second-order expansion along the associated trajectory. In particular, it is shown in
section 6.1 that for the special mef case our transversality conditions are weaker than
the strong transversality conditions used in [17], [21], and [14].

The paper is organized as follows. We introduce the pdg-structured class in
section 2 and give some examples in section 3.1 which are used to illustrate the
results in some subsequent sections. Section 3.2 shows how a general convex mef fits
into our class. We recall the main elements of the VU-space decomposition theory
in section 4. Smooth trajectories and associated multiplier functions are studied in
section 5. Finally, in section 6 we give V-optimality conditions and first- and second-
order results, including an explicit expression for HUf . The concluding section 7 gives
some indication of directions for future research.

2. Function structure. Many, but not all, of the convex functions covered by
our theory are maximum value functions of the form

f(x) := max{F (x, t) : t ∈ T } for x ∈ R
n,(2.1)

where T is a closed subset of R
m and F (x, t) and its first- and second-order partial

derivatives with respect to components of x are continuous on R
n×T . Both the finitely

defined max-function (T = {0, 1, . . . ,M}) and the mef (T = {t ∈ R
m : tT t = 1}) are

particular instances of (2.1). The former case was fully developed in [10]. As for the
latter, we show in section 3.2 how it fits into our framework as a special case.

Since for a convex function f as in (2.1) ∂f(x) equals the set of Clarke general-
ized gradients at x, if T is compact, the subdifferential is the following convex hull
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[3, Corollary 2 to Theorem 2.8.2, p. 87]:

∂f(x) = conv{∇xF (x, ta) for all ta ∈ T such that f(x) = F (x, ta)}.(2.2)

Example 3.0 given below shows that the compactness of T is not a necessary condition
for equality (2.2) to hold.

2.1. Finite max-functions. To motivate our Definition 2.1 below, we first con-
sider convex finite max-functions as in [10], i.e., convex functions f defined by (2.1)
with T = {0, 1, . . . ,M}. For x = x̄ ∈ R

n in (2.2) we suppose that all active indices ta
are given by ta = 0, 1, . . . ,m1, where m1 ≤M , so that f(x̄) > F (x̄, t) if t �= ta. Then
about x̄ f satisfies the following conditions.

There exists a ball about x̄, denoted by B(x̄), m1 + 1 functions

fi(·) := F (·, i) for i = 0, 1, . . . ,m1

that are C2 on B(x̄) and a multiplier set ∆1 ⊂ R
m1+1 such that

(i) x̄ ∈ B(x̄) and fi(x̄) = f(x̄) for i = 0, 1, . . . ,m1;
(ii) for each x ∈ B(x̄), f(x) = max{fi(x) : i = 0, 1, . . . ,m1};
(iii) ∆1 is the unit simplex in R

m1+1 given by

∆1 :=

{
(α0, α1, . . . , αm1) :

m1∑
i=0

αi = 1, αi ≥ 0, i = 0, 1, . . . ,m1

}
;(2.3)

(iv) for each x ∈ B(x̄), g ∈ ∂f(x) if and only if

g =

m1∑
i=0

αi∇fi(x),

where αi = 0 if fi(x) < f(x) and α := (α0, α1, . . . , αm1
) ∈ ∆1.

The minimization of a max-function as above can be formulated (with an addi-
tional variable as in Remark 6.2 below) as a nonlinear programming (NLP) problem.
In this context it is well known that the subspace tangent to the active constraints at
the solution plays a fundamental role. This subspace is the kernel of the Jacobian of
the constraints.

Suppose x̄ is a minimizer of f . Using VU-space decomposition, the subspace V
from (1.1) is spanned by the active gradient differences {∇fi(x̄)−∇f0(x̄)}m1

i=0, while its
orthogonal complement U is the NLP tangent space mentioned above. Under certain
regularity assumptions, called V-optimality conditions, comparable to the qualifica-
tion of constraints in NLP, we proved in [10] that for u near 0 there exists at least
one smooth trajectory x(u) in B(x̄) which is tangent to U at x̄ and has an associated
smooth multiplier vector function α(u) ∈ ∆1. These two smooth functions provide
us with a constructive way to express the U-Hessian of f in terms of the Hessians of
the fis (in fact, HUf is the UU block of the Hessian of the NLP Lagrangian). Along
such a trajectory x(u), f can be expanded up to second-order as given in (5.2) below,
where the development does not depend on x̄ being a minimizer.

2.2. pdg structure. We call f(x) in (2.1) an infinite max-function if T is not a
finite set. In this case the set of maximizing tas corresponding to x in (2.2) may have
a convex hull that does not have a finite number of extreme points. This can lead to
∂f(x) having a continuum of extreme points.
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To apply VU-theory, it is crucial to properly describe all of the subgradients in
order to identify spanning vectors for the V-subspace. Associated with this is the
fact that the multipliers forming the convex combinations in (2.2) need to satisfy
certain conditions. This is the purpose of the conditions relating the finite number of
functions fi and ϕ� and associated multipliers αi introduced next. In particular, the
presence of the functions ϕ� and corresponding multipliers allows the subdifferential
to have a continuum of extreme points.

Definition 2.1. We say that a convex function f : R
n → R has pdg structure

about x̄ ∈ R
n if the following conditions hold:

There exists a ball about x̄, B(x̄), m1 + 1 +m2 primal functions

{fi(x)}m1
i=0 and {ϕ�(x)}m2

�=1

that are C2 on B(x̄) and a dual multiplier set ∆ ⊂ R
m1+1+m2 such that

(i) x̄ ∈ P := {x ∈ B(x̄) : ϕ�(x) = 0 for � = 1, . . . ,m2} and fi(x̄) = f(x̄) for
i = 0, 1, . . . ,m1;

(ii) for each x ∈ P,

f(x) = max{fi(x) : i = 0, 1, . . . ,m1};

(iii) ∆ is a closed convex set such that
(a) if α := (α0, . . . , αm1 , αm1+1, . . . , αm1+m2) ∈ ∆, then (α0, . . . , αm1) is an

element of the unit simplex ∆1 defined in (2.3);
(b) for each i = 0, 1, . . . ,m1, 1i+1 ∈ ∆, where 1j is the jth unit vector in

R
m1+1+m2 ;

and
(c) for each � = 1, 2, . . . ,m2, there exists α� ∈ ∆ such that α�m1+�

�= 0 and

α�m1+i
= 0 for i ∈ {1, 2, . . . ,m2}\{�};

(iv) for each x ∈ P, g ∈ ∂f(x) if and only if

g =

m1∑
i=0

αi∇fi(x) +
m1+m2∑
i=m1+1

αi∇ϕi−m1
(x),(2.4)

where the multipliers α0, α1, . . . , αm1+m2
satisfy

Complementary slackness: αi = 0 if fi(x) < f(x) and i ≤ m1

and

Dual feasibility: α = (α0, α1, . . . , αm1+m2
) ∈ ∆.

For some examples, such as a finite max-function, m2 = 0, there are no ϕ�
functions and ∆ = ∆1 as defined in (2.3). In the next section we present some
examples with m2 �= 0, including the mef, which is developed in full detail in section
3.2. We show that in this case ∆ corresponds to the set of positive semidefinite
matrices having unit traces. As for the fis and ϕ�s, they occur quite naturally; see
[21]. Essentially, they depend on some vector functions forming a basis for a subspace
spanned by certain eigenvectors.

3. Some pdg-structured functions. Before studying the (rather involved) pdg
structure of general maximum eigenvalue functions, we first consider simpler examples.
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3.1. Initial examples. When both m1 and m2 are 0, then ∆ = {α0 = 1} and
∂f(x̄) = {∇f0(x̄)}, as illustrated by the following simple function.

Example 3.0. Define the function E0 := f in (2.1), with n = 1, T = R, F (x, t) =
tx− 1

2 t
2. Then at any x the maximizing value of t is x,

E0(x) = F (x, x) = 1

2
x2 and ∂Eo(x) = {x}.

Therefore, for any x̄ ∈ R, B(x̄) := R, m1 = m2 := 0, and f0(x) :=
1
2x

2 satisfy
Definition 2.1. Note that although E0 is eventually equivalent to the C2-function f0,
its original formulation (with T unbounded) is neither that of a finite max-function
nor of a max-eigenvalue function. Moreover, this example can be modified as follows
to produce a similar C2-function whose replacement for T in (2.1) depends on x as
well as on a scalar parameter b:

f(x) := max

{
tx− 1

2
t2 : t ≤ x+ b

}
.

Since, for each x, the maximizing t is min{x, x + b}, we have f(x) = 1
2 (x

2−
(min(b, 0))2).

In [11] we introduced two bivariate examples, E1 and E2, each of which is not
the maximum of a finite number of C2-functions and showed they both have pdg

structure. For completeness, we give their definitions and main properties below.
Examples 3.1–3.2. Corresponding to the parameter p = 1, 2 are the following two

functions of form (2.1):

Ep : R
2 → R

(x1, x2) �→ max{t21x2
1 + 2(t1t2)

px2 : t
2
1 + t

2
2 = 1}.

When p = 1, the resulting function is the maximum eigenvalue of the matrix [
x2
1 x2

x2 0
],

so

E1(x1, x2) =
1

2
x2

1 +
1

2

√
x4

1 + 4x2
2.

When p = 2, Ep is not a maximum eigenvalue function but instead has the form

E2(x1, x2) =



x2

1 if x2 ≤ 1

2
x2

1,

1

2
x2

(
1 +

x2
1

2x2

)2

otherwise.
(3.1)

The pdg structure of Ep about x̄ = (0, 0)T has B(x̄) = R
2, m1 = m2 = 1,

f0(x1, x2) = x
2
1, f1(x1, x2) = 0, ϕ1(x1, x2) =

1

p
x2,(3.2)

and ∆ = {(α0, α1, α2) : α0 = 1− α1, 4(α1 − 1
2 )

2 + α2
2 ≤ 1, (p− 1)α2 ≥ 0}. The pairs

(α1, α2) corresponding to (α0, α1, α2) ∈ ∆ are graphed in Figure 3.1. For the case
p = 1 there is no nonnegativity restriction on α2 and

(α0, α1, α2) ∈ ∆ ⇐⇒ the matrix

[
α0

1
2α2

1
2α2 α1

]
is positive semidefinite
with trace equal to 1.

(3.3)
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p=2

1

10

α

α

2

1

Fig. 3.1. Multiplier sets for p = 1, 2.

This correspondence for maximum eigenvalue functions is developed in general in the
next section.

To illustrate our results, in subsequent sections we will employ Ep at x̄ = (0, 0)T ,
where

∂Ep(0, 0) =
{
(0, γ)T :

γ ∈ [−1, 1] if p = 1,
γ ∈ [ 0, 1

2 ] if p = 2

}
,

and, hence, from (1.1), for both functions at x̄ = (0, 0)T ,

V = 0× R and U = R× 0.

The subdifferential of Ep at (0, 0)T is degenerate in the sense that it has only two ex-
treme points, whereas the corresponding multiplier set ∆ has a continuum of extreme
points.

3.2. Maximum eigenvalue functions. In this section, we produce the primal
functions and dual multiplier set required by Definition 2.1 to show that rather general
convex maximum eigenvalue functions have pdg structure about each x̄ ∈ R

n.
We start with some notation. Suppose A(·) is anm×m symmetric matrix function

whose elements are C2-functions defined on R
n. Let f(x) be defined by (2.1) with

F (x, t) := tTA(x)t for x ∈ R
n and t ∈ T := {t ∈ R

m : tT t = 1}.(3.4)

Then it is well known that f(x) is the maximum eigenvalue of A(x). In addition,
we suppose that A(·) is such that f(·) is convex on R

n. A sufficient, although not
necessary, condition for this to hold is that the off-diagonal elements of A(·) are affine
functions while the on-diagonal elements are convex functions on R

n. In [14] and [15],
it is assumed that all element functions are affine.

We equip the space S of s × s symmetric matrices with the Fröbenius inner
product, 〈B,C〉 := traceBC =

∑
j,i bijcij . Suppose the maximum eigenvalue of A(x)

has multiplicity s and that the first eigenspace of A(x), E1(x) has the basis matrix
E1(x), whose columns are the orthonormal eigenvectors {e1(x), . . . , es(x)}. Then from
[16, Theorem 3],

g = (g1, . . . , gn)
T ∈ ∂f(x) if and only if

gj =

〈
S,E1(x)T

∂A(x)

∂xj
E1(x)

〉
for j = 1, . . . , n,(3.5)
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where S ∈ ∆s and ∆s is the convex set of s× s dual feasible matrices defined by

∆s := {S ∈ S : S is positive semidefinite and traceS = 1}.(3.6)

Note that any other orthonormal eigenvector basis matrix Q1(x) has the form Q1(x) =
E1(x)Q for some s × s orthogonal matrix Q. Furthermore, if S ∈ ∆s, then D :=
QTSQ ∈ ∆s and, since QQT is an identity matrix,

〈S,E1(x)TBE1(x)〉 = 〈D,Q1(x)
TBQ1(x)〉

for any B ∈ S. Hence the expression in (3.5) can be written in the equivalent form

gj =

〈
D,Q1(x)

T ∂A(x)

∂xj
Q1(x)

〉
for j = 1, . . . , n,(3.7)

where D ∈ ∆s. Thus we see that each subgradient of f at x is a particular linear
combination of n-dimensional vectors(

qk(x)
T ∂A(x)

∂x1
ql(x), . . . , qk(x)

T ∂A(x)

∂xn
ql(x)

)T

for k, l = 1, . . . , s, where {qi(x)}si=1 is any set of orthonormal eigenvectors for E1(x)
and the multipliers in the combination form an s× s dual feasible matrix depending
on the particular subgradient.

If one wants representation (3.7) to be diagonal for a particular subgradient g,
then Q can be chosen such that D = QTSQ is a diagonal matrix, where S from (3.5)
corresponds to g.

Now we begin the development to show the existence of the primal functions fi
and ϕ� satisfying Definition 2.1. Consider x̄ ∈ R

n and suppose r is the multiplicity of
the maximum eigenvalue of A(x̄). Let

I1 := {1, 2, . . . , r} and I2 := {(k, l) ∈ I1 × I1 : k < l},(3.8)

so that |I1| = r, |I2| = r(r − 1)/2, and |I1| + |I2| = r(r + 1)/2. From the continuity
of the eigenvalues of A(·) [22], there exists a ball about x̄, B(x̄), such that for each
x ∈ B(x̄) the multiplicity of the maximum eigenvalue of A(x) is r or less. Furthermore,
from [21, pp. 557–559], B(x̄) may be defined such that there exist r twice continuously
differentiable m-dimensional vector functions qi : B(x̄)→ R

m for i ∈ I1, satisfying

qi(x̄)
TA(x̄)qi(x̄) = f(x̄) for i ∈ I1,

qk(x̄)
TA(x̄)ql(x̄) = 0 for (k, l) ∈ I2,

and for all x ∈ B(x̄),

qk(x)
T ql(x) = δkl for (k, l) ∈ I1 × I1,(3.9)

where δii = 1 and δkl = 0 for k �= l. These functions are denoted by ui in [21]. They
are related to the columns of Qtot in [14, Theorem 4.5].

Thus at x̄, the vectors qi(x̄) form an orthonormal basis of eigenvectors for E1(x̄).
For x ∈ B(x̄) such that x �= x̄, they are not necessarily eigenvectors of A(x), but by
construction in [21], they do form an orthonormal basis for the subspace spanned by
the eigenvectors corresponding to the r largest eigenvalues of A(x). Actually, there
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is an infinite collection of such vector functions, depending on the choice of Q in
Q1(x̄) = E

1(x̄)Q.
After a suitable set P ⊆ B(x̄) is defined in (3.11) below, the functions introduced

next in (3.10) will turn out to produce the fis and ϕ�s satisfying Definition 2.1.
For x ∈ B(x̄) and (k, l) in I1 × I1, define the C2-functions

φkl(x) := qk(x)
TA(x)ql(x).(3.10)

These functions from [21, p. 559] are related to the structure functions introduced in
[12], but they additionally provide relevant second-order information.

Note that, by symmetry of A(·), φkl = φlk. Let
P := {x ∈ B(x̄) : φkl(x) = 0 for all (k, l) ∈ I2}.(3.11)

We have that x̄ ∈ P. For any x ∈ P and (k, l) ∈ I1 × I1, the definition of P together
with (3.10) yields the equality

φkl(x)δkl = qk(x)
TA(x)ql(x).(3.12)

This means that for x ∈ P the orthonormal vectors {qi(x)}i∈I1 diagonalize A(x) to
give the r largest eigenvalues. Thus for such an x, φii(x) is one of the r largest
eigenvalues of A(x) and qi(x) is a corresponding eigenvector. So for any x ∈ P and
i ∈ I1,

A(x)qi(x) = φii(x)qi(x) and f(x) = max{φii(x) : i ∈ I1}.(3.13)

Let � = �(k, l) be an index function enumerating elements of I2. Setting

m1 := r − 1, fi−1 := φii for i ∈ I1,
m2 := r(r − 1)/2, ϕ� := φkl for (k, l) ∈ I2,(3.14)

we have that our mef f satisfies (i)–(ii) in Definition 2.1.
To satisfy (iii) in Definition 2.1, we define the vector set ∆ to correspond to the

convex matrix set ∆m1+1 defined in (3.6) with s = m1+1 as follows: For each matrix
S ∈ ∆m1+1 having m1 + 1 diagonal elements sii and m2 = m1(m1 + 1)/2 above-the-
diagonal elements skl, let α = (α0, . . . , αm1

, αm1+1, . . . , αm1+m2
) be a vector in ∆

defined by

αi−1 = sii for i = 1, . . . ,m1 + 1 and α�+m1 = 2skl for � = 1, . . . ,m2,

where � = �(k, l) is an index function enumerating elements of {(k, l) : 1 ≤ k < l ≤
m1}.

To see that ∆ satisfies the requirements of Definition 2.1(iii), first note that (iii)(a)
is satisfied because positive semidefinite matrices with unit trace have nonnegative
diagonal elements that sum to one. To see satisfaction of (iii)(b) for each i+1 = j =
1, 2, . . . ,m1 + 1 and of (iii)(c) for each � = 1, 2, . . . ,m2, consider the two unit trace
positive semidefinite matrices Sb and Sc, all of whose elements are zero except that

sbjj = 1 and sckk = s
c
ll = s

c
kl = s

c
lk = 1/2,

where index � corresponds to the off-diagonal index pair (k, l). Altogether, (iii) holds.
To see (iv), we need to express ∂f(x) in terms of partial derivatives of the functions

φkl. This requires the following key result.
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Lemma 3.3. Let φkl and P be as defined in (3.10) and (3.11), respectively. If
φkk(x) = φll(x) for some x ∈ P and some (k, l) ∈ I1 × I1, then

∂φkl(x)

∂xj
= qk(x)

T ∂A(x)

∂xj
ql(x) for each j = 1, . . . , n.

Proof. For j = 1, . . . , n, differentiate φkl with respect to xj and then use (3.13)
with i = l and with i = k to obtain

∂φkl(x)

∂xj
− qk(x)T ∂A(x)

∂xj
ql(x) =

∂qk(x)

∂xj

T

A(x)ql(x) + qk(x)
TA(x)

∂ql(x)

∂xj

= φll(x)
∂qk(x)

∂xj

T

ql(x) + φkk(x)qk(x)
T ∂ql(x)

∂xj
.

Differentiating (3.9), having the constant right side δkl, gives

∂qk(x)

∂xj

T

ql(x) + qk(x)
T ∂ql(x)

∂xj
= 0

and hence the desired result when φkk(x) = φll(x).
Our lemma is similar to results obtained in [21] and also similar to [14, Corol-

lary 4.6]. However, in these papers the authors consider a subset of P that can be
proper and possibly the singleton {x̄} when their strong transversality assumptions
are not satisfied.

In a way similar to (3.8), but for any x ∈ P, define the sets
I1(x) := {i ∈ I1 : fi−1(x) = f(x)} and I2(x) := {(k, l) ∈ I1(x)× I1(x) : k < l}.

(3.15)

Let s = s(x) := |I1(x)| and Q1(x) be an m× s matrix whose columns {qi(x)}{i∈I1(x)}
form an orthonormal set of eigenvectors spanning the eigenspace E1(x) corresponding
to the maximum eigenvalue of A(x) with multiplicity s ≤ r = m1 + 1.

Coming back to (3.5), (3.6), and (3.7), we see from Lemma 3.3 that each subgra-
dient of f at x ∈ P is a particular linear combination of n-dimensional vectors:

∇φkl(x) =
(
∂φkl(x)

∂x1
, . . . ,

∂φkl(x)

∂xn

)T

for (k, l) ∈ I1(x)×I1(x), where the multipliers in the combination form an s×s matrix
S in ∆s. If s < r = m1 + 1, then by appropriately appending r − s = m1 + 1 − s
rows and columns of zeros to S, we can form an (m1+1)× (m1+1) matrix in ∆

m1+1

such that each g ∈ ∂f(x) with x ∈ P is a dual feasible linear combination of all the
∇φkl(x) for (k, l) ∈ I1× I1, with a zero multiplier on ∇φkl(x) if (k, l) /∈ I1(x)× I1(x).

Hence, in view of (3.14), (3.15), and the definition of ∆, we see that (iv) of
Definition 2.1 holds if we let

αi−1 :=

{
sii for i ∈ I1(x),
0 for i ∈ I1\I1(x) and α�+m1 :=

{
2skl for (k, l) ∈ I2(x),
0 for (k, l) ∈ I2\I2(x),

where � = �(k, l) is an index function enumerating elements of I2.

4. VU-space decomposition. In order to build up to the definitions of smooth
trajectories and multipliers which allow us to express the U-Hessian of a function with
pdg structure, we require basis matrices for the relevant subspaces U and V.
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4.1. A spanning set for V. Given x̄ ∈ R
n, not necessarily a minimizer of a

(closed) convex function f , and an arbitrary subgradient g ∈ ∂f(x̄), the orthogonal
subspaces from (1.1),

V = lin(∂f(x̄)− g) and U = V⊥,

define the VU-space decomposition of [7, section 2]: R
n = U ⊕ V. Note that V,

depending on x̄, is independent of the particular choice of g ∈ ∂f(x̄).
Throughout the remainder of this paper, we assume that f has pdg structure

about x̄. In this case, it is possible to completely characterize V in terms of the gra-
dients of the primal functions in Definition 2.1. To see this, define the subspace of R

n

V0 := lin ({∇fi(x̄)−∇f0(x̄)}m1

i=0 ∪ {∇ϕ�(x̄)}m2

�=1) .(4.1)

Note that by appending an appropriate multiple of 0 = ∇f0(x̄)−∇f0(x̄),

V0 =




m1∑
i=0

βi∇fi(x̄) +
m1+m2∑
i=m1+1

βi∇ϕi−m1(x̄) :

βi ∈ R for i = 0, . . . ,m1 +m2,
m1∑
i=0

βi = 0


 .

(4.2)
If m1 = m2 = 0, then both V and V0 are {0}.

Lemma 4.1. Let V and V0 be as defined, respectively, in (1.1) and (4.1). Then
V = V0.

Proof. First, we show V0 ⊆ V. For an arbitrary i ∈ {0, 1, . . . ,m1}, by Defini-
tion 2.1(iii)(b), the unit vector 1i+1 ∈ ∆. Then (iv) of Definition 2.1 implies that

∇fi(x̄) ∈ ∂f(x̄) for each i = 0, 1, . . . ,m1.(4.3)

Since V is independent of the choice of g ∈ ∂f(x̄), by taking g = ∇f0(x̄) in (1.1), we
have

∇fi(x̄)−∇f0(x̄) ∈ V for each i = 0, 1, . . . ,m1.(4.4)

Now for an arbitrary � ∈ {1, 2, . . . ,m2}, take α� as in Definition 2.1(iii)(c): α� :=
(α�0, . . . , α

�
m1
, 0, . . . , α�m1+�

, . . . , 0) ∈ ∆ with (α�0, . . . , α
�
m1
) ∈ ∆1 and α

�
m1+�

�= 0. Then
(iv) of Definition 2.1 implies that

g� :=

m1∑
i=0

α�i∇fi(x̄) + α�m1+�∇ϕ�(x̄) ∈ ∂f(x̄).

Note that the convexity of ∂f(x̄) together with (4.3) implies that g =
∑m1

i=0 α
�
i∇fi(x̄)

∈ ∂f(x̄). Thus from (1.1), we have α�m1+�
∇ϕ�(x̄) = g� − g ∈ V. Therefore, since

α�m1+�
�= 0 and V is a subspace,

∇ϕ�(x̄) ∈ V for � = 1, . . . ,m2.(4.5)

Finally, by combining (4.1), (4.4), and (4.5) with the linearity of V the desired
inclusion follows: V0 ⊆ V.

To show that V ⊆ V0, first take g = ∇f0(x̄) in the definition of V and then use
the fact that

∑m1

i=0 αi = 1 when considering arbitrary elements of ∂f(x) given by
(2.4).
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4.2. Basic index sets. Now via Lemma 4.1 and the definition of V0, we have
generators for V when f has pdg structure about x̄. These are crucial for finding
(smooth) trajectories tangent to U starting from the following definition.

Definition 4.2. An index set K of the form K = Kf ∪Kϕ ⊆ {0, 1, . . . ,m1} ∪
{m1 + 1, . . . ,m1 +m2} with 0 ∈ Kf is called a basic index set if

(i) the (n+ 1)-dimensional vectors{[ ∇fi(x̄)
1

]}
i∈Kf

⋃{[ ∇ϕi−m1(x̄)
0

]}
i∈Kϕ

are linearly independent.
K is called a dual feasible basic index set relative to ḡ ∈ ∂f(x̄) if, in addition,

(ii) the linear system with variables αi∑
i∈Kf

αi∇fi(x̄) +
∑
i∈Kϕ

αi∇ϕi−m1
(x̄) = ḡ,

∑
i∈Kf

αi = 1

has a (unique) solution {αi = ᾱi}i∈K such that together with ᾱi := 0 for all
i /∈ K,

ᾱ := (ᾱ0, ᾱ1, . . . , ᾱm1+m2
) ∈ ∆.

The definition assumes that, if necessary, the fis are reindexed so that the non-
empty set Kf contains i = 0.

The existence of such index sets can be proved for two particular structures.
Lemma 4.3. Suppose f in (2.1) is a finite max-function as in section 2.1, or a

maximum eigenvalue function, as in section 3.2. Then for each ḡ ∈ ∂f(x̄) there exists
at least one dual feasible basic index set K.

Proof. For f a finite max-function, this is [10, Lemma 3]. For f a mef, the result
parallels the finite-max proof. By choosing D to be diagonal in representation (3.7),
written with x = x̄ and g = ḡ, the functions fi−1 for i = 1, . . . ,m1 + 1 from (3.14)
are defined such that ḡ is an element of the convex hull conv{∇fi(x̄)}m1

i=0. It follows
from a corollary of Carathéodory’s theorem numbered 17.1.1 in [20] that ḡ can be
expressed as a convex combination of affinely independent generators, {∇fi(x̄)}i∈Kf

,
where Kf is some subset of {0, . . . ,m1}.

As for general primal-dual structured functions we are content to simply assume
the existence of dual feasible basic index sets rather than introducing additional struc-
tural assumptions that are satisfied by maximum eigenvalue functions and functions
such as example E2. An alternative way to obtain such an existence is to assume
strong transversality as defined in section 6 below.

In what follows, we assume that K = Kf ∪Kϕ is a basic index set, so 0 ∈ Kf .
Thus if K is a singleton, then Kf is the singleton {0} and Kϕ is empty. We adopt
the following convention: Given a set of column vectors {v1, . . . , v�}, we denote the
corresponding matrix by [{v1, . . . , v�}].

Lemma 4.4. If K = Kf ∪Kϕ is a basic index set, then the n× (|Kf | − 1+ |Kϕ|)
matrix

V̄ := [{∇fi(x̄)−∇f0(x̄)}0 	=i∈Kf
∪ {∇ϕi−m1

(x̄)}i∈Kϕ
]
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has full column rank. Moreover, the subspace of V defined by

VK := lin
({∇fi(x̄)−∇f0(x̄)}i∈Kf

∪ {∇ϕi−m1
(x̄)}i∈Kϕ

)
has dimension |Kf | − 1 + |Kϕ| and V̄ is the corresponding basis matrix.

Proof. The results follow in a straightforward manner from the linear indepen-
dence condition in Definition 4.2(i).

Note that if K is a singleton, the matrix V̄ is vacuous and VK is only the zero
vector.

From here on, we assume that U �= {0} so that dimU ≥ 1 and V �= R
n.

Matrix Notation 4.5. Consider the VU decomposition defined in (1.1) and let
Ū be a basis matrix for U . Corresponding to a basic index set K and its associated
subspace VK ⊆ V from Lemma 4.4, let the augmented matrix [V̄ |Z̄] be a basis matrix
for V, where Z̄ is vacuous if VK = V or is a basis matrix for V\VK otherwise. Then
[Ū |V̄ |Z̄] is a basis matrix for R

n, where V̄ and Z̄ depend on the particular basic index
set K under consideration.

Recall from section 3.1 that for both E1 and E2 at x̄ = (0, 0)T ,

V = lin

([
0
1

])
and U = lin

([
1
0

])
,

so we take Ū = [10 ]. For both these functions, the following two dual feasible basic
index sets relative to ḡ = (0, 0)T ∈ ∂Ep(0, 0) are of interest:

K0 := {0} with Kϕ = φ, VK0
= {(0, 0)T } and V̄ vacuous;

K0,2 := {0, 2} with Kϕ = {2}, VK0,2
= V and V̄ =

[
0
1

]
.

5. Smooth trajectory and multiplier functions. In order to start our de-
velopment to characterize smooth trajectory and multiplier functions, we first recall
some additional concepts from [7] that will be used in what follows.

5.1. Definition of the U-Lagrangian. Since R
n = U ⊕ V, every x ∈ R

n can
be decomposed into components xU and xV , where xU (xV) stands for the projection
of x onto U(V). Sometimes it will be convenient to use the shorter notation xU ⊕ xV
for the vector with components xU and xV , where ⊕ is defined by

U × V � (u, v) �→ u⊕ v :=
(
u
v

)
∈ R

n.

Now we can consider U and V as vector spaces, with induced scalar products satisfying

〈gU ⊕ gV , xU ⊕ xV〉 =: 〈gU , xU 〉U + 〈gV , xV〉V .

We already mentioned that the apparent smoothness of f on the U-subspace
suggests that it may have some kind of Hessian. Actually, it is the U-Lagrangian that
contains the relevant second-order information about f near x̄. More precisely, for a
(closed) convex function f , x̄ ∈ R

n, and ḡ ∈ ∂f(x̄), the U-Lagrangian of f from [7] is
defined as follows:

U � u �→ LU (u) := inf
v∈V
{f(x̄+ u⊕ v)− 〈ḡV , v〉V}.



VU-THEORY FOR PDG-STRUCTURED FUNCTIONS 559

To emphasize the dependence of LU (·) on x̄ ∈ R
n and the V-component of the sub-

gradient ḡ, we will follow [14] somewhat and adopt the complete notation LU (u; ḡV).
(Note, however, that unlike [14], we do not require ḡ to be in the relative interior of
∂f(x̄).)

The U-Lagrangian is a convex function that is differentiable at u = 0 with
∇LU (0; ḡV) = ḡU . Since from (1.1) the U-component of any subgradient g ∈ ∂f(x̄) is
ḡU , we call ∇LU (0; ḡV) the U-gradient of f at x̄. When LU has a Hessian at 0, we say
that ∇2LU (0; ḡV) is the U-Hessian of f at x̄ relative to ḡV and we denote it simply
by HUf(x̄), so its dependence on ḡV should be kept in mind.

Smoothness of LU depends on f through the W inning set of minimizers

W (u) := Argminv∈V {f(x̄+ u⊕ v)− 〈ḡV , v〉V}.(5.1)

We could also employ the complete notation WU (u; ḡV), but for brevity we will of-
ten use W (u). Also, sometimes we may use the abbreviated notation ∇LU (0) and
∇2LU (0).

Indeed, whenever ∇2LU (0; ḡV) exists, those x(u) := x̄ + u ⊕ w with w ∈ W (u)
yield the following second-order expansion of f :

f(x(u)) = f(x̄) + 〈∇LU (0), u〉U + 〈ḡV , w〉V +
1

2

〈∇2LU (0)u, u
〉
U + o(‖u‖2U )

= f(x̄) + 〈ḡ, u⊕ w〉+ 1

2
〈HUf(x̄)u, u〉U + o(‖u⊕ w‖2).(5.2)

Accordingly, we call such x̄ + u ⊕ w ∈ x̄ + u ⊕W (u) smooth trajectories. In what
follows, we show how to determine smooth trajectories and a U-Hessian for a pdg-
structured function satisfying certain V-optimality conditions. These objects depend
on the primal functions fi and ϕl and on the dual multiplier set ∆ introduced in
Definition 2.1.

With respect to Matrix Notation 4.5 corresponding to a basic index set K we
now change notation slightly and replace (u, v) ∈ U × V by a column vector (uv ) ∈
R

dimU × R
dimV and u⊕ v by Ūu+ V̄ vK + Z̄z, where the column vector v = (vKz ) ∈

R
dimVK × R

dimV−dimVK . For example, with this notation,

LU (u; ḡV) = min
(vK ,z)T∈RdimV

{f(x̄+ Ūu+ V̄ vK + Z̄z)− ḡT (V̄ vK + Z̄z)}(5.3)

for u ∈ R
dimU . So vectors in W (u; ḡV) ⊆ V are of the form V̄ vK + Z̄z with (vK , z)

T

a minimizer in (5.3). The minimizer of interest in section 6 has Z̄z = 0.

5.2. Smooth trajectories. To give formulas for the U-Lagrangian (5.3) and
its derivatives, and to obtain a second-order expansion for f as in (5.2), we need
to identify smooth trajectories that are in x̄ + Ūu +W (u). We achieve this in two
steps. First, based on f ’s primal functions corresponding to a basic index set K from
Definition 4.2, we define a system of nonlinear equations whose solution generates
a candidate for an element of W (u) which is o(‖u‖). Then in section 6, we give
conditions for a basic index set to produce a successful candidate.

Accordingly, for u near 0 ∈ R
dimU , we associate a trajectory x(u) ∈ B(x̄) with a

basic index set K as in [10] by letting

x(u) := x̄+ Ūu+ V̄ vK(u),(5.4)
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where the function vK : R
dimU �→ R

dimVK is defined in our next theorem. For a
differentiable vector function c : R

n → R
m, Jc will denote the m×n Jacobian matrix,

whose rows are the transposed gradients of the components of c.
Theorem 5.1. Let f have pdg structure about x̄ and suppose K = Kf ∪ Kϕ

is a nonsingleton basic index set as described in Definition 4.2(i). For each u small
enough,

(i) the nonlinear system with variables (u, v){
fi(x̄+ Ūu+ V̄ v)− f0(x̄+ Ūu+ V̄ v) = 0, 0 �= i ∈ Kf ,
ϕi−m1(x̄+ Ūu+ V̄ v) = 0, i ∈ Kϕ,(5.5)

has a unique solution v = vK(u) with V̄ vK(u) in the subspace VK ⊆ V;
(ii) vK(·) has a continuous Jacobian

JvK(u) = −(V (u)T V̄ )−1V (u)T Ū ,

where

V (u) := [{∇fi(x(u))−∇f0(x(u))}0 	=i∈Kf

⋃
{∇ϕi−m1

(x(u))}i∈Kϕ
];

(iii) the trajectory x(·) has a continuous Jacobian Jx(u) = Ū + V̄ JvK(u);
(iv) in particular, vK(0) = 0, x(0) = x̄, V (0) = V̄ , JvK(0) = 0, and Jx(0) = Ū .
Proof. Differentiating (5.5) with respect to v gives the rows of the Jacobian with

respect to v of the left-hand side as

∇fi(x̄+ Ūu+ V̄ v)T V̄ −∇f0(x̄+ Ūu+ V̄ v)T V̄ for all 0 �= i ∈ Kf ,
and ∇ϕi−m1(x̄+ Ūu+ V̄ v)

T V̄ for all i ∈ Kϕ.
This Jacobian at (u, v) = (0, 0) is V̄ T V̄ , which is nonsingular. There is also a Jacobian
with respect to u, so by the implicit function theorem, there is a C1 function vK(u)
defined on a neighborhood of u = 0 such that vK(0) = 0,

fi(x̄+ Ūu+ V̄ vK(u))− f0(x̄+ Ūu+ V̄ vK(u)) = 0 for all 0 �= i ∈ Kf ,
and ϕi−m1

(x̄+ Ūu+ V̄ vK(u)) = 0 for all i ∈ Kϕ.
Since vK is C1, the Jacobians JvK(u) and Jx(u) exist and are continuous. Differen-
tiating the system above with respect to u and using (5.4) gives

(∇fi(x(u))−∇f0(x(u)))T Jx(u) = 0 ∈ R
1×dimU for all 0 �= i ∈ Kf ,

and ∇ϕi−m1(x(u))
TJx(u) = 0 ∈ R

1×dimU for all i ∈ Kϕ
or, in matrix notation, V (u)TJx(u) = 0 ∈ R

(|K|−1)×dimU . Using the expression
Jx(u) = Ū + V̄ JvK(u), we have that V (u)

T (Ū + V̄ JvK(u)) = 0. By continuity,
V (u)T V̄ is nonsingular; hence JvK(u) = −(V (u)T V̄ )−1V (u)T Ū . Since VK ⊥ U ,
V̄ T Ū = 0, so JvK(0) = 0 and Jx(0) = Ū .

Note that since JvK(0) = 0, vK(u) = o(‖u‖) and the trajectory x(u) is tangent
to U at x(0) = x̄.

The results above need only the primal functions fi and ϕ� to be C
1. However,

for some of the subsequent results, we will need fi and ϕ� to be C
2.

In addition, note that when K is a singleton, then V̄ is vacuous. In this case, the
trajectory x(u) and its Jacobian are simply given by x(u) = x̄+ Ūu and Jx(u) ≡ Ū ,
so in view of (5.4), it is useful to define V̄ vK(u) := 0. This is precisely the case for
Ep at x̄ = (0, 0)T when K = K0. For K = K0,2, solving (5.5) with Ū = [ 10 ] and

V̄ = [01 ] yields vK0,2(u) = 0, so for both index sets we obtain the same trajectory
x(u) = (u, 0)T for all u ∈ R.
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5.3. Multiplier functions. In order to express the gradient and Hessian of
LU (u; ḡV) as combinations of the gradients and Hessians of the primal functions, it
is useful to have an explicit expression for the combination coefficients. Theorem 5.2
below shows that these multipliers (denoted by αi(u)) are smooth functions of u
depending on x(u) and ḡV .

From here on, we assume that K = Kf ∪ Kϕ is a dual feasible basic index set
relative to ḡ ∈ ∂f(x̄).

We use the following notation. Corresponding to the solution of the linear system
in the next theorem, let

• α(u) be the |K|-dimensional column vector function formed from {αi(u)}i∈K ,
with index 0 ∈ Kf coming first, the remaining indices of Kf coming next,
and the indices of Kϕ coming last;

• [eT |0] be a (|K| − 1)-dimensional row vector with |Kf | − 1 ones followed by
|Kϕ| zeros;

• I|K|−1 be a (|K| − 1)× (|K| − 1) identity matrix;
• the n× n matrix function M(u) be defined by

M(u) :=
∑
i∈Kf

αi(u)∇2fi(x(u)) +
∑
i∈Kϕ

αi(u)∇2ϕi−m1(x(u));(5.6)

• the n× |K| matrix function G(u) be defined by
(a) G(u) :=

[{∇fi(x(u))}i∈Kf
∪ {∇ϕi−m1(x(u))}i∈Kϕ

]
(b) = [0|V (u)] +∇f0(x(u))

[
1| [eT |0]] .(5.7)

Here the columns of [0|V (u)] and G(u) are ordered to correspond to the
ordering of elements in α(u).

Theorem 5.2. Let f have pdg structure about x̄ and suppose K = Kf ∪Kϕ is
a dual feasible basic index set relative to ḡ ∈ ∂f(x̄), with corresponding multipliers
{ᾱi}i∈K from Definition 4.2(ii). For each u small enough, the following hold:

(i) The linear system with variables αi

V̄ T


∑
i∈Kf

αi∇fi(x(u)) +
∑
i∈Kϕ

αi∇ϕi−m1(x(u))− ḡ

= 0 ∈ R

|K|−1,

∑
i∈Kf

αi = 1

has a unique solution α = α(u), given by

{αi(u)}0 	=i∈K = −(V̄ TV (u))−1V̄ T (∇f0(x(u))− ḡ),
α0(u) = 1−

∑
0 	=i∈Kf

αi(u).

(ii) With the above matrix-vector notation

G(u)Jα(u) = [0|V (u)]Jα(u),(5.8)

where the Jacobian of α is given by

Jα(u) =

[
[eT |0]
−I|K|−1

]
(V̄ TV (u))−1V̄ TM(u)Jx(u)(5.9)

with Jα(u) = 0 if K is a singleton.
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In particular, for all i ∈ K we have αi(0) = ᾱi.
Proof. These results follow from the proof of [10, Theorem 6], mutatis mutandis.

More precisely, if K is a singleton, then V̄ is vacuous and α0(u) = 1 = ᾱ0 for all u
gives the desired results.

Suppose K is not a singleton. Then the linear system defining α(u) can be writ-
ten as

V̄ TG(u) α(u) = V̄ T ḡ,[
1| [eT |0]] α(u) = 1.

(5.10)

Computing α0(u) = 1−∑
0 	=i∈Kf

αi(u) from the last equation and rearranging terms
in the first gives

V̄ T


 ∑

0 	=i∈Kf

αi(u)∇fi(x(u)) +
∑
i∈Kϕ

αi(u)∇ϕi−m1
(x(u))




= −V̄ T



1− ∑

0 	=i∈Kf

αi(u)


∇f0(x(u))− ḡ


 .

Subtracting V̄ T
∑

0 	=i∈Kf
αi(u)∇f0(x(u)) from both sides and using the definition of

V (u) in Theorem 5.1 yields

(V̄ TV (u)){αi(u)}0 	=i∈K = −V̄ T (∇f0(x(u))− ḡ),

and (i) follows. In particular, for u = 0, recall x(0) = x̄ and Definition 4.2(ii): αi = ᾱi
for i ∈ K therein uniquely satisfies linear system (i) above; therefore αi(0) = ᾱi.

We now prove (ii). Differentiating (5.10) with respect to u and using the defini-
tions of G(u) and M(u) in (5.7)(a) and (5.6), respectively, gives

(a) V̄ TG(u) Jα(u) + V̄ TM(u)Jx(u) = 0 ∈ R
(|K|−1)×dimU ,

(b)
[
1| [eT |0]] Jα(u) = 0 ∈ R

1×dimU .
(5.11)

From (5.7)(b) and (5.11)(b), we obtain (5.8). Furthermore, (5.11)(b) and (5.8) com-
bined with (5.11)(a) imply[

1 | [
eT |0]

0 | V̄ TV (u)

]
Jα(u) =

[
0

−V̄ TM(u)Jx(u)

]
.

The final desired result (5.9) is obtained by multiplying the expression on the left-hand
side by the |K| × |K| inverse matrix[

1 | − [
eT |0] [V̄ TV (u)]−1

0 | [V̄ TV (u)]−1

]
.

For our example functions Ep, recall that x(u) = (u, 0)T for both basic index sets
K = K0 and K0,2 that are dual feasible relative to ḡ = (0, 0)T ∈ ∂Ep(0, 0) = ∂Ep(x̄).
Then straightforward calculations give α(u) = 1 if K = K0 and α(u) = (1, 0)T if
K = K0,2 for all u ∈ R. If we let αj(u) = 0 for j /∈ K, then for both index sets
(α0(u), α1(u), α2(u)) = (1, 0, 0) for all u ∈ R.
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6. The U-Lagrangian and its derivatives. When in Definition 2.1 the full
index set {0, 1, . . . ,m1 + m2} is a basic index set, we say that f satisfies strong
transversality at x̄ (in this case dimV = m1+m2). Also, from Definitions 2.1 and 4.2,
this strong assumption implies that the full index set is a dual feasible basic index set
for all ḡ ∈ ∂f(x̄). For the max-eigenvalue case, this condition is assumed by many
authors to obtain second-order developments (see [17], [21], [14], [15]). In particular,
in [14], the existence of a U-Hessian is proved if strong transversality holds and ḡ is
in the relative interior of ∂f(x̄). This latter assumption means that ḡ + td ∈ ∂f(x̄)
for each d ∈ V, provided t ∈ R is small enough.

Next we consider less restrictive conditions that also ensure the existence of a
U-Hessian for a function that has pdg structure.

6.1. V-optimality conditions. Following [10], to express the U-Hessian of f
in terms of the Hessians ∇2fi and ∇2ϕ� on a smooth trajectory x(u), we need some
conditions in addition to pdg structure. They play a role similar to that of con-
straint qualification conditions in nonlinear programming. They are the assumptions
of Theorem 6.3 below that imply that for some basic index set K the corresponding
trajectory x(u) is in x̄+Ūu+W (u), i.e., the V-optimality result that V̄ vK(u) ∈W (u).

The following sufficiency conditions all correspond to a dual feasible basic index
set K = Kf ∪Kϕ, relative to ḡ ∈ ∂f(x̄) and its corresponding multiplier vector ᾱ ∈ ∆
from Definition 4.2(ii).

Strong V-optimality conditions. We say that K satisfies
• strong primal feasibility if Kϕ = {m1 + 1, . . . ,m1 + m2} and for each j ∈
{1, . . . , m1}\Kf there exists a vector λj ∈ R

|K| such that


∑
i∈Kf

λji∇fi(x̄) +
∑
i∈Kϕ

λji∇ϕi−m1
(x̄) = ∇fj(x̄),

∑
i∈Kf

λji = 1,
(6.1)

and ŪTMjŪ is positive definite, where

Mj :=
∑
i∈Kf

λji∇2fi(x̄) +
∑
i∈Kϕ

λji∇2ϕi−m1
(x̄)−∇2fj(x̄);(6.2)

• strong dual feasibility if ᾱ is in the interior of ∆ relative to the hyperplane

HK :=


α ∈ R

m1+1+m2 :
∑
i∈Kf

αi = 1, αj = 0 for all j /∈ K

 ;

and
• strong transversality if VK = V.

If the pdg structure of f at x̄ is known well enough, then the validity of the above
conditions can be tested. The following weaker qualification conditions depend on the
trajectory x(u) and multiplier function α(u) associated with K from sections 5.2 and
5.3, respectively, and, hence, may be difficult or impossible to verify.

Weaker V-optimality conditions. We say that K satisfies
• primal feasibility relative to x(u) if for u ∈ R

dimU small enough,{
fj(x(u)) ≤ f0(x(u)) for all j ∈ {1, . . . ,m1}\Kf ,
ϕj−m1(x(u)) = 0 for all j ∈ {m1 + 1, . . . ,m1 +m2}\Kϕ;
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• dual feasibility relative to α(u) if for u ∈ R
dimU small enough,

(α0(u), α1(u), . . . , αm1+m2(u)) ∈ ∆, where αj(u) := 0 for j /∈ K;

and
• transversality relative to x(u) and α(u) if for u ∈ R

dimU small enough, (g(u)−
ḡ) is orthogonal to V\VK , where

g(u) :=
∑
i∈Kf

αi(u)∇fi(x(u)) +
∑
i∈Kϕ

αi(u)∇ϕi−m1
(x(u)).(6.3)

In terms of Matrix Notation 4.5, this transversality condition is equivalent to
Z̄T (g(u)−ḡ) = 0. Note that since x(0) = x̄, Theorem 5.2 and Definition 4.2(ii)
imply that g(0) = ḡ.

Now we show that the strong conditions given above do indeed imply the ones
said to be weaker.

Theorem 6.1. The above V-optimality conditions satisfy the following:
(i) If f satisfies strong transversality at x̄, then the full index set {0, 1, . . . ,m1+
m2} satisfies strong primal feasibility and strong transversality.
If, in addition, ḡ is in the relative interior of ∂f(x̄), then the full index set
also satisfies strong dual feasibility.

(ii) If a basic index set K satisfies any one of the three strong V-optimality condi-
tions, then K satisfies the corresponding feasibility or transversality condition
relative to its x(u) and/or α(u).

Proof. (i) The assumption of strong transversality trivially implies that the full
index set satisfies strong primal feasibility and transversality. We next show satisfac-
tion of strong dual feasibility by showing that ᾱ, corresponding to ḡ, is in the interior
of ∆ relative to the hyperplane {α ∈ R

m1+1+m2 :
∑m1

i=0 αi = 1}.
By strong transversality, there exists a unique ᾱ ∈ ∆ corresponding to ḡ ∈

ri∂f(x̄), i.e., satisfying

m1∑
i=0

ᾱi∇fi(x̄) +
m1+m2∑
i=m1+1

ᾱi∇ϕi−m1
(x̄) = ḡ,

m1∑
i=0

ᾱi = 1.

(6.4)

Let β ∈ R
m1+1+m2 be any vector satisfying

m1∑
i=0

βi = 0(6.5)

as in the expression for V0 in (4.2). Since V = V0 is a linear subspace, for any t ∈ R,
we have td ∈ V, where

d :=

m1∑
i=0

βi∇fi(x̄) +
m1+m2∑
i=m1+1

βi∇ϕi−m1(x̄).(6.6)

Since ḡ ∈ ri∂f(x̄) and td ∈ V, ḡ + td ∈ ∂f(x̄) for all t small enough.
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Now (6.4)–(6.6) imply that αi := ᾱi + tβi satisfies

m1∑
i=0

αi∇fi(x̄) +
m1+m2∑
i=m1+1

αi∇ϕi−m1(x̄) = ḡ + td ∈ ∂f(x̄),

m1∑
i=0

αi = 1

for all t small enough. By strong transversality, the unique solution to the system
above is α := (ᾱ0 + tβ0, . . . , ᾱm1+m2 + tβm1+m2), so from Definition 2.1, α ∈ ∆ for
all t small enough.

Since β is an arbitrary vector in R
m1+1+m2 satisfying (6.5), ᾱ lies in the interior

of ∆ relative to the hyperplane {α ∈ R
m1+1+m2 :

∑m1

i=0 αi = 1} and the proof of part
(i) is complete.

(ii) First, suppose that K satisfies strong primal feasibility. Then since Kϕ =
{m1+1, . . . ,m1+m2}, to show satisfaction of primal feasibility we need only to show,
for all u ∈ R

dimU small enough, that fj(x(u)) ≤ f0(x(u)) for all j ∈ {1, . . . ,m1}\Kf .
We have for each l ∈ {0, 1, . . . ,m1} that

fl(x(u)) = fl(x̄) + 〈∇fl(x̄), x(u)− x̄〉+ 1

2

〈∇2fl(x̄)(x(u)− x̄), x(u)− x̄
〉

+ o(‖x(u)− x̄‖2)(6.7)

and for each l ∈ {m1 + 1, . . . ,m1 +m2} that

ϕl(x(u)) = ϕl(x̄) + 〈∇ϕl(x̄), x(u)− x̄〉+ 1

2

〈∇2ϕl(x̄)(x(u)− x̄), x(u)− x̄
〉

+ o(‖x(u)− x̄‖2).(6.8)

Multiplying (6.7) with l = i ∈ Kf and (6.8) with l = i−m1 ≥ 1 by λji , summing the
results and using (6.1), (6.2), and the facts that fi(x(u)) = f0(x(u)) for all i ∈ Kf
and ϕi−m1

(x(u)) = 0 for all i ≥ m1 + 1 gives

f0(x(u)) = f0(x̄) + 〈∇fj(x̄), x(u)− x̄〉+ 1

2

〈
(Mj +∇2fj(x̄))(x(u)− x̄), x(u)− x̄

〉
+ o(‖x(u)− x̄‖2).(6.9)

Subtracting (6.7) with l = j ∈ {1, . . . ,m1}\Kf from (6.9) and using the facts that
fj(x̄) = f(x̄) = f0(x̄) and x(u)− x̄ = Ūu+ V̄ vK(u) gives

f0(x(u))− fj(x(u)) = 1

2

〈
Mj(Ūu+ V̄ vK(u)), Ūu+ V̄ vK(u)

〉
+ o(‖Ūu+ V̄ vK(u)‖2).

Now from strong primal feasibility, ŪTMjŪ is positive definite, and from Theorem 5.1,
vK(u) = o(‖u‖), so f0(x(u))− fj(x(u)) > 0 for all nonzero u ∈ R

dimU small enough.
Thus K satisfies primal feasibility relative to x(u).

Second, suppose that K satisfies strong dual feasibility. Since αj(0) = 0 for all
j /∈ K, Theorem 5.2 implies that

(α0(u), α1(u), . . . , αm1+m2
(u)) ∈ HK

and that

(α0(u), α1(u), . . . , αm1+m2(u))→ ᾱ as u→ 0 ∈ R
dimU .
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Now since ᾱ is assumed to be in the interior of ∆ relative to HK ,
(α0(u), α1(u), . . . , αm1+m2(u)) ∈ ∆ for all u ∈ R

dimU small enough.

Thus K satisfies dual feasibility relative to α(u).
Third, suppose that K satisfies strong transversality. Then V\VK is empty, so K

trivially satisfies transversality relative to its x(u) and α(u).
The two strong assumptions in (i) of Theorem 6.1 are sufficient for showing the

existence of a desirable basic index set. The fact that neither is necessary is illus-
trated by [10, Examples 15 and 17], [15, Example 4.11], and the following discussion
concerning examples E1 and E2. Indeed, these functions have at x̄ = (0, 0)T two basic
index sets, K0 and K0,2, that are dual feasible relative to ḡ = (0, 0)T ∈ ∂Ep(0, 0), with
common trajectory x(u) = (u, 0)T and multipliers (α0(u), α1(u), α2(u)) = (1, 0, 0) for
all u ∈ R.

Ep for p = 1, 2 does not satisfy strong transversality at (0, 0)T because the vectors

[ ∇f0(0, 0)
1

]
=


 0
0
1


, [ ∇f1(0, 0)

1

]
=


 0
0
1


, [ ∇ϕ1(0, 0)

0

]
=


 0

1
p

0




are linearly dependent. In particular, E1 is an example of a maximum eigenvalue
function that does not satisfy the strong transversality assumptions of [17], [21], [14],
and [15].

From the expressions for ∂Ep in section 3.1 we see that ḡ = (0, 0)T is in the
relative interior of ∂E1(0, 0), but not in that of ∂E2(0, 0), so E2 satisfies neither of the
very strong conditions of Theorem 6.1(i).

Next, we show that relative to ḡ = (0, 0)T ∈ ∂Ep(0, 0), K0 satisfies one and K0,2

satisfies the other two of the three strong V-optimality conditions and that they both
satisfy all three of the weaker conditions.

K0,2 satisfies strong primal feasibility because the only index not in K0,2 is index
1, corresponding to the zero function f1, and in this case (6.1) and (6.2) become{

λ1
0(0, 0)

T + λ1
2(0,

1
p )
T = (0, 0)T ,

λ1
0 = 1,

and M1 = 1

[
2 0
0 0

]
−
[
0 0
0 0

]
,

so

ŪTM1Ū =
[
1 0

] [ 2 0
0 0

] [
1
0

]
= 2 > 0.

As for K0, it does not satisfy strong primal feasibility because it does not contain
index 2, corresponding to ϕ1. However, K0 does satisfy the given weaker primal
feasibility conditions relative to x(u) because for all u ∈ R, x(u) = (u, 0)T and thus

f1(u, 0) = 0 ≤ u2 = f0(u, 0) and ϕ1(u, 0) =
1

p
0 = 0.

For consideration of dual feasibility, recall that ᾱ = (1, 0, 0) and ∆ = {(α0, α1, α2) :
α0 = 1 − α1, 4(α1 − 1

2 )
2 + α2

2 ≤ 1, (p − 1)α2 ≥ 0} and let B(ᾱ) be any ball about ᾱ
in R

3. K0 satisfies strong dual feasibility because it does not contain indices 1 and 2,
which implies that HK0 is the singleton (1, 0, 0) = ᾱ ∈ ∆, so

B(ᾱ) ∩HK0 = {ᾱ} = ∆ ∩HK0
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and thus ᾱ is in the interior of ∆ relative to HK0
. As for K0,2, it does not satisfy

strong dual feasibility because HK0,2 is the line given by (1, 0, 0)+(0, 0, α2) for α2 ∈ R

and thus

B(ᾱ) ∩HK0,2 �⊂ {ᾱ} = ∆ ∩HK0,2 .

However, K0,2 does satisfy the given weaker dual feasibility condition relative to α(u)
because for all u ∈ R (α0(u), α1(u), α2(u)) = (1, 0, 0) = ᾱ ∈ ∆.

Finally, because VK0 = {(0, 0)T } �= V = VK0,2 , K0,2 satisfies strong transversality
and K0 does not. However, (6.3) with K = K0 gives g(u) = 1∇f0(x(u)) = (2u, 0)T

for all u ∈ R, so g(u) − ḡ = (2u, 0)T − (0, 0)T = (2u, 0)T ∈ U = V⊥ and thus K0

satisfies transversality relative to x(u) and α(u).
Remark 6.2. We note in passing that E1 is an interesting example for studying

the regularity condition of [5] for nonconvex semidefinite programming. Recall that
the problem of minimizing E1 is equivalent to minimizing the maximum eigenvalue of

the matrix [
x2
1 x2

x2 0
]. In turn, this is equivalent to the following problem:

minimize x3

subject to x3 ≥ E1(x1, x2)

or, equivalently,

subject to C(x) :=

[
x3 − x2

1 −x2

−x2 x3

]
being positive semidefinite.

This problem is solved by x∗ = (0, 0, 0)T , where C(x∗) equals the 2 × 2 zero matrix
which has a range space basis matrix that is empty and a null space basis matrix that
is the 2×2 identity. Thus the local feasibility matrix of [5, section 2.2], C̃(x), coincides
with C(x). Moreover, S(C̃, x∗), the matrix subspace reflecting the sparsity pattern
of C̃, is S2, the whole space of symmetric matrices of order 2. As a result, the strong
transversality-like regularity condition (2.5) of [5] does not hold at x∗ since the three
matrices ∂C(x∗)

∂xi
equal to

[
0 0
0 0

]
if i = 1,

[
0 −1
−1 0

]
if i = 2, and

[
1 0
0 1

]
if i = 3

do not span S2.

6.2. Expressions for the U-gradient and the U-Hessian. The stage is now
set for giving expressions for the U-Lagrangian (5.3) and its derivatives. To do this,
we first prove that the candidate V̄ vK(u) from Theorem 5.1 is V-optimal in the sense
that it is an element of the W inning set W (u) from (5.1).

The following theorem with f = Ep for p = 1, 2 and

x̄ ḡ Ū K̄ x(u) α(u) g(u)

(0, 0)T (0, 0)T
[
1
0

]
K0 or K0,2 (u, 0)T (1, 0, 0)T (2u, 0)T

gives

LU (u; 0) = u2, ∇LU (u; 0) = 2u, and ∇2LU (u; 0) = 2 for all u ∈ R.
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Theorem 6.3. Let f have pdg structure about x̄. Suppose K̄ = K̄f ∪ K̄ϕ is a
dual feasible basic index set relative to ḡ =

∑
i∈K̄f

ᾱi∇fi(x̄)+
∑
i∈K̄ϕ

ᾱi∇ϕi−m1(x̄) ∈
∂f(x̄), where ᾱ ∈ ∆. Also, suppose K̄ satisfies the three V-optimality conditions rela-
tive to α(u) from Theorem 5.2 with K = K̄ and x(u) = x̄+Ūu+V̄ vK̄(u), where vK̄(u)
is defined in Theorem 5.1 if K = K̄ is not a singleton, and V̄ vK̄(u) := 0 otherwise.

Then for u small enough, we have the following:
(i) the vector V̄ vK̄(u) is an element of WU (u; ḡV). Equivalently, the trajectory

vector x(u) is an element of x̄+ Ūu+WU (u; ḡV).
(ii) (a) If K̄ϕ is nonempty, 0 = ϕi−m1

(x(u)) for each i ∈ K̄ϕ.
(b) The U-Lagrangian is given by

LU (u; ḡV) = f(x(u))− ḡT V̄ vK̄(u)
= fi(x(u))− ḡT V̄ vK̄(u) for each i ∈ K̄f .

(iii) The gradient of LU is given by

∇LU (u; ḡV) = ŪT g(u),

where g(u) is given in (6.3) with K = K̄ and Ū = Jx(0) is a basis matrix
for U .

(iv) The Hessian of LU is given by

∇2LU (u; ḡV) = Jx(u)TM(u)Jx(u),

where M(u) is given in (5.6) with K = K̄.
In particular, LU (0; ḡV) = f(x̄), and the U-gradient and U-Hessian at x̄ are given by

∇LU (0; ḡV) = ŪT ḡ = ŪT g for all g ∈ ∂f(x̄)
and

∇2LU (0; ḡV) = ŪT


∑
i∈K̄f

ᾱi∇2fi(x̄) +
∑
i∈K̄ϕ

ᾱi∇2ϕi−m1(x̄)


 Ū .

Proof. (i) From expression (5.3), the optimality condition characterizing elements
in (5.1) is w = V̄ vK̄ + Z̄z ∈ W (u) if there exists a subgradient g ∈ ∂f(x̄ + Ūu +
V̄ vK̄ + Z̄z) such that

[V̄ |Z̄]T (g − ḡ) = 0.(6.10)

To prove (i), we show that w = V̄ vK̄(u) + Z̄z with Z̄z = 0 and g = g(u) from (6.3)
with K = K̄ satisfy this optimality condition.

Applying Theorem 5.2(i) with K = K̄ gives

V̄ T (g(u)− ḡ) = 0.(6.11)

Together with the transversality assumption Z̄T (g(u)− ḡ) = 0, this yields satisfaction
of (6.10) when g = g(u). To see that g(u) ∈ ∂f(x̄ + Ūu + V̄ vK̄(u)), note first that
since αi(u) = 0 for i /∈ K̄, this condition is equivalent to the condition

g(u) =

m1∑
i=0

αi(u)∇fi(x(u)) +
m1+m2∑
i=m1+1

αi(u)∇ϕi−m1(x(u)) ∈ ∂f(x(u)).(6.12)
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By construction of vK̄(u) in Theorem 5.1(i), primal feasibility implies that x(u) ∈ P
as well as

f(x(u)) = max{fi(x(u)) : i = 0, 1, . . . ,m1} = fi(x(u)) for each i ∈ K̄f .(6.13)

Complementary slackness from Definition 2.1(iv) is satisfied with x = x(u) ∈ P and
αi = αi(u) because if fi(x(u)) < f(x(u)), then i /∈ K̄f and αi(u) = 0. Finally, (6.12)
follows from (2.4) in Definition 2.1(iv) because the dual feasibility assumption says
that (α0(u), α1(u), . . . , αm1+m2(u)) ∈ ∆.

(ii) In (i), we already used primal feasibility to conclude that x(u) ∈ P, so (a)
follows. Result (b) is a direct consequence of (i) and (6.13).

(iii) The proof is similar to the proof of [10, Theorem 9(i)]; i.e., use the chain rule
to differentiate (ii)(a) and (ii)(b) with respect to u to obtain

0 = Jx(u)T∇ϕi−m1(x(u)) for each i ∈ K̄ϕ
and ∇LU (u; ḡV) = Jx(u)T∇fi(x(u))− JvK̄(u)T V̄ T ḡ for each i ∈ K̄f .

Multiplying each equation by the appropriate αi(u), summing the results, and using
the fact that

∑
i∈K̄f

αi(u) = 1 yields

∇LU (u; ḡV) = Jx(u)T


∑
i∈Kf

αi(u)∇fi(x(u)) +
∑
i∈Kϕ

αi(u)∇ϕi−m1(x(u))


− JvK̄(u)T V̄ T ḡ

= Jx(u)T g(u)− JvK̄(u)T V̄ T ḡ.
Using the transpose of the expression for Jx(u) given in Theorem 5.1(iii) withK = K̄,
we obtain

∇LU (u; ḡV) = ŪT g(u) + JvK̄(u)
T V̄ T (g(u)− ḡ),

which together with (6.11) yields the desired result.
(iv) Again, we follow [10], but this time we use the proof of Theorem 9(ii). From

(6.3) and (5.7)(a), we have that g(u) = G(u)α(u), with G(u) being C1 because x(u)
is C1. Differentiating (iii) and using (5.6) gives

∇2LU (u; ḡV) = ŪT (G(u)Jα(u) +M(u)Jx(u)) .(6.14)

Now combine (5.8) and (5.9) with K = K̄ to write

G(u) Jα(u) = −V (u)[V̄ TV (u)]−1V̄ TM(u)Jx(u).

Using the transpose of the expression for JvK̄(u) in Theorem 5.1(ii), we obtain

ŪTG(u)Jα(u) = JvK̄(u)
T V̄ TM(u)Jx(u)

so that from (6.14) we have ∇2LU (u; ḡV) = (JvK̄(u)
T V̄ T + ŪT )M(u)Jx(u). From

Theorem 5.1(iii), this is equivalent to the desired expression for ∇2LU (u; ḡV).

7. Concluding remarks. We introduced a general class of convex functions
whose structural properties allow for the construction of smooth trajectories along
which the functions are twice differentiable.

This pdg-structured class includes finite max-functions, maximum eigenvalue, and
other infinite max-functions such as example E2. It also includes the modification of
Example 3.0 where T in (2.1) depends on x.
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As suggested to us by one of the referees, a function to investigate in the future
for pdg structure is the following one defined on the space of s×s symmetric matrices:

pf : S → R,
X �→ max{tTXt : t ∈ R

s
+, t

T t = 1}.
The Perron–Fröbenius function pf is proved to be the maximum eigenvalue of X
whenever X has nonnegative entries [19]. However, for a general X pf, it is not a
mef, as can be seen from its (“asymmetric”) subdifferential:

∂pf(X) = {S ∈ ∆s : sij ≥ 0 for all i, j and traceSX = pf(X)}.
The subdifferential of the following special case is similar to the subdifferential of the
noneigenvalue example E2: for n = 2 and X = I, the identity matrix, pf(X) = 1, so

∂pf(I) =

{
S =

[
s11 s12
s12 1− s11

]
: S is positive semidefinite and s12 ≥ 0

}
.

Thus for S ∈ ∂pf(I), (s11, 2s12) is in the shaded region in Figure 3.1, which has no
center of symmetry.

The special pdg structure of the subdifferential of f about x̄ provides a set of
spanning vectors for the subspace V. A linearly independent subset of these vectors
whose indices constitute the set K generate a subspace VK ⊆ V and an implicit
function therein from which a trajectory tangent to U at x̄ can be defined. If such
a trajectory x(u) satisfies primal feasibility, there is a second-order expansion of f
along x(u), depending on a subgradient ḡ ∈ ∂f(x̄), a corresponding multiplier vector
α(u), and an associated Hessian with respect to u. If, in addition, α(u) satisfies dual
feasibility and, together with x(u), transversality, then the Hessian is the Hessian of
the U-Lagrangian depending on the V-component of ḡ. The above ordering of this
paper’s results will be important for extending some of the theory to locally Lipschitz
functions.

For the special mef case, our structural conditions are weaker than those in [21]
and [14] because we isolate the place where the implicit function theorem is applied,
i.e., relative to K. Moreover, our results extend those in [14] both to matrices A(x) in
(3.4) with nonaffine diagonal element functions and to subgradients ḡ not necessarily
in the relative interior of ∂f(x̄).

Acknowledgments. We thank the referees for their beneficial suggestions for
improvement of this paper.
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[6] C. Lemaréchal and R. Mifflin, Global and superlinear convergence of an algorithm for one-

dimensional minimization of convex functions, Math. Programming, 24 (1982), pp. 241–
256.



VU-THEORY FOR PDG-STRUCTURED FUNCTIONS 571
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for positive operators on general partially-ordered finite-dimensional linear spaces, Math.
Comput., 27 (1973), pp. 139–145.

[20] R. Rockafellar, Convex Analysis, Princeton Math. Ser. 28, Princeton University Press,
Princeton, NJ, 1970.

[21] A. Shapiro and M. K. H. Fan, On eigenvalue optimization, SIAM J. Optim., 5 (1995), pp. 552–
569.

[22] J. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK, 1965.
[23] R. Womersley, Local properties of algorithms for minimizing nonsmooth composite functions,

Math. Programming, 32 (1985), pp. 69–89.



PATTERN SEARCH ALGORITHMS FOR MIXED
VARIABLE PROGRAMMING∗

CHARLES AUDET† AND J. E. DENNIS, JR.‡

SIAM J. OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 11, No. 3, pp. 573–594

Abstract. Many engineering optimization problems involve a special kind of discrete variable
that can be represented by a number, but this representation has no significance. Such variables arise
when a decision involves some situation like a choice from an unordered list of categories. This has
two implications: The standard approach of solving problems with continuous relaxations of discrete
variables is not available, and the notion of local optimality must be defined through a user-specified
set of neighboring points. We present a class of direct search algorithms to provide limit points that
satisfy some appropriate necessary conditions for local optimality for such problems. We give a more
expensive version of the algorithm that guarantees additional necessary optimality conditions. A
small example illustrates the differences between the two versions. A real thermal insulation system
design problem illustrates the efficacy of the user controls for this class of algorithms.
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1. Introduction. Torczon [12] defined a class of generalized pattern search
methods to minimize a function f : �n → � without any knowledge of its deriva-
tives. She shows that the class includes algorithms such as coordinate search with
fixed step sizes, evolutionary operation using factorial design [3], the original pattern
search algorithm [7], and the multidirectional search algorithm [5]. In [12] she gave
general convergence results under the assumption of continuous differentiability.

The main result of [12] is that for f ∈ C1, the sequence of iterates {xk} of �n
generated by any generalized pattern search (GPS) method satisfies

lim inf
k→∞

‖∇f(xk)‖ = 0(1.1)

without ever computing or explicitly approximating derivatives. At each iteration,
the function is evaluated at trial points on a discrete mesh containing the current
iterate in search of one yielding any decrease in the objective function value. Lewis
and Torczon [10] use positive basis theory to strengthen the result by roughly cutting
in half the worst case number of trial points at each iteration without affecting the
convergence result. Lewis and Torczon [9], [11] extend pattern search algorithms and
the convergence theory to bound and linearly constrained minimization by adapting
the exploration of the domain near the boundary of the feasible region. The optimality
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condition guaranteed by their approach is the existence of a limit point x̂ of the
sequence of iterates {xk} that satisfies

(x− x̂)T∇f(x̂) ≥ 0 for any feasible x.(1.2)

This condition reduces to (1.1) in the event that x̂ is a strictly interior point.
Our purpose here is to further generalize the problem to be solved because many

engineering optimization problems contain both continuous and discrete variables.
Moreover, the discrete variables are often categorical ones; i.e., they refer to a list
or set of categories and thus, the standard mixed integer approach of solving with
continuous relaxations through branch and bound is not available. Of course, when
branch and bound can be used, it probably should be, but that is not the issue here.
Indeed, the context in which our algorithm is to be applied is that the variables are
provided by the algorithm as input to a black box simulation. It would be surprising
if one could run the simulation code with a continuous variable, where the simulation
expects a discrete input—perhaps specifying the state of the physical medium under
investigation.

We consider the problem of minimizing the function f : Ω → �, where the
domain is partitioned into continuous and discrete variables Ωc and Ωd (some or all
of the discrete variables may be categorical). The domain of the continuous variables
is bound constrained Ωc = [�, u], where �, u ∈ �nc ∪ {±∞}, � < u, and nc is the
dimension of the space. The domain of the discrete variable Ωd has dimension nd

and may be represented by a subset of Znd

. The continuous and discrete components
of the iterates generated by the method will be denoted by xk = (xck, x

d
k), where

xck ∈ �n
c

and xdk ∈ Zn
d

. We understand that we are abusing notation here, since we

certainly mean that xk ∈ �nc×Znd

. However, the purpose of notation is to explicate,
not to be pedantic, and we are sure the reader will forgive us.

The function f is assumed to be continuously differentiable when the discrete
variables in Ωd are fixed. We present a general mixed variable pattern (GMVP)
search method that reduces to that of Lewis and Torczon [9] when the dimension nd

is fixed to zero. Thus, like them, we deal with infeasible trial points by setting f(x)
to a large value.

A second objective of the paper is to slightly generalize the part of the algorithm
that deals with the continuous variables and to revise and shorten the arguments
developed in [12] and [10]. We first show how to obtain a limit point x̂ of the sequence
of iterates that satisfies first-order optimality conditions with respect to the continuous
variables. These conditions reduce to (1.2) when there are no discrete variables. We
also guarantee that the same limit point x̂ satisfies some local optimality conditions
with respect to the discrete variables. The notion of local optimality is defined through
the user-specified set of neighbors N (x) ⊂ Ω described in section 2.1. We also present
a second version of the algorithm that guarantees stronger results.

The paper is structured as follows. First, we present a definition of local op-
timality for mixed variable programming and the optimality conditions guaranteed
by our algorithm. We use a design problem for a thermal insulation system to il-
lustrate categorical variables and our version of local optimality. Then in section 3,
we formally describe a general framework for pattern search algorithms with mixed
variables. In section 4, we provide the analysis to specify a subsequence of iter-
ates whose limit points satisfy optimality conditions, including a stronger version
of the algorithm that uses more function evaluations per iteration to guarantee an
additional necessary optimality condition. Section 5 illustrates the difference between
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the two versions of the algorithm on a small example, and it reports results for the
algorithm applied to the problem in section 2.2. We use that example to illustrate
some controls the user has to spend more function evaluations to gain a better local
optimum.

2. Mixed variables.

2.1. Local optimality for mixed variables. In the absence of discrete vari-
ables, the definition of local optimality is straightforward: x̂ ∈ [�, u] is a local mini-
mizer of the bound constrained function f if there exists an ε > 0 such that f(x̂) ≤
f(v) for all v ∈ [�, u] in a ball B(ε, x̂) of radius ε around x̂.

When the optimization problem contains only discrete variables, a definition of
local optimality might be the following: f(x̂) ≤ f(y) for all y in N (x̂), where N (x̂) is
a finite set of neighbors including and around the discrete variable x̂. This specifies
the quality of the solution for which one is willing to pay the necessary function values
by defining the notion of “local optimality” the algorithm is to achieve with respect
to the discrete variables.

An example is the quadratic assignment problem (QAP) in which n facilities
must be assigned to n locations: each assignment may be represented using one of
the n! permutations of the vector (1, 2, . . . , n). The key point in the definition is for
the user to answer the question, What property must the solution provided by the
algorithm satisfy in order for it to be a satisfactory local solution? One might decide,
for example, that a QAP solution is interesting if a given assignment x could not be
improved by changing x in at most two locations (or, more stringently, in at most
three locations). Our approach is completely flexible in this respect; however, the
more stringent the conditions of local optimality the user wants to impose, the more
expensive the GMVP poll step will be.

Consider, for example, the QAP with three facilities. It may be modeled with
three discrete variables (xd ∈ Z3). Not all the points of the integer lattice Z3 represent
feasible assignments, only the permutations of (1, 2, 3). Also, the ordering is not
the classical one associated with an inherited metric, since for the set of neighbors
N (1, 2, 3) = {(1, 2, 3), (1, 3, 2), (3, 2, 1), (2, 1, 3)} the assignment (3, 2, 1) seems nearer
than (3, 1, 2) to (1, 2, 3). Observe that in this example the constraints that define
Ωd (i.e., the set of permutations) are modeled through the definition of the set of
neighbors N .

Thus, definition of the set of neighbors N represents one of the tuning knobs
available to the user willing to pay more for a guarantee of a stronger local optimizer.
As our thermal example shows, this does not guarantee finding a lower function value,
but it does guarantee a wider set of changes that will not produce a better function
value. A better way to use this knob is the way we used it in the thermal example—to
save evaluating alternatives that are highly unlikely to improve the function value,
and thus decrease the cost of the more expensive poll steps in which local exploration
is required.

For mixed variable programming, the definition of local optimality must take into
account variations of both the continuous and discrete variables. Indeed, in defining
N (x), one would probably need to allow for changes in the continuous as well as
the discrete components. That is to say, changing the discrete variables may make
no sense without some attendant change in the continuous components as well. We
propose the following definition.

Definition 2.1. The solution x̂ = (x̂c, x̂d) ∈ Ω is said to be a local minimizer of
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f with respect to the set of neighbors N (x̂) if there exists an ε > 0 such that

f(x̂) ≤ f(v) for any v ∈
⋃

y∈N (x̂)

(
([�, u] ∩B(ε, yc))× yd

)
,

where N (x̂) ⊂ Ω is a finite set of points.
We require a notion of continuity with respect to the set of neighbors: If {xk} is

a sequence that converges to x̂, then N (xk) converges to N (x̂); i.e., for any ε > 0 and
ŷ in the set of neighbors N (x̂), there exists a yk in N (xk) that also belongs to the
ball B(ε, ŷ).

This definition of local optimality requires the user to decide how to define the
neighbors, and then we produce a point at which we guarantee that there are no
better solutions than x̂ in any of the balls (in the continuous space and intersected
with the box [�, u]) around the points in the user-defined set of neighbors. Observe
that when there are no discrete variables, or else no continuous ones, this definition
reduces to the appropriate one presented above.

Of course, one can generally prove only that an optimization algorithm converges
to a point satisfying some necessary conditions for optimality. Thus, we prove that
our algorithm produces a limit point x̂ that satisfies

(xc − x̂c)T∇cf(x̂) ≥ 0 for any feasible (xc, x̂d)(2.1)

(where ∇cf(x) ∈ �nc

denotes the gradient of f with respect to the continuous vari-
ables xc while keeping the discrete xd fixed), and for any ŷ ∈ Ω in the set of neighbors
N (x̂)

f(x̂) ≤ f(ŷ).(2.2)

In the cases where f(ŷ) < f(x̂) + ξ (for a specified ξ > 0), there exists a point ẑ ∈ Ω,
whose discrete components ẑd are identical to ŷd, that satisfies f(x̂) ≤ f(ẑ) ≤ f(ŷ)
and

(zc − ẑc)T∇cf(ẑ) ≥ 0 for any feasible (zc, ẑd).(2.3)

Furthermore, in the cases where f(x̂) = f(ŷ) and ŷ �= ẑ,

f(x̂) = f(ȳ)(2.4)

for an infinite number of intermediate points ȳ ∈ Ω between ŷ and ẑ (we show in
section 4.2 how to construct these intermediate points). Moreover, we present a
stronger version of the algorithm that guarantees

(yc − ȳc)T∇cf(ȳ) ≥ 0 for any feasible (yc, ȳd)(2.5)

whenever f(x̂) = f(ŷ).

2.2. An illustrative application. We illustrate our approach on a thermal
insulation system. The problem is thoroughly described in [8], where we show that
by considering the two categorical variables we obtain a 65% better objective func-
tion value than in the earlier work of Hilal and Boom [6], who considered only the
continuous variables.

The setting of the problem is as follows. One wishes to control the heat flow
from a hot to a cold surface by inserting some shields (heat intercepts) between them.
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Fig. 2.1. Schematic of a general thermal insulation system.

Each shield is kept at a fixed temperature, and the spaces between them are filled
by various insulators. The objective is to minimize the power f (with an extra cost
for each additional shield) required to keep the shields at their temperatures. This is
illustrated in Figure 2.1.

The temperatures of the hot TH and cold TC surfaces are given. The decision
variables are the number of shields n, their temperatures T ∈ �n, the spacing ∆x ∈
�n+1 between them (or equivalently, the thickness of the insulators), and the types
of insulators I between the shields. These last variables are taken from a finite list
I of insulators whose thermal conductivity properties are known. The optimization
problem may be formulated as

min
∆x,T,n,I

f(∆x, T, n, I)

subject to ∆x ≥ 0, TC ≤ Ti ≤ TH , i = 1, 2, . . . , n,
n ∈ Z+, Ij ∈ I, j = 1, 2, . . . , n+ 1.

The continuous variables are ∆x and T , and the categorical ones are n and I.
An interesting and challenging aspect of this problem is that the number of decision
variables depends on a decision variable n. This does not complicate the theory.

Section 5.2 contains numerical results for this problem with local optimality de-
fined through sets of neighbors N as follows:

– changing the type of one insulator;
– removing one shield and an adjacent insulator;
– adding a shield and an insulator.

3. Pattern search methods. The underlying structure of a pattern search
algorithm is as follows. It is an iterative method that generates a sequence of feasible
iterates whose objective function value is nonincreasing. At any given iteration, the
objective function is evaluated at a finite number of points on a mesh in order to try
to find one that yields a decrease in the objective function value.

Any iteration k of a pattern search method is initiated with the incumbent so-

lution xk, as well as with an enumerable subset Mk of the domain Ω ⊂ �nc × Znd

.
Construction of the meshMk is formally described in section 3.1, and its fineness, or
resolution, is parameterized by a positive real number ∆k. The goal of each iteration
is to obtain a new incumbent solution on the current mesh whose objective function
value is strictly less (by any amount) than the old incumbent.
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Exploration of the mesh is conducted in one or two phases. First, a finite search,
free of any other rules imposed by the algorithm, is performed anywhere on the mesh.
Any strategy can be used as long as it searches finitely many points (including none).
This part of the algorithm has the advantage that the user can put in place any ad
hoc search he/she might favor for improving the incumbent with the knowledge that
if this fails, the next phase will provide a fail-safe.

If the search does not succeed in improving the incumbent, the second phase is
called. A potentially exhaustive (but always finite) search in a local mesh neighbor-
hood around xk and around promising points in its set of neighbors is performed. The
first phase (called the search step) provides flexibility to the method and determines
in practice the global quality of the solution; a user can do a more extensive, and
expensive, search in hopes of finding a better local solution. The second phase (called
the poll step) follows stricter rules and guarantees theoretical convergence to a local
minimizer of a quality specified by the user. The set of points visited by this phase is
referred to as the poll set. Rules for constructing this set are detailed in section 3.2.

If a point with a better objective value than xk is found in either phase, then the
iteration is declared successful, the better point becomes the new incumbent, and the
next iteration is initiated with a (possibly) coarser (and different) mesh around the
new incumbent solution.

Otherwise, the iteration is declared unsuccessful. The next iteration is initiated at
the same incumbent solution, but with a finer mesh on the continuous variables, and
a set of neighbors “closer” (if possible) to the incumbent solution. A key property of
the mesh exploration is that if an iteration is unsuccessful, then the current objective
function value is less than or equal to the objective function values evaluated at all
points in the trial set consisting of all points considered in the search and poll set.

In order to properly present the pattern search algorithm, we first detail in the
following sections the construction of the mesh and the poll set.

3.1. The mesh. At any given iteration k, the current mesh Mk is a discrete
set of points in Ω from which the algorithm selects the next iterate. The mesh is
conceptual; it is not actually constructed. The coarseness or fineness of the mesh is
dictated by the strictly positive mesh size parameter ∆k ∈ �+. Both the mesh and
mesh size parameter are updated at every iteration.

The mesh is the direct product of the union of a finite number of lattices in

�nc

with the integer space Znd

. Our presentation of the lattices differs from that
of Torczon [12], but the sets produced are equivalent. Consider the basis matrix
GB ∈ �nc×nc

, and for j varying from 1 to jmax <∞, consider the generating matrices
Gj ∈ Znc×nc

; then define the pattern matrices Pj ∈ �nc×nc

to be the products
GBGj . The continuous variables are chosen from one of the translated (by xck) lattices{
xck +∆kPjz : z ∈ Zn

c}
for j = 1, 2, . . . , jmax. The continuous part x

c
k of the current

iterate belongs to each of the jmax lattices regardless of the value of the parameter
∆k. The basis matrix GB is constant over all iterations. However, in practice the
generating matrices Gj (and thus Pj) that define the lattices can be determined as
the iteration unfolds as long as only a finite number of them is generated.

Each of these lattices is enumerable, and the minimum distance between two
distinct points is proportional to the mesh size parameter ∆k. When an iteration is
successful, the continuous part of the next iterate is chosen in any of these lattices
and thus belongs to their unionM(∆k) =

⋃jmax

j=1

{
xck +∆kPjz : z ∈ Zn

c}
; the discrete

part is chosen in the integer lattice Zn
d

.
At iteration k, the current mesh is defined to be the direct product ofM(∆k)∩Ωc
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by Ωd

Mk =
(
M(∆k)×Znd

)
∩ Ω.

The mesh is completely defined by the current iterate xk and the mesh size parameter
∆k. Whether or not the iteration is successful, the next iterate xk+1 is always selected
in the current meshMk.

In the case where the search step in the current mesh is unsuccessful, a second
exploration phase must be conducted by the algorithm in the poll set before the
iteration is declared unsuccessful. The poll step verifies whether the incumbent
solution is a local mesh minimizer, as defined in the next section.

3.2. The poll set. Polling occurs when the search step was unable to obtain a
point on the current mesh that decreased the incumbent value. Polling is conducted
as follows in up to three stages (not necessarily in this order):

– polling with respect to the continuous variables;
– polling on the current set of neighbors N ;
– extended polling (in the case where f(y) for some y in the set of neighbors is
close to the incumbent value).

The first stage is identical to the typical polling in pattern search algorithms for
continuous variables only. The second one is the natural generalization to the discrete
variables using the set of neighbors. We introduced the last one to explore around
some promising points in the set of neighbors and strengthen the optimality conditions
achieved by the limit points.

Polling with respect to the continuous variables requires the use of positive bases,
or at least positive spanning sets, on �nc

. A positive basis is a set of nonzero vectors
in �nc

whose nonnegative linear combinations span �nc

, but no proper subset does
so. Each positive basis contains at least nc + 1 and at most 2nc vectors. These are
referred to as minimal and maximal positive bases (see Davis [4] for characterization
of positive bases). We use the following key property of positive spanning sets. For
any nonzero vector a in �nc

and positive spanning set B on �nc

, there exists a vector
b of B such that

aT b < 0.(3.1)

Let B be a finite set of positive spanning sets on �nc

such that every column b of
every positive spanning set of B is of the form Pjz for some z ∈ Zn

c

and 1 ≤ j ≤ jmax.
The pattern matrices Pj are the same ones used to construct the lattices in section 3.1.
In a way similar to [9], we assume that at least one positive spanning set of B is a
maximal positive basis whose columns may be partitioned in a way to form two
nonsingular diagonal nc × nc matrices. Let B ⊂ B be the set of all these bases.
Conceptually, the set B is fixed throughout all iterations, but it may evolve as the
solution process proceeds as long as it remains finite.

The poll points with respect to the continuous variables are obtained by scaling
a basis B by the mesh size parameter as follows: At iteration k, for any mesh point
x, define N c(x), the mesh neighborhood of the continuous variables around x, to be

N c(x) = {x+∆k(b, 0) ∈ Ω : b ∈ Bk(x)}(3.2)

for some positive spanning set Bk(x) ∈ B that depends on both the iteration number
k and the point x. Moreover, in order to avoid the infeasibility problem described



580 CHARLES AUDET AND J. E. DENNIS, JR.

in [9], we require that if one of the components of the current iterate xck is within
a tolerance parameter ε > 0 of either its lower or upper bound, then the positive
spanning set for this iteration must be chosen in B.

This definition ensures that the mesh neighborhood N c(xk) is a subset of the
current meshMk. Moreover, N c(xk) is constructed using a single positive spanning
set chosen from a finite set, and thus there are only a finite number of possible ways
to define mesh neighborhoods.

The motivation for introducing positive spanning sets for the continuous variables
is that if the gradient ∇cf of the function f with respect to the continuous variables
is nonzero, then at least one vector of the set defines a descent direction. The original
work of Torczon [12] uses a maximal positive basis for unconstrained optimization. It
was later generalized in Lewis and Torczon [10] to any positive basis, thus reducing
the maximum number of points in the polling set from 2nc to nc + 1. However, for
bound constrained optimization, they show that taking the maximal positive bases
generated by the coordinate directions guarantees finding a feasible descent direction
(if there is one) even on the boundary of the feasible region.

The discrete stage of the poll step depends on the set of neighbors defined by
the user (as in section 2.1). In order to allow for varying of the definition of the set
of neighbors for a finite number of iterations, we define the current set of neighbors
Nk to be such that Nk differs from N (xk) at most at a finite number of iterations
k. This flexibility allows finitely many redefinitions of Nk to allow the user another
knob to adjust the cost of a poll step (see section 3.3) and the likely quality of the
limit point.

If none of the above-mentioned polling points (i.e., those in the mesh neighbor-
hood N c(xk) and in the set of neighbors Nk) yields decrease in the objective function
value, a third stage might be required before declaring the iteration unsuccessful. This
stage is triggered by the last of our user controlled knobs ξ > 0 to pay more for a
most likely better final function value. An extended poll step must be conducted
around each point of the set of neighbors Nk of xk at which the function value, even
though it is larger, is within ξ of f(xk) . Intuitively, ξ represents a tolerance which is
such that if a discrete neighbor y in Nk provides such a near function value, then the
user wishes us to poll in the continuous variables around y since this may produce
a new best solution. Our convergence analysis is independent of the value of ξ, but
intuitively a larger ξ means extended polling will be carried out at more iterations,
which may cost more function evaluations, but should give a better local minimizer.
Of course, it would be simple to construct examples showing the opposite behavior,
but our thermal example shows how this can work.

More precisely, consider any point y in the set of neighbors Nk. (The variable y
should be indexed with the iteration number k and with respect to the set of neighbors
Nk, but this would obscure the notation.) In the case where f(y) > f(xk) + ξ or
f(y) ≤ f(v) for all v in N c(y), the poll step need not be extended and so we set
the index J to 0. In all other cases, y0 is set to y and for j ≥ 1 we select the feasible
point yj in the mesh neighborhood N c(yj−1) iteratively so that f(yj) < f(yj−1) until
it is no longer possible (or until f(yj) < f(xk) in which case iteration k is successful
and xk+1 is set to yj). It follows that the last point (whose index is denoted by J)
satisfies f(yJ) ≤ f(v) for all v in N c(yJ). Define z to be the endpoint yJ of the
extended poll step. Keep in mind that z depends on the iteration number k and
on the neighbor y in Nk. These trial points are illustrated in Figure 3.1, where they
are indexed with the iteration number.
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Fig. 3.1. Limit points of the iterates and the extended poll points.

With this construction, the function values f(y) = f(y0), f(y1), . . . , f(yJ) = f(z)
are monotonically decreasing unless y = z. Only at the endpoint z is the function
required to be evaluated at every point of its mesh neighborhood N c(z). Observe that
the index J may be 0, in which case y = z. This happens either when f(y) > f(xk)+ξ
or when f(y) ≤ f(v) for all v in N c(y). The index J is finite since all generated
points yj are distinct and belong to the meshMk intersected with the compact level
set LΩ(x0) (see assumption (A1) in section 3.3).

The set of all points visited by the poll step at iteration k is denoted Xξk and
may be explicitly written as

Xξk = N c(xk)
⋃

Nk
⋃
y∈Nk:

f(xk)≤f(y)≤f(xk)+ξ

E(y),

where E(y) is the extended poll set, which contains {y1, y2, . . . , yJ} ∪ N c(z) as well
as some points of N (yj) for some j’s in {0, 1, . . . , J − 1}.

Figure 3.2 illustrates an instance in which there are two continuous variables
and one discrete variable. The set of neighbors of the iterate xk is assumed to be
Nk = N (xk) = {xk, y0

1 , y
0
2}, where the subscripts 1 and 2 are added to distinguish the

points in the set of neighbors N (xk). (Note that the points in Nk do not have the
same values for the continuous variables.) The iterate xk is a local minimizer of the

function f on Xξk if f(xk) is less than or equal to the function value evaluated at all
points in balls around xk, y

0
1 , and y0

2 . The letters a to l in the figure represent mesh
neighborhoods of the continuous variables

N c(y0
1) = {d, e, y1

1}, N c(y1
1) = {a, b, c}, N c(xk) = {f, g, h}, and N c(y0

2) = {i, j, k, l}.
In this example, since f(xk) ≤ f(y0

1) < f(xk) + ξ < f(y0
2) the poll set Xξk contains

points in N c(xk) and N c(y0
1) (among others). Assuming that f(y1

1) < f(y0
1) but

f(a) ≥ f(y1
1), f(b) ≥ f(y1

1) and f(c) ≥ f(y1
1) lead to the poll set Xξk = {f, g, h} ∪

{xk, y0
1 , y

0
2} ∪ E(y), where E(y) = {y1

1} ∪ {a, b, c}. Note that, depending on the order
in which the function values are evaluated, it is possible that the extended poll set
also contains d or e.

Using the above notation, we can now present the GMVP algorithm.

3.3. The GMVP search algorithm. Our presentation of the pattern search
algorithm is closer to that of Booker et al. [2] than to that of Torczon [12]. Consider
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Fig. 3.2. Construction of the current mesh neighborhood Xξ
k
around xk.

the given initial meshM0 ⊂ Ω with mesh size parameter ∆0 and initial point x0 ofM0.
Also, let ξ > 0 be the objective function change tolerance used to trigger extended
polling in the construction of the poll set. Recall that if f(xk) ≤ f(y) ≤ f(xk)+ ξ for
some y in the set of neighbors Nk, then the polling step must be extended around y.

Throughout the paper, the following assumptions are made:
(A1) The level set LΩ(x0) = {x ∈ Ω : f(x) ≤ f(x0) + ξ} is compact.
(A2) f is continuously differentiable over a neighborhood of LΩ(x0) when variables

in Znd

are fixed, i.e., for any xd ∈ Ωd the function xc �→ f(xc, xd) is continuously
differentiable in a neighborhood of {xc : (xc, xd) ∈ LΩ(x0)}.

At any iteration k ≥ 0, the general rules for choosing xk+1 in the current mesh
Mk and obtaining the next mesh size parameter ∆k+1 are as follows.

Generalized Mixed Variable Pattern Search Algorithm (GMVP).
1. search step (in current mesh). Employ some finite strategy to obtain an
xk+1 ∈Mk satisfying f(xk+1) < f(xk). If such an xk+1 is found, declare the search
step (as well as the iteration) successful, then expand the mesh at step 3.
2. poll step. This step is reached only if the search step is unsuccessful. If
f(xk) ≤ f(x) for every x in the poll set Xξk , then declare the poll step (as well as the

iteration) unsuccessful and shrink the mesh at step 4. Otherwise, choose xk+1 ∈ Xξk to
be a point such that f(xk+1) < f(xk), declare the poll step (as well as the iteration)
successful, and expand the mesh at step 3.

3. Mesh expansion (at successful iterations). Let ∆k+1 = τm
+
k ∆k (for τ

m+
k ≥ 1

defined below). Increase k, and initiate the next iteration at step 1.
4. Mesh reduction (at unsuccessful iterations). Set xk+1 to xk and let ∆k+1 =

τm
−
k ∆k (for 0 < τm

−
k < 1 defined below). Increase k, and initiate the next iteration

at step 1.
In the search and poll steps, the number of candidate points among which the

next iterate can be chosen is finite, since they must belong to the intersection of the
enumerable current mesh and the compact set LΩ(x0).

The parameters in the last two steps are the rational number τ > 1 and the
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integers (whose absolute values are bounded above by a constant mmax ≥ 1) m+
k ≥ 0

and m−
k ≤ −1. In [12], the mesh reduction parameter m−

k was fixed for all k ≥ 0.
This restriction is relaxed here without affecting the convergence results. We plan to
exploit this flexibility in subsequent work to increase the practical convergence speed.

The conditions on these parameters imply the simple decrease property used
throughout the growing literature on GPS methods: iteration k is successful if and
only if f(xk+1) < f(xk), if and only if ∆k+1 ≥ ∆k, and if and only if xk+1 �= xk.
Another important implication of the parameters’ definition is that if the iteration
k is unsuccessful, then f(xk) ≤ f(v) for all v ∈ Xξk and thus f(xk) ≤ f(y) for all
y ∈ N c(xk) and, whenever f(y) ≤ f(xk) + ξ for some y ∈ Nk, then f(z) ≤ f(v)
for all v ∈ N c(z), where z is the end point of the extended poll step initiated at y.
Moreover, ∆k+1 is obtained by multiplying ∆k by a finite positive or negative integer
power of τ . Therefore, for any k ≥ 0, we can write

∆k = ∆0τ
rk(3.3)

for some rk belonging to Z.
Notice that the cost of the poll step is expected to depend on both ξ and the

definition of the set of neighbors N . Thus, the user can pay more function evaluations
for a stronger local solution by defining a larger ξ or a larger neighborhoodN . Another
way that the user can likely improve the quality of the solution is through the search
step. In that step, knowledge of the problem and/or favorite heuristics can be used
to improve the solution. The user can also try to evaluate the function at various
places in the variable space and design interpolary models or use surrogate functions
(as discussed in Booker et al. [2]). The search strategy, which aims at finding the best
solution on the current mesh, can be as sophisticated as one wants, but may increase
the number of function evaluations.

4. Proof of convergence. This section contains the convergence proof for the
GMVP algorithm. We start by studying the behavior of the mesh size param-
eter ∆k. The first important result, due to Torczon for the continuous case, is
lim infk→+∞∆k = 0 which implies the existence of a subsequence of mesh size pa-
rameters that converges to zero. A key to our simpler proof is to conclude from this
that there is an infinite number of unsuccessful iterations. We analyze converging
subsequences of unsuccessful iterates whose mesh size parameters converge to zero.
We show that any limit point of such a subsequence satisfies the optimality condi-
tions (2.1)–(2.4). By focusing on unsuccessful iterations, the result for the continuous
variables is shown using a much shorter proof than in [12] and [9]. We also present
a stronger version of the algorithm that yields a stronger result, i.e., the optimality
condition (2.5).

Thus, when we consider the analysis of this class of algorithms, it is the se-
quences of unsuccessful iterates that we show converge. The terminology success-
ful/unsuccessful that made perfect sense in explaining the algorithm suddenly jars us
because of the pejorative connotation of the word “unsuccessful.” In fact, an iteration
is unsuccessful because the corresponding iterate is a local mesh minimizer, and so the
discrete resolution of the domain must be refined by reducing ∆k before we can expect
to proceed downhill. Likewise, an iteration is successful because it moves us toward
finding a local mesh minimizer. Thus, in a sense, successful/unsuccessful could be re-
placed by inner/outer or minor/major as labels for the two types of iterations. We hes-
itate to suggest such a change to well-established terminology too quickly, but we hope
this short warning discussion will alleviate the confusion readers have expressed to us.
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4.1. Behavior of the mesh size. To show that there is a subsequence of mesh
size parameters ∆k that converges to zero, we first show that these parameters are
bounded above by a constant, independent of the iteration number k.

Lemma 4.1. There exists a positive integer ru such that ∆k ≤ ∆0τ
ru for any

k ≥ 0.
Proof. Let ∆ be a mesh size parameter large enough so that the union of lattices

M(∆) intersects the compact feasible level set {xc : x ∈ LΩ(x0)} only at the transla-
tion parameter xck; i.e., for any 1 ≤ j ≤ jmax, z ∈ Znc

, and x in LΩ(x0) the solution
xc + ∆Pjz does not belong to the projection of LΩ(x0) on the continuous variables
space unless it equals xck. Therefore, if at iteration k the mesh size parameter ∆k is
greater than or equal to ∆, then

Mk ∩ LΩ(x0) ⊂ {xck} × Ωd.

Moreover, only a finite number of iterations will follow before the mesh size param-
eter drops below ∆. Indeed, the continuous part of all these iterates will necessarily
be equal to xck, and the discrete part of these iterates can take only a finite number of
values because the set LΩ(x0) is bounded. Let dmax be the total number of distinct
values that the discrete variables may take in LΩ(x0). Therefore, there will be no
more than dmax successful iterations before the mesh size parameter goes below ∆.

Recall that the expansion mesh size control parameter is bounded above by τmmax .
Let ru be a large enough integer so that ∆0τ

ru ≥ ∆(τmmax)dmax . It follows that the
mesh size parameter at any iteration will never exceed ∆0τ

ru .
We now study the convergence behavior of the mesh size parameter. The proof

of this result is essentially identical to that of Torczon [12] despite the presence of
discrete variables.

Theorem 4.2. The mesh size parameters satisfy lim infk→+∞∆k = 0.
Proof. Suppose by way of contradiction that there exists a negative integer r�

such that 0 < ∆0τ
r	 ≤ ∆k for all k ≥ 0. Equation (3.3) states that for every k ≥ 0

there is an rk ∈ Z such that ∆k = τ rk∆0. Combining this with Lemma 4.1 implies
that for any k ≥ 0, rk takes its value among the integers of the bounded interval
[r�, ru]. Therefore, rk and ∆k can take only a finite number of values for all k ≥ 0.

For any k, the continuous part of the next iterate xck+1 belongs to a lattice and

can be written xck +∆kPjkzk for some zk ∈ Znc

and 1 ≤ jk ≤ jmax. By substituting
∆k = ∆0τ

rk and Pj = GBGjk , it follows that for any integer N

xcN = xc0 +

N−1∑
k=1

∆kPjkzk

= xc0 +∆0G
B
N−1∑
k=1

τ rkGjkzk = xc0 +
pr

	

qru
∆0G

B
N−1∑
k=1

prk−r
	

qr
u−rkGjkzk,

where p and q are relatively prime integers satisfying τ = p
q .

Since for any k the term prk−r
	

qr
u−rkGjkzk appearing in this last sum is an

integer, it follows that the continuous part of all iterates lies on the translated integer

lattice generated by xc0 and the columns of p
r	

qru
∆0G

B . Moreover, the discrete part of

all iterates also lies on the integer lattice Znd

.
Therefore, since all iterates belong to the compact set LΩ(x0), it follows that

there is only a finite number of different iterates, and thus one of them must be
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visited infinitely many times. Simple decrease ensures that the mesh size parameters
converge to zero, which is a contradiction.

4.2. The main results. Lewis and Torczon [9] show that condition (1.2) holds;
i.e., there exists a limit point x̂ of the sequence of iterates for which sT∇f(x̂) ≥ 0
for any feasible direction s. Through a shorter proof, we show a stronger result. We
show the existence of a limit point x̂ of the sequence of unsuccessful iterates that
satisfies (2.1) and is a local optimizer with respect to the set of neighbors N (x̂) in
the sense of conditions (2.2), (2.3), and (2.4). Recall that iteration k is unsuccessful
if and only if xk+1 = xk, which is equivalent to ∆k+1 < ∆k. Thus, the number of
unsuccessful iterations is infinite since lim infk→+∞∆k = 0 by Theorem 4.2.

Consider the indices of the unsuccessful iterations whose corresponding mesh size
parameters go to zero. For any limit point of such a subsequence, there is an iterate
xk arbitrarily close to it for which no trial point of the poll set Xξk yields a decrease
in the objective function value. The following result details properties of a limit point
x̂ of the subsequence of unsuccessful iterations whose mesh size parameters converge
to zero (Figure 3.1 depicts this result).

Proposition 4.3. There is a point x̂ ∈ LΩ(x0) and a subset of indices of unsuc-
cessful iterates K ⊂ {k : xk+1 = xk} such that

lim
k∈K

∆k = 0, lim
k∈K

xk = x̂, and Nk = N (xk) ∀k ∈ K.

Moreover, if ŷ belongs to the set of neighbors N (x̂), then there exists a ẑ = (ẑc, ŷd) ∈ Ω
such that

lim
k∈K

yk = ŷ and lim
k∈K

zk = ẑ,

where zk ∈ Ω is the endpoint of the extended poll step initiated at yk ∈ N (xk) at
iteration k ∈ K.

Proof. Theorem 4.2 guarantees that lim infk→+∞∆k = 0; thus there is an infinite
subset of indices of unsuccessful iterations K ′ ⊂ {k : xk+1 = xk} = {k : ∆k+1 < ∆k}
such that the subsequence {∆k}k∈K′ converges to zero.

Since all iterates xk lie in the compact set LΩ(x0), we can extract an infinite
subset of indices K ′′ ⊂ K ′ such that the subsequence {xk}k∈K′′ converges. Let x̂
in LΩ(x0) be the limit point of such a subsequence. Moreover, since Nk differs from
N (xk) at most at a finite number of iterates, we may assume, without any loss of
generality, that xdk = x̂d for all xk ∈ K ′′.

Let ŷ ∈ Ω be a point of the set of neighbors N (x̂). Recall that we assumed in
section 2.1 a notion of continuity of the sets of neighbors. Therefore, ŷ is a limit point
of a subsequence yk ∈ Nk. Let ẑ ∈ Ω be a limit point of the sequence zk ∈ Ω of
endpoints of the extended poll step initiated at yk. By definition, the endpoint zk
is equal to yk in the case that the extended poll step is not required.

Choose K ⊂ K ′′ to be such that both {yk}k∈K converges to ŷ and {zk}k∈K is
convergent (let ẑ denote the limit point).

Torczon [12] observes that setting the mesh size increase parameter m+
k to zero

(in the mesh expansion step of the GPS algorithm) ensures that limk→∞∆k = 0.
Thus the mesh is never expanded: at unsuccessful iterations, the mesh size parameter
∆k+1 is set to be equal to ∆k. The same observation holds for our algorithm. It
follows that in this case, all the convergence results below hold for every limit point
of the sequence of unsuccessful iterates.
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For the rest of this section, we assume that x̂ and K satisfy the conditions of
Proposition 4.3. The main results can now be proved. We first show that x̂ is a local
optimal solution with respect to the set of neighbors N (x̂) ⊂ Ω.

Theorem 4.4. The limit point x̂ satisfies f(x̂) ≤ f(ŷ) for all ŷ ∈ N (x̂).
Proof. Suppose by way of contradiction that there is a ŷ ∈ N (x̂) such that

f(x̂) > f(ŷ). Continuity of the function f with respect to the continuous variables
guarantees the existence of an ε > 0 such that if v belongs to the ball B(ε, ŷ) of radius
ε centered at ŷ, then f(v) < f(x̂).

Proposition 4.3 guarantees that the subsequences {xk}k∈K and {yk}k∈K (where
yk ∈ N (xk)), respectively, converge to x̂ and ŷ. We required in section 2.1 that the
set N (xk) converges for k ∈ K to N (x̂) in the sense that if k ∈ K is large enough,
then there exists a yk ∈ N (xk) such that yk ∈ B(ε, ŷ).

Therefore, there exists an iteration k ∈ K such that yk belongs to Nk∩B(ε, ŷ) and
satisfies f(yk) < f(x̂) ≤ f(xk). It follows that the iteration is successful, contradicting
the fact that k belongs to K ⊂ {k : xk+1 = xk}.

In the case where the inequality in Theorem 4.4 is strict, i.e., f(x̂) < f(ŷ), then
the notion of local optimality for mixed integer programming presented in section 2.1
is verified: There exists an ε > 0 such that f(x̂) ≤ f(v) for any v in a ball of radius
ε around ŷ. This follows from the continuity of the function f with respect to the
continuous variables.

Next, we study the gradient of the function f with respect to the continuous
variables at the limit point x̂. The proof of Theorem 4.7 for the continuous case is
much shorter than the original one of Torczon [12]. Its proof, as well as that for the
extended poll step (Theorem 4.8), relies on the following two lemmas.

The first lemma shows that the gradient is zero in the strict interior of the bound-
ary of the feasible region. These results concern points around which polling is un-
successful (i.e., pk in the lemmas will take the value of xk or zk).

Lemma 4.5. Let {pk}k∈K be a subsequence of unsuccessful poll points and let p̂
be a limit point. If the continuous part of the limit point p̂ is in the strict interior of
the feasible region [�, u], then ∇cf(p̂) = 0.

Proof. Since k ∈ K and p̂ is strictly feasible, it follows that {∆k}k∈K goes to zero
and {pk +∆k(b, 0) : b ∈ Bk(pk)} is contained in Ω for k large enough. Equation (3.2)
and the mean value theorem imply that

f(pk) ≤ min
v∈N c(pk)

f(v) = min
v∈{pk+∆k(b,0):b∈Bk(pk)}

f(v)

= min
b∈Bk(pk)

f(pk +∆k(b, 0))

= min
b∈Bk(pk)

f(pk) + ∆kb
T∇cf(pk + αbk∆k(b, 0))

= f(pk) + ∆k min
b∈Bk(pk)

bT∇cf(pk + αbk∆k(b, 0))

for some αbk ∈ [0, 1] that depends on both the positive basis vector b and iteration
number k. Therefore

0 ≤ min
b∈Bk(pk)

bT∇cf(pk + αbk∆k(b, 0)).

Taking the limit for k → ∞ yields 0 ≤ minb∈B bT∇cf(p̂) for at least one positive
spanning set B of the finite set B since f is assumed to be continuously differentiable.
The positive spanning set property (3.1) guarantees that ∇cf(p̂) = 0.
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The second lemma shows that there are no descent directions for points on the
boundary of the feasible region.

Lemma 4.6. Let {pk}k∈K be a subsequence of unsuccessful poll points and let p̂
be a limit point. If the continuous part of the limit point p̂ is on the boundary of the
feasible region [�, u], then (pc − p̂c)T∇cf(p̂) ≥ 0 for any feasible (pc, p̂d).

Proof. If the continuous part of pk is within ε of the boundary of the feasible
region [�, u], then Bk(pk) is a maximal positive basis belonging to B constructed
from two diagonal matrices (see the discussion preceding the definition of the mesh
neighborhood (3.2)).

As in Lemma 4.5, but only for the feasible positive basis directions b of Bk(pk),
we have that

0 ≤ bT∇cf(pk + αbk∆k(b, 0)).

The result follows since any feasible direction (pc − p̂c) at p̂ is a convex combination
of some feasible positive basis directions.

We can now state our first main result.
Theorem 4.7. The limit point x̂ satisfies (xc − x̂c)T∇cf(x̂) ≥ 0 for any feasible

(xc, x̂d).
Proof. The result follows directly from Lemmas 4.5 and 4.6, where xk plays the

role of pk, and from the results on the sequence {xk}k∈K of Proposition 4.3.
Audet [1] shows through a small example containing two continuous variables

and no discrete ones that, in the unconstrained case, this result cannot be strength-
ened to limk→∞ ‖∇cf(xk)‖ = 0 since there may be a limit point whose gradient is
nonzero. It is also shown there that no second-order optimality conditions can be
guaranteed, which is as it should be for an algorithm that uses only function values
and no derivatives.

The following result shows that the gradient norm at the endpoints of the ex-
tended poll converges to zero for k ∈ K.

Theorem 4.8. The limit point x̂, and any point ŷ in the set of neighbors N (x̂)
satisfying f(ŷ) < f(x̂) + ξ, are such that (zc − ẑc)T∇cf(ẑ) ≥ 0 for any feasible
(zc, ẑd), where ẑ is any limit point of the extended poll endpoints.

Proof. The result follows directly from Lemmas 4.5 and 4.6, where zk plays the
role of pk, and from the results on the sequence {zk}k∈K of Proposition 4.3.

The next result shows that the function is constant at an infinite number of
intermediate points between ŷ and the endpoint ẑ whenever f(ŷ) = f(x̂). In order
to show this result, we add the index k here to avoid confusion. The extended poll
points at iteration k initiated at yk are denoted y0

k = yk, y
1
k, . . . , y

J
k = zk, where the

index J depends on both k and yk. Again, this is illustrated in Figure 3.1.
Proposition 4.9. The limit point x̂, and any ŷ ∈ N (x̂) satisfying f(ŷ) = f(x̂),

are such that any limit point ȳ of the sequence of extended poll points {yjk} satisfies
f(ȳ) = f(x̂). Moreover, if ŷ �= ẑ, then there are infinitely many of these limit points.

Proof. Let ŷ in N (x̂) be such that f(ŷ) = f(x̂). Let ȳ be a limit point distinct
from ŷ and ẑ of the sequence of extended poll points {yjk}.

Since f(x̂) ≤ f(yj+1
k ) < f(yjk) for j = 0, 1, . . . , J and since the subsequence{

f(y0
k)
}
k∈K converges to f(x̂), we conclude that f(x̂) = f(ȳ).

To show the second part of the result, we first let d = ‖ŷ − ẑ‖ be the nonzero
distance between ŷ and ẑ. This makes sense because both share the same discrete
components. Second, for any scalar p in the open interval ]0, d[, we define the set

Yp =
{
yjk : k ∈ K, j ∈ {0, 1, . . . , J}, ‖yjk − ŷ‖ ≤ p, ‖yj+1

k − ŷ‖ > p‖
}
.
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Since y0
k = yk → ŷ and yJk = zk → ẑ, it follows that the set Yp contains infinitely

many points for any p in ]0, 1[. Any limit point ȳp of Yp satisfies ‖ȳp − ŷ‖ = p since

∆k converges to 0 (in K) and yj+1
k is equal to yjk + ∆kb

j
k for some vector bjk of the

basis Bk(y
j
k) of the finite set B. Therefore if p �= q, then ȳp �= ȳq and the result

follows.

4.3. Stronger results. Theorem 4.8 may be strengthened under the following
(more expensive) version of extended polling.
strong extended poll step:

– yj+1
k ∈ argminy∈N c(yj

k
) f(y) for a given y0

k and j = 0, 1, . . . , J at iteration k;

– the same positive basis in B must be used throughout the strong extended
poll step.

This requires performing a complete extended poll step; i.e., yj+1
k is chosen

only after evaluating the function value at all feasible points of the continuous mesh
neighborhood around yjk and retaining the one that yields the smallest value (ties are
broken arbitrarily).

This also means that the matrix Bk(y
j
k) in N c(yjk) = {yjk + ∆k(b, 0) ∈ Ω : b ∈

Bk(y
j
k)} does not depend on the index j; it can, however, vary with the iteration

number k. This positive basis is maximal and constructed from diagonal matrices.
This is to make sure that the basis directions are correctly chosen in the event that
the extended poll iterates approach the boundary of the feasible region.

The following result bounds the decrease in the objective function value under
precise conditions. We will denote by bjk the vector of the positive basis used by the

extended poll step at the point yjk for some j < J . The next point is therefore

yj+1
k = yjk +∆kb

j
k.

Lemma 4.10. Let ŷ ∈ N (x̂). For any η < 0, there exist δ > 0 and σ > 0,
both independent of the iteration number k, such that all extended poll iterates yjk
for which j < J , ∆k < δ, yjdk = ŷd and for which (bjk)

T∇cf(yjk) ≤ η
3 also satisfy

f(yjk)− f(yj+1
k ) > σ‖yjk − yj+1

k ‖.
Proof. Let η < 0 be given. Continuous differentiability of the function f with

respect to the continuous variables over a neighborhood of the compact set LΩ(x0)
implies the existence of δ > 0 such that any y ∈ LΩ(x0) and w ∈ Ω that satisfy

‖w − y‖ < δ ×max{‖b‖ : b ∈ B ∈ B} also satisfy ‖bT (∇cf(w) − ∇cf(y))‖ < |η|
6 for

each feasible direction b ∈ B ∈ B at y and, in particular, bT∇cf(w) < bT∇cf(y)− η
6 .

Let ŷ ∈ N (x̂) and consider the extended poll iterate yj+1
k = yjk + ∆kb

j
k, where

yjdk = ŷd. Applying the mean value theorem yields

f(yj+1
k ) = f(yjk) + ∆k(b

j
k)
T∇cf(wjk)(4.1)

for some wjk = yjk + αjk∆kb
j
k, where αjk is a real number in the interval [0, 1].

Assume that yjk satisfies (b
j
k)
T∇cf(yjk) ≤ η

3 ; if no such point exists, then the result
is trivial. Observe that

∆k =
‖yjk − yj+1

k ‖
‖bjk‖

≥ ‖yjk − yj+1
k ‖

max{‖b‖ : b ∈ B ∈ B} .(4.2)

Moreover, if ∆k < δ, then wjk ∈ Ω is within δ ×max{‖b‖ : b ∈ B ∈ B} of yjk ∈ LΩ(x0)
since

‖wjk − yjk‖ = αjk∆k‖bjk‖ < 1× δ‖bjk‖ ≤ δ ×max{‖b‖ : b ∈ B ∈ B}.
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Therefore, (bjk)
T∇cf(wjk) < (bjk)

T∇cf(yjk) − η
6 ≤ η

3 − η
6 = η

6 , and it follows by (4.1)
and (4.2) that

f(yj+1
k )− f(yjk) < ∆k

η

6
≤ η‖yjk − yj+1

k ‖
6max{‖b‖ : b ∈ B ∈ B} .

Setting σ = |η|
6 max{‖b‖:b∈B∈B} > 0 concludes the proof.

This second lemma relates (bjk)
T∇cf(yjk) to (blk)T∇cf(ylk) when ∆k is small.

For the remainder of the section, we assume that the strong extended poll

step is used and that ȳ is a limit point of the subsequence {yj(k)k }k∈K for which the
continuous part ȳc is in the strict interior of the feasible region [�, u], where j(k) is
an index between 1 and J (where J depends on k). Moreover, we assume, without
any loss in generality, that all iterates of this subsequence use the same positive basis
that we denote by B. Note that the results of Proposition 4.3 concerning the other
limit points still hold.

Lemma 4.11. For any η < 0 there exists an ε > 0 and a δ′ > 0 such that if
‖yjk− ȳ‖ ≤ ε and ‖ylk−yjk‖ ≤ ε, and ∆k < δ′ for some k, j, and l, then (bjk)

T∇cf(yjk)−
(blk)

T∇cf(ylk) ≥ η
3 .

Proof. Let η < 0 be given. Define ε > 0 such that if ‖yjk−ȳ‖ ≤ ε and ‖ylk−yjk‖ ≤ ε,
then

‖bT (∇cf(ylk)−∇cf(yjk))‖ ≤
|η|
12

(4.3)

for all b ∈ B.
Using the mean value theorem, define wlk = ylk + αlk∆kb

l
k and wjk = ylk + αjk∆kb

j
k

(where both αlk and αjk are in [0, 1]) such that f(y
l
k+∆kb

l
k) = f(ylk)+∆k(b

l
k)
T∇cf(wlk)

and f(ylk +∆kb
j
k) = f(ylk) + ∆k(b

j
k)
T∇cf(wjk).

Let δ′ > 0 be such that if ∆k < δ′ for some k ∈ K, then ylk + ∆kb ∈ Ω for all
positive bases directions b ∈ B. This is possible since ȳc belongs to the strict interior
of [�, u].

‖(blk)T (∇cf(wlk)−∇cf(ylk))‖ ≤
|η|
6

and ‖(bjk)T (∇cf(wjk)−∇cf(ylk))‖ ≤
|η|
12

.(4.4)

Combining (4.3) (using b = bjk) with the second inequality of (4.4) yields

‖(bjk)T (∇cf(wjk)−∇cf(yjk))‖ ≤
|η|
6
.(4.5)

In summary, we have shown in the first inequality of (4.4) and in (4.5) that

(blk)
T∇cf(wlk) = (blk)

T∇cf(ylk) + µl and (bjk)
T∇cf(wjk) = (bjk)

T∇cf(yjk) + µj ,(4.6)

where |µl| ≤ |η|
6 and |µj | ≤ |η|

6 .
Moreover, since blk is obtained through the strong extended poll steps, and

since ylk + ∆kb
j
k is feasible, then it follows that f(ylk + ∆kb

l
k) ≤ f(ylk + ∆kb

j
k), and

therefore (blk)
T∇cf(wlk) ≤ (bjk)

T∇cf(wjk). Using the two equalities of (4.6) we get

(blk)
T∇cf(ylk)− (bjk)

T∇cf(yjk) = uj − ul ≤ |η|
3 .

The following result strengthens Theorem 4.8 by showing that there are no feasible
descent directions at the limit points ȳ of Proposition 4.9.
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Theorem 4.12. If the limit points x̂ and ŷ ∈ N (x̂) obtained under the strong
extended poll step satisfy f(ŷ) = f(x̂), then ∇cf(ȳ) = 0.

Proof. Suppose by way of contradiction that the limit point ȳ �= ẑ satisfies
∇cf(ȳ) �= 0. Set η = minb∈B bT∇cf(ȳ) < 0 let δ and σ be from Lemma 4.10, and
ε and δ′ be from Lemma 4.11. Let k be an index in K such that the following six
conditions hold:

(i) ∆k ≤ δ, (iv) bT∇cf(zk) > η
3 for all feasible directions b ∈ B,

(ii) ∆k ≤ δ′, (v) ‖yj(k)k − ȳ‖ < ε,

(iii) (b
j(k)
k )T∇cf(yj(k)k ) < 2η

3 , (vi) f(y
j(k)
k )− f(ylk) < σε for any l > j(k).

Conditions (i) and (ii) hold since ∆k → 0. Condition (iii) holds since b
j(k)
k is

chosen with the strong extended poll step. Theorem 4.8 implies condition (iv).

Condition (v) follows since y
j(k)
k → ȳ. Proposition 4.9 guarantees condition (vi) since

f(y
j(k)
k )→ f(γ̄) = f(x̂).
Define the index l(k) = min

{
l ≥ j(k) : (blk)

T∇cf(ylk) > η
3

}
(condition (iv) guar-

antees that l(k) ≤ J). Therefore, condition (i) and Lemma 4.10 ensure that f(yjk)−
f(yj+1

k ) > σ‖yjk−yj+1
k ‖ when j(k) ≤ j < l(k). Writing out the telescopic sum leads to

f(y
j(k)
k )− f(y

l(k)
k ) =

l(k)−1∑
j=j(k)

(
f(yjk)− f(yj+1

k )
)

> σ

l(k)−1∑
j=j(k)

‖yjk − yj+1
k ‖ ≥ σ‖yj(k)k − y

l(k)
k ‖.

Together with condition (vi) this gives ‖yj(k)k − y
l(k)
k ‖ ≤ ε. Combining this with

conditions (ii)–(v) and with Lemma 4.11 leads to

2η

3
> (b

j(k)
k )T∇cf(yj(k)k )

= (b
l(k)
k )T∇cf(yl(k)k ) +

(
(b
j(k)
k )T∇cf(yj(k)k )− (b

l(k)
k )T∇cf(yl(k)k )

)
>

η

3
+

η

3
=

2η

3
,

which is a contradiction.
In the next section, we illustrate the behavior of the algorithm through two ex-

amples.

5. Examples. The first example shows the value of the strong extended
poll versus the cheaper extended poll step. This illustrates the difference between
Proposition 4.9 and Theorem 4.12. The second example shows how the algorithm
behaves on the larger problem presented in section 2.2.

5.1. Illustration of the stronger version of the algorithm. Consider the
following example in which there are two continuous variables and a single binary one.
In order to simplify notation, the continuous variables xc are written xc = (a, b). The
objective function is

f(x) = f(a, b, xd) = g(a, b)(1− xd) + h(a, b)xd,
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where g(a, b) = a2+b2 and h(a, b) = a2v+a(1−b). Both variables are constrained to
be in the interval [−2, 2], but these bounds are never approached by the trial points.

The pattern search algorithm we apply here does not have a search step; we
use only a poll and an extended poll step triggered by ξ = 1. The current mesh
neighborhood at iteration k is defined to be

N c(x) = {x+∆k(0, 1, 0), x+∆k(0,−1, 0), x+∆k(5, 0, 0), x+∆k(−7, 0, 0)}
for any x = (a, b, xd) except when the iterate may be written x = (2∆k, 1−∆k, 1), in
which case it is

N c(x) = {x+∆k(0,−1, 0), x+∆k(5, 1, 0), x+∆k(−7, 1, 0)}.
The set of neighbors of x = (a, b, xd) is N (x) = {(a, b, 1 − xd), (a, b, xd)}. This
definition ensures that the discrete variable always remain binary. Iteration k is
declared successful and stops as soon as the incumbent is improved and ∆k+1 = ∆k.
Otherwise ∆k+1 =

∆k

2 .
The algorithm is initiated at x0 = (1, 0, 0) with ∆0 =

1
4 and with incumbent value

f(x0) = 1. The poll step evaluates the function at the points of N c(x0) : f(1,
1
4 , 0) =

17
16 , f(1,

−1
4 , 0) = 17

16 , f(
9
4 , 0, 0) =

81
16 , andf(

−3
4 , 0, 0) = 9

16 . This first iteration is suc-
cessful.

Iteration 1 starts at x1 = (−3
4 , 0, 0) with ∆0 = 1

4 and f(x1) =
9
16 . The poll

step computes f in N c(x1) : f(
−3
4 , 1

4 , 0) =
10
16 , f(

−3
4 , −1

4 , 0) = 10
16 , f(

1
2 , 0, 0) =

1
4 . This

iteration is also successful.
Iteration 2 starts at x2 = ( 1

2 , 0, 0) with ∆0 = 1
4 and f(x2) = 1

4 . The poll
step computes f in N c(x2) : f(

1
2 ,

1
4 , 0) =

5
16 , f(

1
2 ,

−1
4 , 0) = 5

16 , f(
7
4 , 0, 0) =

49
16 , and

f(−5
4 , 0, 0) = 25

16 . Before declaring this iteration unsuccessful, polling must be con-
ducted on the set of neighbors N (x2) : f( 1

2 , 0, 1) = 1
2 . This value is within ξ of

f(x2) and so extended polling must be conducted around this last point y0
2 . The ex-

tended poll step finds y1
2 = ( 1

2 ,
1
4 , 1) in N c(y0

2) with f(y1
2) =

7
16 , then y2

2 = ( 1
2 ,

1
2 , 1)

in N c(y1
2) with f(y1

2) =
3
8 , and y3

2 = ( 1
2 ,

3
4 , 1) in N c(y2

2) with f(y1
2) =

5
16 . It does

not succeed in improving this last value in N c(y3
2) : f( 1

2 ,
1
2 , 1) = 15

32 , f(
7
4 , 1, 1) =

49
16 , andf(

−5
4 , 1, 1) = 25

16 . Thus, iteration 2 is unsuccessful and iteration 3 starts at the
same point x2 = ( 1

2 , 0, 0) with ∆0 =
1
8 and f(x3) =

1
4 .

Table 5.1 shows that the algorithm generates cycles composed of two successful
iterations followed by an unsuccessful one. The three iterations detailed above, i.e.,
the first cycle, appear in the table by letting α = 1

4 . Iteration 3 initiates a new cycle
with α = 1

8 .
Figure 5.1 displays the iterates of the extended poll step from yk to zk. The

circles represent the points yjk for j = 0, 1, . . . , J . All these points are on the same line
as the function decreases linearly when the variable a is fixed to 2α. At the last point
zk, the current mesh neighborhood is evaluated using a different positive basis. The
set N c(zk) is represented by the three circled crosses. As k goes to infinity, the points
{yjk : j = 0, 1, . . . , J} converge to the line segment from ŷ = (0, 0, 1) to ẑ = (0, 1, 1),
which is the thick line in Figure 5.1. The objective function value is equal to zero
there. The gradient norm is nonzero at ŷ but decreases to zero at ẑ.

In order to ensure that the gradient norm is zero at all points of N (x̂), the
stronger version of the algorithm must be used. By doing this, the extended poll
step at iteration 2 discovers the point y1 = (−5

4 , 0, 1) of N c(y0), whose function value
is −5

4 . This iteration is successful, and the iterates eventually converge to the global
minimizer of f over Ω.
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Table 5.1
In three consecutive iterations, the iterates go from xk = 4α,∆k = α to xk+3 = 2α,∆k+3 = α

2
.

xk xk +∆k(0, 1, 0) xk +∆k(0,−1, 0) xk +∆k(5, 0, 0) xk +∆k(−7, 0, 0)
(4α, 0, 0) (4α, α, 0) (4α,−α, 0) (9α, 0, 0) (−3α, 0, 0)
16α2 17α2 17α2 81α2 9α2

(−3α, 0, 0) (−3α, α, 0) (−3α,−α, 0) (−2α, 0, 0) (−10α, 0, 0)
9α2 10α2 10α2 4α2 100α2

(2α, 0, 0) (2α, α, 0) (2α,−α, 0) (7α, 0, 0) (−5α, 0, 0)
4α2 5α2 5α2 49α2 25α2

extended yk = y0k y1k y2k . . . zk = yJk

poll: (2α, 0, 1) (2α, α, 1) (2α, 2α, 1) (2α, 1− α, 1)

2α 2α(1− α(1− 2α)) 2α(1− 2α(1− 2α)) 2α2(3− 2α))

zk +∆k(0,−1, 0) zk +∆k(−7, 1, 0) zk +∆k(5, 1, 0)
N c(zk) : (2α, 1− 2α, 1) (7α, 1, 1) (−5α, 1, 1)

2α2(4− 4α2) 49α2 25α2
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Fig. 5.1. Extended polling from y = (2α, 0, 1) to z = (2α, 1− α, 1).

5.2. A thermal insulation system. We ran the GMVP algorithm on the ex-
ample of section 2.2. The behavior was typical of derivative-free algorithms in making
rapid improvement of the objective function value and then reaching a plateau, where
the objective function value does not decrease significantly.

The initial point was a single shield at temperature T1 = 150 surrounded byM1 =
Teflon and M2 = nylon of thickness ∆x1 = ∆x2 = 50. An upper bound of 100 was
imposed on the number of shields. (This bound was large enough so that it was never
reached.) The GMVP algorithm later used the third insulator (epoxy-fiberglass). We
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Fig. 5.2. Progress of the objective function value, without or with extra information, and with
ξ = 1% or 5%.

used the set of discrete neighbors suggested in section 2.2. The algorithm consisted
mainly of poll steps. A simple search step was invoked if the previous iteration was
successful and the incumbent solution (xck, x

d
k) differed from the previous one only in

its continuous components: xck �= xck−1. This search step consisted of a point further

in the same successful direction: (xck + 2(xck − xck−1), x
d
k).

The mesh size parameter was initially set at 10 and not increased. It decreased
at local mesh optimizers. Figure 5.2 shows the improvement of the objective function
value with the number of function evaluations for four runs. They illustrate the user’s
control in defining local optimality and in triggering extended polling with respect to
the categorical variables. The y-axis is truncated for readability since f(x0) ≈ 262.
The line on the graph starts at the 18th iteration.

The right-hand graphs use properties of the insulators (such as the fact that
Teflon is a much better insulator than nylon at high temperatures) to further restrict
the discrete poll set. The top graphs use ξi = 1%f(xi) to trigger the extended
poll step. The bottom graphs use the larger value ξi = 5%f(xi). As expected, a
larger value triggers more extended poll steps and uses more objective function
evaluations, but finds a better solution. Also, the runs that use the extra information
converge using fewer function evaluations.

The numbers on the curves indicate the number of shields at local mesh optimiz-
ers, i.e., at unsuccessful iterations. For the top left graph and for ∆k = 10, 5, 5

4 , and
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5
32 , there were 5, 7, 9 and 9 shields, respectively. The number of shields did not increase
monotonically. Before reaching five shields, the GMVP algorithm added a third one
then immediately removed another. On the bottom graphs, it added a tenth shield
and later removed it. (This is indicated by the number in parentheses on the graphs.)

On the top left graph, the algorithm converged to a solution containing 9 shields
and a combination of all three types of insulators. The best solution was found
after 2639 function evaluations, and an additional 2083 showed it to be a local mesh
optimizer—a total of 4722 function evaluations. The top right graph gives the progress
using the more restrictive definition of the set of neighbors discussed above. It found
the same local mesh optimizer but with 10% fewer function evaluations. It took
2345 evaluations to find the solution and 1861 more to show it to be a local mesh
optimizer—a total of 4206 function evaluations.

On the bottom left graph, the algorithm converged after a total of 13,329 function
evaluations to a solution that uses the three insulators and whose objective function
value is reduced by more than 6%. The same solution was found on the bottom
right, but using 10,053 function evaluations (approximately 25% fewer). All four runs
produced a solution having 9 shields. The difference in the objective function values
suggests the presence of local optimum solutions.

Further computational results on this and related problems can be found with a
more engineering slant in [8].
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Abstract. We initiate the algorithmic study of an important but NP-hard problem that arises
commonly in network design. The input consists of the following:

(1) An undirected graph with one sink node and multiple source nodes, a specified length for
each edge, and a specified demand, demv , for each source node v.

(2) A small set of cable types, where each cable type is specified by its capacity and its cost
per unit length. The cost per unit capacity per unit length of a high-capacity cable may
be significantly less than that of a low-capacity cable, reflecting an economy of scale; i.e.,
the payoff for buying at bulk may be very high.

The goal is to design a minimum-cost network that can (simultaneously) route all the demands at
the sources to the sink by installing zero or more copies of each cable type on each edge of the
graph. An additional restriction is that the demand of each source must follow a single path. The
problem is to find a route from each source node to the sink and to assign capacity to each edge of
the network such that the total costs of cables installed are minimized. We call this problem the
single-sink link-installation problem.

For the general problem, we introduce a new “moat-type” lower bound on the optimal value and
we prove a useful structural property of near-optimal solutions: For every instance of our problem,
there is a near-optimal solution whose graph is acyclic (with a cost no more than twice the optimal
cost). We present efficient approximation algorithms for key special cases of the problem that arise
in practice. For points in the Euclidean plane, we give an approximation algorithm with performance
guarantee O(log(D/u1)), where D is the total demand and u1 is the smallest cable capacity. When
the metric is arbitrary, we consider the case where the network to be designed is restricted to be two
level; i.e., every source-sink path has at most two edges. For this problem, we present an algorithm
with performance guarantee O(logn), where n is the number of nodes in the input graph, and also
show that this performance guarantee is nearly best possible.

Key words. minimum-cost capacitated network design, approximation algorithms
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1. Introduction.

1.1. The problem. An oil company wishes to construct a network of pipelines
to carry oil from several remote wells to a major refinery. For each edge of the network,
the company can install either zero or more copies of a cheap but thin pipe (say, the
diameter is 10 inches and the cost is $1000 per mile) or zero or more copies of a
more expensive but thicker pipe (say, the diameter is 100 inches and the cost is $2000
per mile). The demand (actually, oil supply) at each of the oil wells is given. The
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goal is to build a minimum-cost network that has sufficient capacity at every edge to
transport the oil to the refinery.

Notice one feature of the problem: The cost per unit length versus capacity
(available by combination of different pipe types) is a staircase function, reflecting an
economy of scale. Also, note that several copies of several pipe types may be used in
parallel to accommodate the flow on one edge of the network.

The above network design problem is NP-hard. There are reductions from both
the Steiner tree problem and the knapsack problem (see section 2.2). These reductions
suggest two inherent sources of hardness of our problem. One is the connectivity
requirement—our problem is NP-hard even when only one cable type is available. The
second is the choice of cables—the problem is NP-hard even on a graph consisting of
a single edge. While there are several known approximation algorithms that attack
NP-hard minimum-cost connectivity problems [AKR 95, GW 95, WGM+95], to the
best of our knowledge there is no (previous) approximation algorithm that considers
costs based on the choice of different cable types. Our work gives the first results on
this topic.

Our problem of designing a single-sink multisource network at minimum cost is
a fundamental and economically significant one that arises in hierarchical design of
telecommunication networks. In the lowest level of network design, switching centers
(controllers) collect calls from customers (base cells) and in the next level traffic
goes between pairs of controllers. Once a set of customers is assigned to a switching
center, the single-sink, multisource problem arises. An additional constraint on the
telecommunication problem is that the flow of traffic for any demand must follow a
single path to the sink in the network [BMW 95]—this arises from limitations on the
capacity of routing tables at nodes, and in avoiding complex switching hardware to
support bifurcating flow. We call such flow routes indivisible.1 The availability of a
small number of cables, strong economies of scale, and the large number of customers
are characteristic to the problems in the telecommunication industry.

1.2. Our results. We start by showing NP-hardness of two very simple versions
of our problem (section 2.2). Next we formalize two known lower bounds and use them
to derive a simple constant factor approximation algorithm for the case with a single
cable type using existing ideas.

We continue by proving a structure theorem (Theorem 3.2): For every instance
of our problem, there is a near-optimal solution whose graph is acyclic (the cost is no
more than two times the optimal value).

The case that appears to be most relevant in the geographic instances of network
design is when the graph is defined by points in the two-dimensional Euclidean plane.
For this case, we present an approximation algorithm with performance guarantee
O(log(D/u1)), where D denotes the total demand and u1 denotes the smallest cable
capacity (Theorem 4.1). The analysis of the performance guarantees hinges on a new
“moat-type” lower bound on the optimal value that we introduce, which is valid also
for the general metric case.

In the general case, when the metric is arbitrary, we focus on a restricted version of
the problem: Instead of allowing the optimal solution to induce an arbitrary graph, we
restrict the graph to be two level; i.e., every source-sink path has at most two edges.
For this problem, we present an algorithm with nearly best possible performance
guarantee O(log n), where n is the number of nodes (Theorem 5.2).

1This is also called unsplittable [Kle 96] or nonbifurcated [Bar 96] in the literature.
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1.3. Previous work. The problem we address arises commonly in practical
network design and has been widely studied in the operations research literature.
One of the first papers on routing flows under a staircase cost function arises from
the Telepak problem in network design [GR 71]. Specializations of this problem in-
clude the fixed charge problem [Bal 61, G71], while generalizations include the min-
imum concave cost flow problem [Z68, GSS80]. In a survey on network synthesis
and design problems, Minoux [Min 89] discusses several variants of the problem and
exact solution methods. This body of work does not enforce the indivisible flow
constraint.

Balakrishnan, Magnanti, and Wong [BMW 95] address the problem of expanding
an existing telecommunication network, where they have the indivisible flow restric-
tion. Magnanti, Mirchandani, and Vachani [MMV 95] study the polyhedral and com-
putational aspects of the design problem with two cables. One feature they highlight
is the large gap between heuristic solutions and Lagrangian lower bounds. Because of
this, even small instances of the problem cannot be solved to anywhere near optimality
by state-of-the-art computational techniques. More recent study of our network de-
sign problem with multiple sinks is undertaken in [BG 96, BCGT 98, Bar 96]. These
papers develop cutting plane methods by exploiting classes of valid inequalities for an
appropriate formulation that only considers one or two cable types.

Mansour and Peleg [MP 94] have results on a variant of our problem. In their
model, there are multiple sinks and multiple sources, there is only one type of cable,
and installing an edge has a fixed cost (similar to our model) as well as a variable cost
per unit flow. By applying light-weight distance-preserving spanners [ADD+92], they
obtain an O(log n)-approximation algorithm for their network design problem with n
nodes. It is easy to apply the method of Mansour and Peleg to the case with only
one sink, and only one cable type, and to improve the logarithmic approximation to
a constant-factor approximation (section 2.3).

2. Preliminaries.

2.1. Formalizing the problem. We are given an underlying undirected graph
G = (V,E), |V | = n. A subset S of nodes is specified as sources of traffic and a
single sink t is specified. Each source node si ∈ S has an integer-valued demand
demi. All the traffic of the source set is to be routed to t. The edges of G have
lengths  : E → R

+. Without loss of generality, we assume that for every pair of
nodes v, w, we can use the shortest-path distance dist(v, w) as the length of the edge
between v and w; i.e., we take the metric completion of the given graph. The edges
of the network must be installed by purchasing one or more copies from among a
small set of cables, where each cable type i ∈ {1, . . . , q} has a specified capacity
ui and a specified cost ci per unit length. The indexing of the cables is such that
u1 ≤ u2 ≤ · · · ≤ uq, c1 ≤ c2 ≤ · · · ≤ cq, and c1/u1 ≥ c2/u2 ≥ · · · ≥ cq/uq. Let

σij :=
ci/ui

cj/uj
, i ∈ {1, . . . , q − 1}, j > i. Then a type i cable is σij times as expensive

as a type j cable, per unit of capacity per unit of length. We refer to σij as the
“economy of scale” factor between the ith and the jth cable types.

A solution to our network design problem can be characterized by specifying for
each source si, a path to t and a combination of cables to be used on each arc of
the network induced by the paths. We will call the traffic of source si commodity i,
i = 1, . . . , k. Let Pi be the path for commodity i and let N = (VN , A) be the graph
induced by the union of Pi, i = 1, . . . , k.

Let f ie denote the amount of flow of commodity i on edge e of A and fe denote
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the total flow on edge e. That is,

f ie =

{
demi if e ∈ Pi,
0 otherwise

and fe =

k∑
i=1

f ie.

Let νe1 , . . . , ν
e
q be the number of copies of cable types 1 to q to be installed on

edge e, where q is the number of available cable types. (νei = 0 implies that no cable
of type i is installed on edge e.)

Let P = (P1, . . . , Pk) denote the routing and νe = (νe1 , . . . , ν
e
q ) denote the choice

of cables on edge e that accommodates fe (induced by P ). Then P and ν = (νe,
e ∈ A) characterize a feasible solution to the problem formulated below:

min
P, ν

∑
e∈A


dist(e)

q∑
j=1

(cj · νej )



such that
∑
i:e∈Pi

demi −
q∑
j=1

(uj · νej ) ≤ 0, e ∈ A, (1)

νej ∈ {0, 1, 2, . . .}, j ∈ {1, . . . , q}, e ∈ A,

Pi is a si − t path, i = 1, . . . , k.

Equivalently, the constraints (1) can be rewritten as

fe −
q∑
j=1

(uj · νej ) ≤ 0, e ∈ A. (2)

Note that the optimal choice of the routing depends on the choice of cables, as
they determine the cost of edges. Yet the optimal choice of cables on each edge
depends on the amount of flow on each edge, which is determined by the routing
decision. Hence an optimal solution requires the decision of the routing and the cable
choices simultaneously.

2.2. Hardness of the problem. It is easy to see that the single-sink edge-
installation problem is NP-hard. There are reductions from both the Steiner tree
problem and the knapsack problem.

A special case of our problem when there is only one cable type with capacity
large enough to hold all of the demand is equivalent to a Steiner tree problem with the
sources and the sink as the terminal nodes. Hence, our problem is NP-hard [GJ 79]
even when only one cable type is available with unlimited capacity. In this case, the
problem is that of finding a minimum cost routing under fixed costs on the edges.

Another simple special case of our problem with one source node and a single edge
is also NP-hard. In this case, the problem reduces to finding the minimum-cost choice
of cables on the edge such that the total capacity of the cables covers the demand
of the source. This problem is an integer min-knapsack problem with the additional
economies of scale restrictions on data. The integer min-knapsack problem was shown
to be NP-hard by Lueker [Lue 75] by a transformation from the subset sum problem.
This transformation is still valid under the economies of scale restrictions.

2.3. Single cable type case. In section 1.3 we mentioned that a constant factor
approximation can be obtained by applying the method of Mansour and Peleg [MP 94]
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to the case of single-sink and single cable type. In this subsection we give a proof
of this claim. The idea is to route through a light approximate shortest-path tree
(LAST) [KRY 93].

Definition 2.1 (see [KRY 93]). Let G be a graph with nonnegative edge lengths.
A tree T rooted at vertex t is called an (α, β)-LAST if the following conditions are
satisfied (α, β ≥ 1):

1. The distance of every vertex v from t in T is at most α times the distance
between v and t in G.

2. The length of T is at most β times the length of a minimum spanning tree
(MST) of G.

Lemma 2.2. Let C∗ be the optimal cost for the network design problem with a
single cable type. Let G′ be a complete graph on node set S ∪ {t} where length of
an edge is the shortest path length in G between the end points of the edge. Let T
be an (α, β)-LAST of G′ rooted at the sink node t, and let CT be the cost of routing
demi through the si − t path in T for all i and using as many copies of the cable as
necessary. Then CT ≤ (α+ 2β)C∗.

Proof. Let distT (si, t) denote the length of the si − t path Pi in T .

CT =
∑
e∈T

c1

⌈
fe
u1

⌉
· distT (e) ≤

∑
e∈T

c1

(∑
i:e∈Pi

demi

u1
+ 1

)
· distT (e)

= c1
∑
si∈S

∑
e∈Pi

distT (e)
demi

u1
+ c1

∑
e∈T

distT (e)

≤ c1
u1

∑
si∈S

distT (si, t)demi + c1
∑
e∈T

distT (e).

Since distT (si, t) ≤ α·dist(si, t) for all si ∈ S and
∑
e∈T distT (e) ≤ β w(MST (G′)),

where w(MST (G′)) is the weight (sum of edge lengths) of an MST of G′, we get

CT ≤ α
c1
u1

∑
si∈S

demi · dist(si, t) + βc1w(MST (G′)).

The term c1
u1

∑
si∈S{demi · dist(si, t)} is a lower bound on C∗ since demi must

be routed a distance of at least dist(si, t) and be charged at least at the rate c1
u1

per
unit length. This lower bound is called the routing lower bound. In the general case
when there are q cable types, c1u1

is replaced by the cheapest rate
cq
uq

in the bound. In

addition, 1
2c1 w(MST (G′)) is another lower bound on C∗, which is called the MST

lower bound. The reasoning is as follows. We must connect the nodes in S to t and
install at least one copy of the (cheapest) cable on each connecting edge. Then the
cost of a Steiner tree with terminal set S ∪ {t} and cost dist(e) · c1 on each edge e is
a lower bound and the length of an MST on S ∪ {t} times c1 is within a factor 2 of
this lower bound. These two lower bounds are essentially due to Mansour and Peleg
[MP 94], although they study a different model. Thus using the two lower bounds we
get CT ≤ (α+2β)C∗. Note that to obtain a solution in the original graph G, edges of
T are replaced with the corresponding shortest paths in G. Clearly, the new solution
also has cost CT .

Constructing an (α, 1 + 2
α−1 )-LAST as in [KRY 93] for α = 3 gives the following

corollary.
Corollary 2.3. There is a 7-approximation algorithm for the single-sink edge

installation problem with a single cable type.
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Fig. 2.1. An example where naive heuristics produce poor solutions.

Note that when all the nodes in G except the sink node are source nodes, routing
through an (α, β)-LAST of G gives an (α + β)-approximation. Then a (2

√
2 + 2)-

approximation is obtained using an (α, 1 + 2
α−1 )-LAST of [KRY 93] for α =

√
2 + 1.

For the general case of multiple cable types, routing through an (α, β)-LAST and
buying as many copies of the cheapest (i.e., the thinnest) cable type as necessary
provides an approximate solution with a worst-case bound of (ασ1q + 2β) times the
optimal cost (recall that σ1q is the economies of scale factor between the thinnest
and the thickest cables). However, in practice there are strong economies of scale
between cable types. Hence, we focus on the case when σ1q is large, possibly larger
than polylogarithmic in the number of nodes; i.e., σ1q > (log n)Ω(1).

2.4. Multiple cable type case—An example where naive heuristics pro-
duce poor solutions. Here is an example to show that heuristics based on routing
through an MST, a shortest paths tree, or a LAST produce poor solutions. Suppose
we have n source nodes s1, . . . , sn each with unit demand, at unit distance to each
other and at distance

√
n to the sink node t (see Figure 2.1(a)). There are only two

types of cables, T1 and T2, where a T1 cable has capacity u1 = 1 and costs c1 = 1
per unit length, whereas a T2 cable has capacity u2 = n and costs c2 =

√
n per unit

length. (Note that σ12 =
√
n.) An optimal solution with cost 2n − 1 is obtained

by installing a T2 cable for the edge (t, s1) and using T1 cables to build a “star”
centered at s1 that has nodes s2, . . . , sn as leafs, i.e., by installing T1 cables on the
edges (s1, s2), . . . , (s1, sn) (Figure 2.1(b)). A shortest paths tree (with root t) is a
poor solution, since it has n edges of length

√
n, implying a cost of n

√
n, which is

roughly
√
n/2 times the optimal cost (Figure 2.1(c)). An (arbitrary) MST is a poor

solution: For example, the path t, s1, s2, . . . , sn is an MST, and it requires at least
n−√n unit-length edges of capacity ≥ √n for a total cost ≥ n

√
n, which is roughly√

n/2 times the optimal cost (Figure 2.1(d)). (Although our optimal solution routes
on an MST, this can be avoided by perturbing the distances.) Another heuristic is to
use a spanner, or rather a LAST. However, a LAST based on the previous MST, i.e.,
the path t, s1, s2, . . . , sn, turns out to be even costlier than the MST. One such LAST
has edges (t, si

√
n) and paths si

√
n, si

√
n+1, . . . , s(i+1)

√
n−1 for i ∈ {1, 2, . . . ,√n}.

3. Structure of solutions. It is possible to have a unique optimal solution such
that the graph induced by edges with positive flow contains cycles (see Figure 3.1).
However, we show in this section that there is a solution that induces a tree with cost
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at most twice the cost of an optimal solution. The key idea of the proof is to associate
with every edge e chosen by an optimal solution an “adversary price” Ce, where Ce is
the length of e times the cheapest cost per unit capacity (per unit length) among all
cable types installed on e by the optimal solution and to route the traffic through the
cheapest si − t paths with respect to the adversary prices.

Let (P ∗, ν∗) be an optimal routing and choice of cables. Let N∗ = (V ∗, A∗) be
the graph induced by P ∗ and C∗ be the cost of an optimal solution.

Lemma 3.1. Let κe be the index of the thickest cable installed on edge e in ν∗.
That is, κe = max{j : νe∗j > 0}. Associate a cost Ce for each edge e in A∗, where

Ce := dist(e) · cκe

uκe
. Then LB1 defined below is a lower bound on the optimal cost, i.e.,

C∗ ≥ LB1 :=

k∑
i=1


demi

∑
e∈P∗

i

Ce


 .

Proof. The lemma follows since LB1 corresponds to the cost of a solution where
every commodity flows along an optimal path using “cheapest per capacity” cables of
an optimal solution fractionally. More rigorously,

LB1 =

k∑
i=1


demi

∑
e∈P∗

i

(
dist(e)

cκe

uκe

)


=
∑
e∈A∗

{
dist(e) ·

(
k∑
i=1

f ie

)
· cκe

uκe

}
=
∑
e∈A∗

{
dist(e) · fe · cκe

uκe

}
.

Let k(1) to k(l) be the indices of cables used in edge e in ν∗, where k(l) = κe.
Without loss of generality we can allocate the flow induced by P ∗ on e, fe, such that
all but the thickest cable are saturated. Then fe = uk(1)νk(1) + uk(2)νk(2) + · · · +
uk(l)(νk(l)− 1)+ reme, where we use νk(i) as a shorthand notation for νe∗k(i) and reme

for the remaining flow in the unsaturated cable. Then

fe · cκe

uκe

=
uk(1)

uk(l)
· ck(l)νk(1)+

uk(2)

uk(l)
· ck(l)νk(2)+ · · ·+

uk(l)

uk(l)
· ck(l)(νk(l)−1)+

reme

uk(l)
· ck(l).
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By economies of scale,
uk(i)

uk(l)
≤ ck(i)

ck(l)
, i = 1, . . . , l − 1. Hence, replacing

uk(i)

uk(l)
by

ck(i)

ck(l)
for i = 1, . . . , l − 1 in the above equation gives

fe · cκe

uκe

≤ ck(1)νk(1) + ck(2)νk(2) + · · ·+ ck(l)(νk(l) − 1) +
reme

uk(l)
· ck(l).

Since reme

uk(l)
≤ 1, we have fe · cκe

uκe
≤∑l

i=1 ck(i)νk(i) =
∑q
j=1 cjν

e
j . Thus

LB1 =
∑
e∈A∗

dist(e) · fe · cκe

uκe

≤
∑
e∈A∗


dist(e)

q∑
j=1

(cj · νej )

 = C∗.

Now we are ready to prove the following theorem.
Theorem 3.2. There exists a routing P that induces a tree T with cable choices

ν such that the cost of this solution denoted by CT satisfies CT ≤ 2C∗.
Proof. Let T be a shortest path tree of N∗ rooted at t with respect to costs Ce on

e ∈ A∗. Route each commodity i through the unique path Pi from si to t in T . For
each edge e ∈ P use as many copies of cable κe as necessary, i.e., νκe =  feuκe

� copies
of cable κe. Then the cost of this feasible solution is

CT =
∑
e∈T

dist(e) · cκe · νκe .

Since νκe ≤ fe
uκe

+ 1,

CT ≤
∑
e∈T

dist(e) · cκe
· fe
uκe

+
∑
e∈T

dist(e) · cκe

=

k∑
i=1

demi

∑
e∈Pi

dist(e)
cκe

uκe

+
∑
e∈T

dist(e) · cκe
.

As Pi’s are shortest paths in N∗ with costs Ce = dist(e)
cκe

uκe
, e ∈ A∗, it follows

that

CT ≤
k∑
i=1

demi

∑
e∈P∗

i

Ce +
∑
e∈T

dist(e) · cκe
.

Therefore, the first summand above is at most LB1 of Lemma 3.1. The second
summand is also a lower bound on C∗ since C∗ includes the cost of at least one copy
of the thickest cable on every edge in A∗, and T ⊂ N∗. Therefore, CT ≤ 2C∗.

Theorem 3.2 motivates the problem of finding a minimum-cost tree routing as
an approximate solution to the general network design problem. However, note that
the Steiner tree problem is a special case of the minimum-cost tree routing problem.
Thus the minimum-cost tree network design problem is also NP-hard.

4. Euclidean case—An approximation algorithm. In this section, we pre-
sent an algorithm for our network design problem in the case when the nodes are
represented as points in the plane and the length function is the (Euclidean) distance.
We have the following theorem.
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Theorem 4.1. The Euclidean single-sink edge-installation problem can be ap-
proximated within a factor O(min{log D

u1
, log �max

�min
}), where D is the total demand,

u1 is the capacity of the lowest-capacity cable, max is the longest distance between a
pair of nodes, and min is the shortest distance between a pair of nodes.

The approximation algorithm for the Euclidean case proceeds by successively
gridding the plane and constructing the network hierarchically. The performance ratio
is proven by collecting several layers of “moat-type” lower bounds and paying for the
links laid in each layer of gridding using the lower bounds collected from that layer.

4.1. The algorithm. Let max (min) be the longest (shortest) distance be-
tween any pair of nodes. The topmost layer of gridding is a single square with min-
imum side length, centered at the sink node enclosing all the nodes, and hence has
side length at most 2max. We refine a square by partitioning it into four equal sub-
squares. We continue our refinement until every square in the lowest level of gridding
either has side length at most max/(D/u1) (recall that D is the total demand) or
contains at most one source. Thus the number of layers of gridding used overall is
O(min{log (D/u1), log (max/min)}).

Based on this gridding, the construction of the network is done recursively by
routing all the flow through the centers of the squares at any layer. That is, flow
within a square is aggregated at its center. In a generic recursive step, suppose that
we have a square of side length 2 that contains points with total demand Dem. This
demand can be partitioned into Demj for j = 1, 2, 3, 4 in each of the four subsquares
of side length  into which this square is divided. Assume that each of these demands
has been already routed to the center of the subsquare where it arises. We now sketch
how to route these demands to the center of the bigger square one level up in the
gridding.

If Demj = 0, then we do not build any edges between the center of square j and
the center of the bigger square. Suppose ui ≤ Demj < ui+1 for some i ∈ {0, . . . , q}.
There are two cases. In the first case, ui ≤ Demj < ρiui. We then install Demj

ui
�

copies of cable type i from the center of square j to the center of the big square.
These cables have length �√

2
. In the second case, ρiui ≤ Demj < ui+1 and we simply

use a single copy of cable type (i+ 1) to route the demand.
We have to be more careful in performing the recursive routing for demands that

are near the sink. In particular, consider a demand that is very close to the sink in
the northeastern quadrant of the first level of gridding. If this were the only demand,
it is too expensive to route it to the center of the northeast square and then reroute
it back to the sink. (See Figure 4.1(a).) We route the demand of any square with a
corner at the sink directly to the sink. (See Figure 4.1(b).) Thus, under this scheme,
if a node v is at a distance d from the sink, its demand can be routed to the center of
a square of side length at most O(d).

It is clear that the algorithm runs in polynomial time.

4.2. A moat lower bound. First we define a moat lower bound in its full
generality, and then we apply it in the analysis of the above algorithm.

Consider a subset X of the node set V that excludes the sink node t. Let Dem be
the total demand of the source nodes in X and let w be the minimum distance of any
node in X to t; i.e., w = minx∈X dist(x, t). A total of at least Dem flow has to travel
a distance of at least w to reach the sink in any network. For any subset of nodes X ⊆
V −{t}, the ball around X of radius w defines a “moat” of width w separating demand
Dem from the sink. The moat lower bound captures the cost of sending the entire
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(b)(a)

sink

source

Fig. 4.1. Part (a) illustrates that care is required in routing from the squares closest to the sink.
Part (b) illustrates the recursive routing strategy. If a square at level i does not contain the sink at
one of its corners, then we route its demand to the center of the square at level i − 1 enclosing it.
The demand of a square that contains the sink at one of its corners is routed directly to the sink.

flow of value Dem a distance of w even after utilizing the economies of buying at bulk.
Suppose that ui ≤ Dem < ui+1 for some i ∈ {0, . . . , q}, where we define u0 = 0

and uq+1 = ∞ for convenience. Define the threshold multiplicity between the ith
and the (i + 1)st cable as ρi =

ci+1

ci
for i = 1, . . . , q − 1. In addition, let ρ0 = 1 and

ρq =∞. If ui ≤ Dem < ρiui for i ∈ {1, . . . , q}, then a lower bound on the unit-length
cable cost crossing this moat is LBK = Dem

ui
ci. The reason is that to pay the cheaper

rate ci+1

ui+1
, we must buy an integral number of cables and buying a copy of cable type

i+1 is costlier than paying Dem
ui

ci. On the other hand, if ρiui ≤ Dem < ui+1 for

i ∈ {0, . . . , q − 1}, then the lower bound is LBK = ci+1. As Dem
ui

ci ≥ ci+1, buying

any combination of cables 1 to i (by paying at least Dem
ui

ci) will be more costly than a
single cable of type i+1. We summarize the moat lower bound in the next proposition.

Proposition 4.2. For any node set X excluding t, of total demand Dem, at
minimum distance w to t, LBK · w is a lower bound on the optimal cost, where

LBK =




Dem

ui
ci if ui ≤ Dem < ρiui for some i ∈ {1, . . . , q},

ci+1 if ρiui ≤ Dem < ui+1 for some i ∈ {0, . . . , q − 1}.

We can also collect lower bounds from several disjoint moats.
Proposition 4.3. For any set of disjoint moats, the sum of the lower bounds

generated by such moats is also a lower bound on the optimal value.
Let us examine closely the definition of a moat in the Euclidean case. Let X be

a set of nodes. A moat around X is defined by a closed line in R2 that contains X
in the inside and leaves the sink node outside. If the moat has width w, then the
region of the plane occupied by the moat is the annular region including all points
that are outside this line within Euclidean distance w from the line (Figure 4.2(a)).
A collection of moats is disjoint if the regions occupied by any two moats in the
collection do not intersect (Figure 4.2(b)).

4.3. The performance ratio. We now bound the worst-case performance of
our algorithm. For each layer of gridding, we use a disjoint collection of moats and
bound the cost of cables installed at that layer using the lower bounds accumulated
from these moats.
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Fig. 4.2. A moat around node set X of width w is shown in part (a). A disjoint moat collection
is shown in part (b).
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Fig. 4.3. One class of disjoint moats in a given layer of gridding is shown. The arrows represent
the 8 translation directions used to define the other 8 classes of this layer.

For a given layer i where each square has side length , we consider the moat of
width  around every square in this layer except the four squares closest to the sink. Of
course, a square generates a nonzero lower bound only if it contains nonzero demand.
We can split the moats of this layer into 9 classes of disjoint moat collections. One
such class is shown in Figure 4.3. Other classes can be obtained by translating all the
squares enclosed by the moats in this class by one square in one of the 8 neighboring
directions (see Figure 4.3). Let LBi be the maximum lower bound generated by any
of these 9 classes of moats of layer i. By averaging, LBi is at least 1/9 of the sum of
the lower bounds generated by all squares in this layer.

The cost of the cables constructed in one layer of gridding is at most
√
2 times

the lower bound generated by all squares in this layer. If a square has demand Demj

and side length , the lower bound it generates (LB) is  times LBK . There are
two corresponding cases in the computation of LBK and the choice of the cables in
the algorithm. In the first case Demj ≥ ui. Thus Demj

ui
� ≤ 2(

Demj

ui
) so that unit

length cost of cables used is within a factor 2 of the lower bound LBK defined in
Proposition 4.2. Since the cables have length /

√
2, the cost is at most

√
2LBK =√

2LB. In the second case, we incur unit length cost of ci+1, which is equal to LBK .
Thus the cost of cables used is (/

√
2)LBK , which is less than LB. As a result, the

cables installed at layer i have cost at most 9
√
2LBi.
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Consider the last layer of gridding, with side length at most maxu1/D. Note that
the total cost incurred in routing all the demands to the centers of the squares in this
layer is at most O(maxc1). This is because the demand of each source si, demi, in
each square of the last gridding has to be sent a distance of at most O(1) times the
side length at unit length cost of at most demi/u1�c1. Since the MST lower bound
is at least 1/2maxc1, it is clear that the costs incurred in the last layer of gridding
can be charged to the MST lower bound (to prevent further gridding).

The number of layers of gridding is O(min{log D
u1
, log �max

�min
}), and the cost of

the cables at each layer is at most 9
√
2 times the optimal cost. Therefore, the cost of

the solution constructed is within O(min{log D
u1
, log �max

�min
}) times the optimal cost.

5. Two-level networks. In this section we consider a simpler version of our
problem when the network in which the demand is to be routed is two level; i.e.,
every source-sink path has at most two edges, and the distances arise from a general
metric. This problem can be considered to limit the number of aggregation of flows.
By requiring the network to be two level, every source node is restricted to aggregate
its flow at most once. This special case of the network design problem has been
addressed also in [Min 89].

We first show that this problem is as hard as the set cover problem and then give
a O(log n)-approximation algorithm.

Proposition 5.1. The minimum cost two-level network design problem is NP-
hard. Furthermore, there is no polynomial time approximation algorithm for the two-
level problem whose performance ratio is better than (1− o(1)) lnn unless P = NP .

Proof. The proof is by reduction from the set cover problem. Consider an instance
of a set cover problem with a collection C of subsets of a finite set S, a weight
w(Si) ∈ Z+ for each set Si in C, and a positive integer K. The set cover problem
is to determine if C contains a subset C ′ such that total weight of the sets in C ′ is
at most K and every element of S belongs to at least one set in C ′. We consider the
following instance of the two-level network design problem. Construct the two-level
input graph G = (V,E) for the network design problem as follows. Let there be
a node si corresponding to each element in S with unit demand and a node vj for
each set Sj in C with zero demand. In addition, V contains the sink node t. For
each set Sj , E contains an edge of zero length between vj and all the source nodes
corresponding to the elements contained in Sj , as well as an edge of length w(Sj)
between vj and t. Suppose one type of cable with unit cost per unit length and ∞
capacity is available. Then there exists a minimum-cost two-level network solution
with cost at most K if and only if there is a set cover C ′ with weight at most K.
Consider a two-level network solution with cost K or less. Since in this solution each
demand must follow a single path of at most two edges, each source node is connected
to one set containing it. Thus the collection of sets that sends a positive amount of
flow to the sink is a cover with total weight at most K. Now let C ′ be a set cover with
weight at most K. We can find a route for each source by connecting the source to one
of the sets containing it, in C ′. Clearly, the total cost of the cables installed will be at
most K.

Note that the above reduction also is approximation preserving, so the current
hardness results [F96, RS 97, AS 97] show that there is no polynomial time approx-
imation algorithm for the two-level problem whose performance ratio is better than
(1− o(1)) lnn unless P = NP .

We present the following result that is nearly best possible.
Theorem 5.2. The two-level link-installation problem can be approximated within
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a factor O(log n), where n is the number of nodes in the input graph.
The key idea of the proof of the above theorem is to define an appropriate (very

large size) set cover problem. It is well known that the greedy algorithm yields
logarithmically bounded approximate solutions for the set cover problem [Ch 79], but
the crucial step in the algorithm is to find a greedy set. In our case, the problem
of finding a single greedy choice is computationally hard, but we devise a constant
factor approximation for this problem, thereby proving the above theorem; for more
details on how a constant factor approximation for a greedy step yields a logarithmic
approximation for the set cover problem, see, e.g., [YC 95, Thm. 10].

5.1. The corresponding set cover problem. The two-level problem can be
modeled as a set covering problem as follows: The elements to be covered are the
sources, each with a demand. The “sets” used to cover them are called stars. A star
consists of a center (any node in the graph except the sink) and leaves that include
the sink node and a subset of the sources. A star has cost equal to the total cost
of the cheapest choice of cables to route the entire demand of the sources it contains
via its center to the sink. Note that a star represents a level of aggregation of flows
since the entire demand within a star that is aggregated at the center node is sent
through more economical thick cables to the sink. A solution to the two-level problem
naturally decomposes into a set of stars (one-level routes define starts with only one
leaf, namely, the sink). Hence an optimal solution to the two-level problem is the
same as an optimal solution to the set covering problem defined above.

5.2. Finding a greedy star. To implement an iteration of the greedy algo-
rithm, we need to find a greedy star—a star of minimum ratio cost, of the ratio of
total cable cost of the star divided by the total demand routed by the star. As there
are exponentially many stars, we proceed by approximating the ratio cost within a
constant factor. At any given step k of the greedy algorithm, let the total remain-
ing demand to be routed be Dk. We first guess the total demand routed by the
minimum ratio star at this stage within a factor of two, and for every such range,
we find a cheapest star of roughly this much demand. Formally, consider the de-

mand ranges [1, 2), [2, 4), . . . , [2log Dk

2 , 2logDk

], and for every range, suppose we can
compute the minimum total cost star whose demand falls within this range. Now
suppose that the minimum ratio cost star routes a total of Dr demand at total cost
Cr, where Dr ∈ [2i, 2i+1). Let Ci be the minimum cost of any star that routes de-
mand in the range [2i, 2i+1) to the sink. Then the ratio cost of this star is near
optimal. In particular, if this star routes demand Di, then

Ci

Di
≤ 2Cr

Dr
since Ci ≤ Cr

and Dr ≤ 2Di.
One last problem remains—that of finding a star of minimum cost that routes

demand in a given range, say, [2i, 2i+1), to the sink. However, this requires solving
integer min-knapsack problems by the following reduction. We first guess the center
of the star; there are at most n guesses. Then, for each center node, we want to find a
set of sources (to connect to the center) that have a total demand of at least 2i, with
total minimum cost of routing the demand of that set to the center. In this sense, we
want to fill a knapsack of demand at least 2i corresponding to this choice of center.
The items used to fill the knapsack are the remaining sources si each with demand
demi. The cost of an item si is the cost of routing demi from si to the center. If the
edge connecting si to the center, say, e, has length dist(e), this cost is dist(e) times
the value of another integer min-knapsack problem corresponding to the choice of
cables for this edge. (Recall that given flow on an edge, finding minimum-cost cables
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to cover this flow is a min-knapsack problem.)
The integer min-knapsack problem is NP-hard but can be solved in O(qDem)

time by dynamic programming [GG65]. Alternatively, we can transform this integer
knapsack problem to a 0-1 knapsack problem with n̂ =

∑q
j=1 logdemi

uj
� = O(q logD)

binary variables in O(n̂) time (see [MT 90]). Then applying any of the fully poly-
nomial time approximation schemes for the 0-1 min-knapsack problem we obtain ap-
proximate solutions to our problem that obey the worst-case bounds for such schemes.
For instance, a (1 + ε)-approximate solution can be obtained in O(n̂2/ε) time by the
polynomial time approximation scheme of Gens and Levner [GL 79]. Alternatively, a
2-approximation solution can be obtained in O(n̂ log n̂) time by the greedy algorithm
of Gens and Levner [GL 79].

To summarize, we estimate the costs of the different sources for a given choice
of center using the knapsack approximation. Using these costs, we solve yet another
knapsack problem that gives an approximately minimum cost of routing a total of at
least 2i demand to this center. The total cost of the star, however, must include the
cost of routing the demand aggregated at the center to the sink. This is a problem
also of choice of cables from the center to the sink for a given value of total demand
and can be approximated using the knapsack framework.

We repeat this procedure for every demand range i and every choice of the center
node. By choosing the star that has minimum ratio of total cost to demand among
all iterations, we get a constant factor approximation to the minimum ratio cost star.

Note that the approximation factor for finding a minimum ratio cost star only
multiplies the performance ratio of the greedy algorithm [YC 95]. Since we use a con-
stant factor approximation for finding a minimum ratio star, we get the performance
ratio claimed in Theorem 5.2.

6. Open problems. Theorem 3.2 motivates the problem of finding a minimum-
cost tree routing as an approximate solution to the general network design problem.
Although the problem is still NP-hard, approximating it may be easier than the
general case.

In the more general minimum-cost capacitated network design problem arising
in the telecommunications industry, special pieces of hardware called concentrators
[BMW 95, Min 89] are required to aggregate the traffic from several thin cables in a
single thick cable. We are given a list of concentrators of various types (inputs being a
combination of cable types of total bandwidth equal to the output cable bandwidth),
each with an associated fixed cost. Whenever traffic is aggregated, appropriate con-
centrators have to be used by paying the corresponding fixed cost. Moreover, traffic
requirements may be specified between multiple sources and multiple sinks. As be-
fore, the flow must be indivisible and routed by purchasing integral copies of cables,
whose cost versus capacity is a step function representing an economy of scale. The
goal is to find the minimum total cost network.

Approximating this more general problem with concentrators remains open. Note,
however, that the fixed costs of concentrators can be incorporated into the approxi-
mation algorithm for the 2-level network problem. For a given range of demand to be
aggregated, the cost of the concentrator to be installed can be approximated. In the
greedy step of the algorithm, after the bicriteria algorithm outputs a star of certain
cost and demand, the approximate cost of the concentrator can be added to the total
cost of the star.

Subsequent to the appearance of a preliminary version of this paper in [SCR+97],
Awerbuch and Azar [AA97] gave a randomized O(log2 n)-approximation algorithm for
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the general edge installation problem with many cable types and many sources and
sinks.
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Abstract. We present a new method for the large-scale trust-region subproblem. The method
is matrix-free in the sense that only matrix-vector products are required. We recast the trust-region
subproblem as a parameterized eigenvalue problem and compute an optimal value for the parameter.
We then find the solution of the trust-region subproblem from the eigenvectors associated with two
of the smallest eigenvalues of the parameterized eigenvalue problem corresponding to the optimal
parameter. The new algorithm uses a different interpolating scheme than existing methods and
introduces a unified iteration that naturally includes the so-called hard case. We show that the new
iteration is well defined and convergent at a superlinear rate. We present computational results to
illustrate convergence properties and robustness of the method.
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1. Introduction. An important problem in optimization and linear algebra is
the trust-region subproblem: minimize a quadratic function subject to an ellipsoidal
constraint,

min
1

2
xTAx+ gTx subject to (s.t.) ‖x‖2 ≤ ∆,

where A ∈ R
n×n, A = AT ; x, g ∈ R

n and ∆ > 0. Two significant applications of
this basic problem are the regularization or smoothing of discrete forms of ill-posed
problems and the trust-region globalization strategy used to force convergence in
optimization methods.

A solution x∗ to the problem must satisfy an equation of the form (A+ µI)x∗ =
−g with µ ≥ 0. The parameter µ is the Tikhonov regularization parameter for
ill-posed problems and the Levenberg–Marquardt parameter in optimization. The
constraint might also involve a matrix C �= I, where C is often constructed to impose
a smoothness condition on the solution x∗ for ill-posed problems and to incorporate
scaling of the variables in optimization. We will not treat this case explicitly here.
However, in many applications the matrix C will be nonsingular and therefore with
a change of variables we can reduce the problem to the case we are considering.
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If we can afford to compute the Cholesky factorization of matrices of the form
A+ µI, then the method proposed by Moré and Sorensen (cf. [10]) is the method of
choice to solve the problem. However, in many important applications, factoring or
even forming these matrices is prohibitive. This has motivated the development of
matrix-free methods that rely only on matrix-vector products. The first method in
this class is the method of Steihaug [18] which computes the solution to the problem
in a Krylov subspace. This method is very efficient in conjunction with optimization
methods; however, it does not compute an optimal solution and cannot handle a
special situation known as the hard case, which we will describe later. New methods
based on matrix-vector products are the ones by Golub and von Matt [3], Sorensen
[17], Rendl and Wolkowicz [13], and Pham Dinh and Hoai An [12]. Recently, Lucidi,
Palagi, and Roma [8] presented new properties of the trust-region subproblem that
provide useful tools for the development of new classes of algorithms for this problem
in the large-scale context. Recently, we became aware of a new method proposed by
Hager [5], where an SQP approach is used to solve the trust-region subproblem.

Golub and von Matt [3] base their algorithm on the theory of Gauss quadrature
and do not include in their analysis the possibility of the hard case. Pham Dinh
and Hoai An [12] develop an algorithm based on the difference of convex functions.
Their strategy is very inexpensive, due to its projective nature, but needs a restarting
mechanism to ensure convergence to a global solution. The approaches of Sorensen [17]
and Rendl and Wolkowicz [13] recast the trust-region subproblem as a parameterized
eigenvalue problem and design an iteration to find an optimal value for the parameter.
The idea of formulating the trust-region subproblem in terms of an eigenvalue problem
is also exploited in Gander, Golub, and von Matt [1]. Rendl and Wolkowicz present
a primal-dual semidefinite framework for the trust-region subproblem, where a dual
simplex-type method is used in the basic iteration and a primal simplex-type method
provides steps for the hard-case iteration. At each iteration, the method computes the
smallest eigenvalue and corresponding eigenvector of the parameterized problem using
a block Lanczos routine. Sorensen’s algorithm provides a superlinearly convergent
scheme to adjust the parameter and finds the optimal vector x∗ from the eigenvector
of the parameterized problem, as long as the hard case does not occur. For the hard
case, Sorensen’s algorithm is linearly convergent. The algorithm uses the implicitly
restarted Lanczos method (IRLM) (cf. [16]) to compute the smallest eigenvalue and
corresponding eigenvector of the parameterized problem. The IRLM is particularly
suitable for large-scale applications since it has low and fixed storage requirements
and relies only on matrix-vector products.

In this work we present a new matrix-free algorithm for the large-scale trust-region
subproblem. Our algorithm is similar to those proposed in [13, 17] in the sense that
we solve the trust-region subproblem through a parameterized eigenvalue problem,
but it differs from those approaches in that we do not need two different schemes for
the standard case and the hard case. Our algorithm can handle all the cases in the
same basic iteration. We achieved this improvement over the methods in [13, 17] by
computing two eigenpairs of the parameterized problem and incorporating informa-
tion about the second eigenpair whenever it is appropriate. This strategy does not
substantially increase the computational cost over the method in [17]. We introduce
a two-point interpolating scheme that is different from the one in [17]. We show that
this new iteration is also convergent and that the convergence rate is superlinear.
Moreover, our convergence results naturally include the hard case, since no special
iterations are necessary. Such a unified approach is not achieved in either [13] or [17].
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The organization of this work is the following. In section 2 we analyze the struc-
ture of the problem and motivate the algorithm. In section 3 we give a complete
characterization of the hard case with respect to the parameterized eigenproblems.
We describe the algorithm in detail in section 4. In section 5 we present the con-
vergence analysis. We describe preliminary numerical experiments in section 6 and
present some conclusions in section 7.

2. Structure of the problem. The problem we are interested in solving is

min ψ(x)
s.t. ‖x‖ ≤ ∆,

(2.1)

where ψ(x) = 1
2x

TAx+ gTx; A, g as before and ‖ · ‖ ≡ ‖ · ‖2 throughout the paper.
Due to the structure of (2.1), its optimality conditions are both necessary and

sufficient, as stated in the next lemma, where we follow [17] in the nonstandard but
notationally more convenient use of a nonpositive multiplier.
Lemma 2.1 (see [15]). A feasible vector x∗ is a solution to (2.1) with correspond-

ing Lagrange multiplier λ∗ if and only if x∗, λ∗ satisfy (A − λ∗ I)x∗ = −g with
A − λ∗ I positive semidefinite, λ∗ ≤ 0, and λ∗(∆− ‖x∗‖) = 0.

Proof. For the proof see [15].
In order to design efficient methods for solving problem (2.1) we must exploit the

tremendous amount of structure of this problem. In particular, the optimality condi-
tions are computationally attractive since they provide a means to reduce the given
n-dimensional constrained optimization problem into a zero-finding problem in a sin-
gle scalar variable. For example, we could define the function ϕ(λ) = ‖(A − λ I)−1g‖
and solve the secular equation ϕ(λ) = ∆, monitoring λ to be no greater than the
smallest eigenvalue of A, so that the Cholesky factorization of A − λ I is well de-
fined. Using Newton’s method to solve 1

ϕ(λ) − 1
∆ = 0 has a number of computationally

attractive features (cf. [10]) and we should use this approach when we can afford to
compute the Cholesky factorization of A − λ I. When computing a Cholesky factor-
ization is too expensive, we need to use a different strategy. The introduction of a new
parameter will make it possible to convert the original trust-region subproblem into
a scalar problem that is suitable for the large-scale setting. The conversion amounts
to embedding the given problem into a parameterized bordered matrix eigenvalue
problem. Consider the bordered matrix

Bα =

(
α gT

g A

)

and observe that

α

2
+ ψ(x) =

1

2
(1, xT )Bα

(
1
x

)
.

Therefore, there exists a value of the parameter α such that we can rewrite prob-
lem (2.1) as

min 1
2y

TBαy
s.t. yTy ≤ 1 + ∆2, eT

1 y = 1,
(2.2)

where e1 is the first canonical unit vector in R
n+1. This formulation suggests that

we can find the desired solution in terms of an eigenpair of Bα in the following way.
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Suppose that {λ, (1, xT )T} is an eigenpair of Bα. Then(
α gT

g A

)(
1
x

)
=

(
1
x

)
λ ,

which is equivalent to

α− λ = −gTx(2.3)

and

(A − λ I)x = −g .(2.4)

Now, let δ1, δ2, . . . , δd be the distinct eigenvalues of A in nondecreasing order.
Then

α− λ = −gTx =

d∑
j=1

β2
j

δj − λ
,(2.5)

where β2
j is the sum of the squares of the expansion coefficients of g in the eigenvector

basis, corresponding to all the eigenvectors associated with δj .
Observe that as a consequence of Cauchy’s interlace theorem (cf. [11, p. 186]), and

also from (2.5), the eigenvalues of A interlace the eigenvalues of Bα. In particular, if
λ1(α) is the smallest eigenvalue of Bα, then λ1(α) ≤ δ1. This implies that the matrix
A− λ1(α)I is always positive semidefinite independently of the value of α.

Equations (2.3)–(2.4) express λ and hence x implicitly in terms of α, suggesting
the definition of a convenient function as follows. Let † denote the pseudoinverse of a
matrix and let us define

φ(λ) ≡ gT (A − λ I)†g = −gTx.

Therefore,

φ′(λ) = gT [(A − λ I)†]2g = xTx,

where differentiation is with respect to λ, and x satisfies (A − λ I)x = −g. The
function φ appears in many contexts [2, 9, 19, 20] and Figure 1(a) shows its typical
behavior. It is worth noticing that the values of φ and φ′ at an eigenvalue λ of Bα
are readily available and contain valuable information with respect to problem (2.1),
as long as λ has a corresponding eigenvector with nonzero first component.

Finding the smallest eigenvalue and a corresponding eigenvector of Bα for a given
value of α, and then normalizing the eigenvector to have its first component equal
to one, will provide a means to evaluate the rational function φ and its derivative
at appropriate values of λ, namely, at λ = λ1(α) ≤ δ1. Moreover, λ1(α) is usually
well separated from the rest of the spectrum of Bα, particularly for small values of
∆. In these cases, we expect a Lanczos-type method to be very efficient in computing
this eigenvalue and the corresponding eigenvector. If we can adjust α so that the
corresponding x satisfies xTx = φ′(λ) = ∆2 with α− λ = φ(λ), then

(A − λ I)x = −g and λ(∆− ‖x‖) = 0
with A − λ I positive semidefinite. If λ ≤ 0, then x is a boundary solution for the
trust-region subproblem. In case we find λ > 0 with ‖x‖ < ∆ during the course of
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Fig. 1. Example of the typical pattern of φ(λ) (solid) and the straight line f(λ) = α∗ − λ
(dash-dotted). The three smallest eigenvalues of A are −2, −0.5, and 2. (a) General case with the
slope at λ∗ also plotted; (b) exact hard case; (c) near hard case; (d) detail of box in (c).

adjusting α, then this implies that the matrix A is positive definite and that ‖A−1g‖ <
∆. As shown in [10], these two conditions imply that problem (2.1) has an interior
solution that satisfies Ax = −g.

The availability of the values λ, φ(λ), φ′(λ) makes it possible to use rational
interpolation to adjust the parameter using these values as interpolation points. The
adjustment of α by means of rational interpolation consists of constructing a rational
interpolant φ̂ and finding a special point λ̂ such that φ̂′(λ̂) = ∆2. We then compute

the new parameter as α+ = λ̂ + φ̂(λ̂). In this approach it is necessary to safeguard
α+ to ensure convergence of the iteration. This idea was discussed in [6, 15] and used
in [17]. The algorithm in this paper follows this approach.

3. Characterization of the hard case. We assumed in the previous discussion
that the smallest eigenvalue of Bα had a corresponding eigenvector with nonzero first
component. It remains to consider the possibility that all the eigenvectors associated
with λ1(α) have first component zero so that we cannot normalize any of them to
have its first component equal to one. In this case, the proposed strategy for solving
problem (2.1) breaks down. However, this can happen only when g is orthogonal to
S1, where Sj = {q | Aq = δjq}, j = 1, 2, . . . , d.

The condition g ⊥ S1 is a necessary condition for the occurrence of the so-called
hard case. Therefore, we call this situation a potential hard case. Observe that in a
potential hard case δ1 is no longer a pole of φ, as Figure 1(b) illustrates. We discuss
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the hard case in detail at the end of this section. At this point we will concentrate
on the potential hard case, which has intriguing consequences. We will show that in
a potential hard case, for all values of α greater than certain critical value α̃1, all the
eigenvectors corresponding to the smallest eigenvalue of Bα will have first component
zero. We will also show that for any α, there is always a well-defined eigenvector of Bα,
depending continuously on α, that we can safely normalize to have first component
one. If g �⊥ S1 or g ⊥ S1 and α ≤ α̃1, then this eigenvector corresponds to λ1(α).
If g ⊥ S1 and α exceeds the critical value α̃1 by a small amount, this parameterized
vector corresponds to the second smallest eigenvalue of Bα. A complete understanding
of this case leads to the main algorithm of this paper. The following results are the
basis for this understanding.
Lemma 3.1. For any α ∈ R and any q ∈ Sj, 1 ≤ j ≤ d, {δj , (0, qT )T} is an

eigenpair of Bα if and only if g is orthogonal to Sj.
Proof. The proof follows from the observation that g ⊥ Sj and Aq = δjq are

equivalent to (
α gT

g A

)(
0
q

)
= δj

(
0
q

)
.

If Z1(α) is the eigenspace of Bα corresponding to δ1, Lemma 3.1 establishes that
the set {(0, qT )T | q ∈ S1} is a subset of Z1(α). Note that while S1 corresponds to
the smallest eigenvalue of A, Z1(α) does not necessarily correspond to the smallest
eigenvalue of Bα. These subspaces have the same dimension for all but one exceptional
value of α. The following result states that there is a unique value of α for which
dimZ1(α) = dimS1 + 1.
Lemma 3.2. Suppose that g is orthogonal to Sj, 1 ≤ j ≤ d, and let pj =

−(A − δj I)†g. The pair {δj , (1, pT
j )

T} is an eigenpair of Bα if and only if α = α̃j,
where α̃j = δj − gTpj.

Proof. First we observe that g ⊥ Sj implies that g ∈ R(A − δj I) and therefore

(A − δj I)pj = −(A − δj I)(A − δj I)
†g = −g,(3.1)

since (A − δj I)(A − δj I)
† is an orthogonal projector onto R(A − δj I).

Now, let α = α̃j . Then(
α̃j gT

g A

)(
1
pj

)
=

(
α̃j + gTpj
g +Apj

)
= δj

(
1
pj

)
,

since by definition of α̃j we have α̃j + gTpj = δj and by (3.1), g +Apj = δjpj .
Suppose now that {δj , (1, pT

j )
T} is an eigenpair of Bα, i.e.,(

α gT

g A

)(
1
pj

)
= δj

(
1
pj

)
·

It follows directly from this relationship that α = α̃j = δj − gTpj .
The following corollary summarizes the main results from Lemmas 3.1 and 3.2.
Corollary 3.1. Suppose that g is orthogonal to Sj, 1 ≤ j ≤ d, and let Zj(α) =

{z ∈ R
n+1 | Bαz = δjz}. If α̃j = δj + gTpj with pj = −(A − δj I)†g, then

dimZj(α̃j) = dimSj+1 and for any other value of α, dimZj(α) = dimSj. Moreover,
if mj is the multiplicity of δj and {q1, . . . , qmj

} is an orthogonal basis for Sj, then{(
1
pj

)
,

(
0
q1

)
, . . . ,

(
0

qmj

)}
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is an orthogonal basis for Zj(α̃j) and{(
0
q1

)
, . . . ,

(
0

qmj

)}

is an orthogonal basis for Zj(α), for α �= α̃j.
The result in Lemma 3.1 was also stated in [17]; the idea behind Lemma 3.2 was

presented in [13]. We present here a general formulation of these results given in [14].
In the next results from [14], we establish that there always exists an eigenvector of
Bα that we can normalize to have first component equal to one, and we characterize
the eigenvalue to which this eigenvector corresponds.
Theorem 3.1 (see [14]). Let λ(α) be the smallest solution of the equation

φ(λ) = α− λ.

Then, for any value of α, λ(α) is an eigenvalue of Bα with a corresponding eigenvector
that can be normalized to have first component one.

Proof. Suppose first that g is orthogonal to Si, i = 1, 2, . . . , �, with 1 ≤ � < d.
Then

φ(λ) = gT (A − λ I)†g

=

d∑
j=	+1

β2
j

δj − λ
·

Let λ(α) be the smallest solution of the equation φ(λ) = α − λ. Then λ(α) ∈
(−∞, δ	+1). Since φ(λ) is strictly increasing on its domain and f(λ) = α − λ is
a decreasing straight line, we conclude that λ(α) is unique. Since λ(α) depends
continuously on α, so does p(α) = −(A − λ(α) I)†g and also v(α) = (1, p(α)T )T .
Let us see now that v(α) is an eigenvector of Bα associated with λ(α). Consider(

α gT

g A

)(
1

p(α)

)
=

(
α+ gTp(α)
g +Ap(α)

)

and note that

α+ gTp(α) = α− φ(λ(α))

= λ(α) by definition of λ(α).

Now, g ⊥ Si, i = 1, 2, . . . , �, implies that g ∈ R(A − λ I) for λ ∈ (−∞, δ	+1). Thus,
g ∈ R(A − λ(α) I) and we have (A − λ(α) I)p(α) = −g. It follows that

g +Ap(α) = λ(α)p(α)

and therefore, Bαv(α) = λ(α)v(α).
Suppose now that g is not orthogonal to S1. Then λ(α) ∈ (−∞, δ1) and this

implies A − λ(α) I is nonsingular and the previous proof holds with p(α) =
−(A − λ(α) I)−1 g.

The following result characterizes the smallest �+ 1 distinct eigenvalues of Bα if
g is orthogonal to the eigenspaces corresponding to the smallest � distinct eigenvalues
of A. In case g is not orthogonal to S1, then the lemma characterizes the smallest
eigenvalue of Bα. We will denote by λj(α), j = 1, 2, . . . , n+ 1, the eigenvalues of Bα
in nondecreasing order.
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Lemma 3.3 (see [14]). Let {λ(α), v(α)} be the eigenpair of Bα given by Theorem
3.1 and define α̃i as in Lemma 3.2. Then if g �⊥ S1, then λ1(α) = λ(α).

If g ⊥ Sk, for k = 1, 2, . . . , � and 1 ≤ � < d, then
(i) if α = α̃i, 1 ≤ i ≤ �, then λj(α) = δj, j = 1, 2, . . . , �. In this case, λ	+1(α) is

the second smallest root of equation φ(λ) = α− λ;
(ii) if α < α̃1, then λ1(α) = λ(α) and λj(α) = δj−1, j = 2, . . . , �+ 1;
(iii) if α̃i−1 < α < α̃i, 2 ≤ i ≤ �, then λi(α) = λ(α), λj(α) = δj for j = 1, . . . , i−1,

and λj(α) = δj−1 for j = i+ 1, . . . , �+ 1;
(iv) if α > α̃	, then λj(α) = δj, j = 1, 2, . . . , � and λ	+1(α) = λ(α).
Proof. These results are a direct consequence of Cauchy’s interlace theorem,

Lemmas 3.1 and 3.2, and the properties of the functions φ(λ) and α− λ.
We can expect difficulties in practice when the vector g is nearly orthogonal

to the eigenspace S1. If this happens, there still exists λ∗ < δ1 and x∗ such that
(A − λ∗ I)x∗ = −g, ‖x∗‖ = ∆, with λ∗ quite close to δ1. We call this situation a
near hard case and Figure 1(c) illustrates it. In the detail shown in Figure 1(d), we
can see that in this case, the derivative φ′ changes rapidly for λ close to δ1, so the
problem of finding λ∗ satisfying the correct slope φ′(λ∗) = ∆2 is very ill-conditioned.

In the remainder of this section we discuss the hard case and present the results
that allow us to compute a nearly optimal solution for the trust-region subproblem in
this situation. The hard case can occur only when g ⊥ S1, the matrix A is indefinite or
positive semidefinite and singular, and for certain values of ∆. This case was analyzed
in [10] for medium-scale problems and discussed in [13, 17] in the large-scale context.
The precise statement is contained in Lemma 3.4 from [15]. We present a slightly
different proof here.
Lemma 3.4 (see [15]). Assume g is orthogonal to S1 and let p = −(A − δ1 I)†g.

If δ1 ≤ 0 and ‖p‖ < ∆, then the solutions of (2.1) consist of the set {x | x = p+z , z ∈
S1 , ‖x‖ = ∆}, with Lagrange multiplier λ∗ = δ1.

Proof. We need to show that if x = p+ z with z ∈ S1 and ‖x‖ = ∆, then {x, δ1}
satisfy the conditions in Lemma 2.1. It follows directly from the hypothesis and the
fact that δ1 is the smallest eigenvalue of A that A − δ1 I is positive semidefinite, that
δ1 ≤ 0, and that δ1(∆− ‖x‖) = 0. It remains only to show that (A − δ1 I)x = −g.
To see this, observe

(A − δ1 I)x = (A − δ1 I)(p+ z)

= −(A − δ1 I)(A − δ1 I)†g

since z ∈ N (A − δ1 I). Now, since g ∈ R(A − δ1 I) and (A − δ1 I)(A − δ1 I)†

is an orthogonal projector onto R(A − δ1 I), we have

(A − δ1 I)x = −g

which completes the proof.
As we can see, it is precisely in the hard case that in the process of adjusting α we

will compute values such that α > α̃1. As Lemma 3.3 establishes, in this case all the
eigenvectors corresponding to the smallest eigenvalue of Bα have first component zero.
Moreover, in a near hard case the eigenvectors will have very small first components
and dividing by these values will introduce large roundoff errors. Theorem 3.1 and
Lemma 3.3 suggest a strategy for handling this situation, namely, using the eigenvector
of Bα with the desired structure guaranteed by Theorem 3.1 and the corresponding
eigenvalue to obtain the interpolation points, so we can proceed with the adjustment
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of the parameter α. We will need a safeguarding strategy to enforce convergence of
this iteration. We will describe this strategy in the next section where we present the
algorithm in detail.

The following results provide the theoretical basis for declaring convergence in
the hard case. Results within the same philosophy are presented in [10, 17]. The
idea behind these results is to exploit the information available at each iteration and,
with practically no additional cost, detect a nearly optimal solution in the hard case
or near hard case. Theorem 3.2, Lemma 3.5, and Lemma 3.6 contain these results.
Theorem 3.2 establishes that, under certain conditions, the last n components of a
special linear combination of eigenvectors of Bα form a nearly optimal solution for
problem (2.1). Lemma 3.5 establishes the conditions under which we can compute
the special linear combination, and Lemma 3.6 shows how to compute it. Theorem
3.2 follows from a more general result from [14] but we present a different proof here.
Lemma 3.5 is a reformulation of a result from [14] and Lemma 3.6 is from [14].
Theorem 3.2 (see [14]). Let λ1(α) be the smallest eigenvalue of Bα with a

corresponding eigenvector z1 = (ν1, z̃
T
1 )

T . Let λi(α) be any of the remaining n eigen-
values of Bα with a corresponding eigenvector zi = (νi, z̃

T
i )

T . Define Z = [z1 zi],

Z̃ = [z̃1 z̃i], and assume Z
TZ = I. Let η > 0.

If there exists t = (τ1, τ2)
T , with ‖t‖ = 1 such that

(i) (eT
1Zt)

2 = 1
1+∆2 , and

(ii) (λi(α)− λ1(α)) τ
2
2 (1 + ∆

2) ≤ −2ηψ(x̃) for x̃ = Z̃t
eT1 Zt

,

then

ψ(x∗) ≤ ψ(x̃) ≤ 1

1 + η
ψ(x∗),

where x∗ is a boundary solution for problem (2.1) with ψ(x∗) ≤ 0.
Proof. Since x∗ is a boundary solution of (2.1), we have ψ(x∗) ≤ ψ(x) ∀ x ∈ R

n

such that ‖x‖ = ∆. Therefore, in order to prove that ψ(x∗) ≤ ψ(x̃), it will suffice to
show that ‖x̃‖ = ∆.

Note that Zt
eT1 Zt

= (1, x̃T )T and therefore

‖(1, x̃T )‖2 = 1 + ‖x̃‖2 =
∥∥∥∥ Zt

eT
1Zt

∥∥∥∥
2

=
1

(eT
1Zt)

2

since ‖t‖ = 1 and ZTZ = I by hypothesis. Thus, by (i)

1 + ‖x̃‖2 = 1 +∆2.

This implies ‖x̃‖ = ∆ and therefore ψ(x∗) ≤ ψ(x̃).
To prove the other part of the inequality, observe that α + 2ψ(x∗) =

(1, xT
∗ ) Bα (1, x

T
∗ )

T . Thus, by Rayleigh quotient properties

α+ 2ψ(x∗) ≥ λ1(α)‖(1, xT

∗ )
T‖2.

Since ‖x∗‖ = ∆ it follows that ‖(1, xT
∗ )

T‖2 = 1 +∆2, and therefore

α+ 2ψ(x∗) ≥ λ1(α)(1 + ∆
2).(3.2)
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We now show that α+ 2ψ(x̃) = λ̃(1 + ∆2), with λ̃ = λ1(α)τ
2
1 + λi(α)τ

2
2 . Observe

that α+ 2ψ(x̃) = (1, x̃T ) Bα (1, x̃
T )T , and since (1, x̃T )T = 1

eT1 Zt
Zt, it follows that

α+ 2ψ(x̃) = tTZTBαZt
1

(eT
1Zt)

2

= [λ1(α)τ
2

1 + λi(α)τ
2

2 ] (1 + ∆
2),

by (i) and the fact that z1, zi are eigenvectors of Bα.
Thus, since τ 2

1 + τ 2
2 = 1, we have

α+ 2ψ(x̃) = [λ1(α)(1− τ 2

2) + λi(α)τ
2

2 ] (1 + ∆
2)

= [λ1(α) + (λi(α)− λ1(α))τ
2

2 ] (1 + ∆
2)

and therefore

α+ 2ψ(x̃)− (λi(α)− λ1(α))τ
2

2(1 + ∆
2) = λ1(α) (1 + ∆

2)

≤ α+ 2ψ(x∗) by (3.2).

If (λi(α)− λ1(α))τ
2
2(1 + ∆

2) ≤ −2ηψ(x̃), then
α+ 2ψ(x̃) + 2ηψ(x̃) ≤ α+ 2ψ(x∗)

and we can conclude ψ(x̃) ≤ 1
1+ηψ(x∗).

Therefore ψ(x∗) ≤ ψ(x̃) ≤ 1
1+ηψ(x∗) as claimed.

It follows directly from this result that

0 ≤ ψ(x̃)− ψ(x∗) ≤ − η

1 + η
ψ(x∗),

|ψ(x̃)− ψ(x∗)| ≤ η

1 + η
|ψ(x∗)| .(3.3)

The inequality (3.3) implies that under the conditions of Theorem 3.2, ψ(x̃) will
be arbitrarily close to ψ(x∗). We will call such x̃ a quasi-optimal solution for prob-
lem (2.1).

The next result establishes conditions for computing the vector t in Theorem 3.2.
Lemma 3.5 (see [14]). Let zi = (νi, z̃

T
i )

T , with νi ∈ R, z̃i ∈ R
n for i = 1, 2.

Define the matrices Z = [z1 z2] and Z̃ = [z̃1 z̃2], and assume Z
TZ = I. If ‖ZTe1‖2 ≥

1
β for β > 0, then there exists t ∈ R

2 with t �= 0 that satisfies

‖Zt‖2 = β(eT

1Zt)
2.(3.4)

Proof. Observe that we can rewrite (3.4) as

tTZTZt = β (eT

1Zt)
2

= β (tTZTe1e
T

1Zt)

which is equivalent to

tT [I − β ZTe1e
T

1Z] t = 0(3.5)

since ZTZ = I by hypothesis. Equation (3.5) will have a nontrivial solution only if the
matrix M = I −β ZTe1e

T
1Z is indefinite or positive semidefinite and singular. So, let
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us study the eigenvalues of M . The two eigenpairs of the matrix M = I−β ZTe1e
T
1Z

are given by

{1− β eT

1ZZ
Te1, Z

Te1} and {1, v} with v ⊥ ZTe1 .

Therefore, (3.5) will have nontrivial solutions if 1− β eT
1ZZ

Te1 ≤ 0. In other words,
if ‖ZTe1‖2 = eT

1ZZ
Te1 ≥ 1

β , then there exists t ∈ R
2 with t �= 0 such that t satisfies

(3.5).
Note that choosing β = 1 +∆2 in Lemma 3.5 and normalizing t such that ‖t‖ = 1

will give a vector that satisfies the conditions of Theorem 3.2. The following lemma
provides a way of computing such a vector.
Lemma 3.6 (see [14]). Let β ∈ R, β > 0, and let z ∈ R

n. The equation

tT [I − βzzT ]t = 0(3.6)

in t with t ∈ R
n has 2(n − 1) nontrivial solutions if the matrix M = I − βzzT is

indefinite and has one nontrivial solution if M is positive semidefinite and singular.
Proof. Let P ∈ R

n×n be such that P Tz = ‖z‖e1 with P TP = I and apply this
orthogonal transformation to the matrix M to obtain

P T [I − βzzT ]P = I − β‖z‖2e1eT

1 .

Therefore, the solutions of (3.6) in this new basis are the solutions of

yT

( −θ 0
0 I

)
y = 0,

where θ = −1 + β‖z‖2e1eT
1 .

The nontrivial solutions of (3.6) are then given by t = Py, where
(1) y = (1,

√
θeT
i )

T and y = (−1,√θeT
i )

T with ei the ith canonical vector in R
n−1,

i = 1, 2, . . . , n− 1, if M is indefinite, i.e., if θ > 0, or
(2) y = e1, if M is positive semidefinite and singular, i.e., if θ = 0.
Therefore, (3.6) has 2(n − 1) nontrivial solutions if M is indefinite and has one

nontrivial solution if M is positive semidefinite and singular.
Remark. Suppose n = 2 and z = (ν1, νi)

T in Lemma 3.6. Then if ν1
2 + νi

2 > 1
β ,

the vector t = (τ1, τ2)
T is given by

τ1 =
ν1 − νi

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

, τ2 =
ν1 + νi

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

or

τ1 =
νi + ν1

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

, τ2 =
ν1 − νi

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

·

If ν1
2 + νi

2 = 1
β , then t is given by

τ1 =
ν1√

ν1
2 + νi2

, τ2 =
νi√

ν1
2 + νi2

·

The previous results are the basis for the algorithm in the next section. They
provide the necessary tools for handling the hard case and the standard case in the
same iteration and for computing a solution in the hard case. Theorem 3.2 and



622 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Lemma 3.5 give mechanisms for approximating the vector x = p + z in Lemma 3.4
from a linear combination of eigenvectors of Bα. Theorem 3.2 also establishes con-
ditions under which the vector x computed in this way is a quasi-optimal solution
for problem (2.1). Moreover, Theorem 3.2 guarantees that if the second smallest
eigenvalue of Bα belongs to a cluster, as is the case, for example, in discrete ill-posed
problems, we can still build the special vector x̂ from an eigenvector associated with
the smallest eigenvalue of Bα and from an eigenvector associated with any eigenvalue
of the cluster—not necessarily the second smallest. Observe that Lemmas 3.5 and 3.6,
respectively, provide a way of computing the vectors x̂ and t needed in Theorem 3.2.
We use Theorem 3.2, Lemma 3.5, and Lemma 3.6 in one of the stopping rules in our
method. We describe the stopping criteria in section 4.5.

4. The algorithm. Keeping in mind the availability of a well-suited variant of
the Lanczos method, namely, the implicitly restarted Lanczos method (cf. [16]), we
will develop a rapidly convergent iteration to adjust α based on this process. Our
goal is to adjust α so that

α− λ = φ(λ), φ′(λ) = ∆2,

where

φ(λ) = −gTx, φ′(λ) = xTx,

with (A− λI)x = −g.
The approach of this work is similar to the one in [17] in the following sense.

We compute a function φ̂ which interpolates φ and φ′ at two properly chosen points.
Then, from the interpolating function φ̂ we determine λ̂ satisfying

φ̂′(λ̂) = ∆2 .(4.1)

Finally, we use λ̂ and φ(λ̂) to update the parameter α and compute the next
iterates {λ, x}. The new elements in our algorithm are the introduction of safeguards
for the sequence in α, the use of the information relative to the second smallest
eigenvalue of the matrix Bα, and the introduction of a different interpolating scheme,
where the currently available information is exploited to a greater extent. Considering
that the interpretation of the primal feasibility equations of [13] can be related to
(4.1), the description of our algorithm also has some flavor of the approach in [13],
where an inverse interpolation scheme is used to satisfy primal feasibility. However,
in the presence of the hard case, we do not need to combine distinct interpolating
functions, as in [13], nor switch to another algorithm as in [17]. In this section we will
assume that the vector g is nonzero. If g = 0, then problem (2.1) reduces to solving
an eigenvalue problem for the smallest eigenvalue of A. We shall first describe the
components of the algorithm and then present the complete method.

4.1. Interpolating schemes. To begin the iteration, we need a single-point
interpolating scheme. We use the approach derived in [17] which gives the following
expression for α1:

α1 = λ̂+ φ̂(λ̂) = α0 +
α0 − λ0

‖x0‖
(
∆− ‖x0‖

∆

)(
∆+

1

‖x0‖
)
,(4.2)

where

λ̂ = δ +
gTx0

‖x0‖∆ ·
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This method is linearly convergent and may be slow in some cases, so we will
use it just to obtain a second pair of iterates, which together with λ0, x0 will be the
starting values for a two-point method. In the two-point method we use the four
pieces of information available at the kth iteration, namely, φ(λk−1), φ

′(λk−1), φ(λk),

and φ′(λk) as follows. We compute λ̂ such that

1

∆
=

1√
φ′(λk−1)

(
λk − λ̂

λk − λk−1

)
+

1√
φ′(λk)

(
λ̂− λk−1

λk − λk−1

)
,(4.3)

obtaining

λ̂ =
λk−1‖xk−1‖(‖xk‖ −∆) + λk‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖) ·(4.4)

This is equivalent to defining

φ̂(λ) =
γ2

δ − λ
+ η(4.5)

for any η and computing λ̂ such that 1√
φ̂′(λ̂)

= 1
∆ . It is easy to verify using (4.3) that

γ2 =
(λk − λk−1)

2‖xk−1‖2‖xk‖2
(‖xk‖ − ‖xk−1‖)2 and δ =

λk‖xk‖ − λk−1‖xk−1‖
‖xk‖ − ‖xk−1‖ ·

Ideally, η = φ(λ̂)− γ2

δ−λ̂ , where φ(λ̂) is the value we are going to estimate in order

to update α. Using the values φ(λk−1) and φ(λk), we first define ηj = φ( λj ) − γ2

δ−λj
,

for j = k − 1, k. Then, applying the linear interpolation philosophy on λj , ηj , and

defining the weights by means of the already computed value λ̂, we choose

η =

(
λk − λ̂

λk − λk−1

)
ηk−1 +

(
λ̂− λk−1

λk − λk−1

)
ηk .

After some manipulation we can express the updating formula for α as

αk+1 = λ̂+ ωφ(λk−1) + (1− ω)φ(λk)

+
‖xk−1‖‖xk‖(‖xk‖ − ‖xk−1‖)
ω‖xk‖+ (1− ω)‖xk−1‖

(λk−1 − λ̂)(λk − λ̂)

(λk − λk−1)

= ωαk−1 + (1− ω)αk

+
‖xk−1‖‖xk‖(‖xk‖ − ‖xk−1‖)
ω‖xk‖+ (1− ω)‖xk−1‖

(λk−1 − λ̂)(λk − λ̂)

(λk − λk−1)
,(4.6)

where ω = λk−λ̂
λk−λk−1

, αk−1 = λk−1 + φ(λk−1), and αk = λk + φ(λk).

As we discussed in section 3, we need a special strategy to obtain interpolation
points in potential hard cases. We describe this strategy in section 4.2.

4.2. Choice of interpolation points. According to Lemma 3.1, if the first
component of the eigenvector corresponding to the smallest eigenvalue of Bαk

is zero,
this will indicate a potential hard case and we will have λ1(αk) = δ1. However,
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Lemma 3.3 establishes that for αk slightly larger than α̃1 there is an eigenvector with
significant first component that corresponds to the second smallest eigenvalue of Bα.
Therefore, we propose to use an eigenpair corresponding to an eigenvalue that is close
to the second smallest eigenvalue of the bordered matrix to obtain the interpolation
point whenever we detect a potential hard case. As we shall explain, not only can we
keep the size of the iterate xk under control, but we can also ensure convergence of
{λk, xk} to {δ1, p} by driving the parameter αk to the value α̃1 given by Lemma 3.2.
Recall that Lemma 3.2 established that there will be an eigenvector with significant
first component corresponding to λ1(αk) precisely when αk assumes the special value
α̃1 = δ1−gTp. Moreover, the use of a second eigenvector prevents numerical difficulties
in a near-hard-case situation.

There is an easy way to detect a potential hard case during an iteration. Let
(ν1, u

T
1 )

T be a unitary eigenvector of Bαk
corresponding to λ1(αk). Then, we declare

ν1 to be “small,” indicating a near hard case has been detected, if the condition
‖g‖|ν1| ≤ ε

√
1− ν1

2 holds for a given ε ∈ (0, 1). This is motivated as follows. Since
(A − λ1(αk) I)u1 = −gν1, we have

‖(A − λ1(αk) I)u1‖
‖u1‖ =

‖g‖|ν1|√
1− ν1

2

and hence ‖g‖|ν1| ≤ ε
√
1− ν1

2 ensures that ‖(A − λ1(αk) I)u1‖ ≤ ε‖u1‖. In other
words, {λ1(αk), u1} is an approximate eigenpair of A and the eigenvector (ν1, u

T
1 )

T

from the bordered matrix is essentially impossible to normalize. This is approxi-
mately the situation described in Lemma 3.1. Of course, this test can be made scale
independent by choosing ε = ε̂‖A‖, for ε̂ ∈ (0, 1).

When a near hard case has been detected, we need an alternative way to de-
fine the pair {λk, xk}. At each iteration, at essentially no extra cost, we compute
an eigenpair corresponding to the smallest eigenvalue of Bαk

, which we denote by
{λ1(αk), (ν1, u

T
1 )

T}, and also an eigenpair corresponding to an eigenvalue close to the
second smallest eigenvalue of Bα, which we denote by {λi(αk), (ν2, u

T
2 )

T}. If both
|ν1| and |ν2| are small, that is, if ‖g‖|ν1| ≤ ε

√
1− ν1

2 and ‖g‖|ν2| ≤ ε
√
1− ν2

2, then
we decrease the parameter αk. According to Theorem 3.1 there always exists an
eigenvector of the bordered matrix with significant first component for any value of α
and, as we mentioned before, according to Lemma 3.3, as αk approaches the critical
value, this normalizable eigenvector will correspond either to the first or to the second
smallest eigenvalue of Bαk

. In other words, for values of αk near the critical value,
either ‖g‖|ν1| > ε

√
1− ν1

2 or ‖g‖|ν2| > ε
√
1− ν2

2 will hold. Hence, after a possible
reduction of the parameter αk, the pair {λk, xk} is well defined if we compute it by
the following procedure:

If ‖g‖|ν1| ≤ ε
√
1− ν1

2, then set λk = λi(αk) and xk =
u2

ν2
·

Otherwise, set λk = λ1(αk) and xk =
u1

ν1
·

Since λk−1 and λk are not constrained to (−∞, δ1] but might belong to the interval

(δ1, δ	+1), the value λ̂ given by (4.4) may be greater than δ1. In this case, we set

λ̂ = δU , where δU is an upper bound for δ1. In section 4.3 we will show how to
obtain an initial value for δU and how to update this value. We will also show how to
safeguard α computed by (4.6).
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4.3. Safeguarding. We need to introduce safeguarding to ensure global conver-
gence of the iteration. Let λ∗, x∗ be an optimal pair for problem (2.1), satisfying the
conditions in Lemma 2.1, except when there is only an interior solution, in which case
we define x∗ = −(A − λ∗ I)†g such that ‖x∗‖ = ∆. Let α∗ = λ∗ − gTx∗. Rendl and
Wolkowicz [13] presented the following bounds for the optimal parameter α∗:

δ1 − ‖g‖
∆
≤ α∗ ≤ δ1 + ‖g‖∆ .(4.7)

Computing a good approximation to δ1 can be nearly as expensive as solving the
given trust-region subproblem. For this reason, as observed in [13], we shall replace
the above bounds by some simple alternatives. First, note that any Rayleigh quotient

δU ≡ vTAv
vT v

gives an upper bound for δ1. Therefore, if the diagonal of the matrix A is

explicitly available, we take δU = min{aii | i = 1, . . . , n}; otherwise we take δU ≡ vTAv
vT v

,
where v is a random vector. From (4.7) we see that α∗ ≤ αU , for αU = δU + ‖ g‖∆.
Since α ≤ 0 implies Bα is not positive definite, we set α0 = min{0, αU} to ensure that
λ1(α0) ≤ 0. After solving for λ1(α0) and setting δL = λ1(α0) and αL = δL − ‖g‖

∆ , we
immediately have that αL ≤ α∗, since the interlacing property implies δL ≤ δ1. Using
this simple scheme to obtain δL and δU as initial lower and upper bounds for δ1, we
can start with

αL = δL − ‖g‖
∆

and αU = δU + ‖g‖∆ .(4.8)

We update the upper bound δU at each iteration using information from the eigen-
pair corresponding to the smallest eigenvalue of the bordered matrix in the following

way: δU = min{δU ,
uT

1 Au1

uT
1 u1
}, where uT

1 Au1

uT
1 u1

= λ1(αk)−ν1
gTu1

uT
1 u1

. As stated in section 4.2,

whenever we detect a potential hard case, {λ1(αk), u1} approximates an eigenpair of
A and λ1(αk) is a very good approximation to δ1. Thus, δU becomes a sharp estimate
of δ1 in this case.

At every iteration, we update one of the safeguarding bounds αL or αU so that we
always reduce the length of the interval [αL, αU ]. In case the value αk+1 predicted by
the interpolating schemes (4.2) or (4.6) does not belong to the current safeguarding
interval, we redefine αk+1 by means of a linear adjustment based on the upper bound
δU . If this choice is not in the interval [αL, αU ], we simply set αk+1 =

αL+αU

2 .

4.4. Initialization of α. As mentioned in section 4.3, there is a simple choice
for initializing α, given by α0 = min{0, αU}, with αU as in (4.8). This ensures that
λ1(α0) ≤ 0 but it has no additional properties. In an attempt to improve this initial
guess, we have developed a more sophisticated hot-start strategy based on the Lanczos
process. To begin, we compute the following j-step Lanczos factorization for the j
smallest eigenvalues of A:

AV = V T + feT

j ,(4.9)

where V TV = Ij , with Ij the identity matrix of order j (j � n ), T ∈ R
j×j tridiagonal,

V Tf = 0, and ej denotes the jth canonical unit vector in R
j .

The hot-start strategy consists of first changing variables in (2.1) using x = V y
and solving the j-dimensional problem

min 1
2y

TTy + gTV y

s.t. ‖y‖ ≤ ∆.
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Then, we compute a solution {θ∗, y∗} to this lower dimensional trust-region sub-
problem by using the algorithm in [10], based on the Cholesky factorization of the
tridiagonal matrix T − θI, θ < δ1. The initial value to be used is α = θ∗ − gTV y∗.

We now show that we can use (4.9) to compute an eigenpair corresponding to the
smallest eigenvalue of Bα0 . Observe(

α0 gT

g A

)(
1 0
0 V

)
=

(
1 0
0 V

)(
α0 gTV
V Tg T

)
+

(
0
f

)
eT

j+1 .(4.10)

If we run the standard Lanczos process for A using v1 = g/‖g‖ as the initial
vector, then we obtain a tridiagonal matrix on the right-hand side of (4.10). This
provides a way of computing the smallest eigenvalue of Bα0 .

In numerical experiments, the use of this hot start for α did not substantially
improve the performance of the method.

4.5. Stopping criteria. At each iteration we check for a boundary solution, an
interior solution, or a quasi-optimal solution according to Theorem 3.2. We can also
stop if we reach a maximum number of iterations or if the length of the safeguarding
interval is too small. Given the tolerances ε∆, εHC , εα ∈ (0, 1), and εInt ∈ [0, 1), we
declare convergence of the algorithm according to the following criteria. Let (ν1, u

T
1 )

T

be the eigenvector corresponding to λ1(αk) and let {λk, xk} be the current iterates;
then we can write the stopping criteria in the following way.

1. Boundary solution.
We detect a boundary solution if

(| ‖xk‖ −∆ | ≤ ε∆ ∗∆) and (λ1(αk) ≤ 0).

If this condition is satisfied, the solution is

λ∗ = λ1(αk) and x∗ = xk.

2. Interior solution.
We detect an interior solution if

(‖u1‖ < ∆|ν1|) and (λ1(αk) > −εInt).

In this case, the solution is λ∗, x∗, where λ∗ = 0 and x∗ satisfies the linear system
Ax = −g, with A positive definite. The conjugate gradient method is a natural choice
for solving this system for most large-scale problems.

3. Quasi-optimal solution.
To declare that we have found a quasi-optimal solution, we first compute t and x̃ as

in Lemma 3.5, provided that the conditions of the lemma are satisfied. If t = (τ1, τ2)
T

and x̃ satisfy condition (ii) of Theorem 3.2, then x̃ is a quasi-optimal solution for

problem (2.1) and we set λ∗ = λ̃ and x∗ = x̃.
4. The safeguarding interval is too small.
If |αU−αL| ≤ εαmax{|αL|, |αU |}, then we stop the iteration and set λ∗ = λ1(αk).

If this criterion is satisfied and we do not have a boundary solution, then we are in
the hard case and α∗ is within εα of α̃1. If ν1 is large enough, we set p =

u1

ν1
. Since

‖p‖ < ∆ in this case, we compute x∗ as x∗ = p+ τz such that ‖x∗‖ = ∆, where the
vector z is an approximate eigenvector associated with the smallest eigenvalue of A.
Of the two possible choices for τ , we choose the one with smaller magnitude since this
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value minimizes ψ(p+ τz) (see [10, p. 558]). This choice of τ is given by

τ =
∆2 − ‖p‖2

pTz + sign(pTz)
√
(pTz)2 − (∆2 − ‖p‖2) ·

The vector z is usually available in potential hard cases since in those cases the
eigenvectors corresponding to the smallest eigenvalue of Bαk

will often have a small
first component. In the rather unlikely situation where this vector is not available, we
increase the parameter and solve an eigenproblem for the smallest eigenvalue of the
bordered matrix. This strategy will provide an approximate vector in S1 as Lemma
3.3 guarantees.

If ν1 is too small or zero, we cannot compute a solution. This situation can arise
in practice because the eigensolver might not provide the eigenvector with significant
first component that the theory guarantees. We have not encountered this case in our
experiments.

4.6. The algorithm. Let us now put all these pieces together and present
LSTRS, our algorithm for the large-scale trust-region subproblem. We describe steps
2.1 and 2.5 of Algorithm 4.1 separately. In step 2.1 we adjust the parameter αk so that
the eigenvector corresponding to the smallest eigenvalue, or to an eigenvalue equal or
close to the second smallest eigenvalue of Bαk

, has a significant first component. We
might reduce the interval [αL, αU ] during this adjustment. In step 2.5 we correct the
parameter predicted by the interpolation schemes in case it does not belong to the
current safeguarding interval [αL, αU ]. We try a linear adjustment first and adopt the
middle point of the current interval as a last resort. Figure 2 shows Algorithm 4.1,
while Figures 3 and 4 show steps 2.1 and 2.5, respectively.

5. Convergence analysis.

5.1. Iterates are well defined.
Lemma 5.1. The iterates generated by Algorithm 4.1 are well defined.
Proof. In order to define the current iterate xk in Algorithm 4.1, we must ensure

that we can safely normalize an eigenvector, corresponding to either the smallest
eigenvalue or a value equal or close to the second smallest eigenvalue of Bαk

, to have
first component one. This is accomplished in step 2.1, where we adjust the parameter
αk until we can normalize one of these two eigenvectors to have first component one.
Theorem 3.1 and Lemma 3.3 guarantee that the adjusting procedure in step 2.1 yields
a value of α such that there exists an eigenvector that has significant first component
and is associated with the smallest eigenvalue or a value equal or close to the second
smallest eigenvalue of Bα.

5.2. Local convergence.

5.2.1. Preliminary results.
Lemma 5.2. Let λk, xk be the iterates at iteration k of Algorithm 4.1. Then

g ∈ R(A − λk I).

Proof. If λk, xk are the iterates at iteration k of Algorithm 4.1, then(
αk gT

g A

)(
1
xk

)
= λk

(
1
xk

)
.

Therefore, (A − λk I)xk = −g, which implies that g ∈ R(A − λk I).
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Algorithm 4.1. LSTRS.

Input: A ∈ R
n×n, g ∈ R

n, ∆ > 0, ε∆, εν , εHC , εα ∈ (0, 1), εInt ∈ [0, 1).
Output: λ∗, x∗ satisfying conditions of Lemma 2.1.

1. Initialization

1.1 Compute δU ≥ δ1, initialize αU using (4.8),

set α0 = min{0, αU}
1.2 Compute eigenpairs {λ1(α0), (ν1, u

T
1 )

T}, {λi(α0), (ν2, u
T
2 )

T}
corresponding to smallest eigenvalue and an eigenvalue

close to second smallest eigenvalue of Bα0

1.3 Initialize αL using (4.8)

1.4 Set k = 0
2. repeat

2.1 Adjust αk

2.2 Update δU = min

{
δU ,

uT
1Au1

uT
1u1

}
2.3 if ‖g‖|ν1| > εν

√
1− ν1

2 then

set λk = λ1(αk) and xk =
u1

ν1
if ‖xk‖ < ∆ then αL = αk end if
if ‖xk‖ > ∆ then αU = αk

else set λk = λi(αk), xk =
u2

ν2
and αU = αk end if

end if
2.4 Compute αk+1 by interpolation scheme

using (4.2) if k = 0 or (4.4) and (4.6) otherwise

2.5 Safeguard αk+1

2.6 Set k = k + 1
until convergence

Fig. 2. LSTRS: A method for the large-scale trust-region subproblem.

Lemma 5.3. Let λ∗ ≤ δ1 be the Lagrange multiplier corresponding to a boundary
solution of problem (2.1). Then

g ∈ R(A − λ∗ I).

Proof. If λ∗ < δ1, then A − λ∗ I is nonsingular and g ∈ R(A − λ∗ I). If λ∗ = δ1,
then g ⊥ N (A − λ∗ I) must hold and therefore g ∈ R(A − λ∗ I).

Remark. Since (A − λ I)(A − λ I)† and (A − λ I)†(A − λ I) are orthogonal
projectors onto R(A − λ I), we have that

g = (A − λ I)(A − λ I)†g = (A − λ I)†(A − λ I)g(5.1)

for any λ such that g ∈ R(A − λ I). In particular, Lemmas 5.2 and 5.3 imply that
(5.1) holds for λ = λk and λ = λ∗.

5.2.2. Technical lemmas. We present several technical lemmas that allow us
to prove our local convergence result. We will use the following notation:

Ak ≡ A − λk I and A∗ ≡ A − λ∗ I.(5.2)
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Step 2.1. Adjust αk.

Input: εν , εα ∈ (0, 1), αL, αU , αk with αk ∈ [αL, αU ].
Output: αk, {λ1(αk), (ν1, u

T
1 )

T} and {λi(αk), (ν2, u
T
2 )

T}.
· Set α = αk

· if k > 0 then
compute eigenpairs {λ1(α), (ν1, u

T
1 )

T} and {λi(α), (ν2, u
T
2 )

T},
corresponding to smallest eigenvalue and an eigenvalue

close to second smallest eigenvalue of Bα
end if
· while

‖g‖|ν1| ≤ εν
√

1 − ν12 and ‖g‖|ν2| ≤ εν
√

1 − ν22

and |αU − αL| > εα ∗ max{|αL|, |αU |} do

αU = α

α = (αL + αU )/2

Compute {λ1(α), (ν1, uT
1 )T } and {λi(α), (ν2, uT

2 )T }
end while

· Set αk = α

Fig. 3. Adjustment of α.

Step 2.5. Safeguard αk+1.

Input: αk+1 computed by step 2.4 of Algorithm 4.1, δU ≥ δ1, αL, αU ,
φi = −gTxi, and φ′

i = ‖xi‖2, for i = k − 1, k.
Output: Safeguarded value for αk+1.

if αk+1 �∈ [αL, αU ]
if k = 0 then αk+1 = δU + φk + φ′

k(δU − λk)
else if ‖xk‖ < ‖xk−1‖ then αk+1 = δU + φk + φ′

k(δU − λk)
else αk+1 = δU + φk−1 + φ′

k−1(δU − λk−1)
end if
if αk+1 �∈ [αL, αU ] then set αk+1 = (αL + αU)/2 end if

end if

Fig. 4. Safeguarding of α.

The first lemma establishes a key relationship satisfied by the iterates computed
by Algorithm 4.1.
Lemma 5.4. Let λk, xk be the iterates at iteration k of Algorithm 4.1. Then

xk = −(A − λk I)†g.

Proof. First note that if λk, xk are the iterates at iteration k of Algorithm 4.1,
then they satisfy (

αk gT

g A

)(
1
xk

)
= λk

(
1
xk

)
.
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Therefore

(A − λk I)xk = −g.(5.3)

In order to prove the result we need to consider two cases.
Case 1: λk �= δi, i = 1, 2, . . . , d.
In this case we have that A − λk I is nonsingular, (A − λk I)−1 = (A − λk I)†,

and from (5.3) we conclude

xk = −(A − λk I)†g.

Case 2: λk = δi, 1 ≤ i ≤ d.
If λk = δi, then (5.3) implies that g ⊥ Si. This follows from the observation that

for any q ∈ Si, we have 0 = qT (A − δi I)xk = −qTg. Corollary 3.1 now implies that
αk = α̃i and

xk = pi

= −(A − δi I)
†g,

since (1, xT
k )

T is an eigenvector of Bαk
. This concludes the proof.

Before presenting the next lemma, which provides useful relationships for the
convergence analysis, we introduce the following definition.
Definition 5.1. Let λi, xi and λj, xj be the iterates computed by Algorithm 4.1

at iterations i and j, respectively. Then we define

ρ(i, j) ≡ xT

i A
†
jxi + xT

j A
†
ixj.(5.4)

We can substitute any of the iterates by λ∗, y, with y = −A†
∗g. We denote this by

ρ(∗, j) and ρ(i, ∗), respectively.
Observe that if A = QDQT is an eigendecomposition of A, i.e., Q is an orthogonal

matrix and D is a diagonal matrix with the eigenvalues of A on the diagonal, we can
write ρ(i, j) in the following way:

ρ(i, j) = gTQD†
i (D

†
i +D†

j)D
†
jQ

Tg,

where Di = D − λiI and Dj = D − λjI. From this expression we obtain

ρ(i, j) =

d∑
k=1

β2

k(2δk − λi − λj)

(δk − λi)2(δk − λj)2
,(5.5)

where β2

k is the sum of the expansion coefficients of g in the eigenvector basis, cor-
responding to all the eigenvectors associated with δk. As before, we assume that
δ1, δ2, . . . , δd are the distinct eigenvalues of A in nondecreasing order.
Lemma 5.5. Let λi, xi, λj, xj, and λk, xk be the iterates computed by Algorithm

4.1 at iterations i, j, and k, respectively. Then
(i) (xi − xj)

Tg = (λj − λi)x
T
i xj;

(ii) (xi − xj)
Txk = (λi − λj)x

T
j A

†
ixk;

(iii) xT
i xi − xT

j xj = (λi − λj)ρ(i, j), with ρ(i, j) given by (5.4).
Moreover, (i)–(iii) also hold if we substitute any of the pairs above by λ∗, y, where

λ∗ is the Lagrange multiplier corresponding to a boundary solution of problem (2.1)

and y = −A†
∗g.
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Proof. Let us first prove (i). Observe that by Lemma 5.4

(xi − xj)
Tg = (A†

jg −A†
ig)

Tg.

Therefore, using (5.1) and the fact that Ai, A
†
i , Aj , A

†
j commute, we have

(xi − xj)
Tg = gT (A†

j −A†
i )g

= gTA†
i (Ai −Aj)A

†
jg

= (λj − λi)x
T

i xj.

To prove (ii), we use (5.1), Lemma 5.4, and the fact that Ai, A
†
i , Aj , A

†
j commute,

obtaining

(xi − xj)
Txk = gT (A†

i −A†
j)xk

= gTA†
j(Aj −Ai)A

†
ixk

= (λi − λj)x
T

j A
†
ixk.

Finally, let us prove (iii). By (5.1), Lemma 5.4, and the fact that Ai, A
†
i , Aj , A

†
j

commute, we have

xT

i xi − xT

j xj = gT [(A†
i )

2 − (A†
j)

2]g

= gT [(A†
i )

2A2

j −A2

i(A
†
j)

2]g

= gT (A†
i )

2(Aj −Ai)(Aj +Ai)(A
†
j)

2g

= (λi − λj)x
T

i (A
†
i +A†

j)xj

= (λi − λj)ρ(i, j).

Observe that (i)–(iii) hold for λ∗, y, since (5.1) holds for λ∗, y = −A†
∗g, and A∗

commutes with the matrices above. This observation concludes the proof.
Using the updating formula (4.6), we obtained the following result relating λk+1−

λ∗ with λk−1−λ∗ and λk−λ∗. This lemma provides a key relationship for establishing
the local convergence properties of Algorithm 4.1.
Lemma 5.6. Let λ∗ ≤ δ1 be the Lagrange multiplier corresponding to a boundary

solution of problem (2.1), with g �= 0. Let λk+1, xk+1 be the (k+1)st iterates computed
by Algorithm 4.1 using the two-point interpolating scheme given by (4.6) to update α.
Then, there exists a neighborhood B of λ∗ such that if λk−1, λk ∈ B, then λk+1

satisfies

|λk+1 − λ∗| ≤ C |λk−1 − λ∗||λk − λ∗|(5.6)

with C independent of k.
Proof. Let y = −A†

∗g and α∗ = λ∗ − gTy. We divide the proof into two cases
‖y‖ = ∆ and ‖y‖ < ∆. In each case, we first find an appropriate neighborhood of λ∗
and then prove (5.6) for λk−1, λk in that neighborhood.

Case 1: ‖y‖ = ∆.
We will first find a neighborhood B of λ∗ such that if λk−1, λk ∈ B, then λ̂ ∈ B,

with λ̂ given by (4.4). In this part of the proof we define the numbers � and m in the
following way.
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Let 0 ≤ � < n and assume that g ⊥ Si, i = 1, 2, . . . , �, where � = 0 indicates that
g �⊥ S1. Let m = 0 if λ∗ < δ1 and m = � if λ∗ = δ1. Define

r1 =
δm+1 − λ∗

2
and B1 = {λ | |λ− λ∗| ≤ r1}

and suppose that λk−1, λk ∈ B1. Then by (4.4), Lemma 5.5(iii), and the fact that
‖y‖ = ∆, we have

λ̂− λ∗ = λk − λ∗ +
‖xk−1‖(‖xk−1‖+ ‖xk‖)(∆− ‖xk‖)

ρ(k − 1, k)∆
= (λk − λ∗)

[
1− ρ(∗, k)‖xk−1‖(‖xk−1‖+ ‖xk‖)

ρ(k − 1, k)∆(∆ + ‖xk‖)
]
.(5.7)

We will prove now that |λ̂− λ∗| ≤ |λk − λ∗|ϑ, with ϑ ∈ (0, 1).
Let ∆max = maxλ∈B1 ‖(A − λ I)†g‖ and ∆min = minλ∈B1 ‖(A − λ I)†g‖.

Therefore

‖xk−1‖(‖xk−1‖+ ‖xk‖)
∆(∆ + ‖xk‖) ≥

(
∆min
∆max

)2

.(5.8)

In view of (5.5) we have that for λk−1, λk ∈ B1

ρ(∗, k) ≥ (2δ	+1 − λ∗ − λk)

(δd − λ∗)2(δd − λk)2
‖g‖2 .

Since δm+1 ≤ δ	+1 and since
−δm+1+λ∗

2 ≤ λ∗ − λk ≤ δm+1−λ∗
2 , we have

ρ(∗, k) ≥ (2δm+1 − λ∗ − λk)

(δd − λ∗)2(δd − λk)2
‖g‖2

=
2(δm+1 − λ∗) + (λ∗ − λk)

(δd − λ∗)2[(δd − λ∗) + (λ∗ − λk)]2
‖g‖2

≥ 2

3
‖g‖2 (δm+1 − λ∗)

(δd − λ∗)4
·(5.9)

Using similar manipulations we obtain

ρ(k − 1, k) ≤ (2δd − λk − λk−1)‖g‖2
(δ	+1 − λk)2(δ	+1 − λk−1)2

≤ (2δd − λk − λk−1)‖g‖2
(δm+1 − λk)2(δm+1 − λk−1)2

≤ 3 · 24‖g‖2(δd − λ∗)
(δm+1 − λ∗)4

·(5.10)

It follows from (5.7), (5.8), (5.9), and (5.10) that

|λ̂− λ∗| ≤ |λk − λ∗|
∣∣∣∣∣1−

(
∆min
∆max

)2
1

72

(δm+1 − λ∗)5

(δd − λ∗)5

∣∣∣∣∣ ≡ |λk − λ∗|ϑ



LARGE-SCALE TRUST-REGION SUBPROBLEM 633

with ϑ ∈ (0, 1). Therefore λ̂ ∈ B1 whenever λk−1, λk ∈ B1.
Now, we use these results to establish (5.6). Let the neighborhood B be given by

B1 and let λk−1, λk ∈ B; therefore λ̂ ∈ B, and to prove (5.6) we need to consider two
possibilities λ̂ < δ1 and λ̂ ≥ δ1.

Case 1.1: ‖y‖ = ∆ and λ̂ < δ1.
In this case, we use formulas (4.4) and (4.6), obtaining

αk+1 = T1 + T2,

where

T1 =
αk−1‖xk−1‖(‖xk‖ −∆) + ‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖)
and

T2 =
‖xk‖‖xk−1‖(∆− ‖xk‖)(∆− ‖xk−1‖)(λk − λk−1)

∆(‖xk‖ − ‖xk−1‖) .

We will now find an upper bound for |T2|. From Lemma 5.5(iii), we have

T2 =
‖xk‖‖xk−1‖(∆− ‖xk‖)(∆− ‖xk−1‖)(‖xk‖+ ‖xk−1‖)

∆ρ(k − 1, k) ,

and since ‖y‖ = ∆ we can write

T2 =
‖xk‖‖xk−1‖(‖xk‖+ ‖xk−1‖)

ρ(k − 1, k)
(‖y‖ − ‖xk‖)(‖y‖ − ‖xk−1‖)

∆
.

Using Lemma 5.5(iii) we obtain

T2 =
‖xk‖‖xk−1‖(‖xk‖+ ‖xk−1‖)

ρ(k − 1, k)
(λ∗ − λk−1)(λ∗ − λk)ρ(k − 1, ∗)ρ(k, ∗)

∆(∆ + ‖xk‖)(∆ + ‖xk−1‖) ·

Now, since λk−1, λk ∈ B and since δm+1 ≤ δ	+1,

ρ(k − 1, k) ≥ 2

3
‖g‖2 (δm+1 − λ∗)

(δd − λ∗)4
,(5.11)

ρ(∗, k), ρ(∗, k − 1) ≤ 10 δd − λ∗
(δm+1 − λ∗)4

·(5.12)

Since for λk−1, λk ∈ B we also have ∆min ≤ ‖xk−1‖, ‖xk‖ ≤ ∆max, we obtain
|T2| ≤ C2 |λ∗ − λk−1| |λ∗ − λk|.(5.13)

We will use this estimate in a moment. First, we need to relate it to λk+1 − λ∗. To
do this, consider

αk+1 − α∗ =
(αk−1 − α∗)‖xk−1‖(‖xk‖ −∆) + (αk − α∗)‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖) + T2 .

(5.14)

From Lemma 5.5(i), the definition of α∗, and since αj − λj = −gTxj for j > 0, we
have

αj − α∗ = λj − λ∗ − gT (xj − y)

= (λj − λ∗)(1 + xT

j y).(5.15)
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Using (5.15) along with Lemma 5.5, (5.14) becomes

(λk+1 − λ∗)(1 + xT

k+1y) =
(λk−1 − λ∗)‖xk−1‖(‖xk‖ −∆)(1 + xT

k−1y)

∆(‖xk‖ − ‖xk−1‖)

− (λk − λ∗)‖xk‖(‖xk−1‖ −∆)(1 + xT
k y)

∆(‖xk‖ − ‖xk−1‖) + T2

=
(λk−1 − λ∗)(λk − λ∗)T3

∆(‖xk‖ − ‖xk−1‖)(‖xk‖+∆)(‖xk−1‖+∆) + T2,

where

T3 = (‖xk−1‖ − ‖xk‖)(‖xk−1‖+ ‖xk‖+∆)(1 + xT

k y)ρ(k − 1, ∗)
+ yT (xk−1 − xk)‖xk−1‖(‖xk−1‖+∆)ρ(k, ∗)
+ (ρ(k, ∗)− ρ(k − 1, ∗))‖xk−1‖(‖xk−1‖+∆)(1 + xT

k y) .

Now, by Lemma 5.5(ii) we have

yT (xk−1 − xk) = (λk−1 − λk)y
TA†

kxk−1(5.16)

and by Lemma 5.5(iii)

ρ(k, ∗)− ρ(k − 1, ∗) = xT

kA
†
∗xk + yTA†

ky − xT

k−1A
†
∗xk−1 − yA†

k−1y

= gTA†
kA

†
∗A

†
kg − gTA†

k−1A
†
∗A

†
k−1g + yT (A†

k −A†
k−1)y

= gT ((A†
k)

2 − (A†
k−1)

2)y + (λk − λk−1)y
TA†

kA
†
k−1y

= (λk − λk−1)(y
TA†

k−1A
†
ky + xT

k−1(A
†
k +A†

k−1)A
†
ky).

(5.17)

Therefore by (5.12), (5.16), (5.17), and since λk−1, λk ∈ B, we have
|T3| ≤ C3|λk − λk−1| .

We may now combine the estimates we have established for T1, T2, and T3 to give

|λk+1 − λ∗||1 + xT

k+1y| ≤ C3
|λk−1 − λ∗| |λk − λ∗| |λk − λk−1|

∆|(‖xk‖ − ‖xk−1‖)(‖xk‖+∆)(‖xk−1‖+∆)| + |T2|
≤ (C4 + C2)|λk−1 − λ∗| |λk − λ∗|

since λk−1, λk ∈ B, and (5.13) holds. Let us see now that 1
1+xT

k+1
y
< 1. Note that

xT

k+1y = gTA†
k+1A

†
∗g

=

d∑
j=	+1

β2
j

(δj − λk+1)(δj − λ∗)
≥ ‖g‖2
(δd − λk+1)(δd − λ∗)

·(5.18)

From this expression we can conclude xT
k+1y > 0 since λ∗ < δm+1 ≤ δd and also since

λk+1 < δm+1 ≤ δd, by the way we compute the iterates in Algorithm 4.1.

We can now claim (5.6) when ‖y‖ = ∆ and λ̂ < δ1.

Case 1.2: ‖y‖ = ∆ and λ̂ ≥ δ1.
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In this case we must use the ideal safeguard, setting λ̂ = δ1. Before proceeding
with the proof, we point out that this can occur only when λ∗ = δ1. To see this
recall that, if λ∗ < δ1, we have B = {λ | |λ − λ∗| ≤ δ1−λ∗

2 }, and we proved that
λk−1, λk ∈ B implies λ̂ ∈ B. Therefore

λ̂− λ∗ ≤ δ1 − λ∗
2

,

λ̂ ≤ δ1 + λ∗
2

< δ1

if λ∗ < δ1.
To continue with the proof we write the formula for αk+1 in this case as

αk+1 = T4 + T5,

where

T4 = ωαk−1 + (1− ω)αk

and

T5 =
‖xk‖‖xk−1‖(‖xk‖ − ‖xk−1‖)
ω‖xk‖+ (1− ω)‖xk−1‖

(λk−1 − δ1)(λk − δ1)

(λk − λk−1)
·

Since λ̂ = δ1, we have ω =
λk−δ1
λk−λk−1

and therefore

ω‖xk‖+ (1− ω)‖xk−1‖ = (λk − δ1)‖xk‖+ (δ1 − λk−1)‖xk−1‖
λk − λk−1

=
(λk − δ1)ρ(k − 1, k) + ‖xk−1‖(‖xk−1‖+ ‖xk‖)

‖xk−1‖+ ‖xk‖(5.19)

by Lemma 5.5(iii).
Using (5.19), (5.4), and Lemma 5.5(iii), we obtain

T5 =
‖xk‖‖xk−1‖ρ(k, k − 1)(λk−1 − δ1)(λk − δ1)

(λk − δ1)ρ(k − 1, k) + ‖xk−1‖(‖xk−1‖+ ‖xk‖) .

By (5.11) and the hypothesis that λk−1, λk ∈ B, we have

|T5| ≤ C5|λk−1 − δ1||λk − δ1|.(5.20)

We now write

αk+1 − α∗ = ωαk−1 + (1− ω)αk − α∗ + T5

= ω(αk−1 − α∗) + (1− ω)(αk − α∗) + T5.

Equation (5.14) and the fact that λ∗ = δ1 yield

|λk+1 − λ∗||1 + yTxk+1| ≤ |λk−1 − λ∗||λk − λ∗|
|λk − λk−1| |yT (xk − xk−1)|+ |T5| .
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Observe that |yT (xk − xk−1)| ≤ |gT (A − λk I)†(A − λk−1 I)†(A − λ∗ I)†g|, and
we can compute an upper bound for this term using the Cauchy–Schwarz inequality,
continuity of ‖·‖, and that λk−1, λk ∈ B. Therefore, by (5.20) and since λk−1, λk ∈ B

|λk+1 − λ∗||1 + yTxk+1| ≤ (C6 + C5)|λk−1 − λ∗||λk − λ∗|.

Using (5.18), we can now establish (5.6) when ‖y‖ = ∆ and λ̂ ≥ δ1.
Case 2: ‖y‖ < ∆.
In this situation, we are in the hard case and therefore λ∗ = δ1 and g ⊥ Si,

i = 1, 2, . . . , �, with 1 ≤ � < d. For this case we will find a neighborhood B of λ∗ such
that λk−1, λk ∈ B implies λ̂ > δ1.

Let the function ϕ(λ) ≡ ‖(A − λ I)†g‖. Then ϕ(λ) is strictly increasing in

(−∞, δ	+1), and there exist λa, λb such that ϕ(λa) =
∆y

2 and ϕ(λb) =
∆+∆y

2 , with
∆y = ‖y‖.

Let

r2 = min

{
δ1 − λa
2

,
δ1 − λb
2

,
δ	+1 − δ1

2

}
and B2 = {λ | |λ− λ∗| ≤ r2}.

Then for λk−1, λk ∈ B2

∆y
2
≤ ‖xk−1‖, ‖xk‖ ≤ ∆+∆y

2
,

and δ1 − r2 ≤ λk−1, λk ≤ δ1 + r2 < δ	+1 .

Now observe that using (4.4) and Lemma 5.5(iii) we can write

λ̂− λ∗ = λ̂− δ1

=
(λk−1 − δ1)‖xk−1‖(‖xk‖ −∆) + (λk − δ1)‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖) − δ1

= λk − δ1 +
‖xk−1‖(∆− ‖xk‖)(‖xk−1‖+ ‖xk‖)

∆ρ(k, k − 1)

≥ λk − δ1 +
∆y

2(∆−∆y)
4∆ρ(k, k − 1) .(5.21)

Observe now that for λk−1, λk ∈ B2

ρ(k, k − 1) ≤ 3 · 24‖g‖2(δd − δ1)

(δ	+1 − δ1)4
·(5.22)

Using (5.21) and (5.22) we obtain

λ̂− δ1 ≥ λk − δ1 +
∆y

2(∆−∆y)(δ	+1 − δ1)
4

3 · 26∆‖g‖2(δd − δ1)
·

Let

ζ ≡ ∆y
2(∆−∆y)(δ	+1 − δ1)

4

3 · 26∆‖g‖2(δd − δ1)
.
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Observe that ζ is well defined since δd = δ1 would imply g ∈ R
n ⊥ = {0}. Observe

also that ζ > 0, since ∆ > ∆y and δ	+1 > δ1. Then, for λk ≥ δ1 − ζ we have λ̂ ≥ δ1.
So, let

r3 = min{r2, ζ} and B3 = {λ | |λ− δ1| ≤ r3}.

It follows that for λk−1, λk ∈ B3, we have λ̂ ≥ δ1 and we must use the ideal safe-

guard, setting λ̂ = δ1. The proof now proceeds as in Case 1.2, where the neighborhood
B is given by B3, and we use (5.22) instead of (5.10).

The analysis of the two cases concludes the proof.
Note that the assumption in Lemma 5.6 that the trust-region constraint is binding

at the solution includes the possibility of the hard case, since in this case x∗ =
−A†

∗g + z, with z ∈ S1 and ‖x∗‖ = ∆.
5.2.3. Local convergence result.
Theorem 5.1. Let λ∗ ≤ δ1 be the Lagrange multiplier corresponding to a bound-

ary solution of problem (2.1), with g �= 0. Let {λk}, {xk} be the sequences of iterates
generated by Algorithm 4.1 using the two-point interpolating scheme given by (4.6) to
update α. There exists a neighborhood B of λ∗ such that if λi−1, λi ∈ B, then for
k ≥ i− 1

(i) {λk} remains in B and converges q-superlinearly to λ∗;
(ii) {xk} converges q–superlinearly to y = −(A − λ∗ I)†g.
Proof. First we show that {λk} converges to λ∗ and that the rate of convergence

is superlinear.
Let r ∈ R, r > 0, and B = {λ | |λ − λ∗| < r} be the neighborhood of λ∗ stated

in Lemma 5.6 and suppose that λi−1, λi ∈ B, for i ≥ 1. Then, Lemma 5.6 implies
that there exists C such that

|λi+1 − λ∗| ≤ C |λi − λ∗| |λi−1 − λ∗|.(5.23)

Let r̂ = min{r, 1
2C }, define B̂ = {λ | |λ − λ∗| < r̂}, and observe that B̂ ⊂ B.

Suppose λi−1, λi ∈ B̂; then λi−1, λi ∈ B, and (5.23) holds.
Observe now that for λi−1, λi ∈ B̂ we have C|λi−1 − λ∗| ≤ 1

2 and therefore

|λi+1 − λ∗| ≤ 1

2
|λi − λ∗|

which implies λi+1 ∈ B̂ ⊂ B.
It follows inductively that if λi−1, λi ∈ B, then λk ∈ B for k ≥ i − 1 and this

implies

|λk − λ∗| ≤ 1

2k−i+1
|λi−1 − λ∗|

and therefore λk → λ∗ as k →∞.
To see that the rate of convergence is q-superlinear, observe that, by (5.23), for

k ≥ i we have

|λk+1 − λ∗|
|λk − λ∗| = C|λk−1 − λ∗|,

which goes to zero as k goes to infinity.
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In the second part of the proof we show that the sequence {xk} converges super-
linearly to y = −(A − λ∗ I)†g.

Recall from Lemma 5.4 that xk = −A†
kg and let us study xk − y which is given

by

xk − y = (A − λ∗ I)†g − (A − λk I)†g
= (A − λ∗ I)†((A − λk I)− (A − λ∗ I))(A − λk I)†g
= (λ∗ − λk)(A − λ∗ I)†(A − λk I)†g

using (5.1) and rearranging terms. Taking norms on both sides we have

‖xk − y‖ = |λk − λ∗| ‖(A − λ∗ I)†‖‖(A − λk I)†‖ ‖g‖
≤ Ĉ|λk − λ∗|(5.24)

for a positive constant Ĉ, since λk ∈ B, λ∗ ≤ δ1, and ‖g‖ is constant. Therefore, since
λk → λ∗ as k → ∞, we have that xk → y as k → ∞.

To see that the rate of convergence is q-superlinear, observe that (5.23) and (5.24)
imply

‖xk+1 − y‖
‖xk − y‖ ≤ |λk−1 − λ∗|

which goes to zero as k goes to infinity. This completes the proof.

5.2.4. Near hard case. The next lemma provides a relationship between the
function φ and the interpolating function (4.5). We will use this relationship in the
analysis of the near hard case.
Lemma 5.7. At iteration k of Algorithm 4.1 the interpolating function (4.5)

satisfies

φ̂(λ̂)− φ(λk) = (λ̂− λk)

[
xT

k xk−1 +
‖xk−1‖‖xk‖ρ(k, k − 1)(λ̂− λk−1)

(λk − λ̂)ρ(k, k − 1) + ‖xk−1‖(‖xk‖+ ‖xk−1‖)

]
,

with ρ(k, k − 1) as in (5.4) and λ̂ given by (4.4).
Proof. By (4.5) and Lemma 5.5(iii), we have

φ̂(λ̂) =
γ2

δ − λ̂
+ ωφ(λk−1)− ω

γ2

δ − λk−1

+ (1− ω)φ(λk)− (1− ω)
γ2

δ − λk

= φ(λk) + ωgT (xk − xk−1) +
ωγ2(λ̂− λk−1)

(δ − λ̂)(δ − λk−1)

+
(1− ω)γ2(λ̂− λk)

(δ − λ̂)(δ − λk)

= φ(λk) + (λ̂− λk)x
T

k xk−1 +
γ2(λ̂− λk)(λ̂− λk−1)

(δ − λ̂)(δ − λk)(δ − λk−1)

= φ(λk) + (λ̂− λk)x
T

k xk−1

+
‖xk−1‖‖xk‖(‖xk‖ − ‖xk−1‖)(λ̂− λk)(λ̂− λk−1)

(ω‖xk‖+ (1− ω)‖xk−1‖)(λk − λk−1)
,

where ω = λk−1−λ̂
λk−λk−1

. Thus, the result follows from Lemma 5.5.
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A few comments are in order concerning the near hard case. As mentioned in
section 3, finding λ∗ < δ1 in a near hard case is a very ill-conditioned process. The
difference δ1 − λ∗ can be very small to the extent of being undetectable within the
given tolerances. The smaller the value δ1−λ∗, the harder it is to determine {λ∗, x∗}.
Furthermore, rounding errors generally will convert an exact hard case into a near
hard case. Although δ1 is still a pole of φ when g is not exactly orthogonal to S1,
the weight of such a pole is very small in comparison to the other poles because the
expansion coefficients of g in the basis of eigenvectors of A are practically zero for
those eigenvectors associated with δ1. The strategy that we follow in Algorithm 4.1
for dealing with this case consists of building an interpolating function that ignores
the pole δ1 at early stages, using the eigenpair corresponding to the second smallest
eigenvalue of Bαk

to obtain the interpolation points. In addition, we use the second
eigenpair to compute a vector that might be a quasi-optimal solution for the trust-
region subproblem as established in Theorem 3.2. Moreover, as that theorem and
related results established, it is not necessary to compute an eigenpair corresponding
to the second smallest eigenvalue. This is especially useful when the vector g is
orthogonal or nearly orthogonal to several eigenspaces corresponding to the smallest
eigenvalues of A, and those eigenvalues are clustered.

If we use information concerning a second eigenpair, then we will have λk > δ1.
This occurs because the first component ν1 of the eigenvector (ν1, u

T
2 )

T associated
with λ1(αk) is too small so that ‖u1/ν1‖ = ‖xk‖ becomes excessively large. Therefore
{λk, xk} is defined as {λi(αk), u2/ν2}. Intuitively, this is a good strategy since in
the exact hard case this would continuously select the correct eigenvector that will
approach (1, pT

1 )
T when α tends to the value α̃1, stated in Lemma 3.2, from either

side.
Now, at iteration k the parameter αk is updated as αk+1 = λ̂+ φ̂(λ̂) with λ̂ ≤ δU ,

where either λ̂ < δU , φ̂
′(λ̂) = ∆2, or λ̂ = δU , φ̂

′(δU) < ∆2. By the same arguments
of the proof of Case 1 in Lemma 5.6, there exists a neighborhood B of λ∗ such that
if λk−1, λk ∈ B, then λ̂ ∈ B, with |λ̂ − λk| = ϑ|λ∗ − λk|, for ϑ ∈ (0, 1). In other
words, eventually the safeguarding λ̂ = δU is no longer necessary. If λk−1, λk ∈ B,
then Lemma 5.7 implies that |φ̂(λ̂) − φ(λk)| = ϑ|λ̂ − λk||λ∗ − λk|. The agreement
between λ̂ and λk and between φ̂(λ̂) and φ(λk) drive αk toward α∗ = λ∗ + φ(λ∗).
As αk approaches α∗, the reduction of the safeguarding interval [αL, αU ] at every
iteration provides a means to avoid the numerical difficulties associated with a near
hard case, and eventually there is no need to use a second eigenpair of Bαk

. At early

stages, however, it might be that λ̂ = δU . Although φ(δ1) is infinite, the interpolating

function value φ̂(δU) is finite. Using αk+1 = δU + φ̂(δU) is essential in keeping the
process under control.

5.3. Global convergence.
Theorem 5.2. Algorithm 4.1 is globally convergent.
Proof. The goal of Algorithm 4.1 is to solve the trust-region subproblem either by

determining the existence of an interior solution or by computing an optimal value α∗
for the parameter α, such that the solution to the parameterized eigenvalue problem
for Bα∗ can be used to compute a boundary solution for the trust-region subproblem.
The global convergence of Algorithm 4.1 is achieved by keeping αk in an interval that
contains the optimal parameter α∗.

We first recall that the initial safeguarding interval [αL, αU ] contains the optimal
value α∗. Starting with that interval, the updating procedure for αL and αU guaran-
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tees that α∗ remains in the interval and that the safeguarding interval is reduced at
each iteration.

Therefore, since αk = λk − gTxk, after a finite number of iterations either the
sequence {λk} reaches the neighborhood of λ∗ of Theorem 5.1 that guarantees con-
vergence, or the length of the safeguarding interval |αU − αL| goes to zero with
αL ≤ α∗ ≤ αU .

6. Numerical experiments. In this section we present numerical experiments
to demonstrate the viability of our approach and to illustrate different aspects of our
method. We implemented Algorithm 4.1 (LSTRS) in MATLAB 5.3 using a Mexfile
interface to access the IRLM [16] implemented in ARPACK [7]. We ran our experi-
ments on a Sun Ultrasparc 10 with a 300 MHz processor and 256 megabytes of RAM,
running Solaris 5.6. The floating point arithmetic was IEEE standard double preci-
sion with machine precision 2−52 ≈ 2.2204 ·10−16. We present five sets of experiments.
In the first and second sets we study the sensitivity of LSTRS to different tolerances
for the trust-region radius and to different sizes of the trust-region radius, respec-
tively, for problems where the hard case is not present. In order to put our method in
context, we include the number of matrix-vector products required by the conjugate
gradient method to solve systems of the form (A − λ I)x = −g. The third set of
experiments illustrates the local superlinear rate of convergence. The fourth set shows
the behavior of LSTRS in the hard case. In the fifth set we provide a comparison
with the semidefinite programming approach presented in [13].

The following tolerances are fixed in all the experiments: εν = 10−2, εα =
10−8, εInt = 10

−8. We will indicate the values for the rest of the parameters when we
describe each particular set of experiments.

6.1. Different tolerances. In the first experiment, we show the behavior of
the method when different levels of accuracies of the norm of the trust-region solution
are required. The matrix A in (2.1) was A = L − 5I, where L is the standard
two-dimensional (2D) discrete Laplacian on the unit square based upon a 5-point
stencil with equally spaced mesh points. The shift of −5I was introduced to make
A indefinite. The order of A was n = 1024. We solved a sequence of 20 related
problems, differing only by the vector g, randomly generated with entries uniformly
distributed on (0, 1). We solved each of these problems for a fixed trust-region radius
∆ = 100 and for ε∆ = 10

−4, 10−6, 10−8, where ε∆ is the relative accuracy of the norm
of the computed solution with respect to ∆. The initial δU was the minimum of the
diagonal of A and α0 = δU . The tolerance for a quasi-optimal solution was set to
εHC = 10

−16 in order to allow the method to compute a boundary solution; otherwise
the quasi-optimal stopping criterion would be satisfied first.

For ε∆ = 10−4, 10−6 the number of Lanczos basis vectors was limited to 9,
and 6 shifts (i.e., 6 matrix-vector products) were applied on each implicit restart,
while for ε∆ = 10−8, the number of vectors was 20 with 14 shifts on each implicit
restart. The maximum number of restarts allowed was 45 for ε∆ = 10−4, 10−6 and
100 for ε∆ = 10−8. More basis vectors were needed for ε∆ = 10−8, since in this
case the eigenvalues were computed to a higher accuracy. We chose v1, the ini-
tial vector for the IRLM, in the following way. In the first iteration of LSTRS,
v1 = (1, 1, . . . , 1)/

√
n+ 1 and subsequently, v1 was the first column of the matrix

V containing the Lanczos vectors computed by the IRLM for the previous bor-
dered matrix. This choice standardized the initial vector along the set of tests
and performed better than a randomly generated vector, or the eigenvector corre-
sponding to the smallest eigenvalue of Bαk

, or the vector (0, gT )T . Note that the
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Table 1
Average behavior for different tolerances.

ε∆ LSTRS IT LSTRS MV CG MV LSTRS MV
CG MV

10−4 6.00 64.00 43.45 1.47
10−6 7.50 83.00 57.00 1.46
10−8 6.55 183.40 71.55 2.56

Table 2
Average behavior for different tolerances allowing quasi-optimal solutions.

ε∆ LSTRS IT LSTRS MV CG MV LSTRS MV
CG MV

10−4 5.00 54.00 48.80 1.11
10−6 5.40 62.00 62.90 0.99
10−8 5.40 64.75 76.95 0.84

last two options have the additional disadvantage of preventing the IRLM from
finding the eigenspace of Bα corresponding to δ1 whenever a potential hard case
is present. As in [17], we relaxed the accuracy required in the eigenvalue solu-
tion and made it proportional to the relative accuracy in the computed solution.

Specifically, ‖Bαq − qλ‖ < εLan, where εLan = max{min{εLan, |∆−‖x‖
∆ |}, εmax} and

εmax = 0.125, 0.1, 0.075 for ε∆ = 10−4, 10−6, 10−8, respectively.
In Table 1 we report the average number of iterations of LSTRS (LSTRS IT), the

average number of matrix-vector products required by LSTRS (LSTRS MV), and the
average number of matrix-vector products required by the conjugate gradient method
(CG MV) to solve the system (A − λ∗ I)x = −g to the same accuracy ε∆ in the norm
of the computed solution of LSTRS. The value of λ∗ was the optimal value computed
by LSTRS.

We observe that for ε∆ = 10−4, 10−6 the behavior in [17] is reproduced: a trust-
region solution requires fewer than twice as many matrix-vectors products on average
than the number needed to solve a single linear system to the same accuracy using
conjugate gradients. For ε∆ = 10

−8, even though LSTRS requires more matrix-vector
products, the cost of LSTRS is less than three times the cost of solving one system
by conjugate gradients.

If we repeat the experiment, setting the tolerance for a quasi-optimal solution to
εHC = 10−6, we obtain the results in Table 2, where we observe the low number of
matrix-vector products required by LSTRS. In this experiment we used nine Lanczos
basis vectors for all cases and allowed a maximum of 45 restarts.

6.2. Different trust-region radii. The second experiment illustrates the be-
havior of LSTRS for different sizes of the trust-region radius. The matrix A in (2.1)
was of the formA = UDUT withD diagonal and U = I−2uuT , uTu = 1. The elements
of D were randomly selected from a uniform distribution on (−5, 5). Both vectors u
and g were randomly generated with entries uniformly distributed on (−0.5, 0.5) and
then u was normalized to have unit length. The order of A was n = 1000. We solved a
sequence of 10 problems generated with different seeds, for a fixed tolerance ε∆ = 10

−6

and ∆ varying from 100 to 0.0001 by a factor of 10, for a total of 70 problems. The
initial δU was set to −4.5 and α0 = min{0, αU}. The tolerance for a quasi-optimal
solution was set to εHC = 10

−6.
The parameters for the IRLM were the following. For ∆ = 100, 10 the number of

Lanczos basis vectors was 30, and 20 shifts were applied on each implicit restart, while
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Table 3
Average behavior for different trust-region radii.

∆ 100 10 1 0.1 0.01 0.001 0.0001
IT 9.9 7.7 4.6 4 3.8 3 3

LSTR MV 1032.4 354 46.9 38.8 37.2 29.4 29.4
CG MV 921.4 410 29.3 28.7 27.2 12 12.5

‖g+(A − λ∗ I)x∗‖
‖g‖ 10−3 10−3 10−2 10−11 10−2 10−2 10−13∣∣∆−‖x∗‖
∆

∣∣ 10−16 10−16 10−8 10−9 10−12 10−10 10−7

for ∆ ≤ 1, the number of vectors was nine with six shifts on each implicit restart.
The maximum number of restarts was 150 and 45, respectively. The difference in
the number of basis vectors is due to the fact that for larger radii the hard case
and near hard case are more likely to occur, and therefore the smallest eigenvalues
of the bordered matrix become more clustered and the IRLM needs more space and
iterations to compute the desired eigenpairs to the required accuracy. The initial
vector for the IRLM was chosen as in section 6.1. We relaxed the accuracy required in
the eigenvalue solution in the following way. The initial values for εLan were 0.03, 0.1,
and 0.25 for ∆ = 100, 10, and ∆ < 10, respectively. The value of εLan was kept the

same until |∆−‖xk‖
∆ | < 0.1, when εLan = 0.015, 0.05, and 0.125 for ∆ = 100, 10 and

∆ < 10, respectively. The results of the experiment are shown in Table 3, where we
also report the average number of matrix-vector products required by the conjugate
gradient method to solve the systems (A − λk I)x = −g for λk generated by LSTRS.

As observed in [17], the conjugate gradient method has a much easier time for
smaller values of ∆.

6.3. Superlinear convergence. The purpose of the third experiment was to
verify superlinear convergence. The matrix A was again set to A = L − 5I with L
the 2D discrete Laplacian on the unit square, but now n = 256. The vector g was
randomly generated with entries uniformly distributed on (−0.5, 0.5). We studied
problems with and without hard case. To generate the hard case, we orthogonalized
the vector g randomly generated as before against the eigenvector q corresponding to
the smallest eigenvalue of A. We accomplished this by setting g ← g − q(qTg). For
the problem without hard case the trust-region radius was ∆ = 10 and ε∆ = 10−11.
For the problem with hard case the radius was ∆ = 100 and εHC = 10−11. The
eigenproblems were solved with the MATLAB routine eig. The results are shown in

Table 4, where we report the quantity |∆−‖xk‖
∆ | for the problem without hard case

and the quantity
(λi(α)−λ1(α)) τ2

2 (1+∆2)

−2ηψ(x̃)
from Theorem 3.2 for the problem with hard

case.
The quantity ‖(A − λ∗ I)x∗ + g‖/‖g‖ was of order 10−14 for problem (a) and

10−7 for problem (b). An asterisk ∗ in the hard case means that we could not check
for a quasi-optimal solution since the conditions of Lemma 3.5 were not satisfied.

6.4. The hard case. The fourth experiment illustrates the behavior of the
method in the hard case. The matrix A was of the form A = UDUT , with D =
diag(d1, . . . , dn) and U = I − 2uuT , uTu = 1. The elements of D were randomly
generated with a uniform distribution on (−5, 5) then sorted in nondecreasing order
and di set to −5 for i = 1, 2, . . . , �, allowing multiplicity � for the smallest eigenvalue
of A. Both vectors u and g were randomly generated with entries selected from a
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Table 4
Verification of superlinear convergence for problems without hard case (a) and with hard case (b).

k
∣∣∆−‖xk‖

∆

∣∣
0 8.739485e-01
1 1.101152e+01
2 7.790406e-01
3 5.987336e-01
4 1.247129e-01
5 2.593978e-02
6 3.410990e-04
7 1.038581e-06
8 4.049703e-11
9 8.704149e-15

k
(λi(αk)−λ1(αk)) τ

2
2 (1+∆2)

−2ηψ(̃x)

0 1.694375e-01
1 ∗
2 4.112269e-02
3 9.276102e-03
4 6.306448e-04
5 5.851597e-06
6 4.159997e-09
7 2.116485e-09
8 7.976599e-10
9 1.267130e-12

(a) (b)

uniform distribution on (−0.5, 0.5) and then u was normalized to have unit length.
The order of A was n = 1000.

In this case, the eigenvectors of the matrix A are of the form qi = ei − 2uui, i =
1, . . . , n, with ei the ith canonical vector in R

n and ui the ith component of the vector
u. This provides complete control in the generation of the hard case. In fact, if � = 1,
the vector g was orthogonalized against q1 computed by the formula given above.
For � > 1, g was computed as the sum of the vectors in an orthonormal basis for
the orthogonal complement of S1. After this, a noise vector s was added to g and
g ← g+s

‖g+s‖ . Both hard case and near hard case were generated by adding noise vectors
of norms 10−8 and 10−2, respectively. To ensure that the hard case really occurred,
we computed ∆min = ‖(A− d1I)

†g‖ and set ∆ = 2∆min. The problems were solved
to the level εHC = 10

−6. The initial δU was set to −4.5 and α0 = min{0, αU}.
The parameters for the IRLM were chosen as follows: for the hard case, 9 Lanczos

basis vectors with 6 shifts on each implicit restart and a maximum of 45 restarts; for
the near hard case, 18 Lanczos basis vectors with 12 shifts on each implicit restart and
a maximum of 90 restarts. The different number of basis vectors is due to the fact that
in the near hard case the smallest eigenvalues of the bordered matrix become more
clustered and the IRLM needs more space in order to compute the desired eigenpairs.
The tolerance εLan was fixed at 10

−2.
In Table 5(a), (b) we summarize the average results for a sequence of 10 prob-

lems, generated with different seeds, for problems with hard case and near hard case,
respectively.

6.5. Comparison with the semidefinite programming (SDP) approach.
Finally, we compared LSTRS with the SDP approach of [13]. In this experiment, we
solved two different families of problems. For each family, we generated 10 problems
of each type (easy and hard case) with different seeds and solved them with Algorithm
4.1 (LSTRS) and the SDP approach of [13]. In all cases, the eigenproblems were solved
with the function eig of MATLAB, so that the eigenpairs available to both methods
had the same level of accuracy and also to avoid the inconsistencies associated with
having two different eigensolvers. We report the average number of iterations (IT),
average magnitude of the residual ‖(A − λ∗ I)x∗ + g‖/‖g‖, and average relative
accuracy in the norm of the trust-region solution, |∆−‖x∗‖|/∆. Since we were using
the function eig as the eigensolver, we are also reporting the average number of calls
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Table 5
(a) The hard case and (b) near hard case, when S1 has dimension � ≥ 1.

� MV IT
‖(A − λ∗ I)x∗+g‖

‖g‖
1 683.9 9.6 10−2

5 790.4 12.1 10−2

10 1301.9 22.6 10−2

(a)

� MV IT
‖(A − λ∗ I)x∗+g‖

‖g‖
1 1153.5 10 10−3

5 1039.9 9.7 10−3

10 1063.5 9.7 10−3

(b)

Table 6
Comparison with SDP approach. First set of problems, εHC = 10−8.

IT SOLVES
‖g+(A − λ∗ I)x∗‖

‖g‖
∣∣∆−‖x∗‖

∆

∣∣
A = L− 5I Easy LSTRS 5.0 5.0 10−13 10−7

case SDP 4.8 5.8 10−3 10−3

Hard LSTRS 8.0 9.7 10−9 10−16

case SDP 9.1 10.1 10−7 10−7

to the eigensolver (SOLVES) to provide a means of comparing the amount of work
needed by each method. It is important to point out that in large-scale applications
the computational effort will concentrate on solving the eigenvalue problems, and
therefore in such situations we should also compare the cost of solving each eigenvalue
problem.

In the first family of problems, the matrix A was A = L − 5I of order n = 256
and the vector g was randomly generated with entries uniformly distributed on (0, 1).
As in section 6.3, we orthogonalized g against the eigenvector of A corresponding to
δ1 to generate the hard case. For both easy and hard cases we added a noise vector
to g, of norm 10−8. The trust-region radius was ∆ = 100. We used ε∆ = 10−6 and
we ran the experiments with εHC = 10

−8 and εHC = 10
−6. We report these results in

Tables 6 and 7, respectively.
In the second family of problems, A, g, and ∆min were generated exactly as in

section 6.4, where A = UDUT of order n = 256. For the easy case, ∆ = 0.1∆min and
for the hard case ∆ = 5∆min. The tolerances used for Algorithm 4.1 were ε∆ = 10

−6

and εHC = 10
−6. The results are reported in Table 8.

The previous tests indicate a marginal advantage to our algorithm in most cases.
We believe this is partially due to the fact that in the SDP approach it is necessary to
compute the smallest eigenvalue of A in order to begin the major iteration, while our
approach avoids this extra calculation. From the comparative results, we can see that
LSTRS obtained solutions with improved feasibility over the ones computed by the
SDP approach. Moreover, LSTRS required slightly less computational effort overall
to compute the solutions, especially in the hard case.

7. Conclusions. We have presented a new algorithm for the large-scale trust-
region subproblem. The algorithm is based upon embedding the trust-region problem
into a family of parameterized eigenvalue problems as developed in [17]. The main
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Table 7
Comparison with SDP approach. First set of problems, εHC = 10−6.

IT SOLVES
‖g+(A − λ∗ I)x∗‖

‖g‖
∣∣∆−‖x∗‖

∆

∣∣
A = L− 5I Easy LSTRS 4.5 4.5 10−2 10−8

case SDP 4.8 5.8 10−3 10−3

Hard LSTRS 7.0 8.7 10−7 10−16

case SDP 9.1 10.1 10−7 10−7

Table 8
Comparison with SDP approach. Second set of problems.

IT SOLVES
‖g+(A − λ∗ I)x∗‖

‖g‖
∣∣∆−‖x∗‖

∆

∣∣
A = UDUT Easy LSTRS 7.8 8.7 10−3 10−14

case SDP 4.4 5.4 10−4 10−4

Hard LSTRS 6.4 12.5 10−3 10−8

case SDP 13.8 14.8 10−5 10−5

contribution of this paper has been to give a better understanding of the hard-case
condition and to utilize this understanding to develop a better treatment of this case.
As a result, we have designed a unified algorithm that naturally incorporates both
the standard and hard cases.

We have proved that the iterates for this new algorithm converge either to an
optimal pair for the trust-region subproblem or to a pair that can be used to construct
a quasi-optimal solution. We have proved that the rate of convergence is superlinear
and we have demonstrated this computationally for both the standard and hard cases.
This result represents a major improvement over the performance of the method
originally presented in [17]. That approach used a different iteration for the hard case
that was linearly convergent. In practice this behavior seemed to occur often and
greatly detracted from the performance. We have also compared our method to the
SDP approach presented in [13], obtaining better results in terms of feasibility.

Our motivation for developing the LSTRS method came from some important
large-scale applications. In particular, the regularization of ill-posed problems such
as those arising in seismic inversion [21] provides an important class of trust-region
subproblems. It was shown in [14] that near hard cases are common for this class
of problems, where the vector g is nearly orthogonal to eigenspaces corresponding to
several of the smallest eigenvalues of A. The work in [14] also reports the successful
application of LSTRS to the regularization of discrete forms of ill-posed problems
from inverse problems, including problems with field data.

Further work should include an analysis of the quasi-optimal solutions computed
by LSTRS, the use of LSTRS within a trust-region method for the solution of large-
scale optimization problems, and an analysis of such a method in light of the work in
[4].
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[10] J.J. Moré and D.C. Sorensen, Computing a trust region step, SIAM J. Sci. Stat. Comput.,

4 (1983), pp. 553–572.
[11] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ, 1980.
[12] Pham Dinh Tao and Le Thi Hoai An, A D.C. optimization algorithm for solving the trust-

region subproblem, SIAM J. Optim., 8 (1998), pp. 476–505.
[13] F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with

applications to large scale minimization, Math. Programming, 77 (1977), pp. 273–299.
[14] M. Rojas, A Large-Scale Trust-Region Approach to the Regularization of Discrete Ill-Posed

Problems, Ph.D. thesis, Technical Report TR98-19, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, May 1998.

[15] D.C. Sorensen, Newton’s method with a model trust region modification, SIAM J. Numer.
Anal., 19 (1982), pp. 409–426.

[16] D.C. Sorensen, Implicit application of polynomial filters in a K-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[17] D.C. Sorensen, Minimization of a large-scale quadratic function subject to a spherical con-
straint, SIAM J. Optim., 7 (1997), pp. 141–161.

[18] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[19] R.J. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigen-
value perturbations, SIAM J. Optim., 5 (1995), pp. 286–313.

[20] R.J. Stern and J.J. Ye, Variational analysis of an extended eigenvalue problem, Linear Al-
gebra Appl., 220 (1995), pp. 391–418.

[21] W.W. Symes, A differential semblance criterion for inversion of multioffset seismic reflection
data, J. Geophy. Res., 98 (1993), pp. 2061–2073.



EXPLOITING SPARSITY IN SEMIDEFINITE PROGRAMMING VIA
MATRIX COMPLETION I: GENERAL FRAMEWORK∗

MITUHIRO FUKUDA† , MASAKAZU KOJIMA† , KAZUO MUROTA‡ , AND

KAZUHIDE NAKATA§

SIAM J. OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 11, No. 3, pp. 647–674

Abstract. A critical disadvantage of primal-dual interior-point methods compared to dual
interior-point methods for large scale semidefinite programs (SDPs) has been that the primal pos-
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1. Introduction. Let R
n denote the n-dimensional Euclidean space, and Sn

the space of n × n symmetric matrices with the Frobenius inner product X • Y =∑n
i=1

∑n
j=1 XijYij for X, Y ∈ Sn. We will use the notation X ∈ Sn+ and X ∈ Sn++

to designate that X ∈ Sn is positive semidefinite and positive definite, respectively.
Given Ap ∈ Sn (p = 0, 1, . . . ,m) and b ∈ R

m, we are concerned with the standard
equality form semidefinite program (SDP)

minimize A0 •X
subject to Ap •X = bp (p = 1, 2, . . . ,m), X ∈ Sn+

}
,(1.1)

and its dual

maximize
m∑
p=1

bpzp

subject to

m∑
p=1

Apzp + Y = A0, Y ∈ Sn+




.(1.2)

In recent years, many interior-point methods have been proposed for SDPs.
Among others, primal-dual interior-point methods have been studied intensively and
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extensively [1, 13, 15, 16, 20, 21, 24, 27]. They generate a sequence {(Xk,Y k,zk) ∈
Sn × Sn × R

m} such that Xk ∈ Sn++ and Y k ∈ Sn++. At each iteration, they first
compute a search direction (dX, dY , dz) ∈ Sn×Sn×R

m, and then they choose a step
length αk > 0 such that the next iterate defined by

(Xk+1,Y k+1,zk+1) = (Xk,Y k,zk) + αk(dX, dY , dz)(1.3)

still satisfies Xk+1 ∈ Sn++ and Y k+1 ∈ Sn++.
The computation of a search direction (dX, dY , dz) is usually reduced to an m×m

square system of linear equations Bdz = s, which is often called the Schur complement
equation. Here the coefficient matrix B (hence the search direction (dX, dY , dz))
varies with the individual method. See [15, 21, 27] for more details on various search
directions used in primal-dual interior-point methods. The size m of the matrix B
coincides with the number of equality constraints in the primal SDP (1.1) so that
m can be as large as n(n + 1)/2 even if the constraint matrices A1,A2, . . . ,Am are
assumed to be linearly independent. For a fixed n, as m becomes larger, more CPU
time is spent in

(a) the computation of the coefficient matrix B, and
(b) the computation of the solution dz of Bdz = s.

See [5, 23]. Fujisawa, Kojima, and Nakata [7] proposed an efficient method for com-
puting the coefficient matrix B when the data matrices Ap ∈ Sn (p = 1, 2, . . . ,m)
are sparse. Also, the computation of B can be carried out efficiently when the data
matrices Ap ∈ Sn (p = 1, 2, . . . ,m) are of rank 1 or 2 [2, 12].

In general, the matrix B is fully dense. Therefore, as m becomes larger, it
becomes more difficult to apply direct methods such as the Cholesky factorization to
the computation of the solution dz of Bdz = s. If m is larger than 10,000, it is even
impossible to store the coefficient matrix in standard workstations. [19, 23] studied
the use of iterative methods such as the conjugate gradient method to overcome the
storage problem for such large and dense systems of linear equations.

Another difficulty in applying primal-dual interior-point methods to large scale
SDPs arises from the fact that

(c) the n × n primal positive semidefinite matrix variable X is fully dense in
general even when all the data matrices Ap ∈ Sn (p = 0, 1, . . . ,m) are sparse.

On the other hand, the dual positive semidefinite matrix variable Y , which is com-
puted by

Y = A0 −
m∑
p=1

Apzp,

inherits the sparsity of the data matrices Ap ∈ Sn (p = 0, 1, . . . ,m). This difference
has been a critical disadvantage of primal-dual interior-point methods compared to
the dual interior-point method [2] which generates a sequence {(Y k,zk)} only in the
dual space.

The purpose of the current paper is to resolve the difficulty (c). Let V denote
the set {1, 2, . . . , n} of row/column indices of the data matrices A0,A1, . . . ,Am. For
every pair of subsets S and T of V , we use the notation XST for the submatrix of
X obtained by deleting all rows i �∈ S and all columns j �∈ T . To outline the basic
idea behind our method, we introduce the aggregate sparsity pattern E of the data
matrices given by

E = {(i, j) ∈ V × V : [Ap]ij �= 0 for some p ∈ {0, 1, 2, . . . ,m}}.(1.4)
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Here [Ap]ij denotes the (i, j)th entry of Ap. Geometrically, it is convenient to identify
the aggregate sparsity pattern E with the aggregate sparsity pattern matrix A having
unspecified nonzero numerical values in E. Since the matrices A0,A1, . . . ,Am are all
symmetric, (i, j) ∈ E if and only if (j, i) ∈ E; hence the corresponding matrix A is
symmetric. (In section 2, we will represent the aggregate sparsity pattern E in terms
of a graph.)

Assume that a collection of nonempty subsets C1, C2, . . . , C	 of V satisfies the
following two conditions:

(i) E ⊆ F ≡ ⋃	r=1 Cr × Cr.
(ii) Any partial symmetric matrix X with entries Xij = X̄ij ∈ R ((i, j) ∈ F ) has a

positive (semi)definite matrix completion (i.e., given any X̄ij ∈ R ((i, j) ∈ F ),
there exists a positive (semi)definite X ∈ Sn such that Xij = X̄ij ∈ R

((i, j) ∈ F )) if and only if the submatrices X̄CrCr
(r = 1, 2, . . . , �) are all

positive (semi)definite.
From condition (i), we observe that values of the objective and constraint linear
functions Ap•X (p = 0, 1, . . . ,m) involved in the SDP (1.1) are completely determined
by values of entries Xij ((i, j) ∈ F ) and independent of values of entries Xij ((i, j) �∈
F ). In other words, if two X, X ′ ∈ Sn satisfy Xij = X ′

ij ((i, j) ∈ F ), then

Ap •X = Ap •X ′ (p = 0, 1, . . . ,m).

The remaining entries Xij ((i, j) �∈ F ) affect only whether X is positive (semi)definite.
Now we know by condition (ii) whether we can assign some appropriate values to those
remaining entries Xij ((i, j) �∈ F ) so that the resulting whole matrix X becomes
positive (semi)definite. Therefore, the SDP (1.1) is equivalent to

minimize
∑

(i,j)∈F
[A0]ijXij

subject to
∑

(i,j)∈F
[Ap]ijXij = bp (p = 1, 2, . . . ,m),

XCrCr
∈ SCr

+ (r = 1, 2, . . . , �)




.

Here SCr
+ denotes the set of �Cr × �Cr positive semidefinite symmetric matrices with

entries specified in Cr × Cr, and �Cr denotes the number of elements of Cr.
Section 2 is devoted to some fundamental results on the positive (semi)definite

matrix completion problem. In particular, we present a characterization of the positive
(semi)definite matrix completion in terms of chordal graphs based on the paper [11]
by Grone et al. and relate it to the perfect elimination ordering for the Cholesky
factorization with no fill-in. Based on the former characterization, we describe in
section 3 a general method of choosing a collection of subsets C1, C2, . . . , C	 satisfying
conditions (i) and (ii) above. The latter perfect elimination ordering leads us to a
sparse factorization formula for the maximum-determinant positive definite matrix
completion in the latter part of section 2. A variation of this formula, which we will
call the sparse clique-factorization formula, plays an essential role in the primal-dual
interior-point method based on positive definite matrix completion which we describe
in section 5.

As an illustrative example, consider the simple case

E = {(i, n), (n, i), (i, i) : i = 1, 2, . . . , n},
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i.e., the case where each Ap has possible nonzero entries only in its nth row, its nth
column, and its diagonal. Let Sr (r = 1, 2, . . . , �) be a partition of {1, 2, . . . , n − 1},
i.e.,

⋃	
r=1 Sr = {1, 2, . . . , n− 1} and Sr ∩ Ss = ∅ (1 ≤ r < s ≤ �). Let Cr = Sr ∪ {n}

(r = 1, 2, . . . , �) and F =
⋃	
r=1 Cr × Cr. Then conditions (i) and (ii) hold. (We will

discuss more general cases in detail in section 3.) In this case, we obtain the problem
below which is equivalent to the SDP (1.1):

minimize
∑

(i,j)∈F
[A0]ijXij

subject to
∑

(i,j)∈F
[Ap]ijXij = bp (p = 1, 2, . . . ,m),

(
XSrSr XSrn

XnSr Xnn

)
∈ SCr

+ (r = 1, 2, . . . , �)




.

Since the entry Xnn is involved commonly in all the � positive semidefinite constraints
above, we need to introduce additional �−1 variables Urr (r = 1, 2, . . . , �−1) to rewrite
the problem above as a standard SDP. Consequently, we obtain an SDP

minimize
∑

(i,j)∈F
[A0]ijXij

subject to
∑

(i,j)∈F
[Ap]ijXij = bp (p = 1, 2, . . . ,m),

(
XSrSr XSrn

XnSr Urr

)
∈ SCr

+ (r = 1, 2, . . . , �− 1),(
XS�S�

XS�n

XnS�
Xnn

)
∈ SC�

+ ,

Urr = Xnn (r = 1, 2, . . . , �− 1)




.

Thus we have converted the SDP (1.1) having an n × n positive semidefinite matrix
variable X into an SDP having � smaller size positive semidefinite matrix variables.
We can use several software packages [4, 6, 28] of primal-dual interior-point methods
incorporating a standard block-diagonal matrix data structure to solve this type of
SDP quite efficiently.

The conversion mentioned above considerably reduces the size of the positive
semidefinite matrix variables when we take a larger � and smaller size Sr (r =
1, 2, . . . , �). Intuitively, it becomes easier to solve the resulting SDP as the size of
each positive semidefinite matrix variable XCrCr gets smaller. However, it is also
necessary to take into account the increase in the number of equality constraints. For
example, if we take � = n− 1 and Sr = {r} (r = 1, 2, . . . , n− 1), then the conversion
yields n−2 additional equality constraints of the form Urr = Xnn (r = 1, 2, . . . , n−2),
which, in turn, causes an increase in the CPU time to solve the system of linear equa-
tions Bdz = s. Therefore, we need to balance two factors: reduction in the sizes
of positive semidefinite matrix variables and increase in the number of equality con-
straints. We will present more details on the conversion method in section 4. Some
numerical examples are presented in section 7 which show how the balance of the two
factors is important.

In section 5, we propose a primal-dual interior-point method based on positive
definite matrix completion which we can directly apply to the primal-dual pair of
SDPs (1.1) and (1.2) without increasing the number of equality constraints. The
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method generates a sequence {(Xk,Y k,zk)} of interior points of the primal-dual
pair of SDPs (1.1) and (1.2), but we perform all matrix computations in Xk, Y k,
and their inverses essentially in partial matrices with entries specified in F by fully
utilizing the sparse clique-factorization formula for the maximum-determinant positive
definite matrix completion given in section 2.2. This method is more promising than
the conversion method given in section 4. A practical implementation of this method
and its numerical experiments will be the main subjects of part II [22] of this article.

Section 6 discusses linear transformations in the primal and the dual spaces which
enhance the aggregate sparsity pattern of data matrices of SDPs. In particular, we
will show that an appropriate congruence transformation in the primal space makes
it possible for us to apply our methods given in sections 4 and 5 to SDP relaxations
of the graph equipartition problem and the maximum clique problem.

Sections 4, 5, and 6 can be read independently.

Finally, section 7 is devoted to some numerical examples on the conversion method
given in section 4.

2. Theoretical background on positive semidefinite matrix completion.
In this section, we review some fundamental results about the positive semidefinite
matrix completion problem.

2.1. Chordal graph. Some graph-theoretic concepts needed in the subsequent
discussion are introduced here. Particular emphasis is laid on chordal graphs.

We denote by G(V,E) an undirected graph with the vertex set V and the edge
set E ⊆ V × V , where (u, v) ∈ V × V is identified with (v, u) ∈ V × V . It is assumed
throughout this paper that a graph has no loops, that is, (v, v) �∈ E for any v ∈ V .
Two vertices u, v ∈ V are said to be adjacent if (u, v) ∈ E. The set of the vertices
adjacent to v ∈ V is denoted by Adj(v) = {u ∈ V : (u, v) ∈ E}.

A graph is called complete if every pair of vertices is adjacent. For a subset V ′ of
the vertex set V of a graph G(V,E), the induced subgraph on V ′ is a graph G(V ′, E′)
with the vertex set V ′ and the edge set E′ = E ∩ (V ′ × V ′). A clique of a graph is
an induced subgraph which is complete, and a clique is maximal if its vertices do not
constitute a proper subset of another clique. In our succeeding discussions, we often
call C ⊆ V a clique of G(V,E) whenever it induces a clique of G(V,E). A vertex is
called simplicial if its adjacent vertices induce a clique.

A graph G(V,E) is said to be chordal if every cycle of length ≥ 4 has a chord
(an edge joining two nonconsecutive vertices of the cycle). Chordal graphs have been
studied extensively in many different contexts. See [3, 10, 18] for the background
materials as well as the proofs of the statements given below.

The most fundamental property of a chordal graph is that it has a simplicial
vertex, say v1. Then the subgraph induced on V \{v1} is again chordal, and therefore
it has a simplicial vertex, say v2. By repeating this, we can construct an ordering of
the vertices (v1, v2, . . . , vn) (where n = |V |) such that Adj(vi) ∩ {vi+1, vi+2, . . . , vn}
induces a clique for each i = 1, 2, . . . , n − 1. Such an ordering of the vertices is
called a perfect elimination ordering. The existence of a perfect elimination ordering
characterizes chordality as follows.

Theorem 2.1 (Fulkerson and Gross [8]). A graph is chordal if and only if it has
a perfect elimination ordering.

It is known that a perfect elimination ordering of a chordal graph can be found
efficiently in linear time in the number of vertices and edges of the graph [26].
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Maximal cliques of a chordal graph can be enumerated easily with reference to a
perfect elimination ordering (v1, v2, . . . , vn). A maximal clique containing v1 is unique,
which is given by {v1}∪Adj(v1), and a maximal clique not containing v1 is a maximal
clique of the subgraph induced on {v2, v3, . . . , vn}. Then it follows that the family
{Cr ⊆ V : r = 1, 2, . . . , �} of (the vertex sets of) the maximal cliques is given as the
maximal members of {vi} ∪ (Adj(vi) ∩ {vi+1, vi+2, . . . , vn}) for i = 1, 2, . . . , n. More
specifically, we have

Cr = {vi} ∪ (Adj(vi) ∩ {vi+1, vi+2, . . . , vn})

for i = min{j : vj ∈ Cr}. This shows, in particular, that the number � of maximal
cliques is bounded by n.

It is known that the maximal cliques can be indexed in such a way that for each
r = 1, 2, . . . , �− 1 it holds that

∃s ≥ r + 1 : Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ C	) � Cs.(2.1)

The property (2.1) is called the running intersection property. An ordering of the
maximal cliques satisfying the running intersection property (2.1) induces a perfect
elimination ordering of the vertices. Note first that S1 = C1\(C2 ∪ C3 ∪ · · · ∪ C	) is
nonempty and all the vertices in S1 are simplicial. This means that we can start a
perfect elimination ordering by numbering the vertices in S1 with 1, 2, . . . , |S1|. For
each r = 1, 2, . . . , � in general we number the vertices in Sr = Cr\(Cr+1 ∪ · · · ∪ C	)

with
∑r−1
s=1 |Ss|+1,

∑r−1
s=1 |Ss|+2, . . . ,

∑r−1
s=1 |Ss|+ |Sr|. We can thus obtain a perfect

elimination ordering of the vertices, in which the vertices in Sr are given consecutive
numbers for each r. Throughout this paper, we assume that (v1, v2, . . . , vn) is a
perfect elimination ordering induced in this way from an ordering of the maximal
cliques satisfying the running intersection property (2.1).

The structure of the family of maximal cliques can be represented most conve-
niently in terms of a tree, called a clique tree, of which the vertices are maximal
cliques. In particular, the ordering of the maximal cliques with the running intersec-
tion property (2.1) can be represented by an orientation (of the edges) of the clique
tree to a rooted tree. The use of clique trees will be discussed in part II of this article
where the implementation issues are treated.

In numerical linear algebra, chordal graphs have been studied in relation to the
Gaussian elimination (Cholesky factorization) of sparse positive definite matrices.
Given a positive definite matrix X, we consider a graph G(V,E) that represents the
sparsity pattern of the matrix X. Namely, V is the set of row/column indices and
E = {(i, j) : Xij �= 0, i �= j}. Let X = LLT be the Cholesky factorization, where L
is a lower-triangular matrix. The sparsity pattern of L can be represented similarly
by a graph G(V, F ) defined by F = {(i, j) : Lij �= 0 or Lji �= 0, i �= j}. Under the
generic assumption that no numerical cancellations occur in the elimination process,
the sparsity pattern of L is determined by that of the matrix X, and accordingly the
graph G(V, F ) is determined by the graph G(V,E) and the ordering of the vertices.
In particular, we have F ⊇ E, where the added edges (belonging to F \E) correspond
to the fill-in. Moreover, the graph G(V, F ) is a chordal graph by Theorem 2.1. Given
a graph G(V,E) in general (not necessarily chordal), we say that a graph G(V, F ) is
a chordal extension of G(V,E) if G(V, F ) is chordal and F ⊇ E.
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(a) graph G(V,E) (b) chordal extension G(V, F )

Fig. 2.1. Graph G(V,E) and its chordal extension G(V, F ); (1, 2, . . . , 7) and (3, 2, 4, 6, 7, 1, 5)
are perfect elimination orderings for G(V, F ), and C1, C2, C3 and C4 are maximal cliques of G(V, F ).

Example 2.2. The chordal extension is illustrated here. Let X be a 7×7 positive
definite symmetric matrix with the nonzero pattern given by

X =




e e e
e e e e
e e e
e e e

e e e
e e e e

e e e




,

where e denotes nonzero entries. The associated graph G(V,E) is depicted in Fig-
ure 2.1(a), where V = {1, 2, . . . , 7}. The Cholesky factorization of X yields fill-in
at (i, j) = (5, 7), (3, 4), (4, 6), (6, 7), and the chordal extension G(V, F ) is shown in
Figure 2.1(b). The matrix pattern for G(V, F ) is

X̃ =




e e e
e e e e
e e f e
e f e f e

e e e f
e e f e e f

e e f f e




,

where f denotes fill-in. The natural ordering (1, 2, . . . , 6, 7) is a perfect elimination
ordering of the chordal graph G(V, F ), whereas (7, 6, . . . , 2, 1) is not. The perfect
elimination ordering is not unique; for instance, (3, 2, 4, 6, 7, 1, 5) is another perfect
elimination ordering. The chordal graph G(V, F ) has four maximal cliques, C1 =
{1, 5, 7}, C2 = {2, 3, 4, 6}, C3 = {4, 6, 7}, C4 = {5, 6, 7}. Note that the running
intersection property (2.1) holds with respect to this ordering of the maximal cliques.

The fill-in in the Cholesky factorization, and hence the resulting chordal extension
G(V, F ), depends on the ordering of the row/column indices. It is a major issue in
sparse matrix computation to find a permutation matrix P (representing an ordering)
such that PXP T yields as little fill-in as possible. Using the graph terminology this
amounts to finding a sparse chordal extension of a given graph, since any minimal
chordal extension G(V, F ) of G(V,E) can be obtained through the Cholesky factor-
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ization process for some ordering. The problem of finding a permutation matrix P
that results in the minimum number of fill-in, or equivalently, the problem of finding
a chordal extension with the minimum number of edges, is known to be NP-complete.
Several heuristic algorithms such as the minimum-degree ordering and the nested dis-
section have been proposed for this problem [9]. In the most favorable case, where the
given graph G(V,E) is chordal, the perfect elimination ordering yields the Cholesky
factorization with no fill-in.

2.2. Positive semidefinite matrix completion. A partial symmetric matrix
means a symmetric matrix in which only part of the entries are specified. More
precisely, an n×n partial symmetric matrix X̄ is given as a collection of real numbers
(X̄ij = X̄ji : (i, j) ∈ F ) for some F ⊆ V ×V such that (i, j) ∈ F if and only if (j, i) ∈
F , where V = {1, 2, . . . , n}. A completion of a partial symmetric matrix X̄ means
a symmetric matrix X (of the same size) such that Xij = X̄ij for (i, j) ∈ F . The
positive (semi)definite matrix completion problem is to find a positive (semi)definite
matrix which is a completion of a given partial symmetric matrix. See [14, 17] for
surveys on matrix completion problems.

In considering this problem we may assume, without loss of generality, that the
diagonal entries are all specified, i.e.,

F ⊇ {(i, i) : i = 1, 2, . . . , n},(2.2)

since unspecified diagonal entries, if any, may be given sufficiently large values to
realize positive (semi)definiteness. We adopt the convention (2.2) throughout this
section.

We use the following notation:

• Sn(F, ?): the set of n×n partial symmetric matrices with entries specified in
F ;
• Sn+(F, ?): the set of n×n partial symmetric matrices with specified entries in

F which can be completed to positive semidefinite symmetric matrices; i.e.,
Sn+(F, ?) = {X̄ ∈ Sn(F, ?) : ∃X ∈ Sn+, X̄ij = Xij for (i, j) ∈ F};

• Sn++(F, ?): the set of n× n partial symmetric matrices with specified entries
in F which can be completed to positive definite symmetric matrices; i.e.,
Sn++(F, ?) = {X̄ ∈ Sn(F, ?) : ∃X ∈ Sn++, X̄ij = Xij for (i, j) ∈ F};
• Sn(F, 0): the set of n× n symmetric matrices with vanishing entries outside

F ; i.e., Sn(F, 0) = {X ∈ Sn : Xij = 0 if (i, j) �∈ F};
• Sn+(F, 0): the set of n × n positive semidefinite symmetric matrices with

vanishing entries outside F ; i.e., Sn+(F, 0) = Sn+ ∩ Sn(F, 0) = {X ∈ Sn+ :
Xij = 0 if (i, j) �∈ F};

• Sn++(F, 0): the set of n×n positive definite symmetric matrices with vanishing
entries outside F ; i.e., Sn++(F, 0) = Sn++ ∩ Sn(F, 0) = {X ∈ Sn++ : Xij =
0 if (i, j) �∈ F};

• SC ,SC+,SC++: the sets of �C × �C symmetric matrices, positive semidefinite
symmetric matrices, positive definite symmetric matrices, respectively, with
rows and columns indexed by C ⊆ V , where �C means the number of elements
of C.

For E,F ⊆ V × V in general, we define

F ◦ = F \ {(i, i) : i = 1, 2, . . . , n},(2.3)

E• = E ∪ {(i, i) : i = 1, 2, . . . , n}.(2.4)
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Then, the structure F of a partial symmetric matrix can be represented by a graph
G(V,E) with E = F ◦. Conversely, a graph G(V,E) is associated with the class of
partial symmetric matrices Sn(E•, ?).

Suppose we are given a partial symmetric matrix X̄ ∈ Sn(F, ?), and let G(V,E)
be the associated graph, where E = F ◦. Denote by {Cr ⊆ V : r = 1, 2, . . . , �} the
family of all maximal cliques of G(V,E). An obvious necessary condition for X̄ to have
a positive semidefinite matrix completion is that each X̄CrCr is positive semidefinite,
i.e.,

X̄CrCr ∈ SCr
+ (r = 1, 2, . . . , �),(2.5)

where it is noted that all the entries of the submatrix X̄CrCr
are specified. Similarly,

an obvious necessary condition for X̄ to have a positive definite matrix completion is
that each X̄CrCr is positive definite, i.e.,

X̄CrCr
∈ SCr

++ (r = 1, 2, . . . , �).(2.6)

We refer to (2.5) and (2.6) as the clique-PSD condition and the clique-PD condition,
respectively.

The following two theorems are most fundamental concerning the positive (semi)
definite matrix completion problem.

Theorem 2.3 (Grone et al. [11, Theorem 7]). Let G(V,E) be a graph.
(i) Any partial symmetric matrix X̄ ∈ Sn(E•, ?) satisfying the clique-PSD con-

dition (2.5) can be completed to a positive semidefinite symmetric matrix X
if and only if G(V,E) is chordal.

(ii) Any partial symmetric matrix X̄ ∈ Sn(E•, ?) satisfying the clique-PD condi-
tion (2.6) can be completed to a positive definite symmetric matrix X if and
only if G(V,E) is chordal.

Theorem 2.4 (Grone et al. [11, Theorem 2]). Suppose that a partial symmetric
matrix X̄ ∈ Sn(F, ?) has a positive definite matrix completion. Then there exists a

unique positive definite matrix completion X = X̂ that maximizes the determinant,
i.e., such that

det(X̂) = max{det(X) : X is a positive definite matrix completion of X̄}.

Moreover, such X̂ is characterized by the condition

[X̂
−1

]ij = 0 ((i, j) �∈ F ), i.e., X̂
−1 ∈ Sn(F, 0).

We refer to the completion X̂ in Theorem 2.4 as the maximum-determinant pos-
itive definite matrix completion of X̄.

The sufficiency part in Theorem 2.3 can be restated in the following form conve-
nient for our subsequent use.

Theorem 2.5. Let G(V,E) be a chordal graph.
(i) A partial symmetric matrix X̄ ∈ Sn(E•, ?) can be completed to a positive

semidefinite symmetric matrix X if and only if it satisfies the clique-PSD
condition (2.5).

(ii) A partial symmetric matrix X̄ ∈ Sn(E•, ?) can be completed to a positive
definite symmetric matrix X if and only if it satisfies the clique-PD condition
(2.6).
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In what follows we shall give a concrete expression of the maximum-determinant
positive definite matrix completion in case Theorem 2.5(ii) above. This expression
forms the basis of our computational scheme for sparse semidefinite programs, to be
described in section 5. Also it serves as a constructive proof of the “if” part in (ii),
while the “only if” part is obvious.

We start with a fundamental lemma showing an elementary construction of the
maximum-determinant positive definite matrix completion.

Lemma 2.6. Let S and T be disjoint nonempty subsets of V and X̄ be a partial
symmetric matrix with the entries in (S×T )∪ (T ×S) unspecified, i.e., X̄ ∈ Sn(F, ?)
for F = (V × V ) \ ((S × T ) ∪ (T × S)). Then X̄ admits a positive definite matrix
completion if and only if the two submatrices(

X̄SS X̄SU

X̄US X̄UU

)
and

(
X̄UU X̄UT

X̄TU X̄TT

)
(2.7)

are both positive definite, where U = V \ (S ∪ T ). If this is the case, the matrix X̂
defined by

X̂ =


 X̄SS X̄SU X̄SUX̄

−1
UUX̄UT

X̄US X̄UU X̄UT

X̄TUX̄
−1
UUX̄US X̄TU X̄TT


(2.8)

has the following properties: (i) X̂ is positive definite, (ii) (X̂
−1

)ST = O, (iii) X̂ is the
unique maximizer of the determinant among all positive definite matrix completions

of X̄. Here we adopt the convention X̄SUX̄
−1
UUX̄UT = O and X̄TUX̄

−1
UUX̄US = O

if U = ∅.
Proof. The necessity of the positive definiteness of the two submatrices in (2.7)

is obvious. For the sufficiency, we note
 I −X̄SUX̄

−1
UU O

O I O
O O I


 X̂


 I O O

−X̄
−1
UUX̄US I O
O O I




=


 X̄SS − X̄SUX̄

−1
UUX̄US O O

O X̄UU X̄UT

O X̄TU X̄TT


 ,(2.9)

in which

X̄SS − X̄SUX̄
−1
UUX̄US ∈ SS++

by the positive definiteness of the first matrix in (2.7). Hence (i) follows. Let D
denote the matrix on the right-hand side of (2.9). Then (ii) can be shown as

(X̂
−1

)ST =
(

I O O
)
D−1


 O

O
I


 = O.

Finally, (iii) follows from (ii) by Theorem 2.4.
A recursive application of Lemma 2.6 in accordance with the perfect elimination

ordering yields an explicit construction of the positive definite matrix completion
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in Theorem 2.5(ii). For simplicity of notation, let us assume that (1, 2, . . . , n) is a
perfect elimination ordering of the chordal graph G(V,E). Suppose (recursively) that
the (n− 1)× (n− 1) submatrix corresponding to {2, 3, . . . , n} has been completed to
a positive definite matrix. Then we can apply Lemma 2.6 with S = {1}, T = {i :
i > 1} \Adj(1) and U = Adj(1) to obtain a positive definite matrix completion of the
whole matrix. Note that the first matrix in (2.7) is positive definite by the assumed

clique-PD condition (2.6), and the second by the recursive assumption. Let X̂ be the
completion obtained by the recursive application of this procedure.

We shall show in Lemma 2.7 below that the matrix X̂ constructed above is indeed
the maximum-determinant positive definite matrix completion of X̄, and moreover,
that it admits a factorization

PX̂P T = LT
1 LT

2 · · ·LT
n−1DLn−1 · · ·L2L1(2.10)

with “sparse” triangular matrices Lk (k = 1, 2, . . . , n − 1) and a positive definite
diagonal matrix D, where P = I under our tentative assumption that (1, 2, . . . , n) is
a perfect elimination ordering. We define

Uk = Adj(k) ∩ {i : i > k} (k = 1, 2, . . . , n).(2.11)

It follows from the repeated use of (2.9) that Lk is a lower-triangular matrix

Lk =




Ik−1 0 0 · · · 0
0T 1 0 · · · 0
0T [Lk]k+1,k 1 · · · 0
...

...
...

. . .
...

0T [Lk]nk 0 · · · 1


(2.12)

with unit diagonal entries [Lk]ii = 1 (i = 1, 2, . . . , n) and other possible nonzero
entries at {(i, k) : i ∈ Uk} in the kth column; to be specific,

[Lk]ij =




1 (i = j),

[X̄
−1
UkUk

X̄Ukk]ik (i ∈ Uk, j = k),
0 (otherwise)

(2.13)

for k = 1, 2, . . . , n− 1. Expressions of the diagonal entries of D are also known from
(2.9) as

Dkk =

{
X̄kk − X̄kUk

X̄
−1
UkUk

X̄Ukk (k = 1, 2, . . . , n− 1),
X̄nn (k = n).

(2.14)

We have Dkk > 0 for k = 1, 2, . . . , n by the clique-PD condition (2.6). Henceforth we
refer to (2.10) as the sparse factorization formula.

It is mentioned that the sparse factorization formula (2.10) of X̂ depends on the

perfect elimination ordering, represented by P , used in the construction, whereas X̂
itself is independent of it because of the uniqueness of the maximum-determinant pos-
itive definite matrix completion. Note also that the factorization (2.10) is equivalent
to

PX̂
−1

P T = L−1
1 L−1

2 · · ·L−1
n−1D

−1L−T
n−1 · · ·L−T

2 L−T
1 ,(2.15)

which is the product form of the (LDLT ) Cholesky factorization of PX̂
−1

P T .
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Lemma 2.7. Let G(V,E) be a chordal graph and X̄ ∈ Sn(E•, ?) be a partial sym-
metric matrix satisfying the clique-PD condition (2.6). Let P be a permutation matrix
representing a perfect elimination ordering of G(V,E) in such a way that (1, 2, . . . , n)
is a perfect elimination ordering for PX̄P T . Then the maximum-determinant positive
definite matrix completion X̂ of X̄ can be expressed in terms of the sparse factoriza-
tion formula (2.10), where Lk is a lower-triangular matrix given by (2.12) and (2.13)
and D is a positive definite diagonal matrix given by (2.14).

Proof. The positive definiteness of X̂ follows from the factorization formula (2.10)
together with the positive definiteness of D. For the maximum-determinant property

it suffices, by Theorem 2.4, to show that [X̂
−1

]ij = 0 for (i, j) �∈ E•. Referring to
(2.15) we define M = L−1

1 L−1
2 · · ·L−1

n−1, which is a lower-triangular matrix with unit
diagonal entries. The kth column of M coincides, except for the diagonal entry, with
the negative of the kth column of Lk. Therefore, M has nonzero off-diagonal entries

only at (i, j) ∈ E. Suppose that [X̂
−1

]ij �= 0 and assume P = I in (2.15). Then
Mik �= 0 and Mjk �= 0 for some k ≤ min(i, j). Hence (k, i) ∈ E• and (k, j) ∈ E•. This
means (i, j) ∈ E• because (1, 2, . . . , n) is a perfect elimination ordering.

Remark 2.8. Here is a minor remark on the computations of (2.13) and (2.14).
For each k, the subset {k}∪Uk induces a clique in G(V,E), and the maximal members
of such cliques are exactly the maximal cliques of G(V,E), which are denoted as
{Cr ⊆ V : r = 1, 2, . . . , �}. Moreover, for each r, those subsets Uk which are contained
in Cr form a nested family; define Kr = {k : Uk ⊆ Cr}. Hence, the Cholesky
factorizations of X̄UkUk

for all k ∈ Kr needed in the computations in (2.13) and (2.14)
are embedded in the Cholesky factorization of X̄CrCr with an appropriate ordering.

The sparse factorization formula (2.10) can be made conceptually more transpar-
ent and practically more efficient if it is constructed with reference to an ordering
of maximal cliques rather than to a perfect elimination ordering of vertices. Let
(C1, C2, . . . , C	) be an ordering of maximal cliques that enjoys the running intersec-
tion property (2.1). A similar argument based on Lemma 2.6 yields a variant of the
sparse factorization formula of the form

PX̂P T = LT
1 LT

2 · · ·LT
	−1DL	−1 · · ·L2L1,(2.16)

where Lr (r = 1, 2, . . . , � − 1) are “sparse” triangular matrices and D is a positive
definite block-diagonal matrix consisting of � diagonal blocks. We will call (2.16) the
sparse clique-factorization formula. The concrete expressions of Lr (r = 1, 2, . . . , �−
1) and D can be obtained as straightforward extensions of (2.12) ∼ (2.14). Namely,
define

Sr = Cr\(Cr+1 ∪ Cr+2 ∪ · · · ∪ C	) (r = 1, 2, . . . , �),
Ur = Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ C	) (r = 1, 2, . . . , �).

Then the factors in (2.16) are given by

[Lr]ij =




1 (i = j),

[X̄
−1
UrUr

X̄UrSr
]ij (i ∈ Ur, j ∈ Sr),

0 (otherwise)

(2.17)

for r = 1, 2, . . . , �− 1, and

D =




DS1S1

DS2S2

. . .

DS�S�


(2.18)
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with

DSrSr =

{
X̄SrSr − X̄SrUrX̄

−1
UrUr

X̄UrSr (r = 1, 2, . . . , �− 1),
X̄S�S�

(r = �).
(2.19)

It should be remarked that we can compute all nonzero submatrices X̄
−1
UrUr

X̄UrSr

and DSrSr above in parallel although we need an induction argument to derive the
sparse clique-factorization formula (2.16).

3. Chordal extension of aggregate sparsity pattern. In this section,
we apply the discussions given in the previous section to the standard equality form
SDP (1.1). Let E denote the aggregate sparsity pattern of the data matrices
A0,A1,A2, . . . ,Am given in (1.4). We first choose a chordal extension G(V, F ◦)
of the graph G(V,E◦). Let {Cr ⊆ V : r = 1, 2, . . . , �} be the family of maximal
cliques of the graph G(V, F ◦), where F ⊇ E. Then (i) the values of the objective and
constraint linear functions Ap •X (p = 0, 1, . . . ,m) of the SDP (1.1) are determined
by Xij ((i, j) ∈ F ) regardless of Xij ((i, j) �∈ F ), and (ii) any X ∈ Sn(F, ?) has a
positive semidefinite (or positive definite, respectively) matrix completion if and only
if the submatrices XCrCr

(r = 1, 2, . . . , �) are positive semidefinite (or positive defi-
nite, respectively)—the clique-PSD condition (2.5) (or the clique-PD condition (2.6),
respectively). Therefore we can replace the constraint and the objective function
A0 •X of the SDP (1.1) by the constraint∑

(i,j)∈F
[Ap]ijXij = bp (p = 1, 2, . . . ,m) and XCrCr

∈ SCr
+ (r = 1, 2, . . . , �)(3.1)

and the objective function
∑

(i,j)∈F [A0]ijXij , respectively. More precisely, if X =

X̄ ∈ Sn satisfies the constraint of (1.1), then the partial symmetric matrix X ′ ∈
Sn(F, ?) with entries X ′

ij = X̄ij ((i, j) ∈ F ) satisfies (3.1) and their objective values
A0 • X and

∑
(i,j)∈F [A0]ijX

′
ij coincide with each other. Conversely, any partial

symmetric matrix X ′ ∈ Sn(F, ?) satisfying (3.1) has a positive semidefinite matrix
completion X ∈ Sn that satisfies the constraint of (1.1) and has the same objective
value as X ′ ∈ Sn+(F, ?).

We will propose two methods with the use of (3.1) for solving the SDP (1.1). The
first one is a conversion of the SDP (1.1) having a single matrix variable X ∈ Sn+ into

an SDP having � matrix variables in SCr
+ (r = 1, 2, . . . , �) in section 4. The other is a

primal-dual interior-point method based on positive definite matrix completion in sec-
tion 5. Roughly speaking, matrix operations such as finding the Cholesky factorization
of X, the minimum eigenvalue of X, and matrix-matrix multiplications, are replaced
by the corresponding matrix operations on smaller matrices in SCr (r = 1, 2, . . . , �)
in both methods. There are also overheads depending on the maximal cliques Cr
(r = 1, 2, . . . , �). In particular, the number of additional equality constraints required
in the former method is determined by the intersections of two distinct maximal
cliques Cr and Cs (r < s), while the amount of arithmetic operations to compute the
search direction in the latter method depends not only on the maximal cliques Cr
(r = 1, 2, . . . , �), but also on the number m of equality constraints and the sparsity
pattern of data matrices Ap (p = 0, 1, 2, . . . ,m). The effectiveness of both meth-
ods relies entirely on a suitable choice of a chordal extension G(V, F ◦) of the graph
G(V,E◦). (Through simple numerical examples in section 7, we will see how crucial
a better choice of a chordal extension is to the conversion method.) It seems quite



660 M. FUKUDA, M. KOJIMA, K. MUROTA, AND K. NAKATA

difficult, however, to determine (or even define) an “optimal” chordal extension that
would minimize the amount of computational work in each method because various
consequences of the use of (3.1), including those mentioned above, are too compli-
cated to be evaluated accurately. In addition, even if we could set up an appropriate
objective function to be minimized over the chordal extensions of the graph G(V,E◦),
such a minimization problem would be a very difficult combinatorial optimization
problem.

As we have seen in the previous section, the chordal extension is closely related to
the Cholesky factorization. Specifically, the chordal extension that minimizes the total
number of edges in G(V, F ◦) is obtained via the Cholesky factorization of the aggregate
sparsity pattern matrix A with the minimum fill-in. Therefore it seems reasonable (or
at least attractive) in practice to employ various existing heuristic methods, such as
the minimum-degree ordering for less fill-in, the (nested) dissection ordering for less
fill-in, and the reverse Cuthill–McKee ordering for reducing bandwidth, developed for
the Cholesky factorization [9]. We briefly illustrate below how we construct a chordal
extension G(V, F ◦) of the graph G(V,E◦) using some of those existing methods.

Suppose that we have reordered the row/column indices symmetrically by apply-
ing a dissection ordering so that the resulting aggregate sparsity pattern matrix A
has the following bordered block-diagonal form:

A =




AS1S1
O · · · O AS1S0

O AS2S2 · · · O AS2S0

...
...

. . .
...

...
O O · · · AS�S�

AS�S0

AS0S1 AS0S2 · · · AS0S�
AS0S0




and

E ⊆
(

	⋃
r=1

Sr × Sr

)⋃(
	⋃

r=0

Sr × S0

)⋃(
S0 ×

	⋃
r=0

Sr

)
.

Let

Cr = S0 ∪ Sr (r = 1, 2, . . . , �) and F =

	⋃
r=1

Cr × Cr.(3.2)

Obviously E ⊆ F . We also see that G(V, F ◦) is a chordal extension of G(V,E◦)
and that {Cr ⊆ V : r = 1, 2, . . . , �} forms the family of maximal cliques of G(V, F ◦).
Furthermore, (1, 2, . . . , n) is a perfect elimination ordering, and the running intersec-
tion property (2.1) holds for any s ≥ r + 1.

Another chordal extension can be obtained through the reordering of row/column
indices by the reverse Cuthill–McKee ordering that yields the aggregate sparsity pat-
tern matrix A having a small bandwidth:

Aij = 0 if |j − i| > β and E = {(i, j) ∈ V × V : |i− j| ≤ β},
where β is a small positive integer. In this case, we can take a collection of subsets
C1, C2, . . . , C	 and F ⊇ E such that

Cr = {i ∈ V : (r − 1)κ < i ≤ β + rκ} (r = 1, 2, . . . , �) and F =

	⋃
r=1

Cr × Cr,(3.3)
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where κ denotes a positive integer and � the smallest positive integer satisfying β+�κ ≥
n. Then G(V, F ◦) is a chordal extension of G(V,E◦) and {Cr ⊆ V : r = 1, 2, . . . , �}
forms the family of maximal cliques of G(V, F ◦). In this case, (1, 2, . . . , n) is a perfect
elimination ordering, and the running intersection property (2.1) holds for s = r + 1.

It is not difficult to extend the discussions above to more sophisticated cases
where the aggregate sparsity pattern matrix A forms a nested bordered block-diagonal
matrix or a bordered band matrix. In our succeeding paper [22], we will discuss in
more detail how we choose a chordal extension of G(V,E◦) in general.

In the remainder of this paper, we assume that

• an appropriate chordal extension G(V, F ◦) of G(V,E◦) and the family {Cr ⊆
V : r = 1, 2, . . . , �} of maximal cliques of G(V, F ◦) are available to us, and

• (v1, v2, . . . , vn) is a perfect elimination ordering induced from an ordering of
the maximal cliques satisfying the running intersection property (2.1).

Hence, in view of the discussions in the previous section, we can factorize the maximum-
determinant positive definite matrix completion X̂ of each X̄ ∈ Sn(F ; ?) as in the
sparse factorization formula (2.10) (and also as in the sparse clique-factorization for-
mula (2.16)), and any Y ∈ Sn++(F ; 0) is factorized as Y = RRT for some n × n
lower-triangular matrix R without any fill-in. We also know that the number � of
maximal cliques of G(V, F ◦) does not exceed n.

Remark 3.1. We also assume in the remainder of the paper that (i, i) ∈ E
(i = 1, 2, . . . , n). Assume, to the contrary, that some (i, i) �∈ E, for example,

(i, i) �∈ E (i = 1, 2, . . . , k) and (j, j) ∈ E (j = k + 1, k + 2, . . . , n).

Then we can rewrite the SDP (1.1) as

minimize A′
0 •X ′ + 2

k∑
i=1

n∑
j=i+1

[A0]ijXij ,

subject to A′
p •X ′ + 2

k∑
i=1

n∑
j=i+1

[Ap]ijXij = bp (p = 1, 2, . . . ,m),

Xij ∈ R (i = 1, 2, . . . , k, i < j ≤ n),

X ′ =




Xk+1,k+1 Xk+1,k+2 · · · Xk+1,n

Xk+2,k+1 Xk+2,k+2 · · · Xk+2,n

...
...

. . .
...

Xn,k+1 Xn,k+2 · · · Xnn


 ∈ SU+




,

where

A′
p =




[Ap]k+1,k+1 [Ap]k+1,k+2 · · · [Ap]k+1,n

[Ap]k+2,k+1 [Ap]k+2,k+2 · · · [Ap]k+2,n

...
...

. . .
...

[Ap]n,k+1 [Ap]n,k+2 · · · [Ap]nn


 ∈ SU (p = 0, 1, . . . ,m),

and U = {k+1, k+2, . . . , n}. In the transformed problem above, none of Xij ∈ R (i =

1, 2, . . . , k, i < j ≤ n) are involved in the positive semidefinite constraint X ′ ∈ SU+,
and therefore they are free variables. We can easily adapt the methods described in
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sections 4 and 5 for the SDP (1.1) satisfying the assumption (i, i) ∈ E (i = 1, 2, . . . , n)
to the transformed problem.

4. Conversion to an SDP having multiple but smaller size positive
semidefinite matrix variables. In the previous section, we have shown that
the SDP (1.1) is equivalent to the problem of minimizing the objective function∑

(i,j)∈F [A0]ijXij over the constraint (3.1). This problem involves less variables and

smaller size positive semidefinite constraints than the original SDP (1.1). This fea-
ture certainly makes the conversion attractive in practice because such a problem is
expected to be solved more easily. It should be noted, however, that two distinct pos-
itive semidefinite constraints XCrCr ∈ SCr

+ and XCsCs ∈ SCs
+ in (3.1) share variables

Xij ((i, j) ∈ (Cr ∩Cs)× (Cr ∩Cs)) whenever Cr ∩Cs �= ∅. Hence, the problem is not
a standard SDP. In this section, we show how to convert the problem to a standard
SDP to which we can apply interior-point methods, and we discuss some advantages
and disadvantages of the resulting SDP.

For every r = 1, 2, . . . , �, let

Er = {(i, j) ∈ Cr × Cr : (i, j) ∈ Cs × Cs for some s < r }.
By definition, E1 = ∅, and if (i, j) ∈ Er then the positive semidefinite constraint
XCrCr ∈ SCr

+ shares variables Xij ((i, j) ∈ Er) with the positive semidefinite con-

straint XCsCs
∈ SCs

+ for some s < r. To make such a pair of dependent positive
semidefinite constraints independent, we introduce auxiliary variables Ur

ij ((i, j) ∈
Er, r = 2, 3, . . . , �), and we rewrite the constraint (3.1) as∑

(i,j)∈F
[Ap]ijXij = bp (p = 1, 2, . . . ,m),

Ur
ij = Xij ((i, j) ∈ Er, i ≥ j, r = 2, 3, . . . , �),

Xr ∈ SCr
+ (r = 1, 2, . . . , �)


 ,(4.1)

where

[Xr]ij =

{
Ur
ij if (i, j) ∈ Er,

Xij otherwise.

Then we may regard the minimization of the objective function
∑

(i,j)∈F [A0]ijXij

over the constraint (4.1) as a standard SDP. In fact, if we further introduce a block-
diagonal symmetric matrix variable of the form

X ′ =




X1 O O · · · O

O X2 O · · · O
...

...
...

. . .
...

O O O · · · X	


 ,

and if we appropriately rearrange all the coefficients of the linear equality constraints
in (4.1) and the objective function

∑
(i,j)∈F [A0]ijXij to reconstruct data matrices

with the same block-diagonal structure as X ′, we obtain a standard equality form
SDP.

There are two major advantages of this conversion. First, when the sizes of all
positive semidefinite matrix variables in (4.1) are small, their Cholesky factorizations,
computation of their minimum eigenvalues, and matrix multiplications require less
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CPU time than those of the original positive semidefinite matrix variable X in (1.1).
Second, once we have converted the SDP (1.1) into the SDP with the block-diagonal
positive semidefinite matrix variable X ′, we can apply effectively any interior-point
method incorporating a block-diagonal matrix data structure [4, 6, 28] for SDPs.

We should note, however, that the conversion above from the SDP (1.1) to the
SDP with the block-diagonal symmetric matrix variable X ′ increases the number of
equality constraints from m to the number

m′ = m +

	∑
r=2

�{(i, j) ∈ Er : i ≥ j}.

When we apply interior-point methods to a standard form SDP having m equality
constraints, we solve a system of linear equations with a fully dense m × m coeffi-
cient matrix B to generate a search direction at each iteration. This requires O(m3)
arithmetic operations. So the increase in the number of equality constraints in the
converted problem may worsen the total computational efficiency. Therefore, the
reduction in the sizes of positive semidefinite matrix variables should be properly
balanced with the increase in the number of equality constraints in (4.1) when we
choose a chordal extension G(V, F ◦) of G(V,E◦). In section 7, we will show by simple
numerical examples how this balance is crucial.

5. Primal-dual interior-point method based on positive definite matrix
completion. One disadvantage of the conversion of the SDP (1.1) to the SDP with
multiple but smaller size positive semidefinite matrix variables (4.1) is an increase
in the number of equality constraints. In this section, we propose a primal-dual
interior-point method based on positive semidefinite matrix completion which exploits
the mechanism of positive definite completion to compute the search directions and
step lengths and which does not add any equality constraints in the original SDP
formulation. Various search directions [1, 13, 15, 16, 20, 21, 24, 27] have been proposed
so far for primal-dual interior-point methods. Among others, we restrict ourselves to
the HRVW/KSH/M search direction [13, 16, 20], although we can adapt some of the
discussions below to some other search directions.

There are two places below where we effectively utilize the equivalence between
the constraint on the symmetric matrix variable X ∈ Sn of the original problem (1.1)
and the constraint (3.1) on the partial symmetric matrix X ∈ Sn(F, ?) with entries
specified in F . One is the computation of a search direction and the other is the
computation of a step length. Recall that E denotes the aggregate sparsity pattern
of the data matrices A0,A1, . . . ,Am, and that G(V, F ◦) denotes a chordal extension
of G(V,E◦).

Let (X̄, Ȳ , z̄) be a point obtained at the kth iteration of a primal-dual interior-
point method using the HRVW/KSH/M search direction (k ≥ 1) or given initially
(k = 0). We assume that X̄ ∈ Sn++(F, ?) and Ȳ ∈ Sn++(E, 0). Here the feasibility
of the point (X̄, Ȳ , z̄) is not assumed; X̄ and (Ȳ , z̄) need not satisfy the equality
constraints of the SDPs (1.1) and (1.2), respectively.

In order to compute the HRVW/KSH/M search direction, we use the whole matrix
values for both X̄ ∈ Sn++(F, ?) and Ȳ ∈ Sn++(E, 0), so that we need to make a positive

definite matrix completion of X̄ ∈ Sn++(F, ?). Let X̂ ∈ Sn++ be the maximum-
determinant positive definite matrix completion of X̄ ∈ Sn++(F, ?). See section 2.2.
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Then we compute the HRVW/KSH/M search direction (dX, dY , dz) by solving the
system of linear equations

Ap • dX = gp (p = 1, 2, . . . ,m), dX ∈ Sn,
m∑
p=1

Apdzp + dY = H, dY ∈ Sn(E, 0), dz ∈ R
m,

d̃XȲ + X̂dY = K, dX = (d̃X + d̃X
T
)/2




,(5.1)

where gp = bp − Ap • X̂ ∈ R (p = 1, 2, . . . ,m) (the primal residual), H = A0 −∑m
p=1 Apz̄p − Ȳ ∈ Sn(E, 0) (the dual residual), K = µI − X̂Ȳ (an n × n constant

matrix), and d̃X denotes an n × n auxiliary matrix variable. The search direction

parameter µ is usually chosen to be βX̂ • Ȳ /n for some β ∈ [0, 1]. We can reduce the
system of linear equations (5.1) to

Bdz = s, dY = H −
m∑
p=1

Apdzp,

d̃X = (K − X̂dY )Ȳ
−1

, dX = (d̃X + d̃X
T
)/2


 ,(5.2)

where

Bpq = Trace ApX̂AqȲ
−1

(p = 1, 2, . . . ,m, q = 1, 2, . . . ,m),

sp = gp − Trace Ap(K − X̂H)Ȳ
−1

(p = 1, 2, . . . ,m)

}
.

Note that B is a positive definite symmetric matrix.
Now recall that the maximum-determinant positive definite matrix completion

X̂ of X̄ ∈ Sn++(F, ?) is expressed in terms of the sparse clique-factorization formula
(2.16). Since we have assumed that (1, 2, . . . , n) is a perfect elimination ordering
of the chordal graph G(V, F ◦) as in section 2.1, we can take the identity I for the
permutation matrix P in (2.16). Hence, the sparse clique-factorization formula (2.16)
turns out to be

X̂ = LT
1 LT

2 . . .LT
	−1DL	−1 . . .L2L1,(5.3)

where Lr (r = 1, 2, . . . , �−1) and D are given by (2.17), (2.18), and (2.19). Also Ȳ ∈
Sn++(E, 0) is factorized as Ȳ = NNT without any fill-in except for entries in F\E,
where N is a lower-triangular matrix. We can effectively utilize these factorizations
of X̂ and Ȳ for the computation of the search direction (dX, dY , dz). In particular,
the coefficients Bpq (p = 1, 2, . . . ,m, q = 1, 2, . . . ,m) in the system (5.2) of linear
equations are computed by

Bpq = Trace Ap(L
T
1 LT

2 . . .LT
	−1DL	−1 . . .L2L1)Aq(N

−TN−1)

(p = 1, 2, . . . ,m, q = 1, 2, . . . ,m).

If we utilize those factorizations also for the computation of sp (p = 1, 2, . . . ,m)

and d̃X, we do not need to store the whole dense matrix X̂ in the memory but
only its sparse clique-factorizations in terms of L1, L2, . . . , L	−1 and D. As we
will see below in the computation of a step length and a next iterate, we need the
partial symmetric matrix with entries [dX]ij specified in F , but not the whole search
direction matrix dX ∈ Sn in the primal space (hence the partial symmetric matrix
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with entries [d̃X]ij specified in F but not the whole matrix d̃X). Hence, it is possible
to carry out all the matrix computations above using only partial matrices with entries
specified in F . Therefore, we can expect to save both CPU time and memory in our
computation of the search direction. To clarify the distinction between the whole
primal search direction matrix dX ∈ Sn and the corresponding partial symmetric
matrix with entries specified in F in the discussions below, we use the notation dX̂
for the former whole matrix in Sn and dX̄ for the latter partial symmetric matrix in
Sn(F ; ?). Now, suppose that we have computed the HRVW/KSH/M search direction
(dX̄, dY , dz) ∈ Sn×Sn(E, 0)×R

m. We describe how to compute a step length α > 0
and the next iterate (X ′,Y ′,z′) ∈ Sn × Sn(E, 0) × R

m. Usually we compute the
maximum α̂ of α’s satisfying

X̂ + αdX̂ ∈ Sn+ and Ȳ + αdY ∈ Sn+,(5.4)

and let (X ′,Y ′,z′) = (X̂, Ȳ , z̄)+γα̂(dX̂, dY , dz) for some γ ∈ (0, 1). Then X ′ ∈ Sn++

and Y ′ ∈ Sn++(E, 0). The computation of α̂ is necessary to know how long we can

take the step length along the search direction (dX̂, dY , dz). The computation of α̂ is
usually carried out by calculating the minimum eigenvalues of the matrices

M̂
−1

dX̂M̂
−T

and N−1dY N−T ,

where X̂ = M̂M̂
T

and Ȳ = NNT denote the factorizations of X̂ and Ȳ , respec-
tively.

Instead of (5.4), we propose to employ

X̄CrCr + αdX̄CrCr ∈ SCr
+ (r = 1, 2, . . . , �) and Ȳ + αdY ∈ Sn+(E, 0).(5.5)

Recall that {Cr ⊆ V : r = 1, 2, . . . , �} denotes the family of maximal cliques of
G(V, F ◦) and � ≤ n. Let ᾱ be the maximum of α’s satisfying (5.5), and let

(X ′,Y ′,z′) = (X̄, Ȳ , z̄) + γᾱ(dX̄, dY , dz) ∈ Sn(F, ?)× Sn++(E, 0)× R
m

for some γ ∈ (0, 1). By Theorem 2.3, X ′ ∈ Sn(F, ?) has a positive definite matrix
completion, so that the point (X ′,Y ′,z′) ∈ Sn++(F, ?)× Sn++(E, 0)× R

m can be the
next iterate. In this case, the computation of ᾱ is reduced to the computation of the
minimum eigenvalues of the matrices

M̄
−1
r dX̄CrCrM̄

−T
r (r = 1, 2, . . . , �) and N−1dY N−T ,

where X̄CrCr = M̄ rM̄
T
r denotes a factorization of X̄CrCr (r = 1, 2, . . . , �). Thus the

computation of the minimum eigenvalue of M̂
−1

X̂M̂
−T

has been replaced by the

computation of the minimum eigenvalues of � smaller submatrices M̄
−1
r dX̄CrCrM̄

−T
r

(r = 1, 2, . . . , �).
We mention some important effects of the maximum-determinant positive definite

matrix completion X̂ ∈ Sn++ of X̄ ∈ Sn++(F, ?) on the theoretical and practical
convergence of the primal-dual interior-point method with the modification above.
We first observe that

X • Ȳ = X̂ • Ȳ and detX ≤ det X̂

for any positive definite matrix completion X ∈ Sn++ of X̄ ∈ Sn++(F, ?). This implies

that X̂ ∈ Sn++ minimizes the value of the primal-dual potential function

ρ logX • Ȳ − log det(XȲ )



666 M. FUKUDA, M. KOJIMA, K. MUROTA, AND K. NAKATA

over all positive definite matrix completions X ∈ Sn++ of X̄ ∈ Sn++(F, ?), where ρ is a
positive number. If we combine this fact with the primal-dual interior-point potential
reduction method given in the paper [16] for SDPs, it is easy to design a polynomial-
time primal-dual interior-point potential reduction method based on positive definite
matrix completion for SDPs.

We also see that X̂ optimizes (maximizes) a centrality measure (det(XȲ ))1/n

(X • Ȳ )/n

over all positive definite matrix completions X ∈ Sn++ of X̄ ∈ S++(F, ?). Thus
the maximum-determinant positive definite matrix completion is expected to work
positively in both theoretical and practical convergence. It is not necessarily true,
however, that X̂ ∈ Sn++ optimizes (minimizes) the standard centrality measure

‖X1/2Ȳ X1/2 − X • Ȳ /n‖ over all positive definite matrix completions X ∈ Sn++

of X̄ ∈ S++(F, ?). Here ‖ · ‖ denotes the Frobenius norm of a matrix.
Another positive effect of our modification is that the maximum ᾱ of α’s satisfying

(5.5) is larger than or equal to the maximum α̂ of α’s satisfying (5.4). So we are able
to choose a larger step length if we use (5.5) instead of (5.4).

6. Linear transformation in the primal and dual spaces. When we are
given an SDP to be solved, we may be able to transform it into a sparser SDP to which
we more effectively apply the conversion method in section 4 and/or the primal-dual
interior-point method based on positive definite matrix completion in section 5. As
we will see later in this section, certain semidefinite programming relaxations of some
combinatorial optimization problems including the graph equipartition problem and
the maximum clique problem are such cases.

We introduce a general framework for transformation of a given SDP which in-
duces an equivalence class of SDPs. For every A = (A0,A1,A2, . . . ,Am) ∈∏m

p=0 Sn
and b ∈ R

m, we use the notation P(A, b) for the standard equality form SDP (1.1)
and the notation D(A, b) for its dual (1.2).

Let P be an arbitrary n × n nonsingular matrix. Performing the congruence
transformation X = PX ′P T from X to X ′ in the primal space, we obtain an SDP
P(Ap, b) and its dual D(Ap, b), where

Ap = (P TA0P ,P TA1P ,P TA2P , . . . ,P TAmP ) ∈
m∏
k=0

Sn.

Let D be an m ×m arbitrary nonsingular matrix and ζ an arbitrary vector in
R
m. Performing the affine transformation

z = Dz′ − ζ

from z to z′ in the dual space, we obtain an SDP D(Ad, bd) and the corresponding
primal SDP P(Ad, bd), where

bd = DT b ∈ R
m,

Ad
0 = A0 +

m∑
p=1

Apζp ∈ Sn, Ad
k =

m∑
p=1

ApDpk ∈ Sn (k = 1, 2, . . . ,m),

Ad = (Ad
0 ,A

d
1 ,A

d
2 , . . . ,A

d
m) ∈

m∏
k=0

Sn.

If we perform the primal transformation and the dual transformation simulta-
neously, we obtain another primal-dual pair of SDPs P(Apd, bpd) and D(Apd, bpd),
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where

bpd = DT b ∈ R
m, Apd

0 = P TA0P +

m∑
p=1

P TApP ζp ∈ Sn,

Apd
k =

m∑
p=1

P TApPDpk ∈ Sn (k = 1, 2, . . . ,m),

Apd = (Apd
0 ,Apd

1 ,Apd
2 , . . . ,Apd

m ) ∈
m∏
k=0

Sn.

By construction, all the primal-dual pairs, P(A, b) and D(A, b), P(Ap, bp) and
D(Ap, bp), P(Ad, bd) and D(Ad, bd), P(Apd, bpd) and D(Apd, bpd), are equivalent to
each other. The important issue here is how we choose P , D, and ζ to

• improve the aggregate sparsity pattern of the data matrices, and also
• reduce the total number of nonzeros in the data matrices, which affects the

computation of the coefficient matrix B of the linear equation in (5.2) to
determine a search direction. See also [7].

It should be noted that any transformation using an m×m nonsingular matrix D
and an m-dimensional vector ζ in the dual space never changes the aggregate sparsity
pattern of the data matrices, but it may be useful to decrease the total number of
nonzeros in the data matrices, especially when some data matrices are 0-1 or integral
(see also (D) of section 8 for further discussion on this transformation). Below, we will
show two cases in which an appropriate congruence transformation P in the primal
space improves the aggregate sparsity pattern of data matrices.

First consider a structured SDP with data matrices having the following sparsity
pattern:

A0 =




* O O *
O O O *
O O O *
* * * *


 , A1 =




O O O *
O * O *
O O O *
* * * *


 ,

A2 =




O O O *
O O O *
O O * *
* * * *


 , Ap =




O O O *
O O O *
O O O *
* * * *


 (p = 3, 4, . . . ,m).

Here ∗ denotes a (possibly) nonzero matrix. In this case, the aggregate sparsity
pattern matrix turns out to be a bordered block-diagonal matrix


* O O *
O * O *
O O * *
* * * *


 .

Since each of the first three nonzero blocks in the diagonal is due to A0, A1, and A2,
respectively, and no other data matrices Ap (p = 3, 4, . . . ,m) contain any nonzeros in
those diagonal blocks, we can choose a nonsingular matrix P of the form

P =




P 11 O O O
O P 22 O O
O O P 33 O
O O O P 44
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such that the transformed data matrices P TApP (p = 0, 1, . . . ,m) get the aggregate
sparsity pattern 


� O O *
O � O *
O O � *
* * * *


 .

Here each � denotes a diagonal matrix. Thus, the aggregate sparsity pattern has been
improved along the diagonal.

Now we consider the SDP relaxation of the graph equipartition problem, which
is formulated as

minimize A0 •X

subject to Ep •X =
1

4
(p = 1, 2, . . . , n),

E •X = 0, X ∈ Sn+


 .

Here A0 = diag(Ce) − C, C denotes an n × n symmetric cost matrix, diag(Ce)
denotes the diagonal matrix whose entries are Ce, Ep denotes the n×n matrix with
all entries 0 except [Ep]pp = 1, and E denotes the n × n matrix with all entries 1.
When the graph under consideration is sparse, the matrix C (hence the matrix A0)
is sparse. But the aggregate sparsity pattern matrix is fully dense due to the only
fully dense matrix E. To improve the sparsity pattern, we perform the congruence
transformation using

P =




1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1
0 0 0 · · · 0 0 1




to the data matrices A0, Ep (p = 1, 2, . . . , n) and E in the primal space to obtain

P TA0P ,P TEpP (p = 1, 2, . . . , n) and P TEP .

Then all entries of P TEP vanish except [P TEP ]11 = 1. We can also verify that

(the total number of nonzeros of the matrices P TA0P , P TEpP (p = 1, 2, . . . , n))

≤ 4× (the total number of nonzeros of the matrices A0, Ep (p = 1, 2, . . . , n)).

Therefore, if A0 is sparse this transformation reduces the total number of nonzeros
in data matrices and improves the aggregate sparsity pattern.

We can apply the same congruence transformation above to the SDP relaxation
of the maximum clique problem.

7. Numerical examples. In this section, we give three numerical examples
which show the effectiveness, advantages, and disadvantages of the conversion method
described in section 4. This conversion can be interpreted as a preprocessing scheme
to the existing software [4, 6, 28] which can handle standard equality form SDPs (1.1)
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Table 7.1
Sizes of the equivalent SDPs to the 1-bordered diagonal SDP and the tridiagonal SDP.

k # block matrices (2k) Dimension of each block # constraints m′
0 1 513× 513 79 + 0
1 2 257× 257 79 + 1
2 4 129× 129 79 + 3
3 8 65× 65 79 + 7
4 16 33× 33 79 + 15
5 32 17× 17 79 + 31
6 64 9× 9 79 + 63
7 128 5× 5 79 + 127
8 256 3× 3 79 + 255
9 512 2× 2 79 + 511

and (1.2) with block-diagonal data matrices. In particular, we use SDPA 5.0 [6] to
solve the SDPs of this section on a DEC Alpha machine (300MHz with 256MB of
memory). The first two examples illustrate remarkable effectiveness of the conversion
method, and also the importance of determining an “optimal” chordal extension of
the aggregate sparsity pattern for a given SDP. The third example exhibits a crucial
disadvantage of employing this conversion compared with the primal-dual interior-
point method based on positive definite matrix completion proposed in section 5.

We start by describing the first two examples which are randomly generated
SDPs with high sparsity and special structures. The first problem is the example
given in section 1. Let V denote the set {1, 2, . . . , n} of row/column indices of the
data matrices Ap (p = 0, 1, . . . ,m), and let Eb = {(i, n), (n, i), (i, i) : i ∈ V } be the
aggregate sparsity pattern of the data matrices. We call this example the 1-bordered
diagonal SDP. In the second example, the aggregate sparsity pattern is replaced by
Et = {(i, j) ∈ V ×V : |i− j| ≤ 1} instead. We call this example the tridiagonal SDP.
Notice that the graphs associated with the aggregate sparsity patterns, G(V,E◦

b) and
G(V,E◦

t ), are already chordal. Nevertheless, we can consider other chordal extensions
which include them, namely, the graphs corresponding to the bordered block-diagonal
matrix (3.2), and the graphs corresponding to (3.3), respectively. For both examples,
we fixed the dimensions of the symmetric matrices Ap ∈ Sn (p = 0, 1, . . . ,m) to be
equal to n = 29 + 1 = 513 and the numbers of equality constraints in the primal
SDP formulation to be equal to m = 79. For each of the matrices A1,A2, . . . ,Am of
the 1-bordered diagonal SDP (tridiagonal SDP, respectively), we randomly generated
three nonzero entries at some (i, j) ∈ Eb ((i, j) ∈ Et, respectively), and, for A0, we
generated nonzero elements for all (i, j)th entries in Eb (Et, respectively).

Since a similar discussion for the 1-bordered diagonal SDP will be also valid for
the tridiagonal SDP, we focus on the former example for the moment. According to
the notation in sections 1, 3, and 4, for each k ∈ {0, 1, . . . , 9}, let us define S0 = {n},
and Sr = {1 + (r − 1)29−k, 2 + (r − 1)29−k, . . . , r29−k} (r = 1, 2, . . . , 2k). Defining

now Cr = S0 ∪ Sr (r = 1, 2, . . . , 2k) and Fb =
⋃2k

r=1 Cr × Cr, G(V, F ◦
b ) will be a

chordal extension of G(V,E◦
b). Using the formula (4.1), we can convert the 1-bordered

diagonal SDP to equivalent SDPs whose sizes are specified in Table 7.1. Observe that
k = 0 gives the original SDP.

Figure 7.1(a) shows in log scale the total time (solid line) to solve the equivalent
SDPs listed in Table 7.1 using SDPA. Most of the total time is spent in the following
two major subroutines in SDPA:
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Fig. 7.1. Computational time for the 1-bordered diagonal SDP and the tridiagonal SDP (total
time; (i) time to compute search directions; (ii) time to compute step lengths).

(i) Time to compute the search direction (dX, dY , dz)—by calculating the coef-

ficient matrix B ∈ Sm′
++ and solving the Schur complement equation Bdz =

s—dashed line in Figure 7.1;
(ii) time to compute the step length for the search direction—by computing the

Cholesky factorization and the eigenvalues, and performing matrix operations
for each small block matrix (O((#Cr)

3))—dotted line in Figure 7.1.

Figure 7.1(a) shows that we have to select a “good” chordal extension G(V, F ◦
b )

in order to balance the time spent in (i), which mainly depends on the number of
equality constraints m′, and the time spent in (ii), which mainly depends on the
dimensions of the small block matrices. This balance is crucial to reduce the total
computational time to solve the SDP. For the 1-bordered diagonal SDP, a partition
of the original problem into 32 small block matrices of 17×17 dimension each (k = 5)
gives the “optimal” conversion, and it reduces the total computational time by a
factor of approximately 150.

A similar discussion can be made for the tridiagonal SDP. In this case, given
k ∈ {0, 1, . . . , 9}, a chordal extension of the graph associated with the aggregate
sparsity pattern G(V,E◦

t ) is chosen such that the maximal cliques for it are given by
(3.3) with β = 1 and κ = 29−k. The sizes of each equivalent SDP to the tridiagonal
SDP are given in Table 7.1. The computational time is shown in Figure 7.1(b). Notice
the similarity between the computational time for these two examples with extremely
sparse data matrices A0,A1, . . . ,Am.

We observe the following two points from these numerical examples:

(a) The problem of detecting an “optimal” chordal extension of the aggregate
sparsity pattern for an SDP is extremely important in order to balance the
time spent in (i) and (ii) and therefore reduce the total computational time;

(b) the conversion to multiple block matrices of smaller size (section 4) is ex-
tremely efficient when very sparse data matrices A0,A1, . . . ,Am have spe-
cial sparsity patterns and the number of added constraints (m′ −m) in the
equivalent SDP is relatively small.

The last example comes from the topology optimization problem of truss struc-
tures [25], and we call it the topology optimization SDP here. The aggregate sparsity
pattern for the data matrices Ap (p = 0, 1, . . . , 392) after diminishing the bandwidth
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Fig. 7.2. Aggregate sparsity pattern for the data matrices of the topology optimization SDP.

Table 7.2
Sizes of the equivalent SDPs to the topology optimization SDP and the computational time to

solve them.

# block matrices Dimension of each block # constraints m′ Total time (i) (ii)
1(+1) 327× 327 (+392× 392) 392 237 s 69 s 164 s
2(+1) 186× 186 (+392× 392) 392 + 1035 715 s 657 s 56 s
3(+1) 137× 137 (+392× 392) 392 + 2070 3190 s 2550 s 36 s
4(+1) 115× 115 (+392× 392) 392 + 3105 9032 s 8995 s 49 s

( ) indicates the block corresponding to the diagonal matrix.

by the reverse Cuthill–McKee ordering is shown in Figure 7.2. This matrix consists of
two diagonal blocks: a 327×327 block matrix with a small bandwidth, and a 392×392
diagonal matrix. Since SDPA can handle the latter diagonal matrix quite efficiently,
we will consider only the block matrix with the small bandwidth. We define the
chordal extension of the graph associated with the sparsity pattern of this block ma-
trix as G(V, F ◦

top), where Ftop = {(i, j) ∈ V ×V : |i−j| ≤ 45} and V = {1, 2, . . . , 327}.
The maximal cliques corresponding to this chordal extension are given in (3.3).

The sizes of the SDPs resulting from the topology optimization SDP by the con-
version method and the computational time to solve them are shown in Table 7.2.
The time to compute the search directions (i) grows drastically compared to the de-
crease in the time to compute the step lengths (ii) in this case, because we have to
add 45 · (45+1)/2 new variables and equality constraints if we increase the number of
block matrices by one. See (4.1). In this case, it is much better to solve the original
SDP instead of converting it.

The last example shows the following fundamental drawback of the conversion
method:

(c) A large number of additional equality constraints are often required in the
converted SDP.

Although we might be able to utilize more sophisticated ordering such as the nested
dissection ordering to decrease the number of additional equality constraints, this
drawback exhibits a certain limitation of the conversion method for practical use.
In section 5, we have proposed a method to compute the search directions and the
step length in the primal-dual interior-point method based on positive definite matrix
completion. That method does not add any equality constraints as the conversion
method of section 4 does and therefore avoids the above drawback (c). In part II [22]
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of this article, we will continue discussing the technical details and implementation of
this method, and we present its numerical results applied to larger classes of SDPs.

8. Concluding discussion. We have proposed two kinds of methods for a large-
scale sparse SDP exploiting the aggregate sparsity pattern E over its data matri-
ces. One is a conversion of such an SDP into an SDP having multiple but smaller
size positive semidefinite matrix variables. The other is a primal-dual interior-point
method based on maximum-determinant positive definite matrix completion. Con-
cerning practical implementation of these two methods, however, there remain many
significant and interesting issues which we need to investigate further. Among others,
we mention the following:

(A) How do we find an effective chordal extension G(V, F ◦) of G(V,E◦)? This
issue is common to both methods. In part II [22] of this article, we will study
more extensively how we can utilize some of the existing ordering methods,
such as the minimum-degree ordering, the (nested) dissection ordering and
the reverse Cuthill–McKee ordering, developed for the Cholesky factorization.

(B) The computation of the search direction, which we discussed in section 5, for
the latter method is also a very important issue. In part II [22], we will explore
in more detail (i) how we efficiently construct the product form representation

(5.3) of the maximum-determinant positive definite matrix completion X̂ of
a partial symmetric matrix X̄ ∈ Sn++(F, ?), and (ii) how we compute the
coefficients Bpq (p = 1, 2, . . . ,m, q = 1, 2, . . . ,m) of the key linear equation
Bdz = s in (5.2) by utilizing the representation (5.3) effectively.

(C) Our methods still need to solve the Schur complement equation Bdz = s.
As we have mentioned in the introduction, the coefficient matrix B is fully
dense, in general, so that it becomes more difficult to apply direct methods
to the equation as its size (= the number of equality constraints in the primal
SDP (1.1)) becomes larger. To solve a large-scale SDP having not only a
large size matrix variable but also a large number of equality constraints,
we can incorporate iterative methods [19, 23] to solve the Schur complement
equation into our methods.

(D) The linear transformation in the primal and the dual spaces described in
section 6 may be regarded as a preprocessing or preconditioning technique
for SDPs. Since the transformation in the dual space does not affect the
aggregate sparsity pattern of data matrices of a given SDP to be solved,
without damaging the computational efficiency much, we may be able to use
the transformation for numerical stability, which is another major purpose of
preprocessing besides computational efficiency. In particular, if we apply the
dual transformation using an m × m nonsingular matrix D and a ζ ∈ R

m

to an SDP with data matrices A0,A1,A2, . . . ,Am, the coefficients Bpq (p =
1, 2, . . . ,m, q = 1, 2, . . . ,m) of the key linear equation Bdz = s in (5.2) turn
out to be

Bpq = Trace

(
m∑
k=1

AkDkp

)
X̂

(
m∑
k=1

AkDkq

)
Ȳ

−1

(p = 1, 2, . . . ,m, q = 1, 2, . . . ,m).

Thus the transformation may work as a preconditioning for iterative methods
such as the conjugate gradient method and the conjugate residual method (see
[19, 23]). It should be noted that the matrix D has enough parameters to



EXPLOITING SPARSITY IN SDP VIA MATRIX COMPLETION I 673

control the eigenvalues of the matrix B, although we need to investigate an
effective choice of the matrix D.

Theoretically, it is an interesting issue to see whether we can design a polynomial-
time and/or locally superlinearly convergent primal-dual path-following interior-point
method based on the maximum-determinant positive definite matrix completion.

Acknowledgment. The authors thank Dr. Akihisa Tamura of Kyoto University
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[11] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, Positive definite completions of
partial hermitian matrices, Linear Algebra Appl., 58 (1984), pp. 109–124.

[12] C. Helmberg and F. Rendl, Solving quadratic (0, 1)-problems by semidefinite programming
and cutting planes, Math. Program., 82 (1998), pp. 291–315.

[13] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, An interior-point method
for semidefinite programming, SIAM J. Optim., 6 (1996), pp. 342–361.

[14] C. R. Johnson, Matrix completion problems: A survey, Proc. Sympos. Appl. Math., 40 (1990),
pp. 171–198.

[15] M. Kojima, M. Shida, and S. Shindoh, Search directions in the SDP and the monotone
SDLCP: Generalization and inexact computation, Math. Program., 85 (1999), pp. 51–80.

[16] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices, SIAM J. Optim., 7 (1997), pp. 86–
125.

[17] M. Laurent, Cuts, matrix completions and graph rigidity, Math. Program., 79 (1997), pp. 255–
283.

[18] J. G. Lewis, B. W. Peyton, and A. Pothen, A fast algorithm for reordering sparse matrices
for parallel factorization, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1146–1173.

[19] C.-J. Lin and R. Saigal, An incomplete Cholesky factorization for dense symmetric positive
definite matrices, BIT, 40 (2000), pp. 536–558.

[20] R. D. C. Monteiro, Primal–dual path-following algorithms for semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 663–678.

[21] R. D. C. Monteiro and Y. Zhang, A unified analysis for a class of long-step primal-dual
path-following interior-point algorithms for semidefinite programming, Math. Program.,



674 M. FUKUDA, M. KOJIMA, K. MUROTA, AND K. NAKATA

81 (1998), pp. 281–299.
[22] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota, Exploiting sparsity in

semidefinite programming via matrix completion II: Implementation and numerical results,
in preparation.

[23] K. Nakata, K. Fujisawa, and M. Kojima, Using the conjugate gradient method in interior-
point methods for semidefinite programs, in Proc. Inst. Statist. Math., 46 (1998), pp. 297–
316 (in Japanese).

[24] Yu. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled cones,
SIAM J. Optim., 8 (1998), pp. 324–364.

[25] M. Ohsaki, K. Fujisawa, N. Katoh, and Y. Kanno, Semi-definite programming for topology
optimization of trusses under multiple eigenvalue constraints, Comput. Methods Appl.
Mech. Engrg., 180 (1999), pp. 203–217.

[26] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.
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SIAM J. OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 11, No. 3, pp. 675–690

Abstract. We provide a characterization of the nonemptiness of the solution set for generalized
noncoercive equilibrium problems (an extension of generalized quasi-variational inequalities) defined
in reflexive Banach spaces in the quasi-convex case. In addition, several necessary and sufficient
conditions for the set of solutions to these problems to be nonempty and bounded are also given.
Our approach is based on recession notions which proved to be very useful in the study of noncoercive
minimization problems. In fact, we find some particular cones as estimates for the recession cone of
the solution set. These cones (for the ones containing the latter set) are proved to be sharp enough
to encompass several special situations found in the literature.
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1. Introduction and formulation of the problem. Several problems arising
in optimization, such as fixed-point problems, problems of (Nash) economic equilib-
rium, complementarity problems, and quasi-variational inequalities, with the latter
modeling various situations in mechanics, for instance, have the same mathemati-
cal formulation, which may be stated as follows: Given a closed convex set K and
real-valued functions f : K ×K → R, ϕ : K ×X → R ∪ {+∞},

find x̄ ∈ K such that f(x̄, y) + ϕ(x̄, y) ≥ ϕ(x̄, x̄) ∀ y ∈ K.(1.1)

The appearance of the function ϕ is in order to include some classes of generalized
quasi-variational inequalities, and since our interest is also to include (quasi) varia-
tional inequalities set in the context of the calculus of variations (see [BNS, JM, GT,
BBGT, BO, AGT, A1]), we consider the case when K is a subset of a reflexive Banach
space X. Thus, X will be endowed with its weak topology.

A model case we have in mind is f(x, y) = 〈F (x)− x∗, y− x〉, ϕ(x, y) = iQ(x)(y).
Here, iC denotes the indicator function of the set C; i.e., iC(y) = 0 if y ∈ C and
iC(y) = +∞ otherwise, and F (resp., Q) is a single-valued (resp., set-valued) map
from K into its topological dual X∗ (resp., the subsets of X). From this model, one can
realize, on one hand, the close relation to minimization problems in the context of the
calculus of variations [BNS, JM, GT, BO] or mathematical programming [HP, AC, C]
and, on the other hand, which basic assumptions on f and ϕ arise. We will impose
the following two assumptions on f according to whether ϕ ≡ 0:

(f1) For every x ∈ K, every y ∈ K, f(x, y) ≥ 0 implies f(y, x) ≤ 0 and
(f ′

1) for every x ∈ K, every y ∈ K, f(x, y) + f(y, x) ≤ 0.
Problems like (1.1) have been considered in [JM] as a generalization to those

studied in [BNS], where only the case ϕ ≡ 0 is discussed. The particular case ϕ(x, x) =
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0 is treated in [BO] and in subsequent papers (see, for instance, [HS] and references
therein). The case when K is bounded was first studied in [F2] under a stronger
assumption on f with ϕ ≡ 0. In [BO] the authors use the term equilibrium problems.

In all the above-mentioned papers the coerciveness condition is avoided. This is
done by assuming the existence of a bounded set such that no element outside this
set can be a candidate for a solution. Therefore, in this case, the solution set will be
bounded [BNS, JM, K2, HP, HS]. A variant of this idea is used in Corollary 3.1 in
[HP] and also in [BO], allowing the solution set to be unbounded.

In this paper the noncoerciveness condition will be treated by using the notion
of recession functions and cones. This technique was also employed in [BBGT, A1]
for minimization problems and in [GT, AGT] for variational inequalities. We point
out that the case when ϕ ≡ 0 has also been studied, in our framework, in [CCR]
under the convexity assumption on f(x, ·), but its result yields existence of solutions,
as in [BNS, JM, HS], whenever the solution set is bounded. Our results apply also to
situations in which the solution set may be unbounded.

As in the convex minimization problem, one is led to study the behavior of the
convex function to be minimized along the directions on which its recession function
is nonpositive. These directions are obtained as weak limits of sequences ( xn

||xn|| ) with

(xn) being any unbounded minimizing sequence, as expected. This consideration has
been taken into account in Theorem 9.2 in [R], Proposition 4.4 in [AC], partially in
[GT, BBGT], and slightly improved in [A1], where it is assumed that the recession
function is nonnegative, but, as we will see in sections 3 and 4 (see also [FS] for the
convex case) it will not be the case. On the contrary, we will devote our study to
the set of directions where the recession function is nonpositive. This is motivated
by the observation, in case K is convex and the function h to be minimized on K is
also convex, that S∞ = R provided S �= ∅, where S is the set of minimizers of h and
R = {v ∈ K∞ : h∞(v) ≤ 0}. Clearly, this set is a closed, convex cone. Thus, in case
R �= {0}, some additional conditions on R must be imposed to guarantee the existence
of solutions. Now, the following question in the nonconvex case, at least when h is
quasi-convex, arises: Is R the right set to have the equality R = S∞? The answer is
certainly no, as the example h(x) =

√
x, x ≥ 0, shows. Notice that, in this case, h∞

is still defined (see [BBGT] or the next section). Thus, our first task will be to find
an alternative set for R in a minimization problem or, more generally, for generalized
quasi-variational inequalities or generalized equilibrium problems. Once this is done,
we shall impose assumptions on R yielding existence of solutions to problem (1.1).

Our abstract existence theorems extend the results established in [FS] to the
quasi-convex case. If K is bounded or the usual coerciveness assumption (3.4) or
(3.5), to be stated presently, is satisfied, our theorems recover well-known classical
existence results for nonlinear variational inequalities (see [KS]), and these results are
extended to generalized quasi-variational inequalities or equilibrium problems.

The purpose of this paper is to provide necessary and sufficient conditions for
the solution set to be nonempty. If, in addition, the set of solutions is required to be
bounded, the necessary and sufficient conditions become more precise. In this case,
we extend a result due to Crouzeix in [C] and that established in [DH].

To gain insight into the mathematical difficulties and to obtain the most infor-
mation, we start by studying the case ϕ(x, y) = h(y) in section 3, once we introduce
some basic definitions in section 2. The general case as stated in (1.1) is discussed in
section 4.

Some algorithms for the classical variational inequality 〈F (x), y − x〉 ≥ 0, based
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on recession methods, have been developed in [A2].
A class of vector minimization problems is discussed in [F] following the same

approach used in this paper.

2. Basic definitions and preliminaries. Throughout this paper X will be a
reflexive Banach space. For any given weakly closed set C in X (actually, the recession
notion to be considered is blind to weak closure), we define the recession cone of C
as the weakly closed set

C∞ =
{
x ∈ X : ∃ tn ↓ 0,∃ xn ∈ C, tnxn ⇀ x

}
.

Here “⇀” stands for the weak convergence. It results in that ∅∞ = ∅. For any given
function h : X → R∪{+∞}, the recession function of h is defined as the function h∞

such that

epi h∞ = (epi h)∞.

Consequently, it is not difficult to prove that

h∞(y) = inf

[
lim inf
n→+∞ tnh

(
xn
tn

)
: tn ↓ 0, xn ⇀ y

]
.

In the case where C is convex and closed it is known that, given x0 ∈ C,

C∞ =
{
x ∈ X : x0 + tx ∈ C ∀ t > 0

}
,

the cone does not depend on x0 ∈ K, and when h is a convex and l.s.c. function, we
have

h∞(x) = lim
λ→+∞

h(x0 + λx)− h(x0)

λ
= sup

λ>0

h(x0 + λx)− h(x0)

λ
∀ x0 ∈ dom h,

where, as usual, dom h = {x ∈ X : h(x) < +∞} and the epigraph of h is the set
epi h = {(x, t) ∈ X × R : h(x) ≤ t}. In what follows, given a set K ⊂ X and a
function f : K × K → R, f∞ will denote the recession function of f with respect
to its second argument, i.e., the recession function of the function y ∈ K �→ f(x, y)
for any fixed x ∈ K. Certainly, we extend the function f(x, ·) to all X by setting
f(x, y) = +∞ if y ∈ X \K.

We list some basic results on recession cones in the following proposition that will
be useful in what follows.

Proposition 2.1. The following hold:
(a) K1 ⊂ K2 implies K∞

1 ⊂ K∞
2 ;

(b) (K + x)∞ = K∞ for all x ∈ X;
(c) let (Ki), i ∈ I, be any family of nonempty sets in X; then(⋂

i∈I
Ki

)∞
⊂
⋂
i∈I

(Ki)
∞.

If, in addition, ∩iKi �= ∅ and each set Ki, i ∈ I, is closed and convex, then we obtain
an equality in the previous inclusion.

Definition 2.2. A function f : X → R ∪ {+∞} with dom f being a convex set
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(i) is said to be strictly quasi-convex if, given any u, v in X, f(u) �= f(v), one has
f(z) < max{f(u), f(v)} for all z ∈ ]u, v[;

(ii) is said to be quasi-convex if each of its level sets is a convex set or, equivalently,
if f(tx + (1− t)y) ≤ max{f(x), f(y)} for all x, y in X and all t ∈ [0, 1].

Simple examples show that there are functions that are strictly quasi-convex but
not quasi-convex. However, it is well known that strict quasi-convexity and lower
semicontinuity imply quasi-convexity [K1].

3. The case ϕ(x, y) = h(y). Given a closed, convex set K ⊂ X, and functions
f : K × K → R, h : X → R ∪ {+∞} such that K ∩ dom h �= ∅. We consider the
problem

find x̄ ∈ K such that f(x̄, y) + h(y) ≥ h(x̄) ∀ y ∈ K.(3.1)

Here, our basic assumptions are the following:
(f0) f(x, x) = 0 for all x ∈ K;
(f1) for every x ∈ K ∩ dom h and every y ∈ K ∩ dom h, f(x, y) + h(y) ≥ h(x)

implies f(y, x) + h(x) ≤ h(y);
(f2) for every z ∈ K, f(z, ·) + h(·) is l.s.c. and strictly quasi-convex in K (hence

quasi-convex);
(f3) for every x, y in K, the function t ∈ [0, 1] �→ f(ty + (1 − t)x, y) is u.s.c. at

t = 0;
(h) the function h : X → R ∪ {+∞} is l.s.c. with dom h convex.
We start by recalling the well-known lemma due to Ky Fan [F1], which will be

used in the proof of an existence result to problem (3.1) in the case where K is
bounded. Although such an existence result is a particular case of Lemma 1 in [O],
we present a proof of this result for the readers’ convenience.

Lemma 3.1 (see [F1]). Let Y be an arbitrary set in a topological vector space X.
Assume that for every y ∈ Y , F (y) is closed in X and the following two conditions
are satisfied:

(a) The convex hull of any finite set {y1, . . . , yn} of Y is contained in
⋃n
i=1 F (yi);

(b) F (y) is compact for at least one y ∈ Y.
Then ⋂

y∈Y
F (y) �= ∅.

A result similar to the next lemma, in the case where f(·, y) is u.s.c., may be
found in [F2].

Lemma 3.2. Let K ⊂ X be a closed, convex, and bounded set. Assume functions
f , h satisfy conditions (f0), (f1), (f2), (f3), and (h). Then problem (3.1) admits a
solution.

Proof. First we recall that every closed, bounded, convex set in a reflexive Banach
space is weakly compact. We will apply Lemma 3.1 to the sets

F (y) =
{
x ∈ K : f(y, x) + h(x) ≤ h(y)

}
, y ∈ K ∩ dom h.

Let us verify the hypothesis of the lemma. Each of these sets is nonempty, closed,
bounded, and convex because of (f2) and the remark following Definition 2.2. Take
any finite set y1, . . . , yn in K ∩ dom h. Notice that when y ∈ K \ dom h, F (y) = K.
If z =

∑n
i=1 αiyi �∈

⋃n
i=1 F (yi) for some α = (α1, . . . , αn) ∈ [0, 1]n with

∑n
i=1 αi = 1,
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then f(yi, z) + h(z) > h(yi) for all i = 1, . . . , n. Thus, by (f1), f(z, yi) + h(yi) < h(z)
for all i = 1, . . . , n. Since f(z, ·) + h(·) is quasi-convex, we have

h(z) = f(z, z) + h(z) ≤ max
1≤i≤n

{f(z, yi) + h(yi)}.

The latter leads to a contradiction with the previous strict inequalities. Hence, as a
consequence of Lemma 3.1, we obtain⋂

y∈K∩dom h

F (y) �= ∅.

Take any x̄ in this intersection; then f(y, x̄) +h(x̄) ≤ h(y) for all y ∈ K ∩ dom h. Let
y ∈ K ∩ dom h be arbitrary, y �= x̄, and let xt = ty + (1− t)x̄, t ∈ ]0, 1[. Obviously
xt ∈ K∩dom h and f(xt, x̄)+h(x̄) ≤ h(xt) for all t ∈ ]0, 1[. If f(xt, y)+h(y) < h(xt)
for some t ∈ ]0, 1[, then, in case f(xt, x̄)+h(x̄) < h(xt), we obtain by quasi-convexity

h(xt) = f(xt, xt) + h(xt) ≤ max{f(xt, x̄) + h(x̄), f(xt, y) + h(y)} < h(xt),

which is a contradiction; in case f(xt, x̄) + h(x̄) = h(xt)(> f(xt, y) + h(y)), we also
get a contradiction because of the strict quasi-convexity of f(xt, ·) + h(·). Thus, we
conclude that f(xt, y) + h(y) ≥ h(xt) for all t ∈ ]0, 1[. By assumption (f3) and (h),
one obtains f(x̄, y) + h(y) ≥ h(x̄).

We now consider the case when K is unbounded. For that purpose we introduce
the following sets:

R0 =
⋂

y,z∈K

{
v ∈ K∞ : f(y, z+λv)+h(z+λv) ≤ max{f(y, z)+h(z), h(y)} ∀ λ > 0

}
,

R1 =
⋂
y∈K

{
v ∈ K∞ : f(y, y + λv) + h(y + λv) ≤ h(y) ∀ λ > 0

}
.

Obviously, both sets are closed convex cones. In addition, we also consider the set

R =
{
v ∈ K∞ : (f(y, ·) + h(·))∞(v) ≤ 0 ∀ y ∈ K

}
,

which is a weakly closed cone not necessarily convex: recall that for fixed y ∈ K,
f(y, ·) is extended to all X by putting f(y, x) = +∞ if x ∈ X \K. Let us denote by
S the solution set to problem (3.1). Then

S =
{
x ∈ K : f(x, y) + h(y) ≥ h(x) ∀ y ∈ K

}
.

Taking into account the assumptions on f and h (see the last part of the proof of
Lemma 3.2), we have

S =
{
x ∈ K : f(y, x)+h(x) ≤ h(y) ∀ y ∈ K

}
=
⋂
y∈K

{
x ∈ K : f(y, x)+h(x) ≤ h(y)

}
.

Setting for any fixed y ∈ K ∩ dom h

S0(y) =
{
x ∈ X : f(y, x) + h(x) ≤ h(y)

}
,
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we have

S =
⋂

y∈K∩dom h

K ∩ S0(y).

Therefore, because of the assumptions on f , the set S is convex and closed. Then, by
Proposition 2.1,

S∞ =


 ⋂
y∈K∩dom h

K ∩ S0(y)




∞

⊂
⋂

y∈K∩dom h

(K∩S0(y))∞ ⊂
⋂

y∈K∩dom h

(S0(y))∞∩K∞,

(3.2)

where equalities hold if S �= ∅. On the other hand,

R1 =
⋂

y∈K∩dom h

{
v ∈ K∞ : f(y, y + λv) + h(y + λv) ≤ h(y) ∀ λ > 0

}

=
⋂

y∈K∩dom h

{
v ∈ K∞ : y + λv ∈ S0(y) ∀ λ > 0

}

=
⋂

y∈K∩dom h

{
v ∈ K∞ : v ∈ (S0(y))∞

}
=

⋂
y∈K∩dom h

K∞ ∩ (S0(y))∞.

Hence, S∞ ⊂ R1. Since (S0(y))∞ ⊂ {v ∈ X : (f(y, ·) + h(·))∞(v) ≤ 0} for all y ∈ K,
we conclude R1 ⊂ R. Thus, we have the following theorem.

Theorem 3.3. Let K ⊂ X be a closed convex set. Under assumptions (fi),
i = 0, 1, 2, 3, and (h), we have that

(a) R0 and R1 are closed convex cones; R is a weakly closed cone;
(b) S∞ ⊂ R0 ⊂ R1 ⊂ R;
(c) if the solution set S is nonempty, then S∞ = R1 = R0. Thus, S + R1 = S.

Furthermore, if S is bounded, then R1 = R0 = {0};
(d) (see [FS]) if f(x, ·) + h(·) is convex for all x ∈ K, then R1 = R.
Proof. Part (a) and the fact that R0 ⊂ R1 ⊂ R were already proved. Let us

prove that S∞ ⊂ R0. If S = ∅, there is nothing to do. Let v ∈ S∞, then ∃ tn ↓ 0,
∃ xn ∈ S such that tnxn ⇀ v. Then v ∈ K∞. For any fixed y ∈ K ∩ dom h, we
have f(xn, y) + h(y) ≥ h(xn) for all n. Let us fix any λ > 0 and z ∈ K; then the
quasi-convexity of f(y, ·) + h(·) implies

f(y, (1− λtn)z + λtnxn) + h((1− λtn)z+λtnxn)

≤ max{f(y, z) + h(z), f(y, xn) + h(xn)}
≤ max{f(y, z) + h(z), h(y)}.

By the l.s.c. property, v ∈ R0 and the proof of part (b) is complete. Part (c) follows
from (b) and the remark in the previous paragraph. Finally, part (d) is a consequence
of the representation of the recession function in the convex case.

We now establish the first main existence theorem of this section.
Theorem 3.4. If assumptions (fi), i = 0, 1, 2, 3, and (h) on the functions f and

h hold, then problem (3.1) admits at least a solution if and only if (f4) is satisfied,
where

(f4) if the sequence xn ∈ K ∩ dom h, ||xn|| → +∞ is such that xn

||xn|| ⇀ v with

v ∈ R0 and for all y ∈ K ∩ dom h, ny exists such that

f(xn, y) + h(y) ≥ h(xn) when n ≥ ny,
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then there exists u ∈ K ∩ dom h such that for n sufficiently large ||u|| < ||xn|| and
f(xn, u) + h(u) ≤ h(xn).

Proof. The “only if” part is as follows. For every n ∈ N, set Kn = {x ∈ K : ||x|| ≤
n}. We may suppose, without loss of generality, that Kn ∩ dom h �= ∅ for all n ∈ N.
Take any solution xn ∈ Kn ∩ dom h to the problem

find x̄ ∈ Kn ∩ dom h such that f(x̄, y) + h(y) ≥ h(x̄) ∀ y ∈ Kn.(3.3)

Such xn exists by virtue of Lemma 3.2. Certainly, if ||xn|| < n for some n, then
standard arguments show that xn is also a solution to problem (3.1). If, on the
contrary, ||xn|| = n for all n ∈ N, we will prove that xn, for n large enough, will be
also a solution to our problem (3.1). To that end, we reason as follows. First of all,
we may suppose that xn

||xn|| ⇀ v. Then v ∈ K∞. For any fixed y ∈ K ∩ dom h, we

have f(xn, y) + h(y) ≥ h(xn) for all n sufficiently large (n ≥ ny > ||y||). Let us fix
any λ > 0 and z ∈ K; then the quasi-convexity of f(y, ·) + h(·) implies

f

(
y,

(
1− λ

||xn||
)

z +
λ

||xn||xn
)

+ h

((
1− λ

||xn||
)

z +
λ

||xn||xn
)

≤ max{f(y, z) + h(z), f(y, xn) + h(xn)}
≤ max{f(y, z) + h(z), h(y)}.

By the l.s.c. property, v ∈ R0. Thus, assumption (f4) asserts that, for n suffi-
ciently large, there exists u ∈ K ∩ dom h such that ||u|| < ||xn|| and

f(xn, u) + h(u) ≤ h(xn).

We claim that xn is also a solution to problem (3.1). If not, there exists y ∈ K∩dom h,
||y|| > n such that f(xn, y) + h(y) < h(xn). Since ||u|| < ||xn|| = n, we have
f(xn, u)+h(u) = h(xn)(> f(xn, y)+h(y)) and, moreover, we can find z ∈ ]u, y[ such
that ||z|| < n. Thus, by the strict quasi-convexity of f(xn, ·) + h(·),

f(xn, z) + h(z) < max{f(xn, u) + h(u), f(xn, y) + h(y)} = h(xn),

which gives a contradiction since xn is a solution to (3.3). Consequently, f(xn, y) +
h(y) ≥ h(xn), proving our claim.

To prove the “if” part, take any sequence (xn) in K, ||xn|| → +∞ and any
solution x̄ to problem (3.1). Then condition (f4) is satisfied by setting u = x̄ and we
use (f1).

This theorem, with h = 0, was established in [FS, Theorem 3.7] under the con-
vexity assumption on f(x, ·); see also [CCR, BO]. On the other hand, our assumption
(f4) permits the solution set to be unbounded. This makes our assumption different
from most existent results; see [BNS] for convex problems, [HP] (resp., [HS]) for vari-
ational inequalities in finite (resp., infinite) dimensional spaces. In fact, in [FS] it is
shown that (f4) is strictly weaker than the corresponding assumptions imposed in the
above-mentioned papers.

When X = R
n, assumption (f4) is satisfied vacuously if R0 = {0}. Contrary

to this case, only the condition R0 = {0} is not sufficient to guarantee existence of
solutions, unless a further assumption is imposed (see Theorem 3.6). A condition
implying R0 = {0} is given in Remark 3.8. A more general condition is expressed in
the next lemma.
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Lemma 3.5. Assume K is a closed convex set and for every x ∈ K, f(x, ·) +h(·)
is l.s.c. and strictly quasi-convex. The following assertions hold:

(a) If R0 ⊂ −R0 (resp., R1 ⊂ −R1 ), then f(y, y +λv) + h(y +λv) = h(y) for all
λ ∈ R, all v ∈ R0 (resp., all v ∈ R1 ), and all y ∈ K;

(b) if f(x, ·) + h(·) is convex for all x ∈ K, then R1 is also convex and R = R1.
In this case, R is a subspace if and only if R ⊂ −R.

Proof. Assume that R0 ⊂ −R0 (the case R1 ⊂ −R1 is similar); then every v ∈ R0

satisfies −v ∈ R0. Thus one obtains, in particular, f(y, y + λv) + h(y + λv) ≤ h(y)
and f(y, y − λv) + h(y − λv) ≤ h(y) for all λ > 0 and all y ∈ K. By using the
quasi-convexity of f(y, ·) + h(·), one has

h(y) = f(y, y)+h(y) ≤ max{f(y, y−λv)+h(y−λv), f(y, y+λv)+h(y+λv)} ≤ h(y).

Thus, either f(y, y − λv) + h(y − λv) = h(y) or f(y, y + λv) + h(y + λv) = h(y). In
case one of them is zero and the other is negative, we use the strict quasi-convexity
of f(y, ·) + h(·) to get a contradiction. Therefore, f(y, y + λv) + h(y + λv) = h(y) for
all λ ∈ R and all y ∈ K. Part (b) follows directly since the recession cone of a convex
set is also convex. The last part follows in a similar way.

By many aspects, among them numerical, one may be interested in knowing
when the solution set is bounded; thus a “coercivity” condition has to arise. To that
purpose, we introduce the following compactness condition meaningful only in spaces
of infinite dimension. Such a condition, when applied to problems in mechanics, is
usually a consequence of some embedding theorems.

(f5) Any sequence xn ∈ K ∩ dom h with ||xn|| → +∞ such that for all y ∈
K ∩ dom h, ny exists such that

f(xn, y) + h(y) ≥ h(xn) when n ≥ ny

admits a subsequence (xnk
) such that

xnk

||xnk
|| converges strongly.

This additional condition is required in infinite dimensional spaces since S∞ = {0}
does not imply, in general, the boundedness of S.

Apart from the finite dimensional case, assumption (f5) is usually satisfied when
dealing with variational inequalities [GT, AGT] or minimization problems arising in
mechanics [BBGT, CCR], where it is a consequence of some embedding theorems.
To our knowledge, an assumption like (f5) appears for the first time in [GT] in the
context of variational inequalities. However, there are instances where assumption
(f5) does not hold (see Example 3.9 below).

We thus have the second main existence theorem.
Theorem 3.6. Let K be a closed convex set. Assume function f satisfies as-

sumptions (fi), i = 0, 1, 2, 3, (h), and (f5). Then the following three conditions are
equivalent:

(a) R0 = {0};
(b) R1 = {0};
(c) the solution set to problem (3.1) is nonempty and bounded.
Proof. (a) =⇒ (c): R0 = {0}, together with assumption (f5), implies the bound-

edness of the sequence constructed in the proof of Theorem 3.4, since otherwise R0

would contain a nonnull element. Thus, by assumptions (fi), i = 1, 2, 3, a solution
will be obtained as the weak limit of (xn), and the boundedness of the solution set is
implied again by assumption (f5). The implications (c) =⇒ (b) and (b) =⇒ (a) are
consequences of Theorem 3.3.
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We now present another sufficient and necessary condition for the solution set to
be nonempty and bounded. The sufficiency of this condition has its origin, as far as
we know, in [K2]; for a historical reference we quote [HP]. This condition regards the
existence of a bounded set such that no element outside this set is a candidate for
solution. The necessity of such a condition was proved in [DH] for classical variational
inequalities. Sometimes it may be difficult to find such a bounded set; in this case,
Remark 3.8 (see also (3.5)) plays a fundamental role.

Theorem 3.7. Let K be a closed convex set. Assume functions f and h satisfy
assumptions (fi), i = 0, 1, 2, 3, and (h). Then the solution set to (3.1) is nonempty
and bounded if and only if the following “coercivity” condition holds:

∃ r > 0 ∀ x ∈ K \Kr ∃ y ∈ Kr ∩ dom h : f(x, y) + h(y) < h(x),

where Kr = {x ∈ K : ||x|| ≤ r} is such that Kr ∩ dom h �= ∅.
Proof. Assume the solution set S to be nonempty and bounded. The reasoning is

as in [DH]. Let x̄ ∈ S. If the coercivity condition does not hold, then, in particular,
for n > supx∈S ||x|| + 1, there exists x ∈ K \ Kn such that for all y ∈ Kn one has
f(x, y) + h(y) ≥ h(x). Notice that x ∈ dom h. Take λ ∈ ]0, 1[ such that, setting
z = x̄ + λ(x − x̄), we have n − 1 ≤ ||z|| < n. Clearly z ∈ K ∩ dom h. We claim
that z is a solution to problem (3.3). In fact, for all y ∈ Kn, f(y, z) + h(z) ≤
max{f(y, x̄) + h(x̄), f(y, x) + h(x)} ≤ h(y) by quasi-convexity of f(y, ·) + h(·). By
assumption (f3) (see the proof of Lemma 3.2), we conclude that the claim is true.
We now prove that z is actually a solution to problem (3.1). If not, there exists
y1 ∈ K \ Kn satisfying f(z, y1) + h(y1) < h(z). Choose z̃ = αy1 + (1 − α)z with
α ∈ ]0, 1[ such that z̃ ∈ Kn. Then, by strict quasi-convexity, we have

f(z, z̃) + h(z̃) < max{f(z, y1) + h(y1), f(z, z) + h(z)} = h(z),

which contradicts the fact that z is a solution to (3.3), proving that z ∈ S. Since
||z|| ≥ n− 1 > supx∈S ||x||, we conclude the coercivity condition has to hold.

Let us prove the solution set S is nonempty and bounded. We construct a sequence
(xn) as solutions of the problem (3.1) restricted to Kn (see Lemma 3.2). The coercivity
assumption implies that such a sequence is bounded and, therefore, there exists x̄ ∈ K
such that xn ⇀ x̄. It follows from (f1) and (f2) that x̄ is a solution to (3.1). The
boundedness of S is again a consequence of the coercivity condition.

Remark 3.8. We notice that if K is bounded or the problem is coercive in the
sense that

lim inf
||x||→+∞,x∈K

{−f(x, y0) + h(x)} > h(y0) for some y0 ∈ K ∩ dom h,(3.4)

then no sequence in (f4) or (f5) exists. Thus, (f4) and (f5) hold vacuously. Hence,
if the functions f and h satisfy (fi), i = 0, 1, 2, 3, and (3.4), then the solution set is
nonempty and bounded. As a consequence R0 = R1 = {0}. In fact, the nonemptiness
of the solution set follows from Theorem 3.4, and the boundedness is a consequence
of (3.4).

We point out that there are functions h (f = 0) satisfying R0 = {0} without
being coercive in the sense of (3.4). Such a situation is exhibited in Example 3.9. On
the other hand, condition (3.4) is implied by the usual assumption

lim
||x||→+∞,x∈K

−f(x, y0) + h(x)

||x|| = +∞.(3.5)
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This condition was used in [GY] in case f(x, y) = 〈F (x), y−x〉 with h being a convex
l.s.c. function (see also [GT]), while in case h = 0 condition (3.4) is used with non-
monotone operator F . When h(x) = 〈x∗, x〉, x∗ ∈ X∗, (3.5) amounts to writing

lim
||x||→+∞,x∈K

−f(x, y0)

||x|| = +∞,

which is considered in [HP] in the finite dimensional case. We refer to [KS] for more
general spaces.

The next example shows an instance where Theorem 3.4 can be applied without
satisfying a “compactness condition” as required in [A1] or Theorem 3.6.

Example 3.9. See also [FS]. Take

K = X = l2 =


x = (xi) : ||x|| =

∑
i≥1

|xi|2 < +∞

 and h(x) =

∑
i≥1

|xi|
i2

.

Let us consider f = 0. Denote by en the unit element in l2; i.e., en is the sequence
having 1 in the nth position and zero in all other positions. Then consider the sequence
xn = nen in l2; such a sequence does not satisfy the compactness condition required in
[A1]. Nevertheless, function h has a minimum point as a consequence of our Theorem
3.4 (take u = 0), although it may also be obtained directly. It is worthwhile to
mention that, in this case, R = R0 = {0}. However, we have

lim inf
||x||→+∞,x∈K

h(x) ≤ h(y0) for every y0 ∈ l2,

that is, it is not coercive in the sense of (3.4).
Remark 3.10. The phenomenon presented in the preceding example is related

to ill-posed problems. Notice that the sequence above is minimizing and there exists
only one minimizer for h, but such a sequence does not converge strongly. This cannot
happen in finite dimensional spaces.

Theorems 3.4 and 3.6 can be considered as extensions to the quasi-convex case of
the results established in [FS] and therefore also of that proved in [C]. In particular,
Theorem 3.4 extends several results appearing in the literature, among them the result
proved in [GT]. More precisely, in that paper the case 〈F (x) − x∗, y − x〉 + h(y) ≥
h(x) with F monotone and h convex is studied, and some applications to unilateral
problems are also exhibited. In this case,

R1 =

{
v ∈ K∞ :

h(y + λv)− h(y)

λ
≤ 〈x∗ − F (y), v〉 ∀ λ > 0, ∀ y ∈ K

}
.

Here we do not require the convexity of h. Related results can also be found in [AGT]
for this particular situation.

If K is bounded or the coerciveness assumption (3.4) or (3.5) is satisfied, one can
recognize from our Theorems 3.4 and 3.6 the classical results for nonlinear variational
inequalities [KS]. Certainly, our theorems allow wider generality, not only to nonco-
ercive variational inequalities, but also to generalized quasi-variational inequalities or
equilibrium problems. For instance, in the case where R0 is such that R0 ⊂ −R0, we
obtain an existence result once assumption (f5) is satisfied without further restrictions
on the data. More precisely, on combining Theorem 3.4, Lemma 3.5, and Theorem
3.3, we have the following corollary.
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Corollary 3.11. Assume functions f and h satisfy assumptions (fi), i =
0, 1, 2, 3, (f5), and (h). If either R0 ⊂ −R0 or R1 ⊂ −R1, then problem (3.1) admits
at least a solution. As a consequence R0 = R1.

Proof. We proceed as in Theorem 3.4 to construct a sequence (xn) with xn

||xn|| ⇀

v ∈ R0. Applying (f5), we get xn

||xn|| → v, v �= 0. Then, the result is obtained as a

consequence of Lemma 3.5 and Theorem 3.4.
We have to point out that, in the general nonconvex case, the condition R0 ⊂

−R0 or R1 ⊂ −R1 is not enough to guarantee the existence of a solution to the
corresponding problem, as Example 3.13 in [BBGT] shows.

Example 3.12. Let K be a convex closed set in X and let F : X → X∗, g : X → X
be single-valued maps such that the function f defined as f(x, y) = 〈F (x), g(y)−g(x)〉,
x, y ∈ K, satisfies assumptions (fi), i = 1, . . . , 4. It is requested to

find x̄ ∈ K such that 〈F (x̄), g(y)− g(x̄)〉 ≥ 0 ∀ y ∈ K.

In this case,

R1 =
{
v ∈ K∞ : 〈F (y), g(y + λv)− g(y)〉 ≤ 0 ∀ λ > 0, ∀ y ∈ K

}
.

In case g(ξ) = ξ, this cone reduces to R1 = K∞ ∩ (F (K))0, where (F (K))0 is the
polar cone of F (K).

Remark 3.13. The case f ≡ 0 corresponding to minimization problems deserves
special attention by virtue of Theorem 3.4 in [BBGT], Theorem 2.3 in [BT], and
Theorem 2.1 in [A1]. In this particular situation, our result obtained is a refinement of
to the case when h is a quasi-convex function: first, we do not need to know a priori the
nonnegativeness of h∞; and second, when imposing the additional condition h∞ ≥ 0,
our assumption (f4) is required to hold on the set R0 which is strictly contained in
ker h∞ = R used in the above-mentioned papers. The latter is shown by taking the
function h(y) =

√
y, y ≥ 0, where R0 = R1 = {0} and R = [0,+∞[.

Example 3.14. Let A : R
n → R

p be a linear mapping. Let h : R
n → R ∪ {+∞}

be a proper, strict quasi-convex, and l.s.c. function and consider the set K as

K =
{
x ∈ R

n : y = Ax
}
, K ∩ dom h �= ∅,

which is closed and convex. In this case it is not difficult to prove that

K∞ =
{
v ∈ R

n : Av = 0
}
.

We are interested in the following problem:

min{h(x) : Ax = y}.(3.6)

In this case,

R1 =
{
v ∈ R

n : Av = 0, h(y + λv) ≤ h(y) ∀ λ > 0, ∀ y ∈ K
}
.

Then, R1 ⊂ −R1 if and only if for all v ∈ R
n with Av = 0, for all λ > 0 and all y ∈ K:

h(y + λv) ≤ h(y) implies h(y − λv) ≤ h(y). Under this assumption the solution set
to problem (3.6) is nonempty. In addition, the set of solutions will be nonempty and
bounded if and only if R1 = {0}.

The case when h is convex was studied in [R, Theorems 9.2 and 27.3] and [AC].
The results of these papers are extended in [FS].
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4. The general case. Now, in addition to the set K and function f as before,
we are given a function ϕ : K ×X → R∪{+∞}. The problem to be discussed in this
section is

find x̄ ∈ K f(x̄, y) + ϕ(x̄, y) ≥ ϕ(x̄, x̄) ∀ y ∈ K.(4.1)

Since every x̄ ∈ K such that K ∩dom ϕ(x̄, ·) = ∅ is a solution to (4.1), we will assume
that K ∩ dom ϕ(x, ·) �= ∅ for all x ∈ K. We need the following assumptions:

(f̃0) f(x, x) = 0 for all x ∈ K;
(f̃1) f(x, y) + f(y, x) ≤ 0 for all x, y ∈ K;
(f̃2) for every (x, y) ∈ K×K, the function f(x, ·)+ϕ(y, ·) is strictly quasi-convex

and l.s.c. in K (these two conditions imply quasi-convexity);
(f̃3) for every y ∈ K, ϕ(y, ·) is l.s.c. in X with dom ϕ(y, ·) being a convex set;
(f̃4) for every x, y ∈ K, the function t ∈ [0, 1] �→ f(ty + (1 − t)x, y) is u.s.c. at

t = 0.
Lemma 4.1. Let K be a convex, closed, and bounded set in X. Under assumptions

(f̃i), i = 0, . . . , 3, we have ⋂
w∈K

Fx(w) �= ∅ ∀ x ∈ K,

where Fx(w) = {y ∈ K : f(w, y)+ϕ(x, y) ≤ ϕ(x,w)}. If, in addition, (f̃4) is imposed,
then every ȳ in this intersection satisfies

f(ȳ, w) + ϕ(x,w) ≥ ϕ(x, ȳ) ∀ w ∈ K.(4.2)

Proof. In the case where x ∈ K is such that K ∩ dom ϕ(x, ·) = ∅, then ϕ(x,w) =
+∞ = ϕ(x, y) for all w, y ∈ K. Thus Fx(w) = K for all w ∈ K and hence⋂

w∈K
Fx(w) = K �= ∅.

Therefore, we consider x ∈ K such that K ∩ dom ϕ(x, ·) �= ∅. In this case, one has⋂
w∈K

Fx(w) =
⋂

w∈K∩dom ϕ(x,·)
Fx(w),

where each set Fx(w) is closed, convex, and nonempty for all w ∈ K ∩ dom ϕ(x, ·).
An application of Lemma 3.1 (see the proof of Lemma 3.2) allows us to conclude that⋂

w∈K
Fx(w) =

⋂
w∈K∩dom ϕ(x,·)

Fx(w) �= ∅ if K ∩ dom ϕ(x, ·) �= ∅.

Let us prove the second part. In the case where K ∩ dom ϕ(x, ·) = ∅ there is nothing
to prove. Thus, we consider the case K ∩ dom ϕ(x, ·) �= ∅. Take any ȳ ∈ Fx(w) for
all w ∈ K ∩ dom ϕ(x, ·); then

f(w, ȳ) + ϕ(x, ȳ) ≤ ϕ(x,w) ∀ w ∈ K ∩ dom ϕ(x, ·).

Thus ȳ ∈ K ∩ dom ϕ(x, ·). Certainly (4.2) is trivially satisfied if w ∈ K \ dom ϕ(x, ·).
Therefore, we need only to consider w ∈ K ∩ dom ϕ(x, ·). Let xt = tw + (1− t)ȳ for
t ∈ ]0, 1]. Then xt ∈ K ∩ dom ϕ(x, ·), w �= ȳ. Hence, f(xt, ȳ) + ϕ(x, ȳ) ≤ ϕ(x, xt)
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for all t ∈ ]0, 1[. We claim that f(xt, w) + ϕ(x,w) ≥ ϕ(x, xt) for all t ∈ ]0, 1[. If
on the contrary f(xt, w) + ϕ(x,w) < ϕ(x, xt) for some t ∈ ]0, 1[, the quasi-convexity
of f(xt, ·) + ϕ(x, ·) leads to a contradiction in case f(xt, ȳ) + ϕ(x, ȳ) < ϕ(x, xt). In
the case when f(xt, ȳ) + ϕ(x, ȳ) = ϕ(x, xt), we use the strict quasi-convexity to get a
contradiction. It follows that the claim is proved, i.e., f(xt, w)+ϕ(x,w) ≥ ϕ(x, xt) for
all t ∈ ]0, 1[. By letting t ↓ 0 and using (f̃3) and (f̃4), one obtains f(ȳ, w)+ϕ(x,w) ≥
ϕ(x, ȳ), which proves the lemma.

Now, our purpose is to deal with the unbounded case. To that end, we introduce
the following sets:

R0 =

{
v ∈ K∞ : ∃ xn ∈ K, ||xn|| → +∞,

xn
||xn|| ⇀ v, f(y, z + λv)

+ lim sup
n→+∞

ϕ

(
xn,

(
1− λ

||xn||
)

z +
λ

||xn||xn
)
≤ lim inf

n→+∞ max{f(y, z) + ϕ(xn, z), ϕ(xn, y)}

∀ y, z ∈ K, ∀ λ > 0

}
,

R1 =

{
v ∈K∞ : ∃ xn ∈ K, ||xn|| → +∞,

xn
||xn|| ⇀ v, f(y, y + λv)

+ lim sup
n→+∞

ϕ

(
xn,

(
1− λ

||xn||
)

y +
λ

||xn||xn
)
≤ lim inf

n→+∞ ϕ(xn, y) ∀ y ∈ K, ∀ λ > 0

}
,

It is easy to see that both sets reduce to the ones introduced in section 3.
(f̃5) For every closed, bounded, and convex set C ⊂ K, for every filter (or gener-

alized sequence) (xα), (zα) in K such that xα ⇀ x, zα ⇀ z, x, z ∈ C, and

f(w, zα) + ϕ(xα, zα) ≤ ϕ(xα, w) ∀ w ∈ C, ∀ α,

one has

f(w, z) + ϕ(x, z) ≤ ϕ(x,w) ∀ w ∈ C.

(f̃6) If the sequence xn ∈ K, ||xn|| → +∞, is such that xn

||xn|| ⇀ v with v ∈ R0

and for all y ∈ K, ny exists such that

f(xn, y) + ϕ(xn, y) ≥ ϕ(xn, xn) when n ≥ ny,

then there exists u ∈ K such that for n sufficiently large ||u|| < ||xn|| and

f(xn, u) + ϕ(xn, u) ≤ ϕ(xn, xn).

For n ∈ N, set Kn = K ∩{x : ||x|| ≤ n} which may be assumed nonempty for all
n ∈ N. Let us consider the set-valued map Sn : Kn → Kn defined by

Sn(x) =
⋂

w∈Kn

Fn
x (w),

where Fn
x (w) =

{
y ∈ Kn : f(w, y) + ϕ(x, y) ≤ ϕ(x,w)

}
.

We have the following result.
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Lemma 4.2. Let us fix n ∈ N under the assumptions of Lemma 4.1 for Kn,
instead of K, that the set-valued map Sn has nonempty, convex, closed values. If, in
addition, (f̃5) is satisfied, then Sn has a fixed point; i.e., there exists xn ∈ Kn such
that xn ∈ Sn(xn).

Proof. The first part is a straightforward consequence of the previous lemma and
the assumptions on f . The existence of a fixed point follows from the well-known
Katutani fixed-point theorem, since the map Sn is u.s.c. by assumption (f̃5).

Theorem 4.3. Under assumptions (f̃i), i = 0, . . . , 6, problem (4.1) admits at
least a solution.

Proof. For every n ∈ N, we consider Kn as above. By the previous lemma, take
xn ∈ Kn such that xn ∈ Sn(xn). Then, for every n ∈ N,

f(y, xn) + ϕ(xn, xn) ≤ ϕ(xn, y) ∀ y ∈ Kn.

(i) Assume first that supn ||xn|| < +∞; then we may suppose that xn ⇀ x, x ∈ K.
Let y ∈ K ∩ dom ϕ(x, ·) be arbitrary. Take n0 > max{||y||, supn ||xn||}. Then we
have

f(w, xn) + ϕ(xn, xn) ≤ ϕ(xn, w) ∀ w ∈ Kn0
, ∀ n ≥ n0.

Assumption (f̃5) implies

f(w, x) + ϕ(x, x) ≤ ϕ(x,w) ∀ w ∈ Kn0
.

The latter, together with (f̃4), give f(x,w) + ϕ(x,w) ≥ ϕ(x, x) for all w ∈ Kn0
. It

follows, in particular, that f(x, y) + ϕ(x, y) ≥ ϕ(x, x), proving that x is a solution to
problem (4.1).

(ii) Let us now assume that supn ||xn|| = +∞. Up to a subsequence, we may
suppose that ||xn|| → +∞ and xn

||xn|| ⇀ v. We will prove that xn, for n large enough,

will be also a solution to (4.1). To that purpose, we reason as follows. For any fixed
y ∈ K, we have f(xn, y) + ϕ(xn, y) ≥ ϕ(xn, xn) for all n sufficiently large. On the
other hand, for all n large enough, the quasi-convexity (see (f̃2)) implies

f

(
y,

(
1− λ

||xn||
)

z +
λ

||xn||xn
)

+ ϕ

(
xn,

(
1− λ

||xn||
)

z +
λ

||xn||xn
)

≤ max{f(y, z) + ϕ(xn, z), f(y, xn) + ϕ(xn, xn)} ≤ max{f(y, z) + ϕ(xn, z), ϕ(xn, y)}.

By the lower semicontinuity property, one concludes that v ∈ R0. Thus, by assump-
tion (f̃6), there exist u ∈ K such that ||u|| < ||xn|| and f(xn, u)+ϕ(xn, u) ≤ ϕ(xn, xn)
for n sufficiently large. We claim that xn is also a solution to problem (4.1). If not,
there exists y ∈ K ∩ dom ϕ(xn, ·), ||y|| > ||xn||, such that f(xn, y) + ϕ(xn, y) <
ϕ(xn, xn). Since ||u|| < ||xn||, we have f(xn, u) + ϕ(xn, u) = ϕ(xn, xn) by a previous
inequality. In addition, we can find z ∈ ]u, y[ such that ||z|| < ||xn||. Thus, by the
strict quasi-convexity of f(xn, ·) + ϕ(xn, ·),

f(xn, z) + ϕ(xn, z) < max{ϕ(xn, xn), f(xn, y) + ϕ(xn, y)} = ϕ(xn, xn),

which gives a contradiction since xn is a solution to problem (4.1) restricted to Kn.
Consequently, f(xn, y) +ϕ(xn, y) ≥ ϕ(xn, xn), proving that xn is in fact a solution to
(4.1).
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In order to obtain a nonempty and bounded solution set we introduce the following
assumption:

(f̃7) Any sequence xn ∈ K with ||xn|| → +∞ such that

f(xn, y) + ϕ(xn, y) ≥ ϕ(xn, xn) ∀ y ∈ K

admits a subsequence (xnk
) such that

xnk

||xnk
|| converges strongly.

This “compactness condition” reduces to the particular case considered in sec-
tion 3.

Theorem 4.4. Assume that assumptions (f̃i), i = 0, . . . , 5, and (f̃7) hold. If, in
addition R0 = {0} (or R1 = {0}), then the solution set to problem (4.1) is nonempty
and bounded.

Proof. Let us consider the sequence (xn) constructed in the proof of Theorem
4.3. If supn ||xn|| = +∞, we proceed exactly as in part (ii) of the same theorem to
conclude that xn

||xn|| ⇀ v ∈ R0. Assumption (f̃7) implies that xn

||xn|| → v, thus v �= 0,

which gives a contradiction since R0 = {0}. Therefore, supn ||xn|| < +∞. Thus, we
are in part (i) of the proof of Theorem 4.3, and hence, a solution is obtained as a
weak limit point of (xn).

Remark 4.5. One can recognize from our Theorem 4.3 a variant of Ky Fan’s
minimax theorem [F2] in case f ≡ 0; if ϕ ≡ 0, a variant of the Browder–Minty theorem
for variational inequalities, or more generally, a variant of the problem considered in
[BNS]. The particular situation ϕ(x, x) = 0 has been studied in [BO] under the
assumption of upper semicontinuity of ϕ(·, y) contrary to the lower semicontinuity of
ϕ(x, ·) imposed here, and under the convexity assumption. Related results can be
also found in [HS] and references therein.

Remark 4.6. We notice that in case f ≡ 0 and ϕ(x, y) = iQ(x)(y), where ic
denotes the indicator function of the set C, assumption (f̃5) reduces to the upper
semicontinuity of the set-valued map Q : K → K. Thus, in case the set K is bounded,
we recover the Kakutani fixed-point theorem as expected.

We can apply our previous results to the case f(x, y) = 〈F (x)− x∗, g(y)− g(x)〉
and ϕ(x, y) = iQ(x)(y), with F and g satisfying suitable assumptions.

Some other models to which our results apply can be found in [Au].

Acknowledgment. The author is very grateful to the referees for valuable sug-
gestions.

REFERENCES
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Abstract. In emission tomography, images can be reconstructed from a set of measured projec-
tions using a maximum likelihood (ML) criterion. In this paper, we present a primal-dual algorithm
for large-scale three-dimensional image reconstruction. The primal-dual method is specialized to the
ML reconstruction problem. The reconstruction problem is extremely large; in several of our data
sets the Hessian of the objective function is the product of a 1.4 million by 63 million matrix and
its scaled transpose. As such, we consider only approaches that are suitable for large-scale parallel
computation. We apply a stabilization technique to the system of equations for computing the primal
direction and demonstrate the need for stabilization when approximately solving the system using
an early-terminated conjugate gradient iteration.

We demonstrate that the primal-dual method for this problem converges faster than the logarith-
mic barrier method and considerably faster than the expectation maximization algorithm. The use
of extrapolation in conjunction with the primal-dual method further reduces the overall computation
required to achieve convergence.

Key words. tomography, estimation, large-scale problems, parallel computation, applications
of nonlinear programming, primal-dual methods
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1. Introduction. In this paper we consider the image reconstruction problem
in emission tomography. This problem is encountered in the field of nuclear medicine,
which is concerned with the study of organ function through radioactively labeled
“tracer” compounds. The quantity of interest in this problem is the spatial concen-
tration of radioactive emissions within the object under study. The quality of the
reconstructed image can depend upon a number of factors including the number of
emission events (i.e., counts) collected by the scanner and the method used to recon-
struct the image. In studies that are characterized by poor counting statistics (that
is, few counts), statistical reconstruction methods that model the Poisson nature of
the emission process have been shown to improve image quality over traditional, non-
statistical reconstruction methods [26, 35, 57]. The low-count problem has generated
considerable interest in the medical imaging community because low radiotracer doses
and short scanning durations are highly desirable.

The estimation of emission density in an organ is an inherently three-dimensional
(3-D) process. Volume, or 3-D acquisition, improves the counting statistics compared
with two-dimensional (2-D) acquisition (in which axially oblique coincidences are ei-
ther physically or electronically blocked from detection) but increases the problem

∗Received by the editors November 13, 1997; accepted for publication (in revised form) July 31,
2000; published electronically November 15, 2000. This work was performed by an employee of the
U.S. Government or under U.S. Government contract. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

http://www.siam.org/journals/siopt/11-3/33014.html
†Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624

(johnson@mail.nih.gov).
‡Department of Systems Engineering and Operations Research, George Mason University, Fairfax,

VA 22030-4444 (asofer@gmu.edu). This author was partly supported by National Science Foundation
grants DMI-9414355 and DMI-9800544.

691



692 CALVIN A. JOHNSON AND ARIELA SOFER

size considerably. Since the 3-D problem may involve image and measurement vec-
tors with millions of elements, the amount of computation required to perform 3-D
statistical reconstructions can be quite substantial. In our computational studies, for
example, the larger reconstructions consist of 1.4 million image variables which are
reconstructed from a measurement vector with 63 million elements. As such, it is
important to use reconstruction methods that converge rapidly. The statistical image
reconstruction problem can be posed as a constrained nonlinear optimization prob-
lem. In this paper we present a primal-dual method for performing statistical 3-D
reconstructions in emission tomography that has been specialized to the intricacies of
the application. We demonstrate the rapid convergence of our primal-dual method in
computational studies on low-count, 3-D positron emission tomography (PET) data.

This paper is organized as follows. In section 2 we present the statistical model
and develop the objective function. Section 3 reviews the expectation maximization
(EM) method for maximum likelihood (ML) reconstruction. In section 4 we develop
a primal-dual method for ML reconstruction and discuss initialization, stabilization,
and extrapolation enhancements. Computational tests comparing the primal-dual
results to a logarithmic barrier approach and the EM method on small animal data
are presented in section 5. Some concluding remarks are made in section 6.

2. Statistical model and objective function. We begin our discussion by
forming a finite parameter space for the image estimates, as is customary [20]. Con-
sider the situation depicted in Figure 2.1, where a grid of boxes or voxels has been
imposed over the emitting object. (For simplicity, the figure is depicted in 2-D; the
concept is readily extended to 3-D.) Given a set of measurements along lines of coin-
cidence, we seek to estimate xi = E{ξi}, i = 1, . . . , n, the expected number of counts
emitted from voxel i. Let Xi be the number of radioactive events emitted from voxel
i. Xi are assumed to be independent Poisson-distributed random variables with mean
xi [53]. A system matrix C ∈ �n×N is used to model a number of physical effects
including spatially dependent resolution and attenuation. The elements Ci,j of the
system matrix represent the probability that an event emitted from voxel i will be
detected by detector pair (coincidence line). The number of events emitted from voxel
i and detected at coincidence line j is therefore Ξi,j = ξiCi,j , and Ξi,j are also in-
dependent Poisson variables. The measurements yj are thus realizations of sums of
independent Poisson variables yj =

∑
iΞi,j with means ŷj = E{yj} =

∑
i Ci,jxi.

The above is a considerably simplified model of the actual measurement process; for
further discussion on its validity to the present situation, see [24].

Given our simplified Poisson model, the likelihood may be written as

P {y|x} =
∏
j

e−ŷj ŷyjj
yj !

=
∏
j

e−
∑

i
Ci,jxi (

∑
i Ci,jxi)

yj

yj !
.

The ML objective function is formed by taking the log likelihood

logP {y|x} =
∑
j

(
−
∑
i

Ci,jxi + yj log
∑
i

Ci,jxi − log (yj)!

)
.

Ignoring the constant term, we define our objective function fML(x) as

fML (x) =
∑
j

(
− (CTx

)
j
+ yj log

(
CTx

)
j

)
= −qTx +

∑
j

yj log
(
CTx

)
j
,(2.1)
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Fig. 2.1. Relationship between estimate xi and measurement yj . Shown here is the case of
PET, where emission-count measurements are taken along coincidence lines from pairs of detectors.
A finite parameter space is formed by imposing a grid of voxels over the emitting region. The
estimate of the expected emission intensity within voxel i is xi.

where q = CeN ∈ �n and eN ∈ �N is a vector of 1’s, so that q is the sum of the
columns of C (which need not necessarily be 1). Defining

ŷ = CTx

to be a forward transformation, we can write the gradient and Hessian of the objective
function, respectively, as

∇fML (x) = −q + C Ŷ −1y,(2.2)

∇2fML (x) = −C Y Ŷ −2CT ,(2.3)

where Y = diag(y) and Ŷ = diag(ŷ). The Hessian is negative semidefinite (since
yj/ŷj ≥ 0 ∀j), so the objective function (2.1) is concave. Thus, any local maximum
will also be a global maximum.

Equation (2.2) sheds some insight into the computational costs associated with
maximizing the objective function. Given a current solution estimate xk, comput-
ing the gradient requires first computing a forward transformation ŷk = CTxk and
then computing a backward transformation CŶ −1

k y from the forward transformation.
The costs of performing the forward transformation and backward transformation are
similar and together dominate the computation associated with iterative reconstruc-
tion methods, especially in large scale. We shall revisit this computational structure,
which is common to all iterative reconstruction methods.

Since the underlying activity distribution is nonnegative, the ML reconstruction
problem is a constrained optimization problem with lower-bound constraints:

maximize fML (x)
subject to x ≥ 0.

(2.4)

The ML objective function has a finite maximum and compact level sets on x ≥ 0 [36].
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2.1. Maximum a posteriori reconstruction. Without regularity conditions
on x, estimating the spatial emission distribution is a statistically ill-posed problem
[7, 33]. The fully converged ML reconstruction, being dominated by noise and edge
artifact, is not generally of biomedical interest [55]. Regularization can be included
in the objective function by introducing a Bayesian formulation [20, 37]. Given prior
probabilities P{x} and P {y} for the image and measurements, respectively, we define
the posterior probability

P {x|y} =
P {y|x}P {x}

P {y} .

The estimate of x is then obtained by maximizing the posterior probability P{x|y}.
A common choice for the image prior is the Gibbs distribution P{x} = e−γR(x),

although other priors (e.g., Gaussian, gamma) have been investigated [37, 39]. The
popularity of Gibbs priors stems in part from their ability to capture the local correla-
tion property of images [19]. The energy function R is defined as a sum of “potential”
functions designed to discourage nonsmoothness in a neighborhood

R (x) =
1

2

∑
i

∑
l∈Ni

Vi,l (xi, xl) ,

where Ni denotes the neighborhood of voxel i. In order to maintain concavity and
twice continuous differentiability in the objective function, the potential function Vi,l
is chosen to be convex with continuous first and second derivatives. In our studies we
have used the potential function Vi,l(xi, xl) = V (xi − xl), where

V (z) = δ2
(∣∣∣z

δ

∣∣∣− log
(
1 +

∣∣∣z
δ

∣∣∣))(2.5)

and δ is a shaping constant that we typically set to 1 [38].
For maximum a posteriori (MAP) reconstructions, the objective function is the

log-posterior likelihood logP{x|y}. Ignoring a constant, our objective function be-
comes

fMAP (x) = fML (x)− γR (x) .(2.6)

The MAP reconstruction problem can also be posed as a constrained optimization
problem

maximize fMAP (x)
subject to x ≥ 0.

(2.7)

We note for future reference the following:

∇fMAP (x) = ∇fML (x)− γ∇R (x) = −q + C Ŷ −1y − γ∇R (x) ,

∇2fMAP (x) = ∇2fML (x)− γ∇2R (x) = −C Y Ŷ −2CT − γ∇2R (x) .

Although the function R (with the potential function (2.5)) is concave it is not strictly
concave. Since vT∇2R(x)v = 0 only for vectors v that are a scalar multiple of
the unit vector eN , and since eTN∇2fML(x)eN < 0, it follows that ∇2fMAP (x) is
negative definite and that fMAP is strictly concave [38]. In addition, fMAP has a
finite maximum and bounded level sets on x ≥ 0 [37].
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2.2. The optimization problem. For convenience of notation, let us pose the
reconstruction problem as a constrained minimization problem:

minimize f (x)
subject to x ≥ 0,

(2.8)

where f(x) = −fMAP (x), with γ ≥ 0. The case γ = 0 corresponds to the unregular-
ized ML; in general we shall be more interested in the fully converged MAP where
γ > 0.

The Karush–Kuhn–Tucker (KKT) first-order necessary conditions for optimality
of (2.8) at a point x are existence of Lagrange multipliers λ so that

∇� (x, λ) = ∇f (x)− λ = 0,(2.9)

λixi = 0, i = 1, . . . , n,(2.10)

x, λ ≥ 0,(2.11)

where �(x, λ) = f(x)−λTx is the Lagrangian function. Due to the strict convexity of
f , the second-order sufficiency conditions are satisfied, and x is the unique minimizer
of f .

3. The EM algorithm. The EM method, as presented by Dempster, Laird,
and Rubin [8] for ML estimation, is an iterative algorithm for computing ML esti-
mates when the measurements are viewed as incomplete data. Shepp and Vardi [53]
and Lange and Carson [36] applied the EM method to emission and transmission
tomography problems, respectively. The EM algorithm has been proven to converge
to an optimal solution of (2.4) [36, 56].

The EM algorithm for emission tomography can be derived [56, 27] from the
optimality conditions for the reconstruction problem. For the unregularized problem,
(2.9) can be written as

q − C Ŷ −1y − λ = 0.

Let X = diag(x), and Q = diag(q). Premultiplication by X, and utilizing the com-
plementary slackness condition, yields

XQeN = XC Ŷ −1y,

or since QX = XQ

x = XQ−1C Ŷ −1y ≡M(x).

Applying a fixed-point algorithm xk+1 = M (
xk
)

to the above equation yields the
EM update equation

xk+1 = XkQ
−1C Ŷ −1

k y = xk −XkQ
−1∇f(xk),(3.1)

where xk is the current image estimate, Xk = diag(xk), ŷk = CTxk, and Ŷk =
diag(ŷk). Given a positive initial solution x0 > 0, the algorithm maintains nonneg-
ativity at every iteration and converges to a fixed point x∞ = M(x∞), which is an
optimal solution of (2.4). The asymptotic rate of convergence is governed by the
spectral radius of ∇M(x∞), which is typically very close to unity. In one example
using reasonable assumptions about the scanner geometry, the lower bound of the
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spectral radius was calculated to be .99938 [17]. Indeed, EM has been observed to
converge very slowly, especially close to the optimal solution. The slow convergence of
the EM algorithm has limited its clinical applicability. The cost of one EM iteration
is equivalent to the cost of one gradient calculation.

In MAP-EM, the presence of the regularizing term in (2.6) precludes a closed-form
update equation such as (3.1) for ML-EM. We mention two algorithms that are com-
monly used for MAP-EM reconstructions: the “one step late” (OSL) algorithm and
DePierro’s algorithm. Green’s OSL algorithm approximates R (x) with the constant
R(xk), thereby permitting a closed-form approximated update [16, 17]

xk+1 = XkS
−1C Ŷ −1

k y = xk −XkS
−1
k ∇f(xk),(3.2)

where Sk = diag(q + γ∇(R(xk))). OSL converges to the MAP solution provided that
γ ≤ γ̄, where γ̄ is an upper threshold for the prior strength. DePierro’s algorithm is
a “true” MAP-EM implementation that substitutes the convex function R(x) with a
separable, convex, and twice continuously differentiable function R(x, xk) ≥ R(x), so
that separable maximizations can be performed on the variables [9, 10]. Regularization
improves the convergence rate of EM, with larger prior strengths resulting in lower
spectral radii. However, for reasonable prior strengths (mild to moderate smoothing),
the convergence rates of OSL and DePierro’s algorithm are still quite close to unity.

The EM update formula on the right-hand side of (3.1) follows Kaufman [27],
who was the first to pose the EM algorithm as an optimization algorithm (namely, a
scaled steepest-ascent method). This representation allows for the inclusion of a line
search [27, 28] to accelerate the method’s performance. Likewise, the MAP update
(3.2) can be enhanced by a line search.

Several other approaches for solving the ML estimation problem have been pro-
posed. These include preconditioned conjugate gradient (CG) techniques [27, 28, 34,
42] or truncated-Newton methods [27, 28]. The nonnegativity constraints are main-
tained either by limiting the step length or by using a bending line search. The paper
[44] explores active set methods, while [43] enforces nonnegativity via a quadratic
penalty in the objective. In other work [29, 30, 31] a penalized least-squares objective
is used instead of the ML. These problems are solved by a preconditioned CG and
use specialized techniques to drive the complementary slackness to zero.

There is considerable debate within the PET community regarding the appropri-
ate model for reconstruction. It has long been observed that the unregularized ML
estimator gives grainy images. However if the EM algorithm is stopped early, the
resulting solution often produces images of acceptable quality. For this reason some
researchers argue that early termination is a form of smoothing and that no regular-
ization is needed. Proponents of MAP argue that the approach allows the user to
control the amount of regularization through the parameter, and that the regularized
objective function is better conditioned. In either case, it has been observed that EM-
type algorithms may lead to nonuniform convergence. In particular, the algorithms
may converge slowly in “cold spots” (regions of low activity within regions of activ-
ity) and in areas of isolated activity within cold spots. The use of an interior-point
algorithm offers the hope of more uniform convergence.

4. A primal-dual approach. The drawbacks of the EM algorithm motivate
our investigation into interior-point approaches for the ML and MAP reconstruction
problems. As is clear from (2.1), the objective function can be undefined outside the
feasible region x ≥ 0. Thus the ML and MAP reconstruction problems would appear
to be “natural” candidates for interior-point algorithms. The reconstruction problem
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is especially suited to an interior-point approach because its output is a grayscale
image. Whether a particular value is exactly “zero” or just very close to zero is
immaterial. Slight inaccuracies below the grayscale threshold are inconsequential;
obtaining an image rapidly is a necessity.

Primal-dual methods have enjoyed considerable success in linear programming
[18, 32, 40] and have recently been proposed for nonlinear programming [5, 13, 41].
Although they are closely related to the logarithmic barrier method [12, 58], primal-
dual methods may pose some advantages. In the logarithmic barrier method, the
Lagrange multiplier estimates may be inaccurate when the primal variables are not
close to the barrier trajectory [11]. Primal-dual methods offer the potential of im-
proved “centering” over barrier methods. Given the size of the current problem, the
developments presented here must be suitable for large-scale parallel computation.

In a manner similar to classical barrier methods, primal-dual methods attempt
to follow the “barrier trajectory,” a smooth trajectory characterized by a barrier
parameter µ > 0 [12]. The points (x(µ), λ(µ)) along the trajectory satisfy a perturbed
version of the KKT conditions:

∇f (x (µ))− λ (µ) = 0,(4.1)

λi (µ)xi (µ) = µ, i = 1, . . . , n,(4.2)

x (µ) , λ (µ) > 0.(4.3)

Defining X = diag{xi, i = 1, . . . , n} and Λ = diag{λi, i = 1, . . . , n}, our method
maintains (4.3) while attempting to solve (4.1), (4.2), that is,[ ∇f (x)− λ

ΛXen − µen

]
= 0.(4.4)

Given the point (xk, λk) and the barrier parameter µ = µk, the search direction
p = [pTx , pTλ ]T prescribed by Newton’s method satisfies the “unsymmetric” primal-
dual equations [41][ ∇2f

(
xk
) −I

Λk Xk

] [
px
pλ

]
= −

[ ∇f
(
xk
)− λk

ΛkXken − µken

]
.(4.5)

Elimination of the (1, 2) block of the matrix in (4.5) yields the reduced system

Mkpx = −∇f(xk) + µkX
−1
k en,(4.6)

pλ = −λk −X−1
k Λkpx + µkX

−1
k en,(4.7)

where the “condensed” primal-dual matrix is given by

Mk = ∇2f(xk) + X−1
k Λk.(4.8)

We have implemented an algorithm in which the primal and dual variables are
permitted to take separate step lengths:[

xk+1

λk+1

]
=

[
xk + αxpx
λk + αλpλ

]
.

The primal step length αx is chosen to ensure sufficient decrease in the merit function

F (x, µ) = f (x)− µ
∑
i

log xi.
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Observe that F (x, µ) is simply the logarithmic barrier function and that

∇xF (x, µ) = ∇f (x)− µX−1en

is identical to the right-hand side of (4.6) for µ = µk and x = xk. The unconstrained
minimizer x(µ) of F (x, µ) satisfies the perturbed KKT conditions (4.1)–(4.3) with
corresponding multiplier λi(µ) = µ/xi(µ), i = 1, . . . , n. Furthermore, the solution
of the condensed primal-dual Newton equation (4.6) is guaranteed to be a descent
direction of the merit function for µ > 0, since

(∇xF (x, µ))
T
px = pTxMpx,

and M is positive definite. We shall discuss in further detail the computation of the
primal search direction and step length.

The formula for the dual step length follows a suggestion by Conn, Gould, and
Toint (CGT) [5]. If λ(k) + pλ lies componentwise in the interval

λk + pλ ∈(4.9) [
ζ−1 min

(
en, λ

k, µkX
−1
k+1en

)
,max

(
ζen, λ

k, ζµ−1
k en, ζµkX

−1
k+1en

)]
(where ζ is a constant parameter that we have set to 100), then λk+1 = λk + pλ;
otherwise find 0 < αλ < 1 such that λk+1 = λk + αλpλ minimizes

‖Λk+1Xk+1en − µken‖∞(4.10)

subject to λk+1 being in the interval (4.9). These conditions on the dual step might
appear at first glance to be overly restrictive but are actually designed to give maxi-
mum flexibility in the choice of λk+1. CGT use these bounds on λ and nonsingularity
of M to prove that, for any fixed parameter value µ̄, the minimization of F (x, µ̄) must
be successful, that is, eventually a solution is found that satisfies the perturbed KKT
conditions (4.1)–(4.3).

In general it is neither necessary nor desirable to reach full subproblem conver-
gence. Rather, we have implemented a “short-step” algorithm in which only one
primal-dual step is usually needed before adjusting µ. Setting the barrier parameter
µ is an important consideration in primal-dual algorithms and has a strong influence
on the convergence rate. A reduction in µk is performed whenever the “µ-criticality”
conditions [5, 54] are satisfied:

(
λk+1

)T
xk+1

n
≤ ϑCµk,(4.11) ∥∥∇f

(
xk+1

)− λk+1
∥∥
∞ ≤ ϑDFµk,(4.12)

where ϑC and ϑDF are constant parameters. If the above conditions are satisfied, the
barrier parameter is reduced according to

µk+1 =

(
λk+1

)T
xk+1

nρ
,(4.13)

where ρ is a constant parameter such that

ϑC

ρ
< 1.(4.14)
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A consequence of (4.14) is that µk cannot increase. Furthermore, since the minimiza-
tion of F (x, µ) must be successful, a µ-critical solution (a weaker requirement) must
eventually be found. Thus it is impossible for µk to be nondecreasing. Using this
argument, CGT prove that the algorithm must converge to a KKT solution [5].

In practice we find that both the primal and dual direction vectors are well scaled,
and that αx and αλ are both typically close to 1. By far the most costly operations
are computing the primal direction px and updating the gradient ∇F (x), as we shall
explore. In contrast, the costs of the line search for the primal step length, the
computation of the dual search direction (4.7), and the dual line search (4.9) are
relatively insignificant. From empirical evidence in our computational studies, we
have found that a “short-step” algorithm with gradual reduction in µ achieves the
fastest convergence to the KKT conditions. Specifically, we define ϑC = 1.9, ρ = 2,
and ϑDF = 100. These parameter values enable the µ-critical conditions to be met
after only one primal-dual step for most subproblems.

4.1. Computing the primal direction. For large problems, factoring the con-
densed primal-dual matrix M or even forming the Hessian ∇2f(x) would be pro-
hibitive due to the size of the matrix (376,000 × 376,000 for even the smaller recon-
structions being considered in this paper) and the enormous amount of computation
that would be required. Thus we must consider methods for approximating the New-
ton direction in (4.6). The approach we have successfully applied to this problem is
motivated by the truncated-Newton [6] method of unconstrained optimization. The
search direction is an approximate or truncated solution to the Newton equations
[47, 49]

Mpx ≈ −∇F (x) .(4.15)

An early-terminated CG iteration [21] is used to obtain an approximate solution to
(4.15).

An equivalent statement of (4.15) is that we seek to find the direction px that
approximately minimizes the quadratic Q(px) = 1

2p
T
xMpx +∇F (x)px. A reasonable

and effective truncation point for (4.15), based on the monotonicity of Q(px), is
proposed in [48]; the CG is terminated at subiteration l if

Q
(
plx
)−Q

(
pl−1
x

)
Q (plx)

≤ 1

2l
.(4.16)

The CG termination rule (4.16) has been an important component of the reconstruc-
tion software in that it consistently yields a well-scaled primal direction vector as long
as µ ≥ µs, where µs is a threshold value below which stabilization is required. (We
shall discuss the µ < µs case in section 4.2.)

The CG method does not require storage of the Hessian or condensed primal-dual
matrix but rather only application of matrix-vector products. From (2.3) we can write
the first term of the matrix-vector product

∇2fML (x) v = −C Y Ŷ −2CT v(4.17)

for an arbitrary vector v ∈ �n. Computationally, (4.17) consists of a forward trans-
formation (CT v) followed by a diagonal scaling (ŷ is already available from the com-
putation of ∇f(x)), followed by a backward transformation (premultiplication by C).
To be explicit, recalling (4.8), we have

Mv = C Y Ŷ −2CT v + γ∇2R (x) v + X−1Λv,
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where ∇2R(x)v can be computed exactly without incurring significant computational
expense. The forward-and-back-transformation operation in (4.17) dominates the
computational cost of a CG iteration. This operation is computationally similar to
computing the gradient, or one EM iteration.

Some authors advocate solving simultaneously for px and pλ, using the full unsym-
metric primal-dual equations (4.5) or an equivalent symmetrized system [13, 14, 52,
61]. The unsymmetric primal-dual matrix in particular remains nonsingular, and its
condition number remains bounded as µ → 0 [12, 41], when the standard conditions
of a constraint qualification, strict complementarity, and the second-order sufficient
conditions are satisfied at the solution. In our application, due to the size of our
problem, we must use an iterative method. We believe that solving a symmetric
system via a symmetric solver such as the CG would be more efficient than solving
the full unsymmetric system via an unsymmetric iterative solver such as GMRES
(even though our symmetric system is ill-conditioned), since the amount of work and
storage required per iteration in GMRES increases linearly with the iteration count.
An advantage of using the condensed system (4.6)–(4.7) is that although the primal
search direction is computed inexactly, the equation for maintaining complementarity
(4.7) is maintained. In practice we find that the resulting primal and dual direction
vectors are both well scaled, and that αx and αλ are typically close to 1.

4.1.1. Preconditioning. The use of a preconditioner with the CG is essential
for a competitive algorithm. Since every CG subiteration is as costly as a gradient
evaluation or EM iteration, it is highly desirable to obtain a quality direction vector
in as few CG iterations per subproblem as possible. We have investigated a number of
preconditioners, including FFT-based preconditioners that model the approximately
Toeplitz-block-Toeplitz nature of CCT with a circulant-block-circulant approximation
[2, 3], high-pass filter approximations to the FFT-based preconditioner [4], the EM
preconditioner XQ−1 [34], the exact diagonal of M , and diagonal Hessian approxi-
mations [46].

Of the above preconditioners, by far the best performing was the exact diagonal
of M , which can be computed at reasonable cost:

Mi,i =
∑
j

C2
i,jyj

ŷ2
j

+ γ
∂2

∂x2
i

R (x) +
λi
xi

.(4.18)

Note that the first right-hand-side term in (4.18) is similar in form to a backward
transformation, although a bit more expensive due to the squaring operations. We
have found that the preconditioned CG method using an exact diagonal precondi-
tioner in the form of (4.18) almost always requires using fewer than 10 iterations to
achieve (4.16), regardless of the size of the problem. In many cases, only 3 or 4 CG
iterations are required. Moreover, the directions produced using an exact diagonal
preconditioner are well scaled (usually resulting in primal step sizes of near 1), and
lead to rapid descent.

In contrast, the other preconditioners did not perform well. Already in the initial
subproblems they tended to yield a poorly scaled search direction, which in turn
resulted in small step lengths. Subsequent calls to the CG suffered further from
this problem, and the algorithm made little progress. This behavior was particularly
surprising for the block-circulant FFT-based preconditioners. These preconditioners
perform very well in other reconstruction methods, especially in least-squares methods
where the block-circulant approximation is well matched to the Hessian structure.
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We were motivated to try them for our problem because the ML Hessian is almost
block circulant. But because of the strong diagonal component in M and its spatially
variant dependence on y, ŷ, x, and λ, shift-invariant Toeplitz models of M yield a
poor approximation in our method.

4.1.2. Line search. For ML and MAP reconstructions, knowledge of the struc-
ture of the objective function can lead to a substantial reduction in the cost of im-
plementing a line search over a more naive approach. Specifically, after the search
direction px has been found, and once a forward transformation ŵ = CT px ∈ �N has
been computed, it is possible to compute the objective function and first and second
directional derivative values at the trial points (xk + αpx) at nearly negligible cost.
To see this, note that ŷk+1 = ŷk + αŵ, and therefore [27, 28]

f
(
xk + αxpx

)
= qTxk + αxq

T px −
∑
j

yj log
(
ŷkj + αxŵj

)
+ γR

(
xk + αxpx

)
.

Similar expressions exist for the directional first and second derivatives [24].

After the initial forward transformation to compute ŵ, no further forward- or
back-transformation operations are required during the line search at any of the trial
points. The forward transformation ŵ can be reused, so that only one backward trans-
formation is subsequently required to update the gradient. The above observations
and the well-behaved convex nature of the objective function have permitted us to
implement a highly accurate but low-cost Newton line search. Due to the low cost of
each step we have chosen a relatively strict tolerance of 0.05 on the Wolfe condition
for termination of the line search. We find this line search technique to be highly
effective and, in no small part, responsible for the positive results we report.

4.2. Stabilization. A well-known property of the Hessian of the primal barrier
function is its increasingly ill-conditioned nature as µ → 0 [45]. Analogous results
hold for the condensed primal-dual matrix: as the solution is approached the matrix
becomes increasingly ill-conditioned. (For a detailed analysis, see the paper by Wright
[60].)

In [50], Nash and Sofer developed an approximation to the Newton direction for
the logarithmic barrier that avoids the structural ill-conditioning of the barrier Hessian
and is suitable for large-scale problems. The direction is the sum of two vectors, one
in the null space of the Jacobian of the active constraints, and the other orthogonal
to it. The associated decoupling is based on a prediction of the binding set at the
solution.

We have recently adapted this approximation to the condensed Newton equations
arising in primal-dual methods. Although our derivation is valid for general nonlinear
constraints, we present it here for the special case of bound constraints in the context
of (4.6).

We will assume in the following that strict complementarity holds at the solution,
that is, λ∗

i > 0 if x∗
i > 0. Define J = {i : x∗

i = 0} to be the index set of binding
constraints at the solution, and n̂ to be the number of binding constraints at the
solution. We will assume that 0 < n̂ < n, as is always the case in reconstructions of
practical interest. Define I = {i : x∗

i > 0} the set of nonbinding constraints. Let xI

be the subvector of variables that are positive at the optimal solution, and xJ the
subvector of variables that are zero at the optimal solution. Assume also that the
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variables are ordered so that the positive variables are first, i.e.,

x =

[
xI

xJ

]
.

The Hessian of the objective function H = ∇2f(x) will then be similarly partitioned,
as will the condensed primal-dual matrix

M =

[
MI,I MI,J
MT

I,J MJ ,J

]
=

[
HI,I + X−1

I ΛI HI,J
HT

I,J HJ ,J + X−1
J ΛJ

]
,

where XI , XJ , ΛI , and ΛJ are the diagonal matrices of the associated components
of x and λ.

We will assume that the sequence of iterates (x, λ) generated by the primal-dual
satisfies the following properties, when µ is sufficiently small:

xi = Θ(1), λi = Θ(µ), i ∈ I,
xi = Θ(µ), λi = Θ(1), i ∈ J .

Here we define τ = Θ(µ) if there exist constants 0 < κl < κu so that κlµ ≤ ‖τ‖ ≤ κuµ
for all sufficiently small µ > 0. We say that a vector or matrix is Θ(µ) if its norm
is Θ(µ). We also define τ = O(µ) if there exists some positive constant κu so that
‖τ‖ ≤ κuµ for all sufficiently small µ > 0.

We will also assume that near the solution the Hessian is reasonably well condi-
tioned, so that H = O(1). Now the diagonal terms of MJ ,J are O(1/µ) and become
unbounded as µ→ 0. In contrast, the diagonal terms of MI,I differ from those of the
reduced Hessian HI,I by O(µ), and the condition of MI,I thus reflects that of the con-
strained problem. The condensed primal-dual matrix M can then be shown to have
n̂ “large” eigenvalues of magnitude Θ(1/µ) and n− n̂ “small” eigenvalues that differ
from those of HI,I by O(µ) and have magnitude Θ(1). The condensed primal-dual
matrix thus suffers from the same structured ill-conditioning as the barrier Hessian.

For small values of µ we propose approximating the primal Newton direction px,
by a direction p̃x, whose null- and range-space components are computed as follows:

(MI,I) p̃Ix = − (∇F I −MI,JXJΛ−1
J ∇FJ ) ,(4.19)

p̃Jx = −XJΛ−1
J ∇FJ .(4.20)

The system for computing the component p̃Ix involves the well-conditioned matrix
MI,I and can be solved exactly or inexactly via the CG method. The computation
of p̃Jx is straightforward. Thus, the ill-conditioning of the condensed primal-dual is
avoided. We will show now that under the assumptions above, p̃x − px = O(µ2), so
that the accuracy of the approximation increases as the solution is approached and
the potential harm from ill-conditioning increases.

Using the well-known formula for the inverse of a partitioned matrix (see, e.g.,
[51, 61]), it follows that

p̃Ix − pIx = (MI,I)−1
(
MI,JG−1MT

I,JM−1
I,I∇F I + MI,J (XJΛ−1

J −G−1)∇FJ
)
,

p̃Jx − pJx = −G−1MT
I,JM−1

I,I∇F I − (XJΛ−1
J −G−1)∇FJ ,

where

G = MJ ,J −MT
I,JM−1

I,IMI,J .
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Now by definition

G = X−1
J ΛJ

(
I + Λ−1

J XJO(1)
)
= X−1

J ΛJ (I + O(µ)) ,

so that G−1 = O(µ) and

G−1 −XJΛ−1
J = O(µ2).

Note further that

∇F I = (∇f(x))I − µX−1
I e = O(µ) + µO(1) = O(µ),

whereas

∇FJ = (∇f(x))J − µX−1
J e = O(1) + µO(1/µ) = O(1).

It follows that

p̃Ix − pIx = O(µ)O(µ) + O(µ2) = O(µ2),

and

p̃Jx − pJx = O(µ)O(µ) + O(µ2) = O(µ2),

so that p̃x − px = O(µ2).
In [50], Nash and Sofer prove (for the case of the Newton direction arising from

the logarithmic barrier objective function) that, for sufficiently small µ, the vector
computed using an approximation similar to (4.19) and (4.20) yields a descent direc-
tion with respect to the logarithmic barrier objective function. The proof is readily
extended to the present primal-dual case; thus px is a descent direction for the merit
function F (x, µ). We have found that, for the present problem, the above approxi-
mation to the Newton direction is useful for values of µ of order 10−4 or less.

Recently Wright [60] showed that the errors generated by backward-stable numer-
ical methods (various Cholesky factorizations and Gaussian elimination with partial
pivoting) for solving (4.6) are not magnified by the structured ill-conditioning. These
methods are inappropriate for our large problems which involve potentially millions of
variables. Instead we find an approximate solution using a CG iteration. When work-
ing in inexact arithmetic with large numbers of variables, the convergence rate of the
CG method depends on the condition of M [15]. Thus the structural ill-conditioning
in M can lead the CG iteration to spend an unnecessary amount of work in computing
px. Further, as we have observed, the criterion for terminating the CG may be overly
optimistic in an ill-conditioned system, so that the resulting direction is poorly scaled
as µ→ 0.

The potential effect of ill-conditioning is illustrated through an example in Ta-
ble 4.1. This example was encountered during development and motivated the in-
corporation of stabilization into the algorithm. Starting at the subproblem µ =
1.49 × 10−4, the primal step length, dual step length, and ncg (the number of CG
iterations) are listed for both the nonstabilized and stabilized cases. This test was
terminated at λTx/n ≤ 7.5× 10−5. Note that in the nonstabilized case, the number
of CG iterations from the first subproblem in the test to termination is significantly
lower in the stabilized test than the nonstabilized test. Note also that in many of the
nonstabilized subproblems, either the primal or dual step length is small, indicating
a poorly scaled direction or loss of accuracy.
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Table 4.1
An example of the effect of stabilization. The number of CG iterations, ncg, is counted from

the beginning of the µ = 1.40 × 10−4 subproblem. The termination condition in this example is
λT x/n ≤ 7.5× 10−5.

Nonstabilized Stabilized
µ αx αλ ncg µ αx αλ ncg

1.49E-4 0.950 0.003 5 1.49E-4 0.942 1.000 12
1.26E-4 0.156 1.000 17 1.16E-4 0.923 1.000 17
1.01E-4 1.000 0.002 22 7.75E-5 0.159 0.8245 30
8.50E-5 0.143 1.000 34 6.47E-5 0.962 1.000 35
7.08E-5 0.392 1.000 46 3.25E-5
5.83E-5 1.000 0.166 51
4.77E-5 0.016 1.000 62
3.75E-5

There has been much recent interest in stabilization methods that do not require
a prediction of the active set [13, 14, 59]. These approaches are based on factoriza-
tion methods which are unsuitable for a problem as large as the present one. The
argument against stabilization methods that require a prediction set is that the ac-
tive set is unknown in interior-point methods. We argue that, close to the solution
in the emission tomography reconstruction problem, an accurate prediction of the
active set can be made. In our problem, the constraints have a simple interpretation.
The positive variables correspond to those voxels containing at least some radioactive
tracer, while the zero-valued variables correspond to those voxels that lack any tracer
activity. Close to the solution, when µ becomes sufficiently small that stabilization
is appropriate, the set of binding constraints is obvious and can be conservatively
identified with a µ-dependent threshold.

4.3. Extrapolation. Fiacco and McCormick showed that the solutions x(µ) at
the perturbed KKT solutions form a unique differentiable trajectory in µ [12]. The
perturbed KKT conditions (4.1)–(4.3) define a “central path” as µ → 0. Thus, a
successful algorithm may be able to move both “along” and “toward” the path. As
discussed in [12], from the subproblem solutions {x(µl), l = 1, . . . , k}, the trajectory
can be approximated as a polynomial

x (µ) �
k∑

l=k−r
clµ

l,(4.21)

where r is the degree of the approximating polynomial and ck−r, . . . , ck are r + 1
vectors of coefficients. Using the approximation in (4.21), we find a direction ∆x such
that

∆x =
k∑

l=k−r
clµ

l − xk,

and set

x̂ (µk+1) = xk + ᾱ ∆x(4.22)

to be a prediction to the next subproblem’s primal solution. Here xk is the computed
(approximate) subproblem solution for µ = µk. Primal feasibility is maintained by
the step length ᾱ = 0.98αmax, where αmax is the maximum step length that does not
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violate nonnegativity in x. Then, in the manner of (4.7), we compute a dual direction
vector according to

∆λ = −λk −X−1
k Λk (ᾱ�x) + µX−1

k en.(4.23)

The dual vector is then moved according to

λ̂ (µk+1) = λk + α̃λ�x,(4.24)

which requires another dual line search to minimize (4.10). The resulting point

(x̂(µk+1), λ̂(µk+1)) serves as a starting point for the (k + 1)st subproblem, a pre-
diction to the solution at µk+1. The extrapolated primal-dual method can be viewed
as a predictor-corrector algorithm, with the extrapolation (4.22 and 4.24) serving
as the “predictor” step, and the subproblem minimization serving as the centering
or “corrector” step [23]. The degree r of the approximating polynomial is 1 when
predicting the third subproblem, 2 for the fourth, and 3 for the fifth and beyond.

We have experimented with line searches in conjunction with (4.22), but often
ᾱ � 1, and hence the line search just yields ᾱ. For this reason, we have found that
(4.24) yields a more effective dual direction than does the equivalent of (4.7) in the
context of extrapolation. Although the extrapolated search direction ∆x can often
be poorly scaled (i.e., ᾱ � 1), we have observed that the directions produced are
always descent directions to the merit function and lead to a significant decrease in
the objective function f . A number of reconstructions were performed in which ∆λ
was computed by extrapolating the dual solution vector (rather than computing it via
(4.24)); the discouraging nature of the results led us to abandon direct extrapolation
of the dual vector in favor of (4.24) which is highly effective in comparison.

Following extrapolation, a gradient evaluation is required to update the vector
∇F (x̂(µk+1), µk+1). Since the primal-dual algorithm requires between 12 and 25
subproblems to perform a 3-D MAP reconstruction, extrapolation adds that many
gradient evaluation operations to the computational cost. So extrapolation is only
economical if it reduces the computational burden by at least as much as it adds.
Our experience has been that for some data sets, the cost of extrapolation is well
worthwhile, but for other data sets the benefits were only marginal. Extrapolation
thus appears to serve as somewhat of a safeguard against difficult problems. In an
extrapolated primal-dual reconstruction, the convergence measure max(λixi) does not
decrease as monotonically as in a primal-dual reconstruction without extrapolation.
Certain extrapolated steps seem to cause the algorithm to “get ahead of itself,” but
this effect is transient. On the studies we’ve performed, the algorithm does ultimately
converge to an accurate solution with extrapolation.

4.4. Initialization. The choice of the initial barrier parameter may have a sub-
stantial effect on the algorithm. If the parameter is too small, the first subproblem
may have extreme difficulty due to ill-conditioning; if the parameter is too large,
then many (unnecessary) subproblems will be required to solve the problem. Proper
initialization of the barrier parameter µ involves finding the most suitable point on
the barrier trajectory based on the initial solution xo and the measurement data y.
Recalling the perturbed necessary conditions in (4.1), if the initial solution x̂0were to
be on the central path, it would satisfy

∇F
(
x̂0, µ0

)
= q − CŶ −1y + γ∇R

(
x̂0
)− µ0X̂

−1
0 en = 0.
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Premultiplying by
(
x̂0
)T

we arrive at

qT x̂0 − yT eN + γ∇TR (x̂0
)
x̂0 = nµ0.

This suggests the following rule for initialization, which we find quite effective:

µ0 =

∣∣qT x̂0 − yT eN + γ∇TR (x̂0
)
x̂0
∣∣

n
.(4.25)

Another, similar, initialization rule is motivated by the goal of finding an initial
value µ0 so that

∇f
(
x̂0
)− µ0X̂

−1
0 en ≈ 0.(4.26)

While (4.26) cannot be solved exactly, we can try to find a µ0 that results in a point x̂0

that is close to the barrier trajectory according to, say, the 2-norm. This motivation
leads to an alternative initialization rule [51]

µ0 =

∥∥∇f
(
x̂0
)∥∥

2∥∥∥X̂−1
0 en

∥∥∥
2

.(4.27)

During the course of development, both initialization rules were tried on certain data
sets. Although both initialization rules performed well, reconstructions initialized
with (4.25) usually reached the optimal solution in slightly less overall work than
those initialized with (4.27).

The initial estimate for x̂0 and λ̂0 we used most frequently was in each case a
positive uniform field. A discussion on the rationale of using a uniform field for x̂0

and on criteria for choosing the constant value of the primal initial solution may be
found in [24]. Alternative choices for the initial dual vector may be preferable, and
an investigation into this question may be worthwhile.

4.5. Termination. Given that subproblem termination is based on the µ-criti-
cality conditions (4.11) and (4.12), the closeness of each subproblem solution can be
measured by µ. If subproblems are solved exactly, |f(x(µ)) − f(x∗)| ≤ nµ [12]. The
µ-criticality conditions, however, are designed for a “short-step” algorithm in which
one truncated-Newton step should satisfy each subproblem for sufficiently small µ. To
ensure the accuracy of the final solution, final termination is based on the following
two requirements:

λTx

n
≤ ε1,(4.28)

‖∇x� (x, λ)‖∞
1 + |f (x)| ≤ ε2.(4.29)

We have found that reasonably accurate solutions are ensured when ε1 = 1.5× 10−4

and ε2 = 5× 10−9.
The traditional view in tomographic reconstruction is that a highly accurate so-

lution is unnecessary. This view stems in part from the ill-posedness of the problem
and the computational cost of taking a reconstruction to full convergence. From em-
pirical evidence in our studies, the ability to perform certain imaging tasks such as
“cold spot detectability” improves with accuracy of the solution. Although the ter-
mination criteria we propose above may not appear particularly strict, they are from
a tomographic reconstruction perspective.
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Table 5.1
Properties affecting computation, memory, and storage costs for two different-sized reconstruc-

tion problems. Gradient evaluation costs are based on a 2.5M-count study on 10 120MHz IBM
RISC/6000 SP processors.

Size class n N Elements Density Storage Cost of
in C in C cost of C gradient

Thick-slice 376,882 5.36× 106 2.02× 1012 0.93% 390 MB 3.42 min.
Thin-slice 1.40× 106 6.30× 107 8.82× 1013 0.35% 1.42 GB 7.23 min.

5. Computational studies. To test our algorithm, we have performed a num-
ber of reconstructions on data acquired from a small animal scanner and on data
generated by Monte Carlo simulations on the same animal scanner.

5.1. Size of the problem. Our studies involved two different-sized problems.
Raw coincidence data from the scanner can be binned into either “thick-slice” or
“thin-slice” measurement spaces, or both. “Thick-slice” reconstructions, in which
n = 376,000 and N = 5.35× 106, require 3.4 minutes for a gradient evaluation using
10 IBM RISC/6000 SP processors (120 MHz) on a 2.5M-count study. For a “thin-slice”
reconstruction with n = 1.4×106 and N = 6.3×107 on the same data and processors,
a gradient evaluation requires 6.75 minutes. These properties are summarized in Table
5.1. The cost of storing the full n×N system matrix is prohibitive, even for thick-slice
reconstructions. Extensive exploitation of the sparsity and symmetries inherent in the
system matrix makes its storage and retrieval possible [24, 25].

The dominant computational operations of the reconstruction problems are the
forward- and back-transformation operations that underlie EM iterations, gradient
evaluations, Hessian-vector products, and diagonal Hessian calculations. These oper-
ations have been implemented in parallel via a data decomposition strategy that par-
titions the “measurement-space” vectors y and ŷ across the processors. The “image-
space” vectors such as x and λ are replicated over all processors. Our data decom-
position is justifiable under the observation that N � n. On a data set with 2.5M
counts, at most 47% of the elements of y will be nonzero in the thick-slice case, and
at most 4% in the thin-slice case. (The thin-slice configuration has over 10 times as
many lines of response as the thick-slice.) The dominant computational operations
have been implemented in such a way to exploit sparsity in y and further conserve
computation [24].

5.2. Cost metrics. We have devised metrics to measure the cost of an interior
point reconstruction. Define the number of subproblems to be npr, the number of
truncated-Newton iterations nit, the number of CG subiterations ncg. The cost of
one CG iteration (dominated by the Hessian-vector product) is equivalent to the cost
of one gradient calculation or EM iteration. One truncated-Newton iteration requires,
in addition to the ncg operations, one diagonal Hessian evaluation plus one forward
transformation and one backward transformation. The exact cost of these operations
varies depending on the size of the problem and number of counts, but we shall
approximate the cost of one truncated-Newton iteration to be the equivalent of two
gradient calculations beyond the cost of the CGs.

Using this approximation, the total cost of unextrapolated interior-point recon-
structions can be measured in units of equivalent number of gradient calculations (or
EM iterations):

ngr = 2 · nit + ncg.
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Table 5.2
Summary of thick-slice primal-dual results and comparison with MAP-EM and LSEM. Extrap-

olation was not used, and in all cases ρ = 2.

Study f∗ npr nit ncg ngr MAP-EM LSEM
A 2,465,770 19 19 110 148 1000 344
B 2,397,197 23 23 164 210 >1000 634
C 2,269,180 22 22 126 170 990 482
D 2,752,484 20 21 169 211 >1000 >1000
E 2,536,110 26 26 131 183 770 292
F 3,296,013 23 23 141 187 >1000 >1000
G 3,660,344 24 24 127 175 >1000 724
Average ngr 183

Table 5.3
Summary of thick-slice extrapolated primal-dual results and comparison with MAP-EM and

LSEM; in all cases ρ = 2.

Study f∗ npr nit ncg ngr MAP-EM LSEM
A 2,465,772 17 17 94 145 960 332
B 2,397,232 16 16 91 139 >1000 435
C 2,269,190 17 17 94 145 850 418
D 2,752,502 14 16 119 165 >1000 >1000
E 2,536,112 20 20 106 166 750 279
F 3,296,029 18 18 115 169 >1000 855
G 3,660,384 20 20 100 160 >1000 430
Average ngr 156

Extrapolation requires an additional gradient calculation following the extrapolation
in order to update the gradient vector. With extrapolation we modify the formula to

ngr = npr + 2 · nit + ncg.

5.3. Computational results. We have performed a number of 3-D reconstruc-
tions on data acquired from a small animal scanner and data generated by a Monte
Carlo simulation of the same small animal scanner. Reconstructions of seven datasets
were taken to full convergence, as defined by the termination criteria (4.28) and (4.29)
with ε1 = 1.5 × 10−4 and ε2 = 5 × 10−9. The various datasets used in our compu-
tational studies represent a fairly diverse sample of the types of scans that might be
encountered in practice. The number of counts in the datasets used in these studies
ranged from 850K to 5.1M. The number of binding constraints at the optimal solution
ranged from approximately 20% to 80%.

Our main results are summarized in Tables 5.2 and 5.3 for the nonextrapolated
and extrapolated primal-dual cases, respectively. Studies A through D are reconstruc-
tions of data acquired from a small animal PET scanner, while studies E through G
are reconstructions of Monte Carlo simulated data. These reconstructions were per-
formed in “thick-slice” mode (376,832 variables) with the regularization parameter
set at γ = 3 × 10−4. In these tables, the column “MAP-EM” indicates the number
of DePierro MAP-EM iterations that were required to achieve the value of f∗ in the
same row. The column “LSEM” indicates the number of iterations required for an
EM algorithm, where the search direction on the last term of (3.2) is enhanced by a
line search. (To avoid excessive computation, the function values were only calculated
every 10 MAP-EM iterations, and the final count was rounded down, to favor this
method.) Since the cost of one gradient evaluation is equivalent to the cost of one EM
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Table 5.4
Summary of thick-slice logarithmic barrier results and comparison with MAP-EM and LSEM.

Extrapolation was used on all data sets, and in all cases ρ = 10.

Study f∗ npr nit ncg ngr MAP-EM LSEM
A 2,465,832 5 28 159 218 880 194
B 2,397,199 5 29 198 259 >1000 615
C 2,269,180 5 29 185 246 990 482
D 2,752,499 4 25 207 260 >1000 >1000
E 2,536,111 6 40 214 298 780 285
F 3,296,037 5 36 197 274 >1000 776
G 3,660,351 6 41 214 300 >1000 621
Average ngr 265

iteration, the numbers in the columns ngr and MAP-EM and LSEM can be compared
directly. We find that the primal-dual method consistently reaches convergence much
more rapidly than either MAP-EM or LSEM.

Another interesting observation can be made in the comparison between Tables
5.2 and 5.3. Consider the number of EM iterations required to reach f∗ for study C.
In Table 5.2, the LSEM algorithm reached f = 2,269,180 in 482 iterations. In Table
5.3 on the same data set, the LSEM algorithm reached f = 2,269,190 in 418 iterations.
Thus, the algorithm took 64 iterations to reduce the function value by only 10 units
near the solution. MAP-EM did even worse, requiring 180 iterations to reduce the
function value by 10. This is in fact a typical example of the slow limit behavior of the
EM algorithm. In all studies, the EM method did not achieve the same convergence
results obtained by the primal-dual method at termination. The Lagrangian gradient
norm and complementary slackness values of the terminated MAP-EM and LSEM
iterates were consistently much higher than those of the terminated primal-dual so-
lution.

We have also performed these reconstructions using a stabilized logarithmic bar-
rier algorithm based on the method presented in [50] and specialized to the present
reconstruction problem. Many of the computational features of our logarithmic bar-
rier implementation are identical to our primal-dual implementation, e.g., truncated
Newton, line search, computation of the gradient, Hessian-vector product, etc. For
a more detailed discussion, see [24]. The logarithmic barrier results are summarized
and compared against MAP-EM in Table 5.4. Termination of the logarithmic barrier
was defined by (4.29) and

max (λixi)

1 + |f (x)| ≤ 5× 10−10.

These termination criteria for the logarithmic barrier correspond to roughly the same
accuracy as (4.28) and (4.29) do for the primal-dual method. Being a “long-step”
method, the logarithmic barrier gives the user less control over the exact stopping
point than does the “short-step” primal-dual. All of the logarithmic barrier recon-
structions in Table 5.4 used extrapolation. In all logarithmic barrier reconstructions,
µ was reduced by a factor of 10 between subproblems.

The effect of extrapolation is illustrated in Figures 5.1 and 5.2. In Figure 5.1,
the equivalent number of gradient evaluations (ngr) to reach termination is plot-
ted against objective function “distance” f − f∗, the difference between the function
value of the terminated solution and the lowest function value obtained for that recon-
struction. In all seven test cases (those listed in Tables 5.2–5.4), the unextrapolated
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Fig. 5.1. “Distance” from optimal solution at termination, as measured by difference in ob-
jective function f − f∗ (where f∗ is here defined to be the lowest objective function obtained per
study), versus work required to reach termination, as measured by ngr, the equivalent number of gra-
dient evaluations. The studies included are those listed in Table 5.2. PD stands for nonextrapolated
primal-dual, PDX for extrapolated primal-dual.
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Fig. 5.2. Average value of µ at subproblem termination versus average ngr (equivalent number
of gradient evaluations) for the seven studies listed in Table 5.2. PD stands for nonextrapolated
primal-dual, PDX for extrapolated primal-dual.

primal-dual method achieved the lowest objective function value. Thus, f − f∗ is
zero for all unextrapolated primal-dual (PD) results but greater than zero for the
extrapolated primal-dual (PDX) and barrier results. The PDX results are clustered
in a region of lower ngr than the PD results. This indicates that extrapolation low-
ers the computational expense to the solution at a slight deterioration in the final
objective. Compared with the barrier method, either extrapolated or unextrapolated
primal-dual produces equivalent or better accuracy with less computation required.

In Figure 5.2, the average number of equivalent gradient evaluations at subprob-
lem termination is plotted against the average value of µ for each subproblem. Both
averages (ngr and µ) were taken from the same seven test cases of Tables 5.2–5.4.
Compared with either unextrapolated primal-dual (PD) or extrapolated primal-dual
(PDX), the logarithmic barrier is clearly on a slower trajectory. The PD and PDX
trajectories are quite similar until approximately µ = 0.01, at which point the PD
curve “swings out,” while the PDX curve continues to descend log-linearly. This re-
sult confirms that the prediction (extrapolation) step becomes more accurate near the
solution, resulting in more rapid convergence. However, a comparison of the objective
functions indicates that the value of PDX µ is perhaps one step “ahead of itself,”
compared with the unextrapolated case.
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Fig. 5.3. Improvement in objective function as a function of gradient evaluations, Study F.
PDX denotes extrapolated primal-dual, PD denotes unextrapolated primal-dual, both using ρ = 2.
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Fig. 5.4. Improvement in objective function as a function of gradient evaluations, Study C.
PDX denotes extrapolated primal-dual, PD denotes unextrapolated primal-dual, both using ρ = 2.

The progress of the reconstruction on a study of a rat skull, Study C, is compared
for the various algorithms in Figure 5.3. The measure used is ‖f − f∗‖ (plotted on
a logarithmic scale). In the initial iterations DePierro MAP-EM and LSEM progress
rapidly and are ahead of the primal-dual method. However the interior-point meth-
ods rapidly reach the DePierro and LSEM objective values, and henceforth, surpass
them. In the primal-dual methods depicted, the value of ρ is 2. The methods achieve
faster initial progress using ρ = 100; however, the overall computational effort for full
convergence with this parameter setting is greater. The progress of the reconstruction
in another example, Study F, is compared in Figure 5.4.

We have also reconstructed a number of very large-scale “thin-slice” reconstruc-
tions involving 1.4 × 106 variables. Table 5.5 summarizes a number of properties of
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Table 5.5
Summary of thin-slice extrapolated results, including convergence measures and computational

costs to optimal solution.

Study γ f
‖∇�‖
1+|f |

max(λixi)
1+|f | npr nit ncg ngr

B 8E-5 7,661,605 8.54E-11 1.77E-11 17 17 68 119
B 3E-5 7,658,720 9.77E-11 1.68E-11 17 17 72 123
B 1E-5 7,657,020 3.71E-10 2.14E-11 17 17 79 130
C 3E-5 5,826,032 9.08E-10 2.67E-11 15 16 56 103
F 3E-5 7,724,731 6.87E-10 7.96E-11 16 16 64 112
F 1E-5 7,721,001 1.29E-9 2.87E-11 14 14 71 113
H 3E-5 3,776,745 1.10E-9 3.89E-11 13 16 63 108
Average ngr 115

these extrapolated primal-dual reconstructions at the converged solution. A smaller
group of datasets (the more visually “interesting” studies) were selected for the thin-
slice work, and certain reconstructions were repeated with different values of the
prior strength γ. Thin-slice reconstructions seem to require a lower prior strength
than the corresponding thick-slice reconstructions. The most visually pleasing results
were from reconstructions using γ = 1 × 10−5, which is 1/30 the prior strength that
was generally found to be most satisfactory in thick-slice reconstructions. The total
amount of work (as measured in ngr) required to reach termination in Table 5.5 is also
quite pleasing. The number of variables in a thin-slice reconstruction is approximately
3.7 times the number in thick-slice. The number of nonzero-valued measurements in
thin-slice mode is only marginally greater than in thick-slice mode, however, since
the number of counts is the same in both cases. These thin-slice reconstructions may
thus be better conditioned than their thick-slice counterparts.

In closing, we should comment that the tolerance we have used in our tests is
stricter than that usually necessary. Indeed, less accurate solutions may still give
acceptable images. When the EM method is applied to the (unregularized) ML ob-
jective, it is usually terminated after 50 or 100 iterations, and the images produced
are often good. Thus EM-ML remains a practical method that can sometimes reach
a solution of desirable image quality faster than an interior-point method. The dif-
ficulty with EM-ML is that its convergence is object-dependent [1]. Convergence in
areas of high activity amidst low activity or vice versa is notoriously slow, and a fixed
termination rule based on (say) 50 or 100 iterations cannot guarantee acceptable im-
age quality. This has been observed in a number of reconstructions, including some
of high biomedical interest. In contrast to ML-EM, the primal-dual algorithm has
object-independent convergence characteristics. Furthermore, it is flexible and can be
adapted to solve a problem efficiently both to the strict tolerance in the studies above
by setting a modest rate of decrease for the barrier parameter, say, ρ = 2, and to a
looser tolerance by setting a more aggressive reduction rate such as ρ = 100.

6. Conclusion. From the results of the previous section, it is clear that the
primal-dual method can converge significantly faster than the EM algorithm for reg-
ularized ML reconstructions in emission tomography. The results also indicate that
the primal-dual method converges faster than the logarithmic barrier method. The
use of extrapolation in conjunction with the primal-dual method further reduces the
amount of computation required to achieve convergence.

Given that the negative regularized ML objective function that we minimize is
convex, approximately solving the reduced unsymmetric primal-dual Newton equa-
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tions is appropriate. Symmetrizing the unsymmetric system, while potentially useful
for nonconvex problems, would in this case require solving for 2n variables without
avoiding the potential for ill-conditioning. Our stabilization technique avoids the
structural ill-conditioning of the condensed primal-dual matrix, and therefore solving
the reduced system poses no asymptotic difficulty as the barrier parameter approaches
zero. The computational efficiency and relative simplicity of formation of the reduced
system of equations pose such a strong advantage that our choice of primal-dual
method almost seems obvious for this problem.

Since Newton’s method converges quadratically near the solution, for a well-
conditioned system in the limit as µ→ 0, one truncated-Newton step per subproblem
should yield an increasingly accurate and well-scaled direction to the subproblem
solution for µk. As µ is decreased, the subproblem solutions should become “close” to
each other for a convex problem [14]. Yet, the example in Table 4.1 illustrates that the
direction produced by the early-terminated CG can in fact become less accurate for
smaller µ due to the structured ill-conditioning in M . In practice, we do not require
the accuracy of the test example in Table 4.1. Our termination conditions are defined
to be near the point on the trajectory where the stabilization approximation becomes
accurate enough to guarantee descent. These termination criteria are quite accurate
by the standards of the tomography community. Thus, although most reconstruction
problems are unlikely to be severely affected by ill-conditioning, the potential for slow
convergence near the solution due to ill-conditioning does exist. Our experience has
been that stabilization has been an effective safeguard against poor performance for
small values of the barrier parameter.
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Abstract. An efficient new SQP algorithm capable of solving large-scale problems is described.
It generates descent directions for an �1 plus log-barrier merit function and uses a line-search to
obtain a sufficient decrease of this function. The unmodified exact Hessian matrix of the Lagrangian
function is normally used in the QP subproblem, but this is set to zero if it fails to yield a descent
direction for the merit function. The QP problem is solved by an interior-point method using an
inexact Newton approach, iterating to an accuracy just sufficient to produce a descent direction in
the early stages and tightening the accuracy as we approach a solution.

We prove finite termination of the algorithm, at an ε-optimal Fritz-John point if feasibility is
attained. We also show that if any iterate is close enough to an isolated connected subset of local
minimizers, then the iterates converge to this subset. The rate of convergence is Q-quadratic if the
subset is an isolated minimizer which satisfies a second-order sufficiency condition, but Q-quadratic
convergence to an ε-optimal point can still be achieved without any conditions beyond Lipschitz
continuity of second-order derivatives.

The implementation SQPIPM is designed for problems with many degrees of freedom and is
shown to perform well compared with other codes on a range of standard problems.
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1. Introduction. In a recent review paper [17] one of the authors has described
the development of SQP algorithms and the difficulties that arise in attempting to
apply existing algorithms to large-scale problems.

In essence, SQP algorithms rely on the power of the Newton iteration and are
based on strong optimality conditions which ensure a final superlinear convergence
rate to a local optimum, while to achieve “global” convergence from arbitrary starting
points they modify the QP subproblem so that its solution produces a “sufficient”
decrease of a suitable merit function. It is accepted that this does not guarantee true
global convergence, since the iterates from an infeasible starting point may converge
to a region of attraction of a local nonzero minimum of the constraint violations, and
to deal with this takes us into the realm of global optimization techniques.

The QP subproblem represents the local linearization of the problem Karush–
Kuhn–Tucker (KKT) conditions, involving the Hessian matrix of the Lagrangian func-
tion. Trust-region methods add a step-length bound to this subproblem and seek a
global minimizer for it, which involves decomposition into two subproblems, one in
the null-space and the other in the range-space of the current set of active constraints.
Line-search methods modify the “reduced Hessian matrix” in the null-space of these
constraints, either directly or indirectly, to yield a strictly convex QP problem whose
solution is a descent direction for the merit function. In both cases identification of
the null-space and generation of an appropriate matrix is required, but unfortunately
all methods proposed so far for achieving this decomposition involve the generation
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of relatively dense matrices with the dimension of the active set subspace, and this
limits the applicability of the algorithms to problems with only a modest number of
degrees of freedom.

One exception to this approach is the line-search algorithm of Betts and Frank
[2]. By obtaining the inertia of the KKT matrix from its factorization, they check
whether the reduced Hessian matrix is positive definite, and if it is not they add a
positive multiple of the unit matrix to the full Hessian matrix.

In this paper we present an algorithm which uses a similar strategy to avoid
the need for a range-space/null-space decomposition, though both the test and the
corrective action are different. We use an interior-point method to solve the QP
subproblem, which uses a barrier-function to eliminate inequality constraints and
hence also the combinatorial problem of identifying the current active set, and we
make further savings by use of an inexact Newton approach, solving the subproblem
to an accuracy just sufficient to generate a descent direction for the merit function.

All SQP algorithms we are aware of assume that all local minimizers are KKT
points, and proofs of a final superlinear convergence rate assume that the iterates
converge to an isolated local minimizer at which a constraint qualification, a strict
complementarity condition, and a second-order sufficiency condition hold. In fact,
the algorithms can converge towards a Fritz-John point which does not satisfy a
constraint qualification and fail due to the multipliers becoming unbounded. More
generally these strong optimality conditions are often not satisfied by local minimizers
in real-world problems.

In our algorithm we seek a Fritz-John point, and by exploiting the convexifying
effect of the barrier-function we can also significantly weaken these conditions. We
are able to prove finite termination of the algorithm, at an ε-optimal Fritz-John point
if feasibility is attained, and if any iterate is sufficiently close to a connected sub-
set of local minimizers, then the algorithm converges to this subset. The final rate
of convergence is proved to be Q-quadratic if the subset is in fact an isolated local
minimizer which satisfies a second-order sufficiency condition, though strict comple-
mentary is not required, and we show that we can still obtain Q-quadratic convergence
to an ε-optimal point without any regularity conditions beyond Lipschitz continuity
of second-order derivatives of the functions involved.

We describe the development of the algorithm in section 2 and give proofs of the
convergence properties in section 3, then present the results of numerical testing in
section 4, and conclude with some general comments in section 5.

2. Development of the algorithm. We consider the general nonlinear pro-
gramming problem in the form

min
x∈X
{fo(x) | f(x) = 0},(2.1)

where

X = {x ∈ �n | a ≤ x ≤ b},
fo : X → �, f : X → �m, m ≤ n,

and fo(x), f(x) are twice continuously differentiable on X.

We also assume that a and b are finite vectors, a reasonable assumption for a
practical algorithm which helps to avoid overflow.
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Any solution of (2.1) must satisfy the Fritz-John conditions

go(x)yo + G(x)y − z + z = 0,
f(x) = 0,
x− a ≥ 0, z ≥ 0, zT (x− a) = 0,
b− x ≥ 0, z ≥ 0, zT (b− x) = 0

(2.2)

for some multipliers η = (yo, y, z, z) with yo ≥ 0, where we have written go(x) ≡
[fox(x)]T , G(x) ≡ [fx(x)]T .

We refer to the set of points x ∈ ξ satisfying (2.2) for some η as “Fritz-John
points” and denote by Ω the set of solutions ζ = (x, η) of (2.2). In fact we seek such
a solution, rather than attempting to solve (2.1).

As in the classical SQP approach, we solve (2.2) by a damped Newton method,
generating a sequence of iterates {xk}, k = 0, 1, 2, . . . , from an arbitrary starting point
xo ∈ X, using

xk+1 = xk + αk+1∆xk+1,(2.3)

where αk+1 ∈ (0, 1] and ∆xk+1 is obtained by solving the subproblem resulting from
linearizing the functions go(x), G(x), and f(x) in (2.2) to yield

goky
o + Hk(x− xk) + Gky − z + z = 0,

fk + GT
k (x− xk) = 0,

x− a ≥ 0, z ≥ 0, zT (x− a) = 0,
b− x ≥ 0, z ≥ 0, zT (b− x) = 0,

(2.4)

where fk ≡ f(xk), Gk ≡ G(xk), Hk =
∑m
j=0y

jf jxx(xk).
However, only second-order errors are introduced if we replace y by yk in the

expression for Hk, and this has the advantage that Hk has a fixed value for the sub-
problem. Indeed, since we can compute the f jxx(xk) by automatic differentiation, Hk

can be generated directly during this process, without storing the individual f jxx(xk).
Conditions (2.4) are then easily recognized to be the Fritz-John conditions for the

QP:

Minimize (x− xk)g
o
k + 1

2 (x− xk)
THk(x− xk),

subject to fk + GT
k (x− xk) = 0,

a ≤ x ≤ b,
(2.5)

so we have an SQP algorithm.
For real-world problems users can usually specify a reasonable range for each

variable, based on physical considerations. However, if the range is very wide it can
be helpful to include a fixed step-length bound ∆, by modifying the variable bounds
to

ak ≤ x ≤ bk,(2.6)

where aik = max{ai, xik −∆i}, bik = min{bi, xik + ∆i}.
We solve this QP by an interior-point method (cf. [15]), which starts by elimi-

nating the bound inequalities using barrier functions to yield the following modified
problem:

Minimize (x− xk)g
o
k + 1

2 (x− xk)
THk(x− xk)− µL(x),

subject to fk + GT
k (x− xk) = 0,

ak < x < bk,
(2.7)
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where

L(x) =

n∑
i=1

{ln(xi − aik) + ln(bik − xi)}, µ > 0.(2.8)

We then solve the Fritz-John conditions for this problem, again solving a sequence of
linearized problems as in the damped Newton method, but also reducing µ at each
step. Further details are given in section 2.1.

Having obtained a solution ζ = (x, yo, y, z, z) to (2.4), we set ∆xk+1 = x − xk,
then choose αk+1 in (2.3) to obtain a sufficient decrease of the merit function

P (x, yo, ỹ, µ) = yo{fo(x)− µL(x)}+

m∑
j=1

ỹj |f j(x)|.(2.9)

This is similar to the Han merit function [10] for problem (2.1) using different
weights yo, ỹj for the objective function and individual constraints. It also includes
the penalty term µL(x), which may seem surprising since we always have ak < x < bk,
but as we shall see this has a convexifying effect, which makes it easier to ensure that
the solution ∆xk+1 of (2.7) is a descent direction for the merit function.

In fact we do not solve problem (2.7) exactly, but use an inexact Newton approach,
solving the subproblem to an accuracy just sufficient to obtain a descent direction for
the merit function until we are close to a solution, then progressively tightening the
accuracy in order to achieve quadratic convergence. Further details are given in
section 2.2.

2.1. Solution of the QP subproblem. It is well known that if f(xk) �= 0, the
linearized problem (2.5), and hence also (2.7), may have no feasible solution, so to
circumvent this difficulty we use a “big-M” modification (see, for example, [16]) of
problem (2.7):

Minimize Mkx
o + (x− xk)g

o
k + 1

2 (x− xk)
THk(x− xk)

−µo lnxo − µL(x),
subject to fk(1− xo) + GT

k (x− xk) = 0,
xo > 0, ak < x < bk, Mk > 0,

(2.10)

whose Fritz-John conditions are

yo{Mk − µo/xo} − fTk y = 0,

yo

{
gok − µ

n∑
i=1

((xi − ai)−1 − (bi − xi)−1)

}
+ Hk(x− xk) + G(x)y = 0,

fk(1− xo) + GT
k (x− xk) = 0,

xo > 0, ak < x < bk,

(2.11)

or, in “primal-dual” form,

Mky
o − fTk y − zo = 0,(2.12a)

goky
o + Hk(x− xk) + Gky − z + z = 0,(2.12b)

fk(1− xo) + GT
k (x− xk) = 0,(2.12c)

xozo − yoµo = 0,(2.12d)

Xkz − yoµe = 0,(2.12e)

Xkz − yoµe = 0,(2.12f)
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where Xk = diag[xi − aik], Xk = diag[bik − xi].
Since xo = 1, x = xk is a feasible point for problem (2.10), this always has

a solution, and it follows that (2.12a)–(2.12f) always have a solution for any given
yo > 0, though if [−fk, GT

k ] does not have full rank there may be some redundant

constraints. It is also well known (see [16]) that if some x ∈ o

X= {x ∈ �n | a < x < b}
is feasible for (2.5), then for sufficiently large Mk, we have xo → 0 in any solution of
(2.12a)–(2.12f) as µo → 0, µ→ 0.

To solve (2.12a)–(2.12f) we generate a sequence of iterates χkl = (xokl, xkl, ykl, z
o
kl, zkl,

zkl), l = 0, 1, 2, . . . , using

χk,l+1 = χkl + α′
k,l+1δχk,l+1,(2.13)

where α′
k,l+1 ∈ (0, 1] and δχk,l+1 is the solution of the linearized problem

roDkl − fTk δyk,l+1 = 0,
rDkl + Hkδxk,l+1 + Gkδyk,l+1 − δzk,l+1 + δzk,l+1 = 0,
rPkl − fkδx

o
k,l+1 + GT

k δxk,l+1 = 0,

(rockl)
′ + zoklδx

o
k,l+1 + xoklδz

o
k,l+1 = 0,

(rckl)
′ + Zklδxk,l+1 + Xklδzk,l+1 = 0,

(rckl)
′ + Zklδxk,l+1 + Xklδzk,l+1 = 0,

(2.14)

where

roDkl = Mky
o
k − fTk ykl − zokl,

rDkl = goky
o
k + Hk(xkl − xk) + Gkykl − zkl + zkl,

rPkl = fk(1− xok) + GT
k (xkl − xk),

(rockl)
′ = xoklz

o
kl − yokγ

o
klµ

o
kl,

(rckl)
′ = Xklzkl − yokγklµkle,

(rckl)
′ = Xklzkl − yokγklµkle,

Zkl = diag[zikl], Zkl = diag[zikl].

(2.15)

In (2.15), γokl and γkl are target reduction factors for µo and µ, defined below,
but as in (2.13) we scale the changes in µo and µ to give values

µok,l+1 = µokl(1− α′
k,l+1(1− γokl)),

µk,l+1 = µkl(1− α′
k,l+1(1− γkl)).

(2.16)

To solve the linear system (2.14) we first eliminate δzok,l+1, δzk,l+1, δzk,l+1 using

δzok,l+1 = −(xokl)
−1((rockl)

′ + zoklδx
o
k,l+1),

δzk,l+1 = −X−1
kl ((rckl)

′ + Zklδxk,l+1),

δzk,l+1 = −X−1

kl ((rckl)
′ − Zklδxk,l+1);

(2.17)

then to improve the conditioning we scale the resulting reduced system to yield


1 0 −(Do
kl)

− 1
2 fTk

0 D
− 1

2

kl HkD
− 1

2

kl + I D
− 1

2

kl Gk

−fk(Do
kl)

− 1
2 GT

kD
− 1

2

kl 0




(Do

kl)
1
2 δxok,l+1

D
1
2

klδxk,l+1

δyk,l+1




= −


 (Do

kl)
− 1

2 (roDkl + (xokl)
−1(rockl)

′)

D
− 1

2

kl (rDkl + X−1
kl r

′
ckl −X

−1

kl r
′
ckl)

rPkl


 ,(2.18)
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where

Do
kl = zokl/x

o
kl, Dkl = X−1

kl Zkl + X
−1

kl Zkl.

The matrix in (2.18) is symmetric but indefinite, so it is appropriate to use a
Bunch–Parlett factorization, which can be generated using frontal or multifrontal
techniques, as described, for example, by Duff and Reid [7, 8]. This yields sparse
factors, making it suitable for large problems.

The matrix can be singular, detected in practice by failure to complete the fac-
torization due to lack of pivots above a specified threshold.

One reason could be rank deficiency of [−fk, GT
k ], but in this case the remaining

rows and columns corresponding to linearly dependent equations are essentially null,
and if rPkl = 0 the corresponding right-hand-side elements in (2.18) will also be null,
so we still obtain a consistent solution of (2.18) in which the δyjk,l+1 corresponding
to null columns can be chosen arbitrarily (they can be set to zero). It is therefore
important to initialize the subproblem with xok,o = 1 so that rPko = 0; the linearity
of (2.12c) then ensures that all rPkl are zero.

Thus if the factorization is incomplete we first determine if the remaining residuals
are sufficiently small. If so, the solution is acceptable, but otherwise the failure is due
to indefiniteness of Hk and in this case we set Hk = 0 and re-solve the system.

Even if the factorization is completed, if (2.12) is not monotone ‖δχk,l+1‖∞ can
become large compared with the distance to the bound, making α′

k,l+1 correspondingly
small. Hence if α′

k,l+1 < α for some small α > 0 we also set Hk = 0. It is shown in
[15] that with Hk = 0 the reduced matrix (after deletion of linearly dependent rows
of [−fk, GT

k ] and corresponding columns) has a uniformly bounded inverse, so in this
case we ignore the fixed pivot threshold.

Having obtained δχk,l+1, we choose the step-length α′
k,l+1 in (2.13) and (2.16)

(see Appendix A for details) as the largest value in [0, 1] for which

‖rock,l+1‖∞ ≤ βok,l+1y
o
kµ

o
k,l+1,

‖rck,l+1‖∞ ≤ βk,l+1y
o
kµ

o
k,l+1,

‖rck,l+1‖∞ ≤ βk,l+1y
o
kµ

o
k,l+1,

(2.19)

where

rock,l+1 = xok,l+1z
o
k,l+1 − yokµ

o
k,l+1,

rck,l+1 = Xk,l+1zk,l+1 − yokµk,l+1e,

rck,l+1 = Xk,l+1zk,l+1 − yokµk,l+1e,

(2.20)

and the βokl, βkl, γ
o
kl are generated by a scheme similar to that described in [15]:

βokl = βo(1− δkl), βkl = β(1− δkl).(2.21)

If α′
k,l+1 ≥ τ or γokl = γ, then set γok,l+1 = µok,l+1/µ

o
ko,

δk,l+1 = δklτ
1
2

k,l+1

else set γok,l+1 = γ,

δk,l+1 = δkl,

(2.22)

where τk,l+1 = max{1 − τ, 1 − α′
k,l+1(1 − γok,l+1)}, βo ∈ (0, 1), β ∈ (0, 1), γoko = γ ∈

(0, 1), δko ∈ (0, 1).
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Since (2.12a), (2.12b) are linear, it also follows from (2.13) and (2.16) that

‖rDk,l+1‖∞ = ‖rDkl‖∞(1− α′
k,l+1) ≤ ‖rDko‖∞µok,l+1/µ

o
k,o(2.23)

and similarly for |roDk,l+1|.
We show in section 3 that rules (2.21) and (2.22) ensure that xk,l+1 ∈

o

X, zok,l+1 >
0, zk,l+1 > 0, zk,l+1 > 0, and {α′

k,l+1} is bounded away from zero. Then from (2.16)
and (2.22) we have {µokl} → 0, and hence from (2.19) and (2.23) all the residuals for
(2.12a)–(2.12f) tend to zero. Thus by repeated iteration, (2.12a)–(2.12f) and hence
(2.7) can be solved to arbitrarily high accuracy.

At first sight we could simply set µkl = µokl, hence also solving (2.5) to arbitrarily
high accuracy, but as we shall see in section 3, because of its convexifying role it is
important that µk does not tend to zero faster than ∆xk+1, and this is ensured by
the following rule:

If yokµk,l+1 ≥ ‖yok, yk,l+1‖∞ max{ε, ρ‖∆xk+1‖4},
then set γk,l+1 = γok,l+1,

else set γk,l+1 = 1,
(2.24)

where ε ∈ (0, 1), ρ ∈ (0, 1). Thus if the condition in (2.24) fails, µ is held constant
until it is again satisfied, but otherwise µ is reduced by the same factor as µo.

The purpose of the subproblem is to generate a descent direction for the merit
function, though the accuracy must also be progressively tightened as we approach a
solution in order to obtain an ultimate quadratic convergence rate, and appropriate
termination conditions are derived in the next section.

On termination we set

∆xk+1 = xk,l+1 − xk, µk+1 = µk,l+1,
ηk+1 = ‖yok, yk,l+1‖−1

∞ {yok, yk,l+1, zk,l+1, zk,l+1},(2.25)

which ensures that ‖yok+1, yk+1‖∞ = 1 and µk+1 ≤ µk.
To initialize the subproblem we set xk,o = xk, µ

o
k,o = µk,o = µk, and normally

ηk,o = ηk, but if |ricko| > βkoy
o
kµ

o
k,o we reset ziko = yokµ

o
k,o/X

i
k,o, i = 1, 2, . . . , n, and

similarly for zk,o.
We have already seen that we set xok,o = 1 so that rPko = 0, and we also choose

zoko = Mky
o
k−fTk yk so that roDko = 0. Again linearity of (2.12a) ensures that roDkl = 0

for all l.
We choose

M ′
k = Mky

o
k = µo + M‖fk‖1(2.26)

for some M > 0. It follows that rocko > 0, and we compute

βo = max{β, rocko/yokµk(1− δko)}(2.27)

so that (2.19) is satisfied for l = 0.
We should like to choose M so that xokl is always decreased, but an a priori choice

to guarantee this is not possible. Hence, if on termination of the subproblem we have
xok,l+1 > 1 − ε̄ for some small ε̄ ∈ (0, 1), we set gok+1 = 0 and Hk+1 = 0 in the next
subproblem, which puts all the emphasis on attaining feasibility. If on termination we
then obtain xok,l+1 ≤ 1− ε̄, we can revert to normal subproblems, but we also increase
M since this was clearly too small. However, if repeated failures eventually result in
‖∆xk‖ ≤ ε we conclude that we are trapped in a neighborhood of a nonzero minimum
of constraint violations and terminate; the only recourse is to try a different starting
point.
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2.2. The outer iteration. To initialize the algorithm we have a user-supplied

estimate xo ∈
o

X and choose yoo = 1, yo = 0, zo = µoX
−1
o e, zo = µoX

−1

o e. These initial
choices then make all residuals except rDoo zero for the first subproblem. There is
no clear basis for choosing µo, so we leave this as a user-defined parameter, with a
default value based on experimentation.

For succeeding iterations the iterates are defined by (2.3) and (2.25), where, as
described earlier, we choose αk+1 ∈ (0, 1] to obtain a sufficient decrease of the merit
function (2.9).

To obtain the form of this sufficient decrease condition, we first note that, since
the f j(x), j = 0, 1, . . . ,m, are continuously differentiable on X, we have

f jk+1 = f jk + αk+1∆xTk+1g
j
k + O(α2

k+1),

and using (2.12c),

|f jk+1| = |f jk |(1−αk+1(1− xok,l+1))+O(α2
k+1), j = 1, 2, . . . ,m.(2.28)

Also

Lk+1 = Lk + αk+1y
o
kµk,l+1∆xTk+1(X

−1
k −X

−1

k )e + O(α2
k+1),

and from (2.20),

X−1
k Zk,l+1(xk,l+1 − xk) = X−1

k (Xk,l+1 −Xk)zk,l+1

= X−1
k (rck,l+1 + yokµk,l+1e)− zk,l+1,

and similarly for X
−1

k Zk,l+1(xk,l+1 − xk), whence

yokµk,l+1(X
−1
k −X

−1

k )e(2.29)

= (X−1
k Zk,l+1 + X

−1

k Zk,l+1)(xk,l+1 − xk)

+zk,l+1 − zk,l+1 −X−1
k rck,l+1 + X

−1

k rck,l+1.

Thus, using (2.12), (2.28), and (2.29) we have

(2.30)

∆Pk+1

= P (xk, y
o
k+1, ỹk+1, µk+1)−P (xk+1, y

o
k+1, ỹk+1, µk+1)

= yok+1{fok − fok+1 − µk+1(Lk − Lk+1)}

+
m∑
j=1

ỹjk+1(|f jk | − |f jk+1|)

= αk+1y
o
k+1∆xTk+1{µk+1(X

−1
k −X

−1

k )e− gok}

+αk+1(1− xok+1)

m∑
j=1

ỹjk+1|f jk |+ O(α2
k+1)

= αk+1(ψk+1 − ‖yok, yk,l+1‖−1
∞ ∆xTk+1(rD,k+1 + X−1

k rc,k+1 −X−1
k rc,k+1))

+O(α2
k+1),
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where

ψk+1 = ∆xTk+1H̄k+1∆xk+1

+(1− xok,l+1)

m∑
j=1

(ỹjk+1|f jk | − yjk+1f
j
k),

Hk+1 = ‖yok, yk,l+1‖−1
∞ Hk + Dk+1,

Dk+1 = ‖yok, yk,l+1‖−1
∞ (X−1

k Zk,l+1 + X
−1

k Zk,l+1)

= X−1
k Zk+1 + X

−1

k Zk+1.

(2.31)

We show in the next section that the algorithm terminates if at each step we
satisfy the “descent condition”

ψk+1 ≥ ρ∆xTk+1D̄k+1∆xk+1, ρ ∈ (0, 1),(2.32)

and the “sufficient decrease condition”

∆Pk+1 ≥ δαk+1ψk+1 > 0, δ ∈ (0, 1/2),(2.33)

together with (yok+1)
−1ỹk+1 ≥ (yok)

−1ỹk if yok+1µk+1 ≤ max{ε, ρ‖∆xk+1‖4}.
Clearly (2.32) is satisfied if Hk is nonnegative definite and the second term of the

expression for ψk+1 in (2.31) is nonnegative, and we ensure the latter by using the
following rule:

If yok+1µk+1 > max{ε, ρ‖∆xk+1‖4}, then set ỹjk+1 = ω for all j,

else set ỹjk+1 = max{ω|yjk+1|, ỹjkyok+1/y
o
k},

(2.34)

where ω > 1. Then if condition (2.32) fails we again set Hk = 0 and re-solve the
subproblem.

Then (2.32) ensures that ψk+1 > 0, and as already noted we can make the resid-
uals rD,k+1, rc,k+1, rc,k+1 as small as desired by repeated iteration, so we iterate until

∆xTk+1(rDk,l+1 + X−1
k rck,l+1 −X

−1

k rck,l+1)(2.35)

≤ 1

4
(1− 2δ)ψk+1‖yok, yk,l+1‖∞,

which leaves a similar margin for the terms of O(α2
k+1) in (2.30).

To keep αk+1 bounded away from zero we could then use any of the standard
reduction rules to satisfy (2.33), and we have used the simple rule of Armijo [1]:
αk+1 = θik+1 , where θ ∈ (0, 1) and ik+1 is the smallest nonnegative integer for which
(2.33) is satisfied. Each reduction then requires only re-evaluation of the functions
fo(x), f(x), and L(x).

This is enough to secure global convergence, but to achieve a final superlinear
rate of convergence we need further conditions.

First we must ensure that Hk is not reset to zero when we are sufficiently close to
a solution, and Lemma 1 of the next section shows that this is the case if we choose
ω > 1 (rather than ω = 1) in (2.34) above.

Second, we must ensure that µ decreases sufficiently fast, and again we show in the
next section that this is achieved by imposing the additional subproblem termination
conditions

yok+1µ
o
k+1 ≤ max{εo, σ‖∆xk+1‖4},

yok+1µk+1 ≤ max{ε, σ‖∆xk+1‖4}.(2.36)
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Of course we must have σ > ρ, and by choosing σ suitably large we can ensure that
these extra conditions become effective only close to a solution.

Finally, we need αk+1 = 1 for all k sufficiently large, and as first pointed out by
Maratos [13], this may not occur if αk+1 is chosen to reduce an l1 merit function like
(2.9).

To circumvent this problem, Mayne and Polak [14] proposed a “correction step,”
∆x̄k+1, obtained by orthogonal projection of (xk + ∆xk+1) onto the current active
set, followed by a curvilinear search,

xk+1 = xk + αk+1∆xk+1 + α2
k+1∆x̄k+1,(2.37)

to satisfy the sufficient decrease condition.
Chamberlain et al. [5] proposed the so-called “watch-dog technique” as an alter-

native solution. In its simplest form a step with αk+1 = 1 is tried, followed by up to
t ≥ 1 normal steps. If any of these produce a sufficient decrease of the merit function
from its value at xk, this iterate is accepted and the process repeated. Otherwise,
after t failures these steps are rejected and a normal step is taken from xk.

Either scheme produces the desired result. The correction step involves additional
work, so Mayne and Polak used a test to limit its use to points close to a solution.
The watch-dog technique eventually yields αk+1 = 1 without extra work, but many
steps may be rejected in earlier iterations.

In fact each normal step of the algorithm makes a projection onto the linearized
constraints, so we use a simple “double-step” modification of Mayne and Polak’s
technique: If the step with αk+1 = 1 fails to satisfy (2.33), we take a second step with
αk+2 = 1, then test the condition

∆Pk+1 + ∆Pk+2 ≥ δψk+1.(2.38)

If this is satisfied we set xk+1 = xk + ∆xk+1 + ∆xk+2 and continue. Otherwise we
recompute

xk+1 = xk + αk+1∆xk+1 + α2
k+1∆xk+2,(2.39)

with αk+1 chosen to satisfy (2.33). Clearly this is always possible since the additional
terms introduced are O(α2

k+1).
This technique also allows larger steps in following a curved constraint if xk is

close to such a constraint at some distance from the solution, but on the other hand
if αk+1 is small the second step is largely wasted. Thus we do not use a double-step
systematically but try it only if |f jk | ≤ ε̄, for some j, and then use (2.39) rather than
(2.3) only if ∆Pk+2 > 0.

To terminate the algorithm, we use the failing condition xok+1 > 1− ε̄, ‖∆xk+1‖ ≤
εo, as discussed earlier, or the conditions

max{‖rD,k+1‖∞, ‖fk+1‖∞, ‖rc,k+1,o‖, ‖rc,k+1,o‖} ≤ εo,
yok+1µk+1 ≤ ε,

(2.40)

which indicates an ε-optimal solution.
This completes the description of the algorithm, but a detailed statement of the

main algorithm is given in Appendix B and that of the subproblem algorithm in
Appendix C.

3. Convergence. We consider finite termination in section 3.1 and rates of con-
vergence in section 3.2.
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3.1. Finite termination. In this section we give two theorems, one for finite
termination of the subproblem and the other for that of the complete algorithm.

Theorem 1. The sequence {χkl}, l = 0, 1, 2, . . . , is well defined, and for any
ε > 0 terminates at a point satisfying ‖∆xkl‖∞ ≤ εo with xokl > 1 − ε̄, or (2.40), or
(2.35) and (2.36).

Proof. Suppose that χkl satisfies the interior point conditions

xkl ∈
o

X, xokl > 0, zokl > 0, zkl > 0, zkl > 0, µokl > 0,(3.1)

and also satisfies (2.19).
Then the solution of (2.17)–(2.18) is well defined, if necessary by dropping linearly

dependent equations and/or setting Hk = 0, and Appendix A shows that there is
always an α′

k,l+1 ∈ (0, 1] which satisfies (2.19), so χk,l+1 is well defined. Since γokl ∈
(0, 1) it also follows from (2.16) that µok,l+1 > 0, and hence from (2.19), (2.20), and
continuity that χk,l+1 satisfies (3.1). Since χk,o satisfies (3.1) and (2.19) it follows by
induction that the whole sequence {χkl} is well defined and satisfies these conditions.

If α′
k,l+1 < α we reset Hk = 0, and it was shown in Sargent [15] that {α′

k,l+1} is
then bounded away from zero, and hence from (2.16) and (2.22), µokl → 0 as l →∞.
It then follows from (2.19) and (2.23) that the residuals of (2.12a)–(2.12f) tend to
zero as l→∞.

Now suppose that {‖∆xkl‖∞} is bounded away from zero. Then we cannot have
an infinite subsequence satisfying

yokµkl′ > ‖yok, ykl′‖∞ max(ε, ρ‖∆xkl′‖4),

since this implies γkl′ = γokl′ and {µkl′} → 0, producing a contradiction. Hence there
is an l̄ < ∞ such that (2.36) is satisfied and µkl = µkl̄ > 0 for all l ≥ l̄. But from
(2.31), (2.19), (2.20), and (2.21) we have

D̄i
k+1 ≥ (Xi

kX
i
k+1)

−1(Xi
k+1Z

i
k+1)(3.2)

≥ (1− β)yok+1µk+1/(b
i − ai)2, i = 1, 2, . . . , n,

so from (2.32) the sequence {ψkl} is bounded away from zero, and it follows that
(2.35) must eventually be satisfied.

Otherwise there must be an infinite subsequence for which {‖∆xkl′‖∞} → 0, and
from (2.24) it follows that {µkl} → 0, so eventually we satisfy ‖∆xkl‖∞ ≤ εo with
xokl > 1− ε̄, or (2.40).

If Ω is not empty, then for any ε > 0 there is a neighborhood Ωε of Ω on which
the system


rD = go(x)yo + G(x)y − z + z,
rP = f(x),
xi − ai ≥ 0, zi ≥ 0, zi(xi − ai) = yoµ
bi − xi ≥ 0, zi ≥ 0, zi(bi − xi) = yoµ

}
i = 1, 2 . . . , n

(3.3)

is satisfied with max{‖rD‖∞, ‖rP ‖∞, yoµ} ≤ ε, and of course Ωε coincides with Ω if
ε = 0.

Theorem 2. If xo ∈
o

X, the sequence {ζk} generated by the algorithm is well

defined, {xk} remains in
o

X, and the algorithm terminates for any ε ≥ 0, εo > 0.
If xok ≤ 1− ε̄ on termination, the termination point ζk tends to Ωε as εo → 0.



NEW SQP ALGORITHM FOR LARGE-SCALE PROBLEMS 727

Proof. Suppose that ζk satisfies (3.1). Then from Theorem 1, either the algorithm
terminates with ‖∆xk+1‖ ≤ εo, xok,l+1 > 1 − ε̄, or ∆xk+1 and ηk+1 are well defined
and satisfy (2.35), while {xk + ∆xk+1, ηk+1} satisfies (3.1). We showed in the last
section that αk+1 ∈ (0, 1] is always well defined, and hence ζk+1 is well defined and
also satisfies (3.1). Since ζo satisfies (3.1) it follows that the whole sequence {ζk} is

well defined, and {xk} remains in
o

X.
Since γoko = γ it follows from (2.16) that {yokµok} → 0, and from (2.19) and (2.23)

that ‖rDk‖, ‖rck‖, ‖rck‖ also tend to zero.
Then, if there is an infinite subsequence such that

yok′µk′ > max{ε, ρ‖∆xk′‖4},
it similarly follows that {yokµk} → 0. If ε > 0, this is a contradiction, so such
a subsequence cannot occur, but if ε = 0, it follows that {‖∆xk′‖} → 0, and if
xok′,l+1 ≤ 1− ε̄ for k′ sufficiently large, {‖fk′‖} → 0 from (2.12c) and (2.40) is satisfied,
so the algorithm terminates.

Otherwise there is a k̄ < ∞ such that yokµk ≤ max{ε, ρ‖∆xk‖4} for all k ≥ k̄.
Then from (2.24) and (2.16) we have µk = µk̄, k ≥ k̄, and {yok} is bounded away from
zero.

Now consider the function

P̄k = (yok)
−1P (xk, y

o
k, ỹk, µk) + µkL̄− (yok)

−1
m∑
j=1

ỹjkf̄
j ,(3.4)

where

L̄ = max{L(x), x ∈ o

X},
f̄ j = max{|f j(x)|, x ∈ X}, j = 1, 2, . . . ,m.

Since X is compact and L(x) is strictly concave on
o

X, these quantities are well defined
and {P̄k} is uniformly bounded below. Further, from (2.16) {µk} is a nonincreasing
sequence, and from (2.34) {(yok)−1ỹk} is a nondecreasing sequence, so from (2.9) and
(3.4) we have

P̄k − P̄k+1(3.5)

= (yok)
−1P (xk, y

o
k, ỹk, µk)− (yok+1)

−1P (xk, y
o
k+1, ỹk+1, µk+1)

+(yok+1)
−1{P (xk, y

o
k+1, ỹk+1, µk+1)−P (xk+1, y

o
k+1, ỹk+1, µk+1)}

+L̄(µk − µk+1) +

m∑
j=1

f̄ j{(yok+1)
−1ỹjk+1 − (yok)

−1ỹjk}

= (yok+1)
−1∆Pk+1 + (L̄− Lk)(µk − µk+1)

+
m∑
j=1

(f̄ j − |f jk |){(yok+1)
−1ỹjk+1 − (yok)

−1ỹjk}

≥ (yok+1)
−1∆Pk+1 > 0.

Hence {∆Pk+1} → 0, and from (2.33), {αk+1ψk+1} → 0 as k →∞.
Suppose that {ψk+1} does not tend to zero. Then there is an infinite subsequence

{ψk′} such that ψk′ ≥ ψ > 0 for all k′, and hence there is a fixed ᾱ ∈ (0, 1], inde-

pendent of k′, such that (with k′ = k + 1) all the terms of O(α2
k+1) in (2.30) sum
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to at most 1
4 (1 − 2δ)αk+1ψ for any αk+1 ∈ [0, ᾱ]. To satisfy (2.33) the Armijo rule

therefore determines αk′ ≥ θᾱ > 0 and otherwise αk+1 = 1, so αk′ψk′ ≥ θᾱψ > 0,
contradicting our hypothesis, and in fact {ψk+1} → 0.

But then from (2.32) and (3.2) it follows that {‖∆xk‖} → 0. If ε = 0, this is a
contradiction, so this situation cannot occur, but if ε > 0, it follows that yokµk ≤ ε for
all k sufficiently large.

Hence we have the following:
(a) If ε > 0, ζk ∈ Ωε for all k sufficiently large and {‖∆xk‖} → 0.
(b) If ε = 0, there is an infinite subsequence for which {‖∆xk′‖} → 0 and {ζk′}

satisfies (2.2) in the limit as k′ →∞. From continuity, the limit point ζ̄ ∈ Ω,
so the termination point of the algorithm tends to Ω as εo → 0.

3.2. Rates of convergence. In this section we give two theorems on rates of
convergence, one to an ε-optimal point and the other to an exact solution. In both
cases we assume that εo = 0 and that (2.18) is solvable if its coefficient matrix is
nonsingular.

We need some preliminary results, starting with a result on the following gener-
alized linear complementarity problem:


rD = go + Hx + Gy − z + z = 0,
rP = f + GTx = 0,
x− a ≥ 0, z ≥ 0, zT (x− a) = 0,
b− x ≥ 0, z ≥ 0, zT (b− x) = 0,

(3.6)

with solution set S.
For each ζ ∈ S we can then define

B = {i | xi > ai}, B = {i | xi < bi},
N = {i | zi > 0}, N = {i | zi > 0},
J = {i | xi = ai, zi = 0}, J = {i | xi = bi, zi = 0},

and also the “maximal complementary set” Ŝ ⊂ S, for which |B(ζ)|+|B(ζ)|+|N(ζ)|+
|N(ζ)| is maximized.

Then (cf. [15]) all members of Ŝ have the same index sets B̂, B̂, N̂ , N̂ , Ĵ , Ĵ .
The matrix H is said to be monotone for (3.6) if vTHv ≥ 0 (strictly monotone

if vTHv > 0) for all v such that ḠT v = 0, where Ḡ = [G, IN , IN ], IN has columns

ei, i ∈ N̂ , and IN has columns ei, i ∈ N̂ .
It is well known that if H is monotone, the solution set S of (3.6) is not empty if

there exists ζ = (x, y, z, z) such that rD(ζ) = 0, rP (ζ) = 0, a ≤ x ≤ b, z ≥ 0, z ≥ 0.
The next lemma gives a result for this problem, analogous to that of Mangasarian

and Shiau [12] for the standard monotone LCP.
Lemma 1. If the solution set of problem (3.6) is not empty, and H is monotone

for (3.6), there exists a fixed τ <∞ such that

‖ζ − ζ̂‖ ≤ τ{‖rD(ζ)‖+ ‖rP (ζ)‖(3.7)

+‖ITBz‖+ ‖IT
B
z‖+ ‖ITNX‖+ ‖IT

N
X‖+

√
m}

for all ζ such that a ≤ x ≤ b, z ≥ 0, z ≥ 0, where

m = zT (x− a) + zT (b− x),

ζ̂ = arg min
ζ′∈S
‖ζ ′ − ζ‖.
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If the problem has a strictly complementary solution, the term
√
m in (3.7) can

be omitted.

Proof. A proof for simple nonnegativity bounds on x is given in [15]. The exten-
sion to deal with general upper and lower bounds is obvious.

Lemma 2. For any ζk sufficiently close to a local minimizer of problem (2.1), the
matrix in (2.18) is nonsingular and the descent condition (2.32) is satisfied.

Proof. Since f̂ = 0 we have from (2.12a) and (2.26) that zok+1 ≥ µo/2 for all ζk

close enough to ζ̂ ∈ Ω, and from (2.12d), (2.19), and (2.36), we have

xok,l+1 ≤ 2(1 + βo)yok+1µ
o
k+1/µ

o
o = O(‖∆xk+1‖4),(3.8)

so 1− xok+1 > ε̄.

Now at any local minimizer ζ̂ ∈ Ω we have vT Ĥv ≥ 0 for all v ∈ �n such that
ḠT v = 0, where Ḡ = [Ĝ, IN , IÑ ]. Also D̄i

k > 0 for all k, and D̄i
k → ∞ as ζk → ζ̂ for

any i ∈ IN or i ∈ IN , so we have

vT H̄k+1v ≥ ρvT D̄k+1v(3.9)

for any ζk sufficiently close to ζ̂ and all v ∈ �n such that GT
k v = 0.

From Lemma 3 in [15] it follows that the matrix in (2.18) has a uniformly bounded
inverse, and ∆χk,l+1 is well defined. We can also choose λ > 0 large enough to ensure
that

vT (H̄k+1 + λGkG
T
k )v ≥ vT D̄k+1v for all v ∈ �n.(3.10)

Now from (2.31) and (2.12c) we have

ψk+1 = ∆xTk+1(H̄k+1 + λGkG
T
k )∆xk+1(3.11)

−λ(1− xok+1)
2‖fk‖2

+(1− xok+1)

m∑
j=1

(ỹjk+1|f jk | − yjk+1f
j
k).

But from (2.34),

m∑
j=1

(ỹjk+1|f jk | − yjk+1f
j
k) ≥

m∑
j=1

ỹjk+1|f jk |(ω − 1)/ω,(3.12)

and {ỹjk+1} is bounded away from zero for each j, so the last term in (3.11) exceeds

the second term for all ζk sufficiently close to ζ̂, and it follows from (3.10) that (2.32)
is then satisfied.

Lemma 3. If ψk+1 = Ω(‖∆xk+1‖2), xok,l+1 = o(‖∆xk+1‖), ‖∆xk+2‖ = o(‖∆xk+1‖)
and Hk is not reset to zero, then αk+1 = 1 for all k sufficiently large.

Proof. Suppose that αk+1 = 1.

Then from (2.12c) we have fk+1 = O(‖∆xk+1‖2), and from (2.3), (2.9), (2.9),
(2.28), and (2.29) we have



730 R. W. H. SARGENT AND M. DING

∆P = yok+1(f
o
k − fok+1)− yok+1µk+1(Lk − Lk+1)(3.13)

+
m∑
j=1

ỹjk+1(|f jk | − |f jk+1|)

=

m∑
j=1

(ỹjk+1|f jk | − yjk+1f
j
k)−

m∑
j=1

(ỹjk+1|f jk+1| − yjk+1f
j
k+1)

+
1

2
∆xTk+1H̄k∆xk+1

−∆xTk+1(rDk,l+1 + X−1
k rck,l+1 −X

−1

k rck,l+1)

+o(‖∆xk+1‖2)

≥
(
δ +

1

4
(1− 2δ)

)
ψk+1 +

1

2

m∑
j=1

(ỹjk+1|f jk | − yjk+1|f jk |)

−
m∑
j=1

(ỹjk+1|f jk+1| − yjk+1f
j
k+1) + o(‖∆xk+1‖2),

whence

∆Pk+1 + ∆Pk+2 ≥
(
δ +

1

4
(1− 2δ)

)
ψk+1 + o(‖∆xk+1‖2),(3.14)

and (2.38) is satisfied for any δ ∈ (0, 1
2 ) and all k sufficiently large. Since eventually

‖fk‖ ≤ ε̄, a double-step is eventually always used and the result follows.

For the next theorem we define the ε-neighborhood Ñε of (Ω̃, 0) for any ε > 0 and
any nonempty isolated connected subset Ω̃ ⊂ Ω as the set of all (ζ, µ) satisfying

go(x)yo + G(x)y − z + z = 0,
Xz = Xz = yoµe, ‖η‖∞ = 1,
‖f(x)‖ ≤ ε, yoµ ≤ ε, yo ≥ 0, µ ≥ 0.

(3.15)

It follows from Theorem 10 of Fiacco and McCormick [9] that (Ñε − Ω̃) is not
empty if Ω̃ is a set of local minimizers of problem (2.1).

Theorem 3. If εo = 0 and for some k̄ < ∞, ζk̄ is sufficiently close to an
isolated connected subset Ω̃ ⊂ Ω of local minimizers of problem (2.1), then for any
ε > 0 sufficiently small, either the sequence {ζk} terminates at some (ζ̃, µ̃) ∈ N ε or
µk = µ̃ > 0 for all k sufficiently large and {ζk} → ζ̃, {xk} → x̃, both at a Q-superlinear
rate.

If in addition there is a neighborhood of x̃ on which

‖f jxx(x)− f jxx(x̃)‖ ≤ K‖x− x̃‖ν , j = 0, 1, . . . ,m,(3.16)

for some ν ∈ (0, 1] and K < ∞, then the Q-order of convergence of {ζk} is at least
(1 + ν), while that of {xk} is at least min{1 + ν, 1 +

√
5/2}.

Proof. For ζk sufficiently close to Ω̃, from (2.14), (2.19), (2.23), (2.36), and (3.8)
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with αk+1 = 1 we have

rD,k+1,o = rD,k,l+1 +

m∑
j=0

yjk+1(g
j
k+1 − gjk − f jxx(xk)∆xk+1)

+

m∑
j=0

(yjk+1 − yjk)f
j
xx(xk)∆xk+1

= o(‖∆xk+1‖),
fk+1 = fk(1− xok+1) + GT

k∆xk+1 + O(‖∆xk+1‖2)
= O(‖∆xk+1‖2),

rc,k+1,o = O(‖∆xk+1‖4),
rc,k+1,o = O(‖∆xk+1‖4),

(3.17)

whence

‖(fk+1, rD,k+1,o, rc,k+1,o, rc,k+1,o)‖ = o(‖∆xk+1‖).(3.17a)

From Theorem 2, for any ε > 0 and all k sufficiently large we have µk = µ̃ for
some fixed µ̃ > 0 with yokµ

o
k ≤ yokµ̃ ≤ ε, and {yok} is bounded away from zero.

From (2.21), (2.19), and (2.20) we have

Di
kl ≥ (Xi

kl)
−2(Xi

klZ
i
kl) ≥ (1− β)yokµkl/(b

i − ai)2, i = 1, 2, . . . , n,(3.18)

so D−1
kl is uniformly bounded, and if ζk is close enough to Ω̃ for Lemma 2 to hold,

it follows from (3.9) that the inverse of the Jacobian matrix for (2.14) is uniformly
bounded, and we can assume that the pivot threshold is small enough for Hk not to
be reset to zero.

Defining ζ̃k = arg minζ{‖ζ−ζk‖ | (ζ, µ̃) ∈ Ñε}, we have from (2.14) and continuity
of the f jxx(x) on X that



rDko = goky
o
k + Gkyk − zk + zk

= (gok − g̃ok)y
o
k + (Gk − G̃k)yk + g̃ok(y

o
k − ỹok)

+G̃k(yk − ỹk)− (zk − z̃k) + (zk − z̃k)

=

m∑
j=0

yjkf
j
xx(xk)(xk − x̃k) + g̃ok(y

o
k − ỹok)

+G̃k(yk − ỹk)− (zk − z̃k) + (zk − z̃k)
+o(‖xk − x̃k‖),

fk = f̃k + G̃T
k (xk − x̃k) + O(‖xk − x̃k‖2),

rcko = X̃k(zk − z̃k) + Z̃k(xk − x̃k)

+(Xk − X̃k)(zk − z̃k)− (yok − ỹok)µ̃e,

rcko = X̃k(zk − z̃k) + Z̃k(xk − x̃k)

+(Xk − X̃k)(zk − z̃k)− (yok − ỹok)µ̃e.

(3.19)

Again, if ζk is sufficiently close to Ω̃ the Jacobian matrix of this system has a
uniformly bounded inverse, and it follows that

‖(fk, rDko, rcko, rcko)‖ ≈ ‖ζk − ζ̃k‖.(3.19a)
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Again setting αk+1 = 1, we also have from (2.14) that


rDk,l+1 = rDko + gok(y
o
k+1 − yok) + Hk(xk+1 − xk)

+Gk(yk+1 − yk)− (zk+1 − zk) + (zk+1 − zk),
0 = fk(1− xok+1) + GT

k (xk+1 − xk),
rck,l+1 = rcko + Xk(zk+1 − zk) + Zk(xk+1 − xk)

+(Xk+1 −Xk)(zk+1 − zk)− (yok+1 − yok)µ̃e,
rck,l+1 = rcko + Xk(zk+1 − zk) + Zk(xk+1 − xk)

+(Xk+1 −Xk)(zk+1 − zk)− (yok+1 − yok)µ̃e,

(3.20)

and using (2.19), (2.23), (2.36), and (3.8) we have

‖(fk, rDko, rcko, rcko)‖ ≈ ‖ζk+1 − ζk‖.(3.20a)

Then from (3.17a) and (3.20a) we have

‖∆xk+1‖ ≤ ‖∆ζk+1‖ ≈ ‖(fk, rDko, rcko, rcko)‖
= o(‖∆xk‖) = o(‖∆ζk‖).(3.21)

Since ‖fk‖ → 0, a double-step is tried systematically for all k sufficiently large,
and it follows from (3.21) and Lemma 3 that we shall indeed have αk+1 = 1, as
assumed above, for all k sufficiently large. Hence {ζk} is a Cauchy sequence and
converges to some ζ̃.

But from (3.17a), (3.19a), and (3.20a) we have

‖ζk+1 − ζ̃k+1‖ ≈ ‖(fk+1, rD,k+1,o, rc,k+1,o, rc,k+1,o)‖
= o(‖∆xk+1‖) = o(‖∆ζk+1‖)
= o‖(fk, rD,k,o, rc,k,o, rc,k,o)‖ = o‖ζk − ζ̃k‖,

(3.22)

so {ζk} converges Q-superlinearly to some ζ̃ such that (ζ̃, µ̃) ∈ Ñε.
Then we have

‖∆xk+1‖ ≤ ‖xk+1 − x̃‖+ ‖xk − x̃‖,(3.23)

and from (3.22),

‖xk+1 − x̃‖ ≤ ‖ζk+1 − ζ̃‖ = o(‖∆xk+1‖) = o(‖xk − x̃‖),(3.24)

so {xk} also converges Q-superlinearly.
Now if (3.16) holds, we have from (3.17) and (3.21) that

rD,k+1,o = rDk,l+1 + O{‖∆xk+1‖max(‖xk − x̃‖ν , ‖xk+1 − x̃‖ν)}
+O(‖∆yk+1‖ · ‖∆xk+1‖),

whence

‖(fk+1, rD,k+1,o, rc,k+1,o, rc,k+1,o)‖(3.25)

= O(‖ζk − ζ̃‖1+ν)
= O(‖xk − x̃‖1+ν) + O(‖xk−1 − x̃‖ · ‖xk − x̃‖).
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Then using (3.19a) we have

‖ζk+1 − ζ̃‖ = O(‖ζk − ζ̃‖ν),
‖xk+1 − x̃‖ = O(‖xk − x̃‖1+ν) + O(‖xk−1 − x̃‖ · ‖xk − x̃‖),(3.26)

from which the final results follow.
Although we can make ζ̃ arbitrarily close to Ω̃ by making ε sufficiently small,

the proof does not hold for ε = 0 unless the Jacobian matrix of (2.14) is nonsingular
for ζ ∈ Ω. It is easily shown that this requires strict complementarity, and strict
monotonicity of H̃, which in turn implies that Ω̃ corresponds to an isolated local
minimizer. However, by making use of Lemma 1 we can weaken these conditions to
those implying only that the approximating QP at the solution has a unique solution.
This requires that either the linearized constraints define a unique feasible point,
or the classical McCormick second-order sufficiency conditions apply. Under these
conditions we have the following result.

Theorem 4. If εo = ε = 0 and for some k̄ < ∞, xk̄ is sufficiently close to
an isolated local minimizer x̃ of problem (2.1) satisfying the above conditions, then
{xk} → x̃ and {ζk} → ζ̃ ∈ Ω, both at a Q-superlinear rate.

If in addition there is a neighborhood of x̃ on which (3.16) holds, then the Q-order

of convergence of {ζk} is at least (1+ν), and that of {xk} is at least min{1+ν, 1+
√

5
2 }.

Proof. From the stated conditions ζ̃ is also the unique solution of the system


g̃oỹo + H̃(x− x̃) + G̃y − z + z = 0,

G̃T (x− x̃) = 0,
x− a ≥ 0, z ≥ 0, zT (x− a) = 0,
b− x ≥ 0, z ≥ 0, zT (b− x) = 0,

(3.27)

with ỹo > 0 and ‖η̃‖∞ = 1.
We can therefore rescale both η̃ and ηk so that yok = ỹo = 1, and {ηk} will be

uniformly bounded.
Then from Lemma 1 we have

‖ζk − ζ̃‖ ≤ τ{‖r̃Dk‖+ ‖r̃Pk‖+ ‖ITBzk‖+ ‖IT
B
zk‖(3.28)

+‖ITNXk‖+ ‖IT
N
Xk‖+

√
mk },

where

mk = zTk (xk − a) + zTk (b− xk),

r̃Dk = g̃o + H̃(xk − x̃) + G̃yk − zk + zk,

r̃Pk = G̃T (xk − x̃).

(3.29)

Again we can assume that xk is close enough to x̃ for Lemma 1 to hold for some
ζ̃ ∈ Ω, so that Hk is not reset to zero and (3.17) holds. It follows that

r̃Dk = rDko −
m∑
j=0

yjk{gjk − g̃j − f jxx(x̃)(xk − x̃)}

−
m∑
j=0

(yjk − ỹj)f jxx(x̃)(xk − x̃)

= o(‖∆xk‖) + o(‖yk − ỹ‖ · ‖xk − x̃‖),
r̃Pk = fk + O(‖xk − x̃‖2) = O(‖∆xk‖2).

(3.30)
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We can also assume that xk is close enough to x̃ to have

Xi
k ≥ 1

2X̃
i
, i ∈ B; X

i

k ≥ 1
2X̃

i
, i ∈ B;

zik ≥ 1
2 z̃
i, i ∈ N ; zik ≥ 1

2 z̃
i
, i ∈ N.

Then from (2.14), (2.19), and (2.36) we have

‖ITBzk‖, ‖ITBzk‖, ‖ITNXk‖, ‖ITNXk‖ = O(‖∆xk‖4) ,

zTk (xk − a) + zTk (b− xk)
= eT (rck + yokµke) + eT (rck + yokµke)

= O(‖∆xk‖4).

(3.31)

Then from (3.28), (3.30), (3.31), and (3.23),

‖xk+1 − x̃‖ ≤ ‖ζk+1 − ζ̃‖
= o(‖xk − x̃‖) = o(‖ζk − ζ̃‖).(3.32)

Thus both {ζk} and {xk} converge Q-superlinearly to ζ̃ and x̃, respectively.

If (3.16) also holds, we have

r̃D,k+1 = O(‖xk − x̃‖min{1+ν,1+
√

5
2 })

and it follows that {ζk} and {xk} both converge with Q-order at least min{1 + ν, 1 +√
5

2 }.
4. Numerical results. As already noted, our algorithm requires upper and

lower bounds on all variables, and an interior starting point, which should not be
too close to a bound. In real-world problems users can usually set sensible bounds
based on physical considerations and also decide on appropriate action if the solution
happens to be on such an “artificial” bound. However standard test-sets of problems
may well omit some bounds, and we therefore use default values of ±105 for any
missing bounds.

For slack variables we set sis = f i(xs), where xs is the specified starting value;
then for the initial point we use the rule

xio = max{ai + ∆i
s,min{bi −∆i

s, x
i
s}},(4.1)

where

∆i
s = min{1, 0.1(bi − ai)}.

We also incorporated step-length bounds as in (2.6), with

∆i = 10 max{1, |xi|}.(4.2)

The algorithm contains the parameters α, β, γ, δ, δk,o, ε̄, θ, ρ, ρ, σ, τ, ω,M,m, as
well as the desired tolerances εo, ε, and our first task was to determine reasonable
default values for these parameters. For this purpose we carried out comparative
tests on a small subset of the problems published by Hock and Schittkowski [11].
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For M = 1000,m = 10, ε̄ = 10−7, no failures with xokl > 1− ε̄ were encountered, so
other values were not tested. For other parameters the best all-round values obtained
with εo = ε = 10−7 were found to be

δ = 10−4, θ = 0.5, ω = 1.5,
ρ = 0.1, ρ = 10−4, σ = 103,
β0 = 0.9, β = 0.9, γ = 0.3, δk,o = 0.45,
τ = 0.8, α = 0.01, µo = 100.

Tables 1, 2, 3, and 4 show the results for our algorithm (SQPIPM) for varying
values of β, γ, σ, and µ (in each case with all other parameters at the above values).
Those for other parameters showed much less sensitivity over quite a wide range.

From Table 1 there is evidence of instability if β is too close to unity, probably
because some iterates approach the bounds too closely before µ is small. A large γ
also provides “centering,” but this must be balanced against the smaller reduction
factor for µo and µ.

Smaller values of σ do force increased accuracy in solving the subproblems, which
tends to result in fewer outer iterations at the expense of more inner iterations, but
the effect is not as large as expected.

The most sensitive parameter is µo, but no regular pattern is discernible. Since
µ is rapidly reduced, we opted for robustness and chose a default value of 100.

In fact the Hock–Schittkowski subset had reasonable upper and lower bounds
and interior starting points, so for Tables 1, 2, 3 we did not incorporate a step-length
bound, and we also used a heuristic for choosing µo, subsequently abandoned, which
accounts for the differences between these tables and Table 4.

We then applied the algorithm with the above default parameters to the full
Hock–Schittkowski test-set and a selection of large problems from the CUTE collec-
tion [3]. The results are given in Tables 5, 6, and 7, together with comparative results
for LANCELOT (see Conn, Gould, and Toint [6]) and NITRO (see [4]), where No de-
notes the number of outer iterations, Nf denotes the number of function evaluations,
Ni denotes the number of inner iterations, Nd denotes the number of derivative evalu-
ations, NF1 denotes the number of failures in QP due to α′

k,l+1 < α (with α = 0.01),

and NF2 denotes the number of failures in QP due to ψ < ρ∆xTD∆x (with ρ = 0.1).
We note that SQPIPM makes one derivative evaluation on each outer iteration.

In these tables, results for NITRO are as reported in [4] and were obtained using
a SPARCstation 20. Results for LANCELOT (LAN) were obtained using a SPARC-
station 10. For SQPIPM the runs were performed on a Pentium II PC, using a
FORTRAN 77 compiler and double precision. All the results used second derivatives
and default values for all parameters. For SQPIPM the linear systems (2.18) were
solved using MA47 [8].

On the problems tested by NITRO, SQPIPM had four failures and NITRO had
three, but SQPIPM performed consistently better on problems solved by both algo-
rithms, taking only 46% of the total number of derivative evaluations.

Similarly LANCELOT had ten failures on the full set, compared with nine for
SQPIPM, and again the latter required only 42% of the total number of derivative
evaluations for the problems solved by both.

For SQPIPM the total numbers of inner iterations and function evaluations for
each problem are also satisfactorily small, averaging only 1.71 function evaluations
and 1.76 inner iterations per outer iteration, with maxima of 9.0 (for HS91) and 6.5
(HS55), respectively.
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Table 1
Numerical tests on the value of β.

Outer iterations : function evaluations : inner iterations
Problem (NF1a : NF2b )

β = 0.99 β = 0.9 β = 0.8 β = 0.7 β = 0.5

HS32 12:12:17 12:12:17 13:13:18 10:10:16 11:11:22

HS39 17:61:22 18:69:23 18:69:23 18:69:23 17:61:22
(1:0) (1:0) (1:0) (1:0) (1:0)

HS53 4:4:10 4:4:10 4:4:10 4:4:10 4:4:10

HS63 8:13:15 8:11:15 7:7:14 8:8:15 8:9:14

HS64 24:26:27 24:24:26 24:24:27 25:25:28 29:29:32

HS70 40:128:51 13:17:13 14:15:14 14:14:14 16:16:16
(0:9)

HS72 19:19:20 18:18:22 20:20:20 22:22:22 29:29:29

HS73 11:11:15 11:11:15 11:11:15 12:12:15 13:13:16

HS77 10:11:16 10:11:16 10:11:16 10:11:16 10:11:16

HS78 5:5:13 5:5:13 5:5:13 5:5:13 5:5:13

HS79 5:5:11 5:5:11 5:5:11 5:5:11 5:5:11

HS80 10:15:17 10:15:17 8:8:16 7:7:15 8:9:16

HS81 8:8:13 9:11:13 9:9:15 9:9:15 9:10:14

HS93 9:9:15 9:9:15 9:9:15 10:10:16 10:10:15
(0:1) (0:1) (0:1) (0:1) (0:1)

HS100 38:67:45 32:47:38 31:50:37 34:64:42 36:48:41
(2:0)

aNo. of failures in QP due to α′
k,l+1 < α (with α = 0.01).

bNo. of failures in QP due to ψ < ρ∆xTD∆x (with ρ = 0.1).

We give figures for (NF1:NF2) only where these are nonzero.

It is further encouraging that the performance is in general much better on the
larger, more realistic CUTE problems (only SVANBERG and COSHFUN required
any α reduction), and for the “scalable” problems in Table 6 the performance does
not significantly change as the problem size increases.

Many of these problems are nonconvex, so it is not surprising that there are
failures to generate a descent direction, and the lack of convexity can also require a
small α to satisfy (2.19). However, resetting Hk = 0 seems to be an effective remedy,
and performance is not significantly affected. Again the larger CUTE problems seem
less susceptible to these failures.

It is of interest that Hk was never reset as a result of failure to complete the
factorization, and on only one problem (HS61) did the algorithm converge to an
infeasible point.

In fact there seems to be no generic deficiency in the algorithm, and the causes
of serious failure seem to be different in each case.
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Table 2
Numerical tests on the value of γ.

Outer iterations : function evaluations : inner iterations
Problem (NF1a : NF2b )

γ = 0.01 γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7

HS32 21:21:33 21:21:26 12:12:17 12:12:22 12:12:32

HS39 18:69:19 18:69:19 18:69:23 18:69:28 18:69:32
(1:0) (1:0) (1:0) (1:0) (1:0)

HS53 5:5:7 4:4:8 4:4:10 4:4:13 4:4:16

HS63 7:7:9 7:7:10 11:8:15 10:10:19 28:16:33
(0:1) (0:3)

HS64 24:24:24 23:23:24 24:24:26 26:28:30 33:38:42

HS70 12:12:12 11:11:11 13:17:13 26:48:41 18:27:33
(1:6) (0:1)

HS72 21:21:22 17:17:22 18:18:22 19:19:23 24:24:30

HS73 12:13:16 12:17:15 11:11:15 17:17:22 27:27:37

HS77 10:11:10 10:11:12 10:11:16 10:11:20 10:11:23

HS78 5:5:6 5:5:9 5:5:13 5:5:15 5:5:19

HS79 5:5:6 5:5:9 5:5:11 5:5:15 5:5:18

HS80 16:33:18 12:21:14 10:15:17 12:13:24 13:17:30

HS81 7:7:9 8:8:10 9:11:13 12:18:18 12:13:26

HS93 7:7:14 7:7:11 9:9:15 17:23:29 20:23:34
(0:1) (0:1) (0:1) (0:3) (0:1)

HS100 35:88:76 33:64:39 32:47:38 35:54:42 42:60:55
(5:0) (3:0)

aNo. of failures in QP due to α′
k,l+1 < α (with α = 0.01).

bNo. of failures in QP due to ψ < ρ∆xTD∆x (with ρ = 0.1).

We give figures for (NF1:NF2) only where these are nonzero.

5. General comments.

5.1. Algorithm performance. The results given in the last section show that
the algorithm is reasonably robust, and the performance is quite uniform over the
range of problems tested. It has also performed well on a number of application
problems in chemical process synthesis and design. Of course these encouraging pre-
liminary results need confirmation over a wide range of large problems, but a more
important priority is to identify, and if possible eliminate, the causes of failure.

The problems tested are only of moderate size in today’s terms, but the only
limitation in extending the size indefinitely is the use of a direct method for solving
the linear systems. In process problems G(x) is usually very sparse, and H(x) is
much sparser, but for really large problems it may be necessary to envisage the use
of iterative techniques, which do not require storage of the KKT matrix in (2.18).
Unfortunately, in our experience methods currently available do not seem to have
adequate robustness or efficiency. We note that about 80% of the computation time
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Table 3
Numerical tests on the value of σ.

Outer iterations : function evaluations : inner iterations
Problem (NF1a : NF2b )

σ = 105 σ = 104 σ = 103 σ = 102 σ = 10 σ = 1

HS32 15:15:16 14:14:16 12:12:17 7:7:17 6:6:20 5:5:21

HS39 18:69:23 18:69:24 18:69:23 18:69:23 18:69:25 18:69:25
(1:0) (1:0) (1:0) (1:0) (1:0) (1:0)

HS53 5:5:11 5:5:10 4:4:10 4:4:9 4:4:10 4:4:10

HS63 9:9:14 8:8:14 8:11:15 8:11:15 7:7:14 7:7:16
(1:0)

HS64 25:25:27 24:24:27 24:24:26 23:23:26 23:23:26 22:22:28

HS70 13:17:13 13:17:13 13:17:13 13:17:15 13:17:15 13:17:16

HS72 18:18:22 18:18:22 18:18:22 18:18:22 18:18:22 20:20:22

HS73 12:12:15 12:12:16 11:11:15 11:11:14 10:10:14 8:8:14

HS77 10:11:15 10:11:15 10:11:16 10:11:17 10:11:16 10:11:15

HS78 5:5:11 5:5:13 5:5:13 5:5:11 5:5:12 5:5:10

HS79 5:5:11 5:5:10 5:5:11 5:5:11 5:5:13 5:5:12

HS80 22:57:22 10:10:17 10:15:17 7:7:15 7:7:16 7:7:14

HS81 10:10:14 10:10:14 9:11:13 15:21:22 14:20:22 16:22:23

HS93 10:10:16 10:10:16 9:9:15 9:9:15 8:8:15 8:8:14
(0:1) (0:1) (0:1) (0:1) (0:1) (0:1)

HS100 34:49:38 32:47:37 32:47:38 32:47:37 31:46:36 34:64:42

aNo. of failures in QP due to α′
k,l+1 < α (with α = 0.01).

bNo. of failures in QP due to ψ < ρ∆xTD∆x (with ρ = 0.1).

We give figures for (NF1:NF2) only where these are nonzero.

is spent in MA47, so improvement of the linear system solver does offer the greatest
scope for speeding up the algorithm, but for direct methods it is difficult to see what
can be done beyond using parallelization.

Although some of the provisions to secure robustness may seem crude, the small
number of times they are involved in practice gives little incentive to make them more
sophisticated.

Within the subproblem, step-lengths are computed by solving single-variable
quadratic equations, and more elaborate techniques give little improvement. In fact,
since so few iterations are required we could envisage simplifying the algorithm by
using fixed β and γ.

Similarly there is little incentive for replacing the Armijo rule in the outer iteration
by a more sophisticated rule requiring gradient evaluations or for adopting a trust-
region approach.

Although we have incorporated a step-length bound to avoid very large steps, this
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Table 4
Numerical tests on the value of µo.

Outer iterations : function evaluations : inner iterations
Problem (NF1a : NF2b )

µo = 0.01 µo = 0.1 µo = 1 µo = 10 µo = 100 µo = 1000

HS32 10:10:15 10:10:15 9:9:15 11:11:17 15:16:18 17:18:20

HS39 19:70:23 18:55:23 15:30:19 11:15:14 9:9:14 9:9:17
(1:0) (1:0)

HS53 4:4:7 4:4:8 4:4:8 4:4:8 4:4:10 4:4:11

HS63 25:30:67 15:16:109 9:9:15 7:7:14 8:8:13 13:16:22
(7:4) (4:4) (0:1) (0:1)

HS64 ∗ ∗ ∗c ∗ ∗ ∗ 22:22:26 24:24:26 24:24:26 25:25:29

HS70 13:13:13 14:15:14 19:33:26 20:24:23 20:24:23 21:24:27
(1:1) (0:3) (0:2) (0:3)

HS72 17:18:26 17:17:25 18:18:22 21:21:21 22:22:23 27:27:28

HS73 33:33:77 23:23:27 13:13:17 12:12:16 15:15:18 17:17:22
(6:0)

HS77 10:11:12 10:11:13 10:11:13 10:11:14 11:13:17 10:11:17
(6:0)

HS78 5:5:8 5:5:9 5:5:10 5:5:12 5:5:13 5:5:13

HS79 5:5:8 5:5:9 5:5:10 5:5:10 5:5:11 5:5:13

HS80 7:7:11 6:6:9 6:6:12 9:10:16 8:10:18 12:26:18

HS81 10:22:14 14:22:17 9:11:12 10:11:16 9:27:16 14:34:21
(1:0)

HS93 17:28:46 18:20:23 14:23:21 11:16:16 15:22:25 14:20:19
(2:0) (0:1) (1:0) (0:1) (1:0)

HS100 11:15:16 11:15:16 11:15:15 12:16:17 12:14:16 15:16:19

aNo. of failures in QP due to α′
k,l+1 < α (with α = 0.01).

bNo. of failures in QP due to ψ < ρ∆xTD∆x (with ρ = 0.1).

We give figures for (NF1:NF2) only where these are nonzero.
cFailure to converge in 1000 inner iterations.

can slow progress and the choice of bound is likely to be very problem dependent. We
believe it is difficult for users to provide a satisfactory bound and it is much easier for
them to set, and if necessary adjust, reasonable variable bounds. In our experience
such an approach is more efficient than any generalized rules for setting and adjusting
step-length bounds based on past algorithm behavior.

However, a claim often made for trust-region methods is that they ensure con-
vergence to a local minimum, not simply a Fritz-John point. In fact this can also
be achieved with a line-search method which uses directions of negative curvature, as
discussed in [17], but unfortunately both approaches seem to require range-space/null-
space decomposition of the constraints, with the resulting generation of dense matrices
which limits problem size. Until we learn how to exploit the properties of the Hessian
matrix without the use of such techniques, it seems that for large problems we must
be content with a less ambitious goal.
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Table 5
Numerical tests on the Hock–Schittkowski set: Part I.

Performance Performance
Problem SQPIPM LAN NITRO Problem SQPIPM LAN NITRO

No : Nf : Ni Nd Nd No : Nf : Ni Nd Nd

(NF1:NF2)a (NF1:NF2)

HS1 24:29:25 34 HS18 50:115:53 92

HS2 8:18:18 7 18 HS19 15:15:35 35 47
(0:1)

HS3 12:12:17 5 12 HS20 7:7:11 24 18

HS4 7:7:14 3 11 HS21 18:18:20 2

HS5 7:7:13 5 HS22 10:10:15 10 15

HS6 16:68:27 57 HS23 23:23:27 44
(0:7)

HS7 9:14:16 19 33 HS24 11:11:18 8 19
(0:1) (0:2)

HS8 6:6:10 12 HS25 28:34:33 1
(0:3)

HS9 5:5:12 5 HS26 20:20:25 40 13

HS10 12:12:16 18 17 HS27 30:110:33 17

HS11 9:9:14 16 14 HS28 5:5:10 4 3

HS12 11:12:15 24 HS29 27:111:48 31
(0:17)

HS13 ∗ ∗ ∗b 59 123 HS30 11:17:17 8

HS14 10:10:15 13 14 HS31 9:9:14 14 13

HS15 119:916:423 47 HS32 15:16:18 6 19
(102:0)

HS16 16:32:32 17 15 HS33 24:29:25 13 28
(2:2) (0:1)

HS17 10:10:26 20 27 HS34 16:19:20 20

aWe give figures for (NF1:NF2) only where these are nonzero.
bFailure to converge in 1000 inner iterations.

5.2. Theoretical results. Of course the main purpose of the convergence proofs
is to establish what features are necessary to obtain good performance of the algo-
rithm, as well as providing a guarantee of this performance.

Thus Theorem 2 shows the importance of rule (2.24), which prevents {µk} going
to zero faster than {‖∆xk‖}, for achieving global convergence, while Theorem 4 shows
that in order to achieve a final Q-quadratic convergence rate the subproblem must be
solved to an accuracy of O(‖∆xk‖4).

Closer examination of the proof of Theorem 3 shows in contrast that, for Q-
quadratic convergence to an ε-optimal point, a subproblem accuracy of O(‖∆xk‖2)
would suffice (cf. (3.17)). The apparent anomaly is resolved by noting that Theorem 3
is concerned with the solution of an equality-constrained problem, for which strict
complementarity is irrelevant, while Theorem 4 must allow for the possible lack of



NEW SQP ALGORITHM FOR LARGE-SCALE PROBLEMS 741

Table 5
Numerical tests on the Hock–Schittkowski set: Part II.

Performance Performance
Problem SQPIPM LAN NITRO Problem SQPIPM LAN NITRO

No : Nf : Ni Nd Nd No : Nf : Ni Nd Nd

(NF1:NF2)a (NF1:NF2)

HS35 8:8:14 7 HS51 4:4:10 3 3

HS36 7:7:13 12 HS52 4:4:10 7 8
(0:1)

HS37 6:6:12 17 HS53 4:4:10 7 8
(0:1)

HS38 ∗ ∗ ∗b 59 HS54 68:68:77 3

HS39 9:9:14 21 117 HS55 8:8:52 7
(3:0)

HS40 5:5:13 11 HS56 25:39:35 20
(0:4)

HS41 7:7:16 7 HS57 ∗ ∗ ∗ 2

HS42 5:5:11 13 HS59 118:479:140 336
(0:12)

HS43 11:14:16 23 HS60 6:6:13 16

HS44 11:11:22 7 HS61 Failc 20
(0:4)

HS45 9:10:21 3 HS62 5:6:14 35
(0:2)

HS46 22:23:24 25 20 HS63 8:8:13 15 −−−d

HS47 19:29:26 20 HS64 24:24:26 51 43
(0:2)

HS48 3:3:8 4 HS65 15:15:19 29 20

HS49 18:18:18 16 HS66 13:13:18 10

HS50 9:9:14 13 HS67 39:113:44 57

aWe give figures for (NF1:NF2) only where these are nonzero.
bFailure to converge in 1000 inner iterations.
cProgram failed due to |xo| > 1 − ε̄ and ‖∆x‖ < ε.
dFailure to converge after 1000 derivative evaluations.

strict complementarity. If in fact convergence is to a strictly complementary solution
in the latter case, Lemma 1 shows that the

√
m term is not required, and again a

subproblem accuracy of O(‖∆xk‖2) would suffice.

Apart from pointing to the need for these practical provisions in the algorithm,
the theoretical results are of some interest in themselves.

Theorem 1 proves finite termination of an interior-point algorithm for a general-
ized LCP of the form of (2.12), of course with µo = µ = 0 , where Hk need not be
monotone, or even symmetric (although in this case a general linear solver is required
for (2.18)).
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Table 5
Numerical tests on the Hock-Schittkowski set: Part III.

Performance Performance
Problem SQPIPM LAN NITRO Problem SQPIPM LAN NITRO

No : Nf : Ni Nd Nd No : Nf : Ni Nd Nd

(NF1:NF2)a (NF1:NF2)

HS68 39:58:54 93 HS95 24:38:28 8 156
(0:14)

HS69 8:8:15 44 HS96 24:38:28 8 224
(0:1)

HS70 20:24:23 31 35 HS97 20:23:24 21 45
(0:2)

HS71 12:13:16 16 22 HS98 19:20:23 18 53

HS72 22:22:23 90 44 HS99 6:6:9 −−−

HS73 15:15:18 16 29 HS100 12:14:16 56 20

HS74 27:27:34 28 17 HS101 420:2840:439 −−−
(3:0) (5:0)

HS75 36:47:41 143 108 HS102 420:2918:424 −−−
(3:0) (0:1)

HS76 9:9:15 7 HS103 347:2409:349 −−−
(1:0)

HS77 11:13:17 25 18 HS104 15:16:18 57

HS78 5:5:13 12 36 HS105 47:138:87 13 34
(0:32)

HS79 5:5:11 10 7 HS106 ∗ ∗ ∗ − −− 221

HS80 8:10:18 16 74 HS107 7:7:12 31 16

HS81 9:27:16 18 95 HS108 ∗ ∗ ∗ 34 49

HS83 14:14:19 23 HS109 ∗ ∗ ∗ − −− −−−

HS84 13:13:29 74 HS110 5:5:11 7
(3:1)

HS85 ∗ ∗ ∗b −−−c HS111 13:16:17 48 −−−
(0:1)

HS86 13:13:16 18 16 HS112 11:11:18 44 14

HS87 ∗ ∗ ∗ 123 HS113 20:20:23 73 17

HS88 11:12:14 54 HS114 45:53:49 757 42

HS89 22:42:25 65 HS116 ∗ ∗ ∗ − −−
(0:2)

HS90 14:16:15 58 HS117 19:19:23 67 40

HS91 84:755:242 69 HS118 17:17:21 17
(52:8)

HS92 14:16:17 56 HS119 14:14:18 30 31

HS93 15:22:25 −−− 14
(1:0)

aWe give figures for (NF1:NF2) only where these are non-zero.
bFailure to converge in 1000 inner iterations.
cFailure to converge after 1000 derivative evaluations.



NEW SQP ALGORITHM FOR LARGE-SCALE PROBLEMS 743

Table 6
Numerical results of large-scale test problems.

Performance
Problem n m SQPIPMa LANCELOTb

HAGER4-50 101 50 18:18:19 15

HAGER4-100 201 100 18:18:19 15

HAGER4-500 1001 500 20:20:20 13

HAGER4-1000 2001 1000 23:23:23 14

HAGER4-2000 4001 2000 26:26:26 14

OPTCNTRL30 92 60 12:12:17 47

OPTCNTRL100 302 200 26:26:26 128

OPTCNTRL300 902 600 27:27:27 135

OPTCNTRL500 1502 1000 26:26:27 138

OPTCNTRL700 2102 1400 27:27:27 137

OPTCNTRL1000 3002 2000 26:26:27 161

SVANBERG500 1000 500 25:41:29 87

SVANBERG1000 2000 1000 26:42:30 105

SVANBERG2000 4000 2000 26:39:30 101

aOuter iterations : Function evaluations : Inner iterations (NF1 : NF2).
We give figures for (NF1:NF2) only where these are nonzero.

bDerivative evaluations.
Note that SQPIPM makes one derivative evaluation on each outer iteration.

The proof of Theorem 3 essentially follows the classical approach and demon-
strates the convexifying role of the barrier function, which eliminates the need for a
second-order sufficiency condition and the consequential restriction of the result to
convergence to a regular isolated minimizer. As already noted, the use of the barrier
function eliminates the need for strict complementarity, and the proof also relaxes the
need for exact solution of the subproblem. Elimination of the need for a constraint
qualification results partly from the use of a barrier function to eliminate inequality
constraints and partly from use of the big-M technique to deal with linear dependence
of the equality constraints.

Q-quadratic convergence to an exact solution (Theorem 4) still requires a second-
order sufficiency condition, unless the linearized constraints at the solution define a
unique point, which implies that the solution in question must be an isolated minimizer
satisfying a constraint qualification, but again strict complementarity is not required.
The use of the Mangasarian–Shiau-type bound from Lemma 1 makes possible a simple
short proof of this result.
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Table 7
Numerical results and comparisons.

Performance
Problem n m SQPIPMa LANCELOTb NITROc

COSHFUN 61 20 70:174:70 608 40

DIXCHLNV 100 50 18:18:23 −−−d 18

GAUSSELM 14 11 7:7:15 27 78

HAGER4 2001 1000 23:23:23 14 18

HIMMELBK 24 14 ∗ ∗ ∗e 133 51

OPTMASS 1210 1005 7:7:14 −−− 39

SVANBERG 1000 500 25:41:29 87 35

aOuter iterations : Function evaluations : Inner iterations (NF1 : NF2).
We give figures for (NF1:NF2) only where these are nonzero.

bDerivative evaluations.
cDerivative evaluations.
dThe algorithm did not meet the stopping test after 1000 derivative evaluations.
eThe algorithm did not meet the stopping test after 1000 inner iterations.

Appendix A. Computing α′
k,l+1. From (2.13), (2.14), and (2.15) we have

Xk,l+1zk,l+1 = (Xkl + α′
k,l+1δXk,l+1)(zkl + α′

k,l+1δzk,l+1)(A.1)

= Xklzkl + α′
k,l+1(Zklδxk,l+1 + Xklδzk,l+1)

+(α′
k,l+1)

2δXk,l+1δzk,l+1

= Xklzkl(1− α′
k,l+1) + α′

k,l+1y
o
kγklµkle

+(α′
k,l+1)

2δXk,l+1δzk,l+1,

and using (2.20),

rck,l+1 = Xk,l+1zk,l+1 − yok,l+1µk,l+1e(A.2)

= rckl(1− α′
k,l+1) + (α′

k,l+1)
2δXk,l+1δzk,l+1.

To satisfy ‖rck,l+1‖∞ ≤ βk,l+1y
o
kµ

o
k,l+1, we require

{
φ̄i = βk,l+1y

o
kµ

o
k,l+1 − rick,l+1 ≥ 0,

φi = βk,l+1y
o
kµ

o
k,l+1 + rick,l+1 ≥ 0,

(A.3)

and again using (2.16) and (A.2) we may write

{
φ̄i = āio + āi1α

′
k,l+1 + āi2(α

′
k,l+1)

2 ≥ 0,

φi = aio + ai1α
′
k,l+1 + ai2(α

′
k,l+1)

2 ≥ 0,
(A.4)
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where

āio = βk,l+1y
o
k,lµ

o
k,l − rickl,

āi1 = βk,l+1y
o
k,lµ

o
k,l − āio,

āi2 = −δxik,l+1δz
i
k,l+1,

aio = βk,l+1y
o
k,lµ

o
k,l + rickl,

ai1 = βk,l+1y
o
k,lµ

o
k,l − āio,

ai2 = δxik,l+1δz
i
k,l+1.

Then, e.g., for φ̄i ≥ 0, we have the rule

{
If āi1 ≥ 0, āi2 ≥ 0, or 4āioā

i
2 ≥ (āi1)

2, then α′
k,l+1 = 1,

else α′
k,l+1 = 2āio(

√
(āi1)

2 − 4āioā
i
2 − āi1)

−1.
(A.5)

Note, however, that φ̄i ≥ 0 for all α′
k,l+1 ∈ [0, 1] if δxik,l+1δz

i
k,l+1 ≤ 0, while

φi ≥ 0 for all α′
k,l+1 ∈ [0, 1] if δxik,l+1δz

i
k,l+1 ≥ 0, so we need only solve one quadratic

equation per element to determine the limiting value of α′
k,l+1.

Similar results hold for rock,l+1 and rck,l+1.

Appendix B. The main algorithm.
Given: a, b, x, ε, εo;

α, β, γ, δ, δk,o, ε̄, θ, ρ, ρ, σ, τ, ω,M,m
Initialization

1. a) Set xo = x, yo = 1, y = 0, ỹj = ω for all j, γo = γ, FEAS = TRUE,
b) Compute fo(x), f(x), L(x), X,X, µ, z, z.

General Iteration
2. Solve the subproblem:

a) Compute G(x).
If FEAS=TRUE then compute go(x), H(x, y, yo)

else set go = 0, H = 0.
b) Solve the subproblem (2.12) to obtain: xo, ζ,∆x, ỹ, ψ, µ.
c) If xo ≥ 1− ε̄ and ‖∆x‖ ≤ εo then STOP (algorithm fails).
d) If xo ≥ 1− ε̄ then set FEAS=FALSE

else if FEAS=FALSE then set M := m ·M
set FEAS=TRUE

3. a) Compute fo(x), f(x), L(x), Po = P (xo, y
o, ỹ, µ),

∆P1 = Po − P (x, yo, ỹ, µ).
b) If ∆P1 ≥ δψ then set xo = x and repeat from step 2a.

4. a) Set ∆x1 = ∆x, α = 1.
b) If |f j | ≥ ε̄ for all j, then set ∆x = 0 and go to step 7.
c) Set ζ1 = ζ, ỹ1 = ỹ, µ1 = µ, ψ1 = ψ, γ1 = γo.

5. Solve the subproblem:
a) Compute G(x).

If FEAS=TRUE then compute go(x), H(x, y, yo)
else set go = 0, H = 0.

b) Solve the subproblem (2.12) to obtain xo, ζ,∆x, ỹ, µ, ψ.
c) If xo ≥ 1− ε̄ and ‖∆x‖ ≤ εo then STOP (algorithm fails).
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d) If xo ≥ 1− ε̄ then set FEAS=FALSE
else if FEAS=FALSE then set M := m ·M

set FEAS=TRUE
6. a) Compute fo(x), f(x), L(x),∆P2 = P (x1, y

o, ỹ, µ)− P (x, yo, ỹ, µ).
b) If ∆P1 + ∆P2 ≥ δψ1 then set xo = x and repeat from step 2a.
c) If ∆P2 ≤ 0 then set ∆x = 0.
d) Set η = η1, ỹ = ỹ1, µ = µ1, ψ = ψ1, γo = γ1.

7. Repeat until Po − P ≥ δαψ:
a) Set α := θα, x = xo + α(∆x1 + α∆x).
b) Compute fo(x), f(x), L(x), P = (x, yo, ỹ, µ).

8. Repeat from step 2a.

Appendix C. The subproblem algorithm.

Given: fo, f, go, G,H, ζ, µ, γo, ỹ,
a, b, ε, εo,
α, β, γ, δ, δk,o, ρ, ρ, σ, τ, ω,M .

Initialization

1. a) Set ζo = ζ, µo = µ, γ̃ = γo, ỹo = ỹ.
b) Set xo = 1, µo = µ, γ̃o = γ, δ̃ =

√
1− τ .

c) Compute zo, z, z,rD, roc , rc, rc, β
o, βo′, β′.

d) If yoµ ≤ ε and max{‖rD‖∞, ‖f‖∞, ‖rc‖∞, ‖rc‖∞} ≤ εo

then STOP (ζ is a solution).

General Iteration

2. a) Solve (2.18) to obtain δxo, δx, δy.
If the system is inconsistent then set H = 0

ζ = ζo, µ
o = µ = µo, γ̃ = γo

repeat from step 1b.
b) Compute δzo, δz, δz from (2.17).

3. a) Compute α′ to satisfy (2.19), updating χ, µo, µ, rD, roc , rc, rc,∆x.
b) If α′ < α and H �= 0 then set H = 0

ζ = ζo, µ
o = µ = µo, γ̃ = γo

repeat from step 1b.
4. a) Compute s = ‖yo, y‖∞.

b) If α′ ≥ τ or γ̃o = γ then set γ̃o = µo/µo,

δ̃ = δ̃(max{1− τ, 1− α′(1− γ̃o)}) 1
2 ,

else set γ̃o = γ.

c) If yoµ ≤ s ·max(ε, ρ‖∆x‖4) then set ỹj = max(ỹjo, ω|yj |), all j
γ̃ = 1

else set ỹj = sω, all j
γ̃ = γ̃o

d) Compute D̄ = X−1
o Z + X

−1

o Z

ψ = ∆xT (H̄ + D̄)∆x + (1− xo)

m∑
j=1

(ỹj |f j | − yjf j)

e) If ψ < ρ∆xT D̄∆x then set H = 0, ζ = ζo, µ
o = µ = µo, γ̃ = γo

repeat from step 1b.

5. If ∆xT (rD + X−1
o rc − X̃−1

o rc) > 1
4 (1− 2δ)ψ or yoµo > s ·max(εo, σ‖∆x‖4)
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or yoµ > s ·max(ε, σ‖∆x‖4) then
a) Compute βo′, β′.
b) Return to step 2a.

6. a) Rescale η := s−1η, ψ := s−1ψ, ỹ := s−1ỹ.
b) RETURN.
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Abstract. Two recent papers [F. Facchinei, Math. Oper. Res., 23 (1998), pp. 735–745 and F.
Facchinei and C. Kanzow, SIAM J. Control Optim., 37 (1999), pp. 1150–1161] have shown that for
a continuously differentiable P0-function f , the nonlinear complementarity problem NCP(fε) corre-
sponding to the regularization fε(x) := f(x) + εx has a unique solution for every ε > 0, that dist
(x(ε), SOL(f)) → 0 as ε → 0 when the solution set SOL(f) of NCP(f) is nonempty and bounded,
and NCP(f) is stable if and only if the solution set is nonempty and bounded. These results are
proved via the Fischer function and the mountain pass theorem. In this paper, we generalize these
nonlinear complementarity results to a box variational inequality problem corresponding to a con-
tinuous P0-function where the regularization is described by an integral. We also describe an upper
semicontinuity property of the inverse of a weakly univalent function and study its consequences.

Key words. complementarity problem, box variational inequality problem, regularization,
weakly univalent function
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1. Introduction. Consider a continuous function f : Rn → Rn and a rectangu-
lar box K in Rn. Then the box variational inequality problem, denoted by BVI(f,K),
is to find an x∗ ∈ K such that

〈f(x∗), x− x∗〉 ≥ 0 for all x ∈ K.(1.1)

When K = Rn+, this problem reduces to the nonlinear complementarity problem
NCP(f): Find x∗ ∈ Rn such that

x∗ ≥ 0, f(x∗) ≥ 0, and 〈f(x∗), x∗〉 = 0.(1.2)

Both the NCP and BVI have been extensively studied in the literature; see [4], [5],
[6], [10], [11], [12], [15], [20], [21], [23], and the references therein.

We say that f is a P0 (P)-function if for every pair (x, y) with x �= y,

max
xi �=yi

(x− y)i[fi(x)− fi(y)] ≥ 0 (> 0).(1.3)

Generalizing earlier results for monotone functions, Facchinei [8] and Facchinei and
Kanzow [9] have shown the following in the NCP setting: Consider a continuously
differentiable P0-function f and its Tikhonov regularization fε(x) := f(x)+εx. Then

(a) NCP(fε) has a unique solution x(ε) for each ε > 0.
(b) When the solution set SOL(f) of NCP(f) is nonempty and bounded,

dist (x(ε),SOL(f))→ 0 as ε→ 0.
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(c) SOL(f) is stable if and only if it is nonempty and bounded.
Although item (a) follows from a result of Megiddo and Kojima [19, Thm. 3.4], the
method of proving these results in the cited papers via the Fischer function and the
mountain pass theorem is quite interesting and novel. In a related paper, Sun [23]
carries out an algorithmic analysis of a continuously differentiable P0 complementarity
problem via regularization techniques.

In this paper, we generalize the results of Facchinei and Kanzow in several ways.
We consider a BVI instead of a NCP, assume only continuous P0-property of f , and
deal with integral regularizations of the fixed point map of BVI (1.1) of the form

F̂ε(x) :=

∫
R

{x−ΠK(x− f(x)− εx− εs e)}dµ(s),

where e is the vector of ones in Rn, and µ is a Borel measure on R. Our analysis is
based on degree theory and the classical result that a coercive local homeomorphism
of Rn is a global homeomorphism of Rn. In contrast to our theoretical analysis, Qi [20]
makes an algorithmic study of a BVI with a continuously differentiable P0-function
via the mountain pass theorem and the normal map.

2. Preliminary results. Throughout this paper, K denotes a rectangular box
in Rn, i.e.,

K = K1 ×K2 × · · · ×Kn,

where each Ki is a closed interval in R. It is well known that BVI(f,K) is equivalent

to finding a zero of the (fixed point map) f̂ defined by

f̂(x) := x−ΠK(x− f(x)),(2.1)

where ΠK denotes the (orthogonal) projection onto K. We note that when K = Rn+
(the nonnegative orthant),

f̂(x) = x ∧ f(x),

where “∧” denotes the componentwise minimum of vectors involved.
Given a continuous function f : Rn → Rn, ε > 0, and a (positive) Borel measure

µ on R [22] with

µ(R) = 1 and ∆ :=

∫
R

|s|dµ(s) <∞,

we define the following regularizations of f̂ :

f̂ε(x) :=

∫
R

{x−ΠK(x− f(x)− εse)}dµ(s)(2.2)

and

F̂ε(x) :=

∫
R

{x−ΠK(x− f(x)− εx− εse)}dµ(s),(2.3)

where the integration is performed componentwise. As in various regularization meth-
ods, the objective here is to study the zero set of f̂ (i.e., the solution set of BVI(f,K))
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via the zero sets of f̂ε and F̂ε. The “transforms” (2.2) and (2.3) appear in smoothing
methods for NCP and BVI; see [4], [5], [6], [12], and the references therein. Using
the nonexpansive property of the projection map x �→ ΠK(x) and writing ||x|| for the
Euclidean norm of x in Rn, we easily get the following inequalities:

||f̂ε(x)− f̂(x)|| ≤ ε
√
n∆ (x ∈ Rn)

and for any compact set E, there is a constant C such that

||F̂ε(x)− f̂(x)|| ≤ εC (x ∈ E).(2.4)

These inequalities show that f̂ε and F̂ε are approximations of f̂ for small ε.
To illustrate the above regularizations, we consider the following examples.
Example 1. We let K = Rn+ and µ be the point mass at the origin so that∫

R
g dµ = g(0) for every continuous g on R. Then

f̂ε(x) = x ∧ f(x) and F̂ε(x) = x ∧ [f(x) + εx].

We note that the zero set of F̂ε is precisely the solution set of NCP(fε) where fε(x) =
f(x) + εx is the Tikhonov regularization of f .

Other examples are obtained by putting dµ = ρ(s)ds where ρ is a density function
on R [4], [5], [12]. Specifically, when K = Rn+, using the terminology of [5] and writing
x+ for ΠRn

+
(x), we let

p̂(x, ε) :=

∫
R

(x− te)+ 1

ε
ρ

(
t

ε

)
dt =

∫
R

(x− εse)+ ρ(s)ds

so that

f̂ε(x) = x− p̂(x− f(x), ε)
and

F̂ε(x) = x− p̂(x− f(x)− εx, ε).
In the following two examples, we specify ρ and p̂(x, ε); in each case, the corresponding

f̂ε and F̂ε are given by the above expressions. For further examples, we refer to [5].
Example 2 (see [5]). We let

ρ(s) :=
e−s

(1 + e−s)2
,

which is the so-called neural networks smooth plus function. Then for x ∈ Rn,
p̂(x, ε) = x+ ε log(e + e−

x
ε ),

where we recall that e is the vector of ones in Rn.
Example 3 (see [5]). Here we let

ρ(s) :=
2

(s2 + 4)
3
2

,

which is the so-called Chen–Harker–Kanzow–Smale smooth plus function. Then for
x ∈ Rn,

p̂(x, ε) =
x+
√
x2 + 4ε2e

2
.
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2.1. P and P0-properties. In this subsection, we establish the P and P0-
properties of f̂ε and F̂ε given by (2.2) and (2.3).

Proposition 2.1. For a continuous function f : Rn → Rn, let

θ(x) := x−ΠK(x− f(x)),
θ(x, ε, s) := x−ΠK(x− f(x)− εse) (s ∈ R, ε > 0),

and

φ(x, ε, s) := x−ΠK(x− f(x)− εx− εse) (s ∈ R, ε > 0).

Then
(a) θ(x) and θ(x, ε, s) are P-functions (P0-functions) in x (for fixed s and ε)

whenever f is a P-function (P0-function);
(b) φ(x, ε, s) is a P-function in x (for fixed s and ε) when f is a P0-function.
Proof. (a) Assume that f is a P-function. Let x �= y and pick an i such that

(xi − yi)[fi(x)− fi(y)] > 0.

Without loss of generality, let xi > yi so that fi(x) > fi(y). We show that θ is a
P-function by showing that (xi − yi)[θi(x) − θi(y)] > 0. If the inequality were not
true, then θi(x) ≤ θi(y) which means that

xi −ΠKi(xi − fi(x)) ≤ yi −ΠKi(yi − fi(y)).

By considering all possible values of the quantities involved in the above expression,
we can check (see the appendix) that the above inequality cannot hold. We conclude
that θ is a P-function. A similar argument shows that θ is a P0-function when f is
a P0-function. Since f is a P (P0)-function if and only if f(x) + εes is a P (P0)-
function, we get the stated assertion about θ(x, ε, s). (b) follows easily from (a) since
f(x) + εx is a P-function when f is a P0-function.

Remark 1. The proof of the above proposition actually shows the following:
Suppose f is a P-function (P0-function) and x �= y. If xi �= yi and

(xi − yi)[fi(x)− fi(y)] > 0 (≥ 0),

then for the same index i,

(xi − yi)[θi(x, ε, s)− θi(y, ε, s)] > 0 (≥ 0) for all s ∈ R, ε > 0,

and

(xi − yi)[φi(x, ε, s)− φi(y, ε, s)] > 0 for all s ∈ R, ε > 0.

Proposition 2.2. Given f and µ, let f̂ε and F̂ε be as defined in (2.2) and (2.3).
Then the following statements hold:

(a) If f is a P0 (P)-function, then f̂ε is a P0 (P)-function.

(b) If f is a P0-function, then F̂ε is a P-function and hence one-to-one.
Proof. Let f be a P0 (P)-function. Fix x �= y in Rn. Then there exists an index i

such that xi �= yi and (xi − yi)[fi(x)− fi(y)] ≥ 0 (> 0). From Remark 1, we see that

(xi − yi)[θi(x, ε, s)− θi(y, ε, s)] ≥ 0 (> 0) for all s ∈ R.
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Since µ(R) > 0, integration leads to

(xi − yi)[f̂ε(x)− f̂ε(y)]i ≥ 0 (> 0).

Thus we have (a). Item (b) is proved by applying (a) to the P-function f(x) + εx.
The one-to-one assertion follows from the P-property.

In the result below, we identify a condition under which f̂ε is a P-function.
Proposition 2.3. Suppose f is a P0-function and for each i, the closed interval

Ki is bounded either below or above, and µ does not vanish on any infinite interval.
Then f̂ε is a P-function.

Proof. Let x �= y. From Remark 1 and the previous proposition we know that for
some index i, xi �= yi,

(xi − yi)[θi(x, ε, s)− θi(y, ε, s)] ≥ 0 for all s ∈ R

and

(xi − yi)[f̂ε(x)− f̂ε(y)]i ≥ 0.

We claim that the latter inequality is strict. Assume the contrary and let, without
loss of generality, xi > yi and [f̂ε(x)− f̂ε(y)]i = 0. It follows that

θi(x, ε, s) = θi(y, ε, s) a.e. µ,(2.5)

that is, the set of s where the above equality fails to hold has µ measure zero. Assume
that Ki is bounded below by li > −∞ (the case of Ki being bounded above is similar).
Then for all s in some interval [δ,∞), xi − fi(x) − εs ≤ li and yi − fi(y) − εs ≤ li;
hence for all such s, θi(x, ε, s) = xi− li and θi(y, ε, s) = yi− li. Since xi− li �= yi− li,
we see from (2.5) that µ[δ,∞) = 0, contradicting the assumption on µ.

Corollary 2.4. Suppose f is a P0-function and K = Rn+. Then

f̂(x) = x ∧ f(x)

and

f̂ε(x) =

∫
R

x ∧ (f(x) + εes)dµ(s)

are P0-functions. Moreover, f̂ε will be a P-function when one of the following condi-
tions is satisfied:

(i) f is a P-function;
(ii) µ does not vanish on any infinite interval of the form [δ,∞).

Proof. The stated property of f̂ follows from Proposition 2.2(a) by taking µ to

be the point mass at the origin. For the stated properties of f̂ε see Proposition 2.2(a)
and the proof of Proposition 2.3.

Remark 2. Corollary 2.4 says that the composition of a P0 (P)-function and
the min function is a P0 (P)-function. Similar things can be said about the Fischer
function. Recall that the ith component of the Fischer function ψ : Rn×Rn → Rn is
given by

ψi(a, b) = (ai + bi)−
√
a2
i + b2i .
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We claim that if f is a P-function, then so is Ψ(x) := ψ(x, f(x)).
To see this, let x �= y. Then there exists an index i such that (xi − yi)(fi(x) −

fi(y)) > 0. We show that for the same index i, (xi−yi)(Ψi(x)−Ψi(y)) > 0. Without
loss of generality, we assume that xi > yi and show that Ψi(x)−Ψi(y) > 0. Assume
the contrary, Ψi(x) ≤ Ψi(y), and let, for simplicity, α = xi, β = yi, γ = fi(x),
δ = fi(y). We have α > β and γ > δ. Now Ψi(x) ≤ Ψi(y) leads to (α − β) +

(γ − δ) ≤
√
α2 + γ2 −

√
β2 + δ2. Squaring, simplifying, and using the inequality

(α− β)(γ − δ) > 0, we get√
α2 + γ2

√
β2 + δ2 < αβ + γδ,

which upon squaring leads to (αδ − βγ)2 < 0. We conclude that Ψ is a P-function.
The P0-property is similarly established. Note that the zeros of Ψ are precisely the
solutions of NCP(f).

Remark 3. Let f be a P0-function. Let η(x) : R
n → Rn be a function whose ith

component function ηi is a function of xi only and that it is strictly increasing in that
variable. Then it is easily verified that for any ε > 0, f(x) + εη(x) is a P-function.
In particular f(x) + εη(x) is a P-function where η is given, for some (disjoint) index
sets I, J , and an x ∈ Rn, by

ηi(x) =



−e−xi if i ∈ I,
exi if i ∈ J,

(xi − xi) if i �∈ I ∪ J.

2.2. An upper semicontinuity property. In this section, we digress a little
bit from our main theme to describe an upper semicontinuity property of the (mul-
tivalued) inverse of a weakly univalent function. Weakly univalent functions were
introduced in [13]; they are generalizations of P0-functions. The results of this sec-
tion, which are also of independent interest, are crucial to the proof of the main result
(Theorem 3.3) of the paper.

Theorem 2.5. Let g : Rn → Rn be weakly univalent, that is, g is continuous and
there exist one-to-one continuous functions gk : Rn → Rn such that gk → g uniformly
on every bounded subset of Rn. Suppose that q∗ ∈ Rn such that g−1(q∗) is nonempty
and compact. Then for any given ε > 0, there exists a δ > 0 such that for any weakly
univalent function h and for any q with

sup
Ω

||h(x)− g(x)|| < δ, ||q − q∗|| < δ,(2.6)

we have

∅ �= h−1(q) ⊆ g−1(q∗) + εB,(2.7)

where B denotes the open unit ball in Rn and Ω := g−1(q∗)+εB. In particular, h−1(q)
and g−1(q) are nonempty, connected, and uniformly bounded for q in a neighborhood
of q∗.

Proof. Let ε > 0 and Ω := g−1(q∗) + εB. Under the stated assumptions on g, it
follows from Remark (2) in section 3 of [13] (together with the excision property of
the degree) that

deg (g,Ω, q∗) = ±1.(2.8)
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Let δ := 1
2 dist (q∗, g(∂Ω)), where ∂Ω denotes the boundary of Ω. Then for h and q

satisfying (2.6),

sup
Ω

||(h(x)− q)− (g(x)− q∗)|| < dist (q∗, g(∂Ω)),

and hence by the nearness property of the degree [17, Thm. 2.1.2],

deg (h,Ω, q) = ±1.
It follows that h(x) = q will have a solution in Ω and no solutions on ∂Ω. We now
claim that h−1(q) ⊆ Ω. The decomposition

h−1(q) = [h−1(q) ∩ Ω] ∪ [h−1(q) ∩ (Ω)c]

shows that h−1(q)∩Ω is a nonempty, bounded, closed, and open subset of h−1(q). It
follows from Theorem 2 in [13] that h−1(q) = h−1(q) ∩ Ω, proving (2.7). The same
theorem proves the connectedness of h−1(q). Finally putting h = g, we get the stated
assertion about g. This completes the proof.

The above theorem has a number of important consequences.
Corollary 2.6. Let g be weakly univalent, Y be a closed convex subset of Rn

such that g−1(Y ) is bounded, and for some q∗ ∈ Y , g−1(q∗) �= ∅. Then for each
q ∈ Y , g−1(q) �= ∅ and g−1(Y ) is connected.

Proof. For any fixed q ∈ Y , we consider the homotopy H(x, t) := g(x) − [tq∗ +
(1 − t)q]. By (2.8) and the homotopy invariance of the degree, we conclude that the
degree of g(x) − q over a suitable bounded open set is nonzero proving the nonemp-
tyness of g−1(q). It follows from Theorem 2.5 that g−1 is upper semicontinuous at
each point of Y . Since Y is connected, g−1(Y ) is closed, g−1(q) is connected for all
q ∈ Y , and g−1 is upper semicontinuous at each point of Y , it follows that g−1(Y ) is
also connected.

Remark 4. It follows from Corollary 2.6 that if a weakly univalent function
g : Rn → Rn is proper (that is, the inverse image of any compact set is compact),
then it is onto.

To see our next consequence, consider a P0-function f . Then by Proposition
2.2(b), F̂ε is a univalent function. Letting ε → 0 in (2.4), we see that f̂ is a weakly
univalent function. Theorem 2.5 now gives the following.

Corollary 2.7. Let f be a continuous P0-function and let f̂ be given by (2.1).

Suppose that (f̂ )−1(q∗) is nonempty and compact. Then for each ε > 0, there exists
a δ > 0 such that

∅ �= (f̂ )−1(q) ⊆ (f̂ )−1(q∗) + εB(2.9)

for all q with ||q − q∗|| < δ. In particular, (f̂ )−1(q) is nonempty and (uniformly)
bounded for all q in a neighborhood of q∗.

Remark 5. Let f be as in Corollary 2.7. Suppose that (f̂ )−1(0) is nonempty and

bounded. Then (f̂)−1(q) is uniformly bounded for ||q|| small. This can be described
equivalently by means of level sets: For all small positive numbers α, the level sets

{x : ||f̂(x)|| ≤ α}
are bounded. Such a boundedness result has been used to analyze convergence in
various iterative schemes; see, e.g., [6] and [24].
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Remark 6. As yet another illustration of Theorem 2.5, suppose f is a P0-function,
and consider Ψ(x) = ψ(x, f(x)) where ψ is the Fischer function mentioned in Re-
mark 2. We know from Remark 2 that Ψ is a P0-function and (Ψ)−1(0) is the solution
set of the nonlinear complementarity problem NCP(f). By applying Theorem 2.5, one

can state a result similar to Corollary 2.7 with Ψ in place of f̂ . A modification of Re-
mark 5 for Ψ gives the following result: For all small positive numbers α, the level sets

{x : ||Ψ(x)|| ≤ α}
are bounded. This result generalizes Lemma 4.3 in [8] proved for a continuously
differentiable P0-function via the mountain pass theorem.

We now state an upper semicontinuity property of the solution set of a BVI.
Corollary 2.8. Let f be a continuous P0-function and q ∈ Rn. Let BVI(f,K, q)

and SOL(f,K, q) denote, respectively, the BVI problem corresponding to the function
f(x) + q on K and its solution set. Suppose that for q∗ ∈ Rn, SOL(f,K, q∗) is
nonempty and bounded. Then for each ε > 0, there exists a δ > 0 such that

∅ �= SOL(f,K, q) ⊆ SOL(f,K, q∗) + εB(2.10)

for all q with ||q − q∗|| < δ. In particular, SOL(f,K, q) is nonempty, connected, and
(uniformly) bounded for all q in a neighborhood of q∗.

Proof. The result follows from Theorem 2.5 by putting

g(x) = x−ΠK(x− f(x)− q∗), and h(x) = x−ΠK(x− f(x)− q).
When Corollary 2.8 is specialized to K = Rn+, we get the following.
Corollary 2.9. If the nonlinear complementarity problem NCP(f) correspond-

ing to a continuous P0-function has a nonempty bounded solution set, then the problem
is strictly feasible, that is, there exists an x∗ such that

x∗ > 0 and f(x∗) > 0.

Proof. In Corollary 2.8, we put K = Rn+, q
∗ = 0, and take q < 0 sufficiently

close to zero. Then SOL(f,Rn+, q) is nonempty and every solution u in SOL(f,Rn+, q)
satisfies u ≥ 0 and f(u) ≥ −q > 0. By continuity we produce an x∗ satisfying the
properties listed above.

Remark 7. In Corollary 2.9 we considered an NCP. The BVI version reads as
follows. Suppose K is a rectangular box with 0+K denoting the recession cone of K
and (0+K)∗ denoting the dual of 0+K. If (0+K)∗ has a nonempty interior and f is a
continuous P0-function with SOL(f,K, 0) nonempty and bounded, then there exists
an x∗ such that

x∗ ∈ K and f(x∗) ∈ int (0+K)∗.

This can be seen by taking q ∈ −int (0+K)∗ that is close to zero and applying (2.10) to
get a solution x∗ of SOL(f,K, q). The inequality (1.1) shows that f(x∗)+q ∈ (0+K)∗

from which we get the stated properties of x∗.
Now consider a continuous monotone f so that for all x, y,

〈f(x)− f(y), x− y〉 ≥ 0.

In this setting, it is well known that NCP(f) is solvable with a bounded solution
set whenever it has a strictly feasible solution (see [16, Thm. 4.1] or [15, Thm. 3.4]).
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Corollary 2.9 proves the converse of this result. While we have used degree theoretic
considerations to prove this converse, McLinden has proved this converse in the setting
of maximal monotone operators [18, Thm. 4] and Chen, Chen, and Kanzow [3] prove
it (for a continuously differentiable f) using the Fischer function and the mountain
pass theorem. Easy examples of affine P0-functions show that the converse statement
in the above corollary need not hold.

2.3. A coercivity property. We saw in Proposition 2.2 that for a continuous
P0-function f , F̂ε is univalent. Toward establishing the homeomorphism property of
F̂ε, we prove the following result.

Proposition 2.10. Suppose f is a P0-function and define F̂ε as in (2.3). Then

F̂ε is coercive on Rn, that is, for any sequence {xk} with ||xk|| → ∞, we have

||F̂ε(xk)|| → ∞.

Proof. Fix ε. To show that F̂ε is coercive, we follow an argument given in the
proof of Proposition 3.4 in [8]. Let {xk} be any sequence such that ||xk|| → ∞.
Passing through a subsequence, if necessary, we may suppose that there exists an
index set J such that for each i ∈ J , |xki | → ∞ as k → ∞ and for i �∈ J , {xki } is
bounded. Define a bounded sequence {yk} as follows:

yki :=

{
0 if i ∈ J,
xki if i �∈ J.

Since xk �= yk for all large k, we can use the P0-property of f to get an index i ∈ J
so that without loss of generality,

xki [fi(x
k)− fi(yk)] = (xki − yki )[fi(xk)− fi(yk)] ≥ 0

for all k. For simplicity we may take i = 1 and note that |xk1 | → ∞. We assume
without loss of generality, xk1 converges either to ∞ or to −∞.

Suppose that xk1 goes to ∞. Then the above inequality shows (assuming xk1 > 0
for all k) that f1(x

k) is bounded below by α := infk f1(y
k). Now consider

(F̂ε)1(x
k) =

∫
R

{xk1 −ΠK1 [x
k
1 − f1(xk)− εxk1 − εs]}dµ(s).(2.11)

This integral can be written as the sum of integrals over Ak, Bk, and Ck where

Ak := {s : xk1 − f1(xk)− εxk1 − εs < l1}

when K1 is bounded below with l1 = infK1,

Bk := {s : xk1 − f1(xk)− εxk1 − εs ∈ K1},

and

Ck := {s : xk1 − f1(xk)− εxk1 − εs > u1}

when K1 is bounded above with u1 = supK1.
Note that some of these sets may be empty. When K1 is bounded, in view of

µ(R) = 1, the integral (2.11) behaves like xk1 and hence goes to infinity as k → ∞.
When K1 = R, the integral reduces to f1(x

k)+εxk1 +εC where C is a constant. Since
f1(x

k) is bounded below, even in this case also the integral goes to infinity. Now
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consider the case when K1 is bounded below but not above. Then Ck is empty, the
integral in (2.11) reduces to∫

Ak

(xk1 − l1)dµ(s) +
∫
Bk

[f1(x
k) + εxk1 + εs]dµ(s) = xk1 [µ(Ak) + εµ(Bk)] + γk,

where

γk = −l1µ(Ak) + f1(x
k)µ(Bk) + ε

∫
Bk

sdµ(s) ≥ αµ(Bk)− l1 − ε∆,

where we recall that α ≤ f1(x
k), ∆ :=

∫
R
|s|dµ(s), and µ(R) = 1. Since µ(Ak) +

µ(Bk) = 1, there exists a positive number δ such that µ(Ak) + εµ(Bk) ≥ δ for all k
large. Hence the integral in (2.11) exceeds xk1δ+constant. It follows that the integral
goes to infinity as k → ∞. Similar arguments can be used when K1 is unbounded
below but bounded above. Thus we have shown that as xk1 → ∞, (F̂ε )1(x

k) → ∞.

The proof that (F̂ε )1(x
k) → −∞ as xk1 → −∞ is similar; we omit the details. Thus

we have shown that for any sequence {xk} going to infinity in the norm, {F̂ε(xk)}
goes to infinity in the norm through a subsequence. This proves that for any such
sequence {xk}, ||F̂ε(xk)|| → ∞ as k →∞. This completes the proof.

3. The main result. We now consider BVI(f,K) and denote its solution set
by SOL(f,K).

For our main theorem below, we introduce the following stability concepts. The
first one appears in [8], though with a different name.

Definition 3.1. We say that BVI(f,K) is linearly stable if for every ε > 0,
there exists a δ∗ > 0 such that for any continuous function g with

||g(x)− f(x)|| ≤ δ∗(1 + ||x||) for all x ∈ SOL(f,K) + εB,
BVI(g,K) has a solution in SOL(f,K) + εB.

Definition 3.2. We say that BVI(f,K) is directionally stable if for every ε > 0
and every continuous function h there exists a δ > 0 such that for 0 ≤ δ ≤ δ,
BVI(f + δh,K) has a solution in SOL(f,K) + εB.

We are now ready for our main result.
Theorem 3.3. Let f : Rn → Rn be a continuous P0-function and let F̂ε be as

in (2.3). Then the following statements hold:

(a) For each ε > 0, the equation F̂ε(x) = 0 has a unique solution x(ε). Moreover,
the mapping ε �→ x(ε) from (0,∞) to Rn is continuous.

(b) If SOL(f,K) is nonempty and bounded, then dist(x(ε),SOL(f,K)) → 0 as
ε→ 0.

(c) (i)⇐⇒ (ii) =⇒ (iii) where
(i) BVI(f,K) is directionally stable;
(ii) SOL(f,K) is nonempty and bounded;
(iii) BVI(f,K) is linearly stable.
Moreover, when Ki is bounded below for each i, (iii)=⇒ (ii).

Proof. Statement (a). For ε > 0, Propositions 2.2 and 2.10 show that F̂ε is
univalent and coercive. Since coercivity in Rn is the same as properness (that is, the
inverse image of any compact set is compact), by a classical result of Banach and

Mazur ([1] or [2, Thm. 5.1.4]), it follows that F̂ε is a homeomorphism of Rn and

hence F̂ε(x) = 0 will have a unique solution. An application of Theorem 2.5 with

q = q∗ = 0, g := F̂ε∗ , and h := F̂ε proves the continuity of x(ε) at any ε∗ > 0.
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Statement (b). Now let SOL(f,K) be nonempty and bounded. For any ζ > 0,

let D = SOL(f,K) + ζB. Then for all sufficiently small ε, F̂ε is close to f̂ on D,

and hence by Theorem 2.5, (F̂ε )
−1(0) ⊆ (f̂)−1(0) + ζB. Since x(ε) = (F̂ε )

−1(0) and

(f̂ )−1(0) = SOL(f,K), we have x(ε) ∈ SOL(f,K)+ ζB. Hence for all such ε we have

dist(x(ε),SOL(f,K)) ≤ ζ.

This implies statement (b).
Statement (c). (i)=⇒ (ii): We suppose (i) holds. Then by definition, SOL(f,K)

is nonempty. To see (ii), that is, to see the boundedness of SOL(f,K), we follow
an argument given in the proof of Theorem 4.4 in [8]. Assume that SOL(f,K) is
unbounded. We produce small perturbations f(x)+δη(x) for which the corresponding
BVI has no solution. Let {xk} be an unbounded sequence of solutions in SOL(f,K).
Without loss of generality, we may take a nonempty index set I ∪ J and a vector x̄
such that xki → ∞ (i ∈ I), xki → −∞ (i ∈ J), and xki → x̄i (i �∈ I ∪ J). Let η be a
function defined by

ηi(x) :=



−e−xi if i ∈ I,
exi if i ∈ J,

(xi − x̄i) if i �∈ I ∪ J.

Since f(x) + δη(x) is a P-function (for δ > 0), by (i), SOL(f + δη,K) is singleton
for all small δ > 0. For any such δ, by Corollary 2.7 applied to the function x �→
x−ΠK [x− f(x)− δη(x)], for all q sufficiently close to zero, the sets

{x : x−ΠK [x− f(x)− δη(x)] = q}

are uniformly bounded. We show that this is false by showing

xk −ΠK [xk − f(xk)− δη(xk)]→ 0(3.1)

as k → 0. Now (3.1) follows easily from xk−ΠK [xk− f(xk)] = 0, η(xk)→ 0, and the
inequality

||{xk −ΠK [xk − f(xk)− δη(xk)]} − {xk −ΠK [xk − f(xk)]}|| ≤ δ||η(xk)||.

Thus we reach a contradiction. Hence (i)=⇒ (ii).
(ii)=⇒ (iii), (ii)=⇒ (i): Assume that SOL(f,K) is nonempty and bounded and

let ε > 0. Then by Remark 2 in section 3 of [13], deg(f̂ ,Ω, 0) = ±1 for Ω :=
SOL(f,K) + εB. It follows from the nearness property of degree [17, Thm. 2.1.2]
that for any continuous function g with

sup
Ω
||g(x)− f(x)|| < δ̂ := dist(0, f̂(∂Ω)),

deg(ĝ,Ω, 0) = ±1 where ĝ(x) = x−ΠK(x− g(x)). Hence ĝ will have a zero in Ω. By

taking δ∗ = δ̂(1 + supΩ ||x||)−1, we verify the linear stability of BVI(f,K).

For a given continuous h and ε > 0, we take a δ > 0 such that δ(supΩ ||h(x)||) < δ̂
and verify the directional stability of BVI(f,K).

Now suppose that each interval Ki is bounded below. Suppose we have (iii) and
that the solution set is unbounded. We proceed as in the proof of (i)=⇒ (ii). Since
in this setting the index set J is empty, we see that resulting function f(x) + δη(x)
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satisfies the linear stability condition for small δ. As before we get a contradiction
when BVI(f + δη,K) has a solution for small δ. This completes the proof.

By specializing K and µ, one could get various special cases of Theorem 3.3. In
particular, by taking K = Rn+, and µ as the point mass at the origin, we get the fol-
lowing generalization of Facchinei and Kanzow results (mentioned in the introduction)
for continuous P0-functions in the NCP setting.

Corollary 3.4. Consider NCP(f) where f is a continuous P0-function. Let
fε(x) = f(x) + εx. Then the following hold.

(a) For each ε > 0, NCP(fε) has a unique solution x(ε) and, moreover, the
mapping ε �→ x(ε) is continuous on (0,∞).

(b) If SOL(f) is nonempty and bounded, then dist(x(ε),SOL(f))→ 0 as ε→ 0.
(c) NCP(f) is linearly stable if and only if SOL(f) is nonempty and bounded.

4. Concluding remarks. In this paper, based on a result of Banach and Mazur
and on degree theory, we have generalized some results of Facchinei and Kanzow.
These generalizations deal with integral regularizations of the fixed point map corre-
sponding to a BVI problem. The ideas of the paper can be used in other contexts as
well. For example, one could study regularizations based on the normal map and on
smoothing (see [14]).

Appendix.
Lemma A.1. Consider four real numbers α, β, γ, δ with α > β and γ > δ. Let

L be a closed interval in R. Then

α−ΠL(α− γ) > β −ΠL(β − δ).

Note. With a limiting argument, one can see that α > β, γ ≥ δ =⇒ α− ΠL(α−
γ) ≥ β −ΠL(β − δ).

Proof. Suppose, if possible, α − ΠL(α − γ) ≤ β − ΠL(β − δ). We consider all
possible cases and show that in each case, the inequality fails. The possible values of
α−ΠL(α− γ) are

(1) α− l if α− γ ≤ l where l = inf L > −∞;
(2) γ if l ≤ α− γ ≤ u where l = inf L > −∞ and u = supL <∞;
(3) α− u if u ≤ α− γ where u = supL <∞;

and the possible values of β −ΠL(β − δ) are
(a) β − l if β − δ ≤ l where l = infK > −∞;
(b) δ if l ≤ β − δ ≤ u where l = inf L > −∞ and u = supL <∞;
(c) β − u if u ≤ β − δ where u = supL <∞.
We look at the following cases under the assumption that α − ΠL(α − γ) ≤

β −ΠL(β − δ).
(i) (1) and (a) hold: This is not possible since α > β.
(ii) (2) and (b) hold: This is not possible since γ > δ.
(iii) (3) and (c) hold: This is not possible since α > β.
(iv) (1) and (b) hold: Then α− l ≤ δ. Since α− l > β − l, this implies β − l < δ

which contradicts statement (b).
(v) (1) and (c) hold: Then α− u ≤ α− l ≤ β − u contradicts α > β.
(vi) (2) and (a) hold: Then γ ≤ β − l ≤ δ contradicts γ > δ.
(vii) (2) and (c) hold: Then γ ≤ β − u < α− u contradicts (2).
(viii) (3) and (a) hold: Then γ ≤ α− u ≤ β − l ≤ δ contradicts γ > δ.
(ix) (3) and (b) hold: Then α− u ≤ δ < γ contradicts (3).

This completes the proof of the lemma.
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Abstract. For many years globally convergent probability-one homotopy methods have been
remarkably successful on difficult realistic engineering optimization problems, most of which were
attacked by homotopy methods because other optimization algorithms failed or were ineffective.
Convergence theory has been derived for a few particular problems, and considerable fixed point
theory exists, but generally convergence theory for the homotopy maps used in practice for nonlin-
ear constrained optimization has been lacking. This paper derives some probability-one homotopy
convergence theorems for unconstrained and inequality constrained optimization, for linear and non-
linear inequality constraints, and with and without convexity. Some insight is provided into why the
homotopies used in engineering practice are so successful, and why this success is more than dumb
luck. By presenting the theory as variations on a prototype probability-one homotopy convergence
theorem, the essence of such convergence theory is elucidated.

Key words. constrained optimization, globally convergent, homotopy algorithm, nonlinear
equations, probability-one homotopy
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1. Introduction. Continuation methods for optimization, as for nonlinear sys-
tems of equations, have been around for a long time and studied extensively. This
paper concerns only a recent variant known as globally convergent probability-one
homotopy methods. The words “continuation” and “homotopy” are often used inter-
changeably, but subtle and fundamental distinctions can be drawn between contin-
uation, homotopy, and probability-one homotopy methods. These distinctions have
been discussed numerous times in the literature [5], [8], [25], [28], [33]. The purpose
of this paper is to help close a gap in the convergence theory for globally convergent
probability-one homotopy methods applied to nonlinear programming, and to offer
some theoretical justification for the observed success of homotopies in engineering
practice.

From a high-level perspective, all the fundamental convergence theory was done
by Chow, Mallet-Paret, and Yorke [5] and Watson [23], and all that remains is to
verify that a particular homotopy map has the right properties. Alas, the devil is in
the details, which are indeed often nontrivial. It is appropriate to sketch out here
what is well understood and where gaps remain.

Much of the early work on computational homotopy algorithms was motivated by
Brouwer fixed point problems: given a continuous function f from a compact, convex
subset of finite dimensional Euclidean space into itself, find a fixed point x = f(x).
The algorithms and theory are elegant and well understood for both simplicial [3], [6],
[7] and continuous [3], [5], [20] approaches.
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For nonlinear systems of equations F (x) = 0 not derived from Brouwer fixed
point problems, the theory [3], [5], [25], [26] and algorithms [28], [33] are well de-
veloped in terms of properties of F . Special cases, such as when F is a polynomial
system, have a deep and rich supporting theory [13], and special, highly sophisticated
algorithms have been devised to exploit the structure of F [14], [15], [33]. How-
ever, except in rare instances that usually result in polynomial systems, a physical
model does not directly result in a finite dimensional nonlinear system of equations
F (x) = 0. Rather, F (x) = 0 results from a discretization, approximation, or itera-
tion step of another mathematical model of the physical phenomenon. The catch is
that abstract conditions on F (for a homotopy algorithm to converge) do not easily
translate into meaningful or verifiable conditions on the physical model or on the dis-
cretization/approximation/iteration process. The gap here is considerable: not many
homotopy convergence theorems are stated at the level of physical modeling or the
high-level processes that spawn the nonlinear systems F (x) = 0 to be solved.

One notable exception is the solution of nonlinear two-point boundary value prob-
lems (BVPs). Conditions on the original two-point BVP itself for which an approxi-
mation F (x) = 0 is solvable by a globally convergent homotopy algorithm have been
derived in a series of papers. Convergence theorems directly addressing the nonlinear
two-point BVP exist for approximation processes based on shooting [21], finite differ-
ences [23], collocation [31], and finite elements [32]. This is significant because many
physical models reduce to two-point BVPs, and thus convergence theory exists for a
large class of problems of interest.

For nonlinear constrained optimization the gap has been large. Global conver-
gence theorems, stated in terms of conditions on the objective function and con-
straints, for homotopy algorithms have been an elusive quarry. Some attempts include
[16], [22], [24], [27], [29], [30]. Recently Lin et al. [9], [10], using a particular classical
homotopy map (not a probability-one map) and constraint aggregation, have ob-
tained convergence results for general nonlinear programming problems with a strong
“normal cone condition” assumption. The convergence theory presented here has
comparatively weak assumptions, applies to homotopy maps actually used in prac-
tice, and does not use constraint aggregation, which is numerically ill-conditioned in
practice [30]. Probability-one homotopy algorithms have been enormously successful
in engineering practice, notwithstanding the lack of theory. The goal of this work
is to narrow the gap by providing such theorems for inequality constraints, and to
help explain theoretically the observed success in practice [26]. Extending the theory
for nonlinear equality constraints seems to require a homotopy existence theory for
underdetermined nonlinear systems, and would at least involve a nontrivial extension
of the proofs here. Nonlinear equality constraints are undeniably important, which
mandates future work on homotopy theory for them.

There is a variant of probability-one homotopy theory for piecewise smooth func-
tions [1], [2], and this might seem like a more natural tool for constrained optimization.
Recent work along these lines includes [4], [18], and [19]. Despite the appeal of these
nonsmooth formulations, they are not yet seriously competitive with the existing so-
phisticated numerical implementations for smooth formulations on realistic large-scale
problems [4].

After some background in section 2, the theory is presented as a series of refine-
ments applied to successively more general optimization problems. Sections 3 and 4
summarize some known results, but all the results after Theorem 4.1 are new. The
progression is from unconstrained (section 3) to nonnegative constraints (section 4)
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to linear constraints (section 5) to nonlinear convex constraints (section 6) to general
nonlinear constraints (section 7). First, convexity is assumed and then finally dropped
in section 7. Section 7 also provides some insight into why the homotopy maps used
in engineering practice might (or might not) work.

2. Background and notation. Let En denote n-dimensional Euclidean space,
Em×n the set of real m× n matrices, and xi the ith component of a vector x ∈ En.
The ith row of a matrix A ∈ Em×n is denoted by Ai· and the jth column by A·j . For
sets of indices M and N , AMN is the submatrix of A with rows indexed by M and
columns indexed by N . Similarly, xM is the subvector of the vector x corresponding
to the indices in M . No distinction is made between row vectors and column vectors,
except when matrix arithmetic is involved. Following Mangasarian’s notation for
x ∈ En, x > 0 means all xi > 0, x >

= 0 means all xi >= 0, and x ≥ 0 means x >
= 0 but

x �= 0. ‖·‖ is the 2-norm unless otherwise indicated.
The gradient of a differentiable function f : En → E is the row vector ∇f(x) =(

∂f
∂x1

(x), . . . , ∂f∂xn
(x)
)
. The Jacobian matrix of F : En → Em is

DF (x) = ∇F (x) =



∇F1(x)

...
∇Fm(x)


 .

The Hessian matrix of the C2 function f : En → E is

∇2f(x) = D(∇f(x)) =




∂2f
∂x2

1
(x) · · · ∂2f

∂xn∂x1
(x)

...
...

∂2f
∂x1∂xn

(x) · · · ∂2f
∂x2

n
(x)


 .

For open U ⊂ En, open V ⊂ Em, n > m, a C2 map ρ : U → V is said to be
transversal to zero if Dρ has full rank on ρ−1(0). Note that in the trivial case where
ρ−1(0) is empty, ρ is trivially transversal to zero.

The theoretical foundation of probability-one homotopies (referred to in early
work as the Chow–Yorke algorithm) was laid by Chow, Mallet-Paret, and Yorke [5],
and the algorithm was immediately recast as a practical computational procedure by
Watson [20]. The intent here is not to summarize or survey probability-one homotopy
developments—see the survey papers [25] (early history), [26] (applications), and [33]
for the latest numerical algorithms.

Depending on the context and intended use, the supporting theory is presented
differently. The best formulation for the work here is contained in Lemmas 2.1–2.3
from [22], which are restated here for convenience.

Lemma 2.1. Let ρ : Em × [0, 1)×En → En be a C2 map which is transversal to
zero, and define

ρa(λ, z) = ρ(a, λ, z).

Then for almost all a ∈ Em, the map ρa is also transversal to zero.
Lemma 2.1 is known as a parametrized Sard’s theorem, and its significance is

partially given by the following.
Lemma 2.2. In addition to the hypotheses of Lemma 2.1, suppose that for each

a ∈ Em the system ρa(0, z) = 0 has a unique nonsingular solution z(0). Then for
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almost all a ∈ Em there is a smooth zero curve γ ⊂ [0, 1)×En of ρa(λ, z), emanating
from (0, z(0)), along which the Jacobian matrix Dρa(λ, z) has rank n. γ does not
intersect itself or any other zero curves of ρa, does not bifurcate, has finite arc length
in any compact subset of [0, 1) × En, and either goes to infinity or reaches (has an
accumulation point in) the hyperplane λ = 1.

Lemma 2.3. Under the hypotheses of Lemma 2.2, if the zero curve γ is bounded,
then it has an accumulation point (1, z̄). Furthermore, if rank Dρa(1, z̄) = n, then γ
has finite arc length.

Conceptually, how all this relates to optimization is as follows: (1) Convert an
optimization problem to a nonlinear system of n equations in n unknowns, F (x) = 0.
(2) Construct a homotopy map ρa(λ, x) satisfying the hypotheses of the above lem-
mas, and with ρa(1, x) = F (x). (3) Track the zero curve γ of ρa from the known point
(0, z(0)) to a point (1, x̄). x̄ then solves the original optimization problem. Each of
these steps can be fraught with theoretical and computational difficulties, and homo-
topy algorithms are often considered (with some truth) more art than science. The
third step, homotopy zero curve tracking, is close to routine, with robust, numerically
stable mathematical software [33] being available. The homotopy construction step
is definitely an art, but good maps ρa are known for large classes of problems, and
several books exist on the topic [13], [3]. The first step, conversion of an optimization
problem to a nonlinear system, is perhaps the least understood and most debatable.
Why convert a difficult optimization problem into a (possibly even more) difficult
nonlinear system? There are enough examples of such counterintuitive conversions
being successful (e.g., Karmarkar’s algorithm converts a linear program into a series
of nonlinear programs) to keep the question open.

3. Unconstrained convex optimization. The simplest possible case, convex
unconstrained optimization, is worth mentioning because it shows how everything
should work in the ideal case. While a homotopy algorithm is not advocated for
convex unconstrained optimization, it is nevertheless reassuring that the theory does
cover this case elegantly.

Theorem 3.1. Let f : En → E be a C3 convex map with a minimum at x̃,
‖x̃‖ <= M . Then for almost all a, ‖a‖ < M , there is a zero curve γ of the homotopy
map

ρa(λ, x) = λ∇f(x) + (1− λ)(x− a),
along which the Jacobian matrix Dρa(λ, x) has full rank, emanating from (0, a) and
having an accumulation point (1, x̄), where x̄ solves

min
x

f(x).

If the Hessian matrix ∇2f(x̄) is nonsingular, then γ has finite arc length.
Theorem 3.1 is proved in [24], but a sketch of the proof is repeated here for several

reasons. First, it illustrates that a simple proof suffices for the unconstrained case.
Second, this proof is a prototype for many homotopy convergence proofs. Often, the
essence of a homotopy convergence theorem proof is to construct a map ρa(λ, x) to
which this proof applies, or to generalize the prototype proof to apply to a particular
ρa.

Let (λ, x) be any point with 0 <
= λ < 1 and ‖x‖ = 3M . Now ‖a‖ < M and

‖x̃‖ <= M give

(x− x̃)(x− a) > 0,
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and the convexity of f at the minimum x̃ gives

(x− x̃)∇f(x) = (x− x̃)(∇f(x)−∇f(x̃)) >= 0.

Combining these inequalities yields

(x− x̃)[λ∇f(x) + (1− λ)(x− a)] > 0,

which means that ρa(λ, x) �= 0 for 0 <
= λ < 1 and ‖x‖ = 3M . Hence γ is bounded,

being contained in the solid cylinder [0, 1]× {x | ‖x‖ <= 3M}. The conclusion follows
from Lemma 2.3.

The essence of the above proof is that the zero curve γ of ρa(λ, x) emanating from
the trivially found starting point (0, a) does not pierce the surface

[0, 1)× {x | ‖x‖ = r}

of some sufficiently large (solid) cylinder containing (0, a). Then γ must be contained
inside the solid cylinder, hence bounded, and must therefore pierce (or at least accu-
mulate at) the hyperplane λ = 1 at a point (1, x̄). This prototype convergence proof
reveals a fundamental difference between continuation, homotopy, and probability-one
homotopy algorithms. For the former two, a convergence theorem would have to ad-
dress the existence and connectivity of γ for 0 <= λ <

= 1, requiring assumptions beyond
the mere boundedness of γ. In contrast, a probability-one homotopy convergence
proof essentially amounts to proving the connected component of ρ−1

a (0) containing(
0, z(0)

)
is bounded. The other requirements—transversality of ρ, ρa(0, z) being a

trivial map, ρa(1, z) = F (z) —are normally trivially satisfied by the construction of
ρ. Finally, note that continuation and homotopy algorithms must typically explicitly
deal with singularities along γ, whereas a well-constructed probability-one zero curve
γ has no singularities, theoretical or numerical.

4. Nonnegatively constrained convex optimization. Let f : En → E be a
C3 convex function, and say that f is uniformly convex if there exists ν > 0 such that
x
[∇2f(z)

]
x >

= ν ‖x‖2 for all x, z ∈ En. Consider next the constrained optimization
problem

min f(x) such that x >
= 0.(4.1)

Since f is convex and Slater’s constraint qualification is satisfied, the Kuhn–Tucker
optimality conditions are both necessary and sufficient. Hence (4.1) is equivalent to
the nonlinear complementarity problem

x >
= 0, F (x) >= 0, x F (x) = 0,(4.2)

where F (x) = ∇f(x). There are numerous ways to rewrite (4.2) as a nonsmooth
[4] or smooth nonlinear system of equations, but the simplest way (meeting the C2

requirement for smooth probability-one homotopies), due to Mangasarian [12], is as

K(x) = 0,(4.3)

where

Ki(x) = −
∣∣Fi(x)− xi∣∣3 + (Fi(x))3 + x3

i .(4.4)
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This choice for K(x) permits the use of the canonical homotopy map

ρa(λ, x) = λK(x) + (1− λ)(x− a).(4.5)

Since (4.1), (4.2), and (4.3) are equivalent, ρa(1, x̄) = 0 gives a solution x̄ to (4.1).
A convergence theorem for (4.5) uses the following general existence result for the

nonlinear complementarity problem from [24].
Lemma 4.1. Suppose every zero of K(x) lies in the ball ‖x‖ < r, where r is such

that x >
= 0 and ‖x‖ >= r imply xk > 0 and Fk(x) >= 0 for some index k. Then there

exists δ > 0 such that for almost all a >
= 0 with ‖a‖ < δ there is a zero curve γ of

ρa(λ, x), along which Dρa(λ, x) has full rank, connecting (0, a) to (1, x̄), where x̄ is a
zero of K(x).

This lemma directly gives the following theorem (from [24]).
Theorem 4.1. Let f : En → E be a C3 uniformly convex map. Then there exists

δ > 0 such that for almost all a >= 0 with ‖a‖ < δ there is a zero curve γ of

ρa(λ, x) = λ K(x) + (1− λ)(x− a),
where

Ki(x) = −
∣∣∣∣∂f(x)∂xi

− xi
∣∣∣∣
3

+

(
∂f(x)

∂xi

)3

+ x3
i ,

along which Dρa(λ, x) has full rank, connecting (0, a) to a point (1, x̄), where x̄ solves
the constrained optimization problem (4.1).

Note that homotopy convergence theorems are often also existence theorems, as
is the case with Theorem 4.1, and consequently the assumptions certainly cannot be
weaker than are required for existence of a solution. The uniform convexity assump-
tion of Theorem 4.1 is one way to guarantee the existence of a solution to (4.1). If
one assumes that (4.1) has a solution, then a theorem like the following is possible.

Theorem 4.2. Let f : En → E be a C3 convex map, and assume that (4.1) has
a solution x̃, and that the level sets of f are bounded. Then there exists δ > 0 such
that for almost all a >= 0 with ‖a‖ < δ there is a zero curve γ of

ρa(λ, x) = λ K(x) + (1− λ)(x− a),
where

Ki(x) = −
∣∣∣∣∂f(x)∂xi

− xi
∣∣∣∣
3

+

(
∂f(x)

∂xi

)3

+ x3
i ,

along which Dρa(λ, x) has full rank, emanating from (0, a) and reaching a point (1, x̄),
where x̄ solves (4.1).

Proof. SinceK(x) = 0 is equivalent to (4.2), which is equivalent to (4.1), it suffices
to verify the hypotheses of Lemma 4.1 for the nonlinear complementarity problem with
F (x) = ∇f(x). First note that by assumption the solutions of (4.1) are bounded, and
therefore all the zeros of K(x) lie in some open ball B(M) =

{
x ∈ En | ‖x‖ < M

}
.

That is, every solution x̃ of (4.1) satisfies ‖x̃‖ < M .
Observe that it suffices to consider only points (λ, x) with 0 <

= λ < 1 and x >
= 0,

since xi < 0, ai >= 0 implyKi(x) < 0 and xi−ai < 0, which then imply
[
ρa(λ, x)

]
i
< 0;

hence x >
= 0 along the zero curve γ of ρa. f(x) has a maximum at some point x̂ on

the compact set

S1 =
{
x ∈ En | x >

= 0, ‖x‖ =M
}
.
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By assumption, the level set

S2 =
{
y ∈ En | y >= 0, f(y) <= f(x̂)

}
is contained in some closed ball

{
x ∈ En | ‖x‖ <= r/2

}
. Since x̂ ∈ S1 ∩ S2, 0 < M <

=

r/2 < r. Now consider any z >= 0 with ‖z‖ = r. It follows that

f(z) > f(x̂) >= f

(
M

r
z

)
> f(x̃),

and from the convexity of f ,

f

(
M

r
z

)
>
= f(z) +∇f(z)

(
M

r
z − z

)

⇒
(
1− M

r

)
z∇f(z) >= f(z)− f

(
M

r
z

)
> 0

⇒ z∇f(z) > 0

⇒ zk > 0 and
(∇f(z))

k
> 0 for some index k, the requirement of Lemma 4.1.

Using concepts like recession cones and indicator functions from convex analysis
[17], very short proofs can be given for the next two theorems. The essential fact from
[17] is that if one nonempty level set is bounded, then all the level sets are bounded.
In the interest of maintaining an elementary exposition, short direct proofs are given
here. A variant of Theorem 4.2 can be obtained without reference to level sets. One
such possibility is the next theorem.

Theorem 4.3. Let f : En → E be a C3 convex map, and assume that (4.1) has
a solution x̃ at which f is strictly convex. Then the conclusion of Theorem 4.2 holds.

Proof. x̃ is the unique minimum point from strict convexity, and hence the zeros
of K(x) are bounded. The proof of Theorem 4.2 applies if it can be shown that the
level set S2 is bounded. Suppose not. Then there exists a sequence y(k) ∈ S2 with∥∥y(k)

∥∥ → ∞. The vectors y(k)
/∥∥y(k)

∥∥ lie on the compact unit sphere, and therefore

have a convergent subsequence y(ki)
/∥∥y(ki)

∥∥ → y >
= 0. Reduce to this subsequence.

For each k, choose 0 < tk < 1 such that∥∥∥(1− tk)x̃+ tky
(k)
∥∥∥ =M.(4.6)

Now by the strict convexity of f at x̃,

f
(
(1− tk)x̃+ tky

(k)
)
< (1− tk)f(x̃) + tkf

(
y(k)

)
<
= (1− tk)f(x̃) + tkf(x̂).(4.7)

Taking the limit as k →∞ (
∥∥y(k)

∥∥→∞ and (4.6) give tk → 0) yields

f(x̃+ αy) <= f(x̃),(4.8)

where x̃ + αy >
= 0, ‖x̃+ αy‖ = M > ‖x̃‖, which contradicts the strict convexity of f

at the minimum point x̃.
The most general version of the homotopy convergence theorem for (4.1), whose

proof is a refinement of the previous proof, is given last. Theorems 4.2 and 4.3 could
have been dispensed with, but presenting the proofs as a series of refinements is
instructive.



768 LAYNE T. WATSON

Theorem 4.4. Let f : En → E be a C3 convex map, assume that (4.1) has
a solution x̃, and that every solution x̃ satisfies ‖x̃‖ < M . Then the conclusion of
Theorem 4.2 holds.

Proof. By assumption the zeros of K(x) are bounded. The proof of Theorem
4.3, after the first sentence, applies verbatim, with the following changes. Without
strict convexity, the strict inequality in (4.7) becomes inequality (<=), but this doesn’t
matter in the limit. Equation (4.8) still obtains, but now the contradiction is that
x̃+ αy is also a solution of (4.1), which does not satisfy ‖x̃+ αy‖ < M .

5. Linearly constrained convex optimization. Let f : En → E be a C3

convex function, and let A ∈ Em×n, b ∈ Em. First consider the problem

min f(x) subject to g(x) = Ax− b <= 0.(5.1)

Since both f and g are convex and g satisfies the Arrow–Hurwicz–Uzawa constraint
qualification, (5.1) is equivalent to the Kuhn–Tucker problem(∇f(x))t +Atu = 0,(5.2)

Ax− b <= 0,(5.3)

u >
= 0,(5.4)

ut(Ax− b) = 0.(5.5)

As before, the complementarity conditions (5.3)–(5.5) can be replaced by a nonlinear
system K(x, u) = 0, defined by

Ki(x, u) = −|bi −Ai·x− ui|3 + (bi −Ai·x)3 + u3
i .

One possible homotopy map, which has been successful in practice on some difficult
engineering optimization problems [30], is

ρa(λ, x, u) = λ

((∇f(x))t +Atu
K(x, u)

)
+ (1− λ)

(
x− x0

u− u0

)
,(5.6)

where a = (x0, u0) is the random probability-one homotopy parameter vector, and
u0 > 0. This is the direct generalization of what was done for simple nonnegativ-
ity constraints x >

= 0, and one would expect it to work. For instance, it is known
that a quadratic programming problem with general linear inequality constraints is
equivalent to a quadratic programming problem with only nonnegativity constraints.
Unfortunately, the homotopy map (5.6) does not suffice. Qualitatively, it worked
before because (with convex f) K(x, u) and u− u0 had the same sign for large argu-
ments; thus ρa(λ, x, u) could not be zero outside some large ball. This meant the zero
curve γ of ρa could not penetrate the surface of that ball, and hence had to reach a
solution of the original problem. In (5.6), x and u can play off against each other,
permitting ρ−1

a (0) to be unbounded.
As a simple example, consider f(x) = (1/2)x2 and g(x) = 1 − x <

= 0, and take
x0 = −1, u0 = 0.1. The zero curve γ of the homotopy map ρa in (5.6) is unbounded,
as shown in Figure 1. Of course a lucky guess for (x0, u0) may still work. For
(x0, u0) = (0,−1), γ has several turning points but still reaches λ = 1 in finite arc
length.

The idea behind the repair of (5.6) is to replace (5.3) with

Ax− b− (1− λ)b0 <= 0,(5.7)
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Fig. 1. Example of unbounded homotopy zero curve.

and because of the technical necessity to preserve transversality, replace λK(x, u) +
(1− λ)(u− u0) with

K(λ, x, u)− (1− λ)c0.(5.8)

Assume that the feasible set {x | Ax − b <= 0} is nonempty and bounded (this is not
an obstacle in practice, because variable bounds can always be added). For some
arbitrary initial guess x0 ∈ En, choose b0 ∈ Em, b0 > 0, such that Ax0 − b− b0 < 0.
Also choose c0 ∈ Em such that c0 > 0. Define Sλ = {x | Ax− b− (1− λ)b0 <= 0}, and
observe that

S0 ⊃ Sλ1 ⊃ Sλ2 ⊃ S1 �= ∅ for 0 <= λ1 < λ2
<
= 1.(5.9)

It would be desirable if complementarity could be automatically enforced by defining
K with something like

(5.10)

Ki(λ, x, u, b
0, c0) = −∣∣(1− λ)b0i + bi −Ai·x−

(
ui − (1− λ)c0i

)∣∣3
+
(
(1− λ)b0i + bi −Ai·x

)3
+
(
ui − (1− λ)c0i

)3
, i = 1, . . . ,m,

and then

ρ(x0, b0, c0, λ, x, u) =

(
λ
[(∇f(x))t +Atu

]
+ (1− λ)(x− x0)

K(λ, x, u, b0, c0)

)
.(5.11)

As always for probability-one homotopies, technically 0 <
= λ < 1. Unfortunately this

K results in ρ in (5.11) not being transversal to zero, due to inherent cancellation in
the structure of K in (5.10). Something a bit more complicated is required, such as

(5.12)

Ki(λ, x, u, b
0, c0) = −∣∣(1− λ)b0i + bi −Ai·x− ui

∣∣3 + ((1− λ)b0i + bi −Ai·x
)3

+ u3
i − (1− λ)c0i , i = 1, . . . ,m.
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The complication is that given c0 > 0 and (1−λ)b0+b−Ax0 > 0, some work is required
to find the starting point at λ = 0: the value u0 for u such that K(0, x0, u0, b0, c0) = 0.
However, it is easily verified that Ki is a strictly monotone increasing function of ui,
and thus u0 can always be uniquely determined.

Let a = (x0, b0, c0), and define ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u), using (5.11) and
(5.12).

Theorem 5.1. Let f : En → E be a C3 convex function, let A ∈ Em×n,
b ∈ Em, and assume that S1 = {x | Ax − b <

= 0} is nonempty and bounded. Let
ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u) be defined from (5.11) and (5.12). Then for almost
all x0 ∈ En, almost all b0 ∈ Em such that b0 > 0 and Ax0 − b − b0 < 0, and almost
all c0 ∈ Em with c0 > 0, there exists a zero curve γ of ρa(λ, x, u) emanating from
(0, x0, u0), along which the Jacobian matrix Dρa(λ, x, u) has rank n+m, and reaching
a point (1, x̄, ū), where x̄ solves minx∈S1 f(x). If rank Dρa(1, x̄, ū) = n +m, then γ
has finite arc length.

Proof. Several facts need to be verified first.
(i) Sλ is nonempty and bounded for 0 <= λ <

= 1. This follows from the assumption
that S1 �= ∅, (5.9), and the fact that boundedness is unrelated to the constant term
b+ (1− λ)b0: Sλ is bounded if and only if {x | Ax <

= 0} = {0}. Furthermore, observe
that int Sλ �= ∅ for 0 <= λ < 1.

(ii) ρ defined from (5.11) and (5.12) is transversal to zero, for 0 <
= λ < 1, and

c0 > 0. It is easily verified that full rank (n + m) comes from the Dx0 and Dc0

columns. This is a good illustration of the fact that the dimension of the probability-
one homotopy parameter vector a = (x0, b0, c0) need not equal the dimension of the
homotopy map ρ, and of how this flexibility can be used to advantage.

(iii) There is a unique point (x0, u0) such that ρa(0, x, u) = 0. For λ = 0, clearly
x = x0 from (5.11). Now given x0, b0 such that b0 + b− Ax0 > 0, and c0 > 0, it can
be verified that K = 0 from (5.12) has a unique solution u0 > 0.

By Lemma 2.1, ρa(λ, x, u) is also transversal to zero for almost all a = (x0, b0, c0) ∈
En ×Em × (0,∞)m. The statement of the theorem restricts b0 to depend on x0, but
this is immaterial to the transversality of ρa, since the full rank of Dρ does not de-
pend on Db0 . The set of all (x0, b0, c0) described in the theorem is open, and ρa is
transversal to zero for almost all points a in this set.

From (iii), there is exactly one solution (x0, u0) to ρa = 0 at λ = 0. Therefore
Lemma 2.2 applies, and the existence (for almost all the prescribed points (x0, b0, c0))
of a zero curve γ and the full rank of Dρa along γ follow. γ emanates from the point
(0, x0, u0), and either reaches a solution point (1, x̄, ū) or wanders off to infinity. By
Lemma 2.3, it suffices to prove that γ is bounded. The finite arc length statement
about γ also follows from Lemma 2.3.

(iv) Consider an arbitrary point (λ, x, u) on γ for 0 < λ < 1. A careful exam-
ination of the signs of the terms in Ki in (5.12) reveals that Ki < 0 if ui < 0 or
(1 − λ)b0i + bi − Ai·x < 0. Therefore everywhere along γ, u >

= 0 and x ∈ Sλ ⊂ S0 is
bounded from (i) and (5.9). Furthermore, ui > 0 and (1− λ)b0i + bi −Ai·x > 0 along
γ.

Suppose that γ is not bounded, and let (λ(k), x(k), u(k)) → ∞ be a sequence
of points on γ. Since [0, 1] × S0 is compact,

{
(λ(k), x(k))

}∞
k=1

has a convergent

subsequence
(
λ(ki), x(ki)

) → (λ̂, x̂). Now from (5.11), this means that u(ki) >
= 0,∥∥u(ki)

∥∥→∞, and

λ̂
[(∇f(x̂))t +Atu(ki)

]
+ (1− λ̂)(x̂− x0)→ 0,(5.13)
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K(λ̂, x̂, u(ki), b0, c0)→ 0.(5.14)

If λ̂ = 1, then x̂ is a solution to (5.1), and ū corresponding to x̄ = x̂ can be constructed
from u(ki). In a degenerate case, γ converges to a (possibly unbounded) manifold of

solution points (1, x̄, ū). So now consider 0 <= λ̂ < 1 and two cases.

Case 1. For some j, (1 − λ̂)b0j + bj − Aj·x̂ > 0 and lim supki→∞ u
(ki)
j = ∞.

As observed earlier, Kj is a strictly monotone increasing function of uj . Therefore

‖u(ki)‖ → ∞ implies ‖K(λ̂, x̂, u(ki), b0, c0)‖∞ is increasing, which contradicts (5.14).
Therefore γ is bounded and the theorem follows.

Case 2. (1− λ̂)b0j + bj −Aj·x̂ = 0 for every j with lim supki→∞ u
(ki)
j =∞; denote

this set of indices by J . Suppose first that λ̂ = 0. Then from (5.13), Atλ(ki)u(ki) →
x0− x̂. A subsequence argument yields a vector w such that

(
AJ·
)t
w = x0− x̂, w >

= 0.

Combining the relations Ax0−b−b0 < 0 and
(
b0+b−Ax̂)

J
= 0 gives AJ·(x0−x̂) < 0.

Now all these relations result in

0 >=
(
x0 − x̂)t(AJ·)tw =

(
x0 − x̂)t(x0 − x̂) > 0,

a contradiction. Therefore λ̂ �= 0. As observed in item (i), {x | Ax <
= 0} = {0}, which

is equivalent to the positive cone C(At) = {Aty | y >= 0} = En. Therefore there exists
w such that

Atw = −(∇f(x̂))t − (1− λ̂)(x̂− x0)/λ̂, w >
= 0.

Writing u(ki) = w + v(ki) then gives Atv(ki) → 0 and
∥∥v(ki)

∥∥ → ∞. Recall that

u(ki) = w + v(ki) >
= 0, which means that any negative components of v(ki) must be

bounded by ‖w‖∞, and therefore negative components of v(ki)
/∥∥v(ki)

∥∥
∞ converge to

zero as
∥∥v(ki)

∥∥→∞. The bounded sequence
{
v(ki)

/∥∥v(ki)
∥∥
∞
}∞
i=1

has a subsequence

converging to some point v ∈ Em with ‖v‖∞ = 1, and v >
= 0 by the preceding

remark. Finally, Atv(ki) → 0 and
∥∥v(ki)

∥∥ → ∞ imply At
(
v(ki)

/∥∥v(ki)
∥∥
∞
) → 0

yielding Atv = 0, v >
= 0, ‖v‖∞ = 1, or

(
AJ·
)t
vJ = 0, vJ ≥ 0. By Gordan’s Theorem

of the Alternative [11], AJ·z > 0 has no solution. However, since int Sλ̂ �= ∅, there
is an interior feasible point x so that combining the relations Ax− b− (1− λ̂)b0 < 0

and
(
(1− λ̂)b0 + b−Ax̂)

J
= 0 yields AJ·(x− x̂) < 0. This contradiction proves that

γ is bounded, and the theorem follows.
Corollary 5.1. Suppose that the zero curve γ of ρa(λ, x, u) defined from (5.11)–

(5.12) has the property that ‖x‖ is bounded but ‖u‖ → ∞ along γ, for 0 <
= λ < 1.

Then there exists v ∈ Em such that Atv = 0, v ≥ 0, and every index i for which
vi �= 0 has |ui| → ∞.

It is instructive to consider why the proof of Theorem 5.1 worked, and how it
could have gone wrong. After all, homotopy methods don’t always work, and the
conclusion of Corollary 5.1 is a plausible situation. The structure of ρ in (5.11)–(5.12)
is important for transversality (Lemma 2.2) and the fact that γ (for this particular ρ)
cannot return to λ = 0. Yet many other choices for ρ could possess these properties
equally well. The boundedness of x along γ is especially opportune, being a direct
consequence of the relaxation (5.7) and the “interior” map (5.8), which forces points
(λ, x, u) along γ to be strictly feasible (interior) for different constraints (from the
original ones). Effectively λ and x are under control (not so if Sλ were unbounded),
and ‖u‖ → ∞ is the only potential problem. Controlling ‖u‖ is delicate, and was
achieved here by having int Sλ �= ∅ for 0 <

= λ < 1 (trivially true for the g(x) in (5.1)
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but not so trivial in more general contexts). ‖u‖ was controlled in earlier sections
by a global monotonicity property, a much stronger condition than Sλ bounded with
nonempty interior for 0 <= λ < 1.

6. General nonlinear convex optimization. The optimization problem (5.1)
can be generalized in several different directions. If the convexity assumption is
dropped for either f or g, then (5.2)–(5.5) become only necessary conditions. Cer-
tainly many optimization algorithms are based on necessary optimality conditions,
in which case only convergence to a stationary point is guaranteed. This particular
direction of generalization will be pursued in a later section. Here in this section the
intent is to preserve the optimality conditions being both necessary and sufficient,
and thus g(x) in (5.1) will be generalized.

Let f : En → E and g : En → Em be C3 convex functions, and assume that g
satisfies the Arrow–Hurwicz–Uzawa constraint qualification at every solution of

min f(x) subject to g(x) <= 0.(6.1)

Under these assumptions (6.1) is equivalent to the Kuhn–Tucker problem(∇f(x))t + (∇g(x))tu = 0,(6.2)

g(x) <= 0,(6.3)

u >
= 0,(6.4)

utg(x) = 0.(6.5)

Given the discussion in the last section, it seems reasonable to try the direct general-
ization of (5.11) for the homotopy map

ρ(x0, b0, c0, λ, x, u) =

(
λ
[(∇f(x))t + (∇g(x))tu]+ (1− λ)(x− x0)

K(λ, x, u, b0, c0)

)
,(6.6)

where

Ki(λ, x, u, b
0, c0) = −∣∣(1− λ)b0i − gi(x)− ui∣∣3 + ((1− λ)b0i − gi(x))3

+ u3
i − (1− λ)c0i , i = 1, . . . ,m,

(6.7)

is the direct generalization of (5.12). The question is how changing from linear con-
straints Ax − b <

= 0 to nonlinear convex constraints g(x) <
= 0 affects the proof of

Theorem 5.1. The crux of the proof seems to be the sets

Sλ =
{
x ∈ En | g(x)− (1− λ)b0 <= 0

}
,(6.8)

which need to satisfy (5.9), int Sλ �= ∅ for 0 <= λ < 1, and to be bounded for 0 <= λ <
= 1.

Given some arbitrary initial guess x0 ∈ En, choose b0 ∈ Em, b0 > 0, such that
g(x0) − b0 < 0. As before, choose c0 ∈ Em such that c0 > 0. Assuming that the
feasible set S1 = {x ∈ En | g(x) <

= 0} is nonempty and bounded is not a severe
restriction, since for any practical problem variable bounds can always be added. The
boundedness of the sets Sλ for 0 <

= λ <
= 1 follows from Corollary 8.3.3, Theorem 8.4,

and Theorem 8.7 of [17]. For completeness a short direct proof follows.
Lemma 6.1. Let g : En → Em be a C3 convex function, and let x0 ∈ En,

b0 ∈ Em, δ ∈ E be such that b0 >= δe > 0 and g(x0)− b0 < 0. Define

Sλ =
{
x ∈ En | g(x)− (1− λ)b0 <= 0

}
.
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If S1 is nonempty and bounded, then Sλ is nonempty and bounded for 0 <= λ <
= 1, and

int Sλ �= ∅ for 0 <= λ < 1.
Proof. Since S1 �= ∅,

S0 ⊃ Sλ1
⊃ Sλ2

⊃ S1 �= ∅ for 0 <= λ1 < λ2
<
= 1.

Suppose that Sλ1 is unbounded while Sλ2 is bounded, say, Sλ2 ⊂ B(r/2) = {x ∈
En | ‖x‖ < r/2}. Pick any point x̃ ∈ Sλ2

(hence ‖x̃‖ < r/2). Now there exists a
sequence y(k) ∈ Sλ1 with r <

∥∥y(k)
∥∥ → ∞. Reduce to a convergent subsequence

y(ki)
/∥∥y(ki)

∥∥→ y, and for each subsequence index k choose 0 < tk < 1 such that∥∥∥(1− tk)x̃+ tky
(k)
∥∥∥ = r.(6.9)

Now by the convexity of g,

g
(
(1− tk)x̃+ tky

(k)
)
<
= (1− tk)g(x̃) + tkg

(
y(k)

)
<
= (1− tk)(1− λ2)b

0 + tk(1− λ1)b
0.

Taking the limit as k →∞ (
∥∥y(k)

∥∥→∞ and (6.9) give tk → 0) yields

g(x̃+ αy) <= (1− λ2)b
0(6.10)

for ‖x̃+ αy‖ = r. Now (6.10) =⇒ x̃ + αy ∈ Sλ2
=⇒ r = ‖x̃+ αy‖ < r/2, a

contradiction. Therefore Sλ must be nonempty and bounded for all 0 <
= λ <

= 1. The
statement about int Sλ follows easily by continuity.

Let a = (x0, b0, c0), and define ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u), according to (6.6)
and (6.7). As before, u0 is uniquely defined by K(0, x0, u0, b0, c0) = 0.

Theorem 6.1. Let f : En → E and g : En → Em be C3 convex functions,
let g satisfy the Arrow–Hurwicz–Uzawa constraint qualification at every solution of
(6.1), and assume that S1 = {x ∈ En | g(x) <

= 0} is nonempty and bounded. Let
ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u) be defined from (6.6) and (6.7). Then for almost all
x0 ∈ En, almost all b0 ∈ Em such that b0 > 0 and g(x0) − b0 < 0, and almost
all c0 ∈ Em with c0 > 0, there exists a zero curve γ of ρa(λ, x, u) emanating from
(0, x0, u0), along which the Jacobian matrix Dρa(λ, x, u) has rank n+m, reaching a
point (1, x̄, ū), where x̄ solves minx∈S1

f(x). If rank Dρa(1, x̄, ū) = n+m, then γ has
finite arc length.

Proof. By the convexity and constraint qualification assumptions, (6.1) is equiv-
alent to (6.2)–(6.5), which are equivalent to ρ(x0, b0, c0, 1, x, u) = 0. A careful exam-
ination of the proof of Theorem 5.1 reveals that it is valid if (a) Ax − b is replaced
with g(x), (b) ρ and K from (5.11)–(5.12) are replaced with ρ and K from (6.6)–
(6.7), (c) the sets Sλ from (6.8) are nonempty and bounded for 0 <

= λ <
= 1 and have

nonempty interiors for 0 <
= λ < 1, and (d) the conclusion of Corollary 5.1 also leads

to a contradiction in the present more general situation. Consider each item in turn.
(a) Replacing the function Ax − b with the function g(x) affects nothing in the

proof of Theorem 5.1. The appearance of ∇g(x) rather than (constant) A in ρ does

have some effect. The argument ruling out the possibility λ̂ = 0 becomes ∇gJ(x̂)
(
x0−

x̂
)
<
= gJ(x

0) − gJ(x̂) < 0, using the convexity of g. Arguments involving (5.13) and
C(At) are valid with ∇g(x̂) replacing A. The final contradiction in Case 2 is addressed
below in item (d).
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(b) The transversality and other fundamental properties of ρ and K from (6.6)–
(6.7) are easily verified.

(c) Lemma 6.1 provides these crucial facts about the sets Sλ.

(d) The question here is, given
(∇gJ(x̂))tvJ = 0, vJ ≥ 0, and int Sλ̂ �= ∅, does

the same contradiction ensue by finding a vector z such that
(∇gJ(x̂))z < 0? The

answer is yes since x ∈ int Sλ̂ gives g(x) − (1 − λ̂)b0 < 0, and then subtracting(
g(x̂)− (1− λ̂)b0)

J
= 0 gives

∇gJ(x̂)
(
x− x̂) <= (g(x)− g(x̂))J < 0.(6.11)

A result similar to Corollary 5.1 could be derived, but the conclusion—
(∇g(x̂))tv =

0, v ≥ 0 has a solution—is not interesting since the point x̂ has no special significance.

The postmortem comments on the proof of Theorem 5.1 apply also to the proof of
Theorem 6.1, with the latter being technically (but not conceptually) more difficult.
Properties of the sets Sλ required proof, and γ again could not return to λ = 0.
Convexity of g was crucial in converting constraint values into a gradient inequality
as in (6.11), both for obtaining λ̂ �= 0 and for the final contradiction (6.11). Neither
quasiconvexity nor pseudoconvexity suffice for g.

7. Nonconvex programs. The convergence theory in the preceding sections
might, at first glance, seem trivial and contrived (with the assumptions dictated more
by the exigencies of the proof rather than by practical applications), and not to
address the homotopy maps actually used on practical engineering problem. Indeed,
homotopy maps like (4.5), (5.11), and (6.6), although they work, are rarely used in
practice. There are two significant questions to be answered: (1) How important is
convexity, which has figured prominently in the discussion so far? (2) How important
is it that homotopy maps as in (4.5), (5.11), or (6.6) be used? To both questions, the
answer turns out to be: not very!

Convexity simplifies proofs, but is really only needed to make the Kuhn–Tucker
conditions sufficient for optimality. Without convexity, convergence only to a station-
ary point can be guaranteed. The proofs in sections 3 and 4 used convexity, but only
because those results were for the canonical map λF (x) + (1 − λ)(x − a), and were
done using a nonlinear complementarity result that depended on convexity (pseudo-
convexity). Note, for instance, that the homotopy map (6.6) is not of the canonical
form λF (x)+ (1−λ)(x− a), which is the map used for Brouwer fixed point problems
x = f(x) (where F (x) = x − f(x)) [5]. This particular (canonical) map, which un-
fortunately is often thought of as “the” homotopy map, is only appropriate when F
comes from a fixed point map or has some sort of global monotonicity property like
xF (x) >= 0 for all ‖x‖ >= r for some sufficiently large r > 0. Convexity (pseudocon-
vexity) is sufficient, but not necessary, for such global monotonicity, and hence is a
natural assumption when using the map λF (x)+(1−λ)(x−a). The theory in sections
3 and 4 could be generalized to assume something like “f(x) acts like a pseudoconvex
function for ‖x‖ >= r sufficiently large,” but it hardly seems worth the trouble, since
(as will be shown) homotopy maps like (6.6) obviate the need for convexity (when
abandoning sufficient conditions for optimality!). Sections 5 and 6 used convexity to
derive properties like γ cannot return to λ = 0, ∇gJ(x̂)z < 0 has a solution z, and
the boundedness of the sets Sλ in (6.8) for 0 <

= λ <
= 1. Convexity is overkill, though,

and these much weaker properties can be explicitly assumed.

Let f : En → E and g : En → Em be C3 functions, and assume that g satisfies
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the Arrow–Hurwicz–Uzawa constraint qualification at every local solution of

min f(x) subject to g(x) <= 0.(7.1)

If x̄ solves (7.1) locally, then there exists ū ∈ Em such that (x̄, ū) solves the Kuhn–
Tucker problem (∇f(x))t + (∇g(x))tu = 0,(7.2)

g(x) <= 0,(7.3)

u >
= 0,(7.4)

utg(x) = 0.(7.5)

Let F : En × [0, 1]→ E and G : En × [0, 1]→ Em be C3 functions such that

F (x, 1) = f(x), G(x, 1) = g(x),(7.6)

and the optimization problem

minF (x, 0) subject to G(x, 0) <= 0(7.7)

has an easily obtained (local) solution x0. In practice, F (x, λ), G(x, λ) represent a
family of optimization problems

minF (x, λ) subject to G(x, λ) <= 0,(7.8)

where λ is embedded deeply and nonlinearly in the objective function F (x, λ) and
constraints G(x, λ). This embedding often embodies considerable physical insight
into the problem (7.1), and (7.7) is a version of (7.1) with simplified physics and/or
geometry. A good choice for (7.8) may take years to develop, and generally requires
considerable problem-specific knowledge and the intimate involvement of an engineer
or scientist. The payoff will be a robust, globally convergent algorithm that is more
efficient than applying an “off-the-shelf” algorithm, and that avoids spurious solutions
(e.g., unstable equilibria in mechanics or unstable circuit operating points can be
expressly avoided).

One could naively solve (7.8) with continuation varying λ from 0 to 1, but this
is precisely the point at which the probability-one theory can make a significant im-
provement over simple continuation in λ (and also over arc length continuation). A
probability-one homotopy for (7.8) guarantees the existence of a zero curve γ with
good numerical properties, the importance of which for practical computation cannot
be overstated. The homotopy map (6.6) is generalized to

(7.9)

ρ(x0, b0, c0, λ, x, u) =

(
λ
[(∇xF (x, λ)

)t
+
(∇xG(x, λ)

)t
u
]
+ (1− λ)(x− x0)

K(λ, x, u, b0, c0)

)
,

where

(7.10)

Ki(λ, x, u, b
0, c0) = −∣∣(1− λ)b0i −Gi(x, λ)− ui∣∣3 + ((1− λ)b0i −Gi(x, λ))3

+ u3
i − (1− λ)c0i , i = 1, . . . ,m,
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is the direct generalization of (6.7). The map (7.9), or some minor variation thereof,
is what is typically used in practice, and has been extremely successful on industrial
optimization problems.

The key observation in the proofs in sections 5 and 6 is that what matters most is
not the structure of the homotopy map ρ, but the nature of the sets Sλ. (Of course, ρ
still has to satisfy the hypotheses of Lemma 2.3, and some technical conditions along
γ are required.) The general convergence theory is now developed.

Given some arbitrary initial guess x0 ∈ En, choose b0 ∈ Em such that b0 > 0 and
G(x0, 0)− b0 < 0. Choose c0 ∈ Em such that c0 > 0. Consider the sets

Sλ =
{
x ∈ En | G(x, λ)− (1− λ)b0 <= 0

}
, 0 <= λ <

= 1.(7.11)

Note that Sλ �= ∅ for small λ since x0 ∈ int S0. However, since the constraints G(x, λ)
now can change with λ, (5.9) need not hold; i.e., the sets Sλ do not necessarily form
a chain S0 ⊃ Sλ1 ⊃ Sλ2 for 0 < λ1 < λ2. The question is, exactly what properties
must Sλ have in order for the proofs of Theorems 5.1 and 6.1 to extend to the general
nonconvex problem (7.1)? It is not necessary for the sets Sλ to form a chain as in (5.9)
or even to satisfy

⋂
0<=λ

<
=1 Sλ �= ∅. Certainly each Sλ must be nonempty; otherwise K

from (7.10) cannot possibly be zero: Sλ = ∅ implies for each x ∈ En there is an index
i such that (1−λ)b0i −Gi(x, λ) < 0, which means for all x some Ki(λ, x, u, b

0, c0) < 0
for all u, and thus ρa(λ, x, u) �= 0 for any x, u.

A point (λ, x, u) on the zero curve γ of ρa(λ, x, u) must have x ∈ Sλ and u >
= 0

(otherwise K �= 0), but Sλ bounded for 0 <= λ <
= 1 (the conclusion of Lemma 6.1) does

not imply x along γ is bounded. The weakest assumption to keep x along γ bounded
would then seem to be

⋃
0<=λ

<
=1 Sλ is bounded. This condition is a bit subtle, though,

as Sλ depends indirectly on x0, and x0 is supposed to be generic. Precisely, the
requirement is as follows. Let X0 ⊂ En, B0 ⊂ Em be open nonempty sets such that
for each point x0 ∈ X0, there exists b0 ∈ B0 such that b0 > 0, G(x0, 0) − b0 < 0.
Then

⋃
0<=λ

<
=1 Sλ must be bounded for each x0 ∈ X0, b0 ∈ B0 satisfying b0 > 0,

G(x0, 0)− b0 < 0.
The above discussion is summarized in the hypotheses of the following theorem.

Let a = (x0, b0, c0), and define ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u), according to (7.9)
and (7.10). As always, u0 is uniquely defined by K(0, x0, u0, b0, c0) = 0.

Theorem 7.1. Let f : En → E and g : En → Em be C3 functions, let g satisfy
the Arrow–Hurwicz–Uzawa constraint qualification at every local solution of (7.1), let
X0 ⊂ En and B0 ⊂ {b ∈ Em | b > 0} be open and nonempty, and for b0 ∈ B0 and
0 <= λ <

= 1 define

Sλ(b
0) =

{
x ∈ En | G(x, λ)− (1− λ)b0 <= 0

}
.

For each x0 ∈ X0 assume there exists b0 ∈ B0 such that G(x0, 0) − b0 < 0. For
each x0 ∈ X0 and b0 ∈ B0 satisfying G(x0, 0) − b0 < 0, further assume that Sλ(b

0)
is nonempty for 0 <

= λ <
= 1 and that

⋃
0<=λ

<
=1 Sλ(b

0) is bounded. Let ρa(λ, x, u) =

ρ(x0, b0, c0, λ, x, u) be defined from (7.9) and (7.10). Then for almost all x0 ∈ X0,
almost all b0 ∈ B0 such that G(x0, 0) − b0 < 0, and almost all c0 ∈ Em with c0 > 0,
there exists a zero curve γ of ρa(λ, x, u) emanating from (0, x0, u0), along which the
Jacobian matrix Dρa(λ, x, u) has rank n +m. If in addition there exists κ > 0 such
that for any point (λ, x, u) on γ,∥∥(λ, x, u)− (0, x0, u0)

∥∥ > 1 =⇒ λ >
= κ,
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and for any accumulation point (λ̂, x̂) of (λ, x) along γ[
∇xGJ(x̂, λ̂)

]
z > 0 has a solution z,

where J =
{
j | Gj(x̂, λ̂)− (1− λ̂)b0j = 0

}
, then γ reaches a point (1, x̄, ū), where (x̄, ū)

solves the Kuhn–Tucker problem (7.2)–(7.5). If rank Dρa(1, x̄, ū) = n + m, then γ
has finite arc length.

Proof. The homotopy map ρ defined from (7.9)–(7.10), similar to ρ and K from
(5.11)–(5.12) and (6.6)–(6.7), satisfies the hypotheses of Lemma 2.2. Thus a homotopy
zero curve γ exists and it only remains to show γ is bounded. If γ reaches a point
(1, x̄, ū), since ρa(1, x̄, ū) = 0 is equivalent to the necessary optimality conditions
(7.2)–(7.5), (x̄, ū) will be a stationary point for the original optimization problem
(7.1).

As before, by the nature of K and the boundedness of
⋃
Sλ, (λ, x) is bounded

along γ. Suppose that γ is unbounded, and let (λ(k), x(k), u(k))→∞ be a sequence of

points along γ. As before, there is a subsequence
(
λ(ki), x(ki)

)→ (λ̂, x̂), with u(ki) >
= 0

and
∥∥u(ki)

∥∥ → ∞. By assumption, λ̂ >
= κ > 0 and thus λ̂ �= 0. The argument for

the case λ̂ = 1 is identical to that in the proof of Theorem 5.1. Now consider only
0 < λ̂ < 1. The argument for Case 1, where for some j,

(1− λ̂)b0j −Gj(x̂, λ̂) > 0 and lim
ki→∞

u
(ki)
j =∞,

is identical to that for Theorem 5.1.
Case 2, where for every j,

lim
ki→∞

u
(ki)
j =∞ =⇒ (1− λ̂)b0j −Gj(x̂, λ̂) = 0,

leads to the system (∇xGJ(x̂, λ̂))tvJ = 0, vJ ≥ 0,

having a solution vJ , where J ⊂
{
j | Gj(x̂, λ̂)−(1− λ̂)b0j = 0

}
. By Gordan’s Theorem

of the Alternative, (∇xGJ(x̂, λ̂))z > 0

has no solution z. This contradicts the explicit hypothesis about ∇xGJ along γ.
Therefore γ is bounded, and the theorem follows.

Corollary 7.1. If the assumption in Theorem 7.1 about λ >
= κ > 0 for points

on γ far from (0, x0, u0) is replaced by

rank D(x,u)ρa(λ, x, u) = n+m

along γ, then the conclusions of Theorem 7.1 hold.
Proof. The rank assumption implies that γ has no turning points, a much stronger

assumption than simply λ >
= κ > 0 eventually; i.e., as arc length s increases, γ does

not asymptotically approach the hyperplane λ = 0.
On many realistic engineering applications, γ does in fact have several turning

points, and if the convergence theory could not accommodate turning points, it would
not accurately reflect practice. Theorems 5.1, 6.1, and 7.1 have been presented as a
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Fig. 2. Example of homotopy zero curve when some Sλ is empty.

series of generalizations with proof refinements, and so the postmortem comments on
Theorems 5.1 and 6.1 in essence apply here also. Proving that γ is bounded amounts
to controlling, in some fashion, each of λ, x, u along γ.

λ is controlled by preventing lim infs→∞ λ(s) = 0. This frequently happens when
the homotopy map is poorly chosen. For instance, λ(s)→ 0 as u(s)→∞ in Figure 1
for the homotopy map (5.6). The theory here shows that with the right homotopy

map, 0 < lim infs→∞ λ(s) = λ̂ < 1 cannot happen except in rare degenerate cases

involving the active constraint gradients ∇xGJ(x̂, λ̂).
x is controlled by the property that x ∈ Sλ(b0), and by assumption

⋃
0<=λ

<
=1 Sλ(b

0)

is bounded. What happens if Sλ(b
0) = ∅ for some 0 < λ < 1? For complicated

problems, it is easy to unwittingly construct a family (7.8) for which some Sλ(b
0) is

empty. Consider the problem

min
x

F (x, λ) = x subject to G(x, λ) = x2 − 1 + 2λ <
= 0

and take x0 = 0, b0 = 1, c0 = 1. S2/3(1) = {0}, Sλ(1) = ∅ for λ > 2/3 (i.e., there is
no solution at λ = 1) so something has to fail. Figure 2 shows what happens to γ for
the map (7.9).

u is controlled by the property (in the convex case) or the assumption (in the

nonconvex case) that
(∇xGJ(x̂, λ̂))z > 0 has a solution z, where J is related to active

constraints at an accumulation point (λ̂, x̂) of ((λ, x) along) γ. This condition can
be interpreted as a “constraint qualification for homotopy maps.” Since its failure to
hold represents a degenerate situation, it can be achieved (in principle) by generically
perturbing the map G(x, λ).

As mentioned earlier, the map (7.9) closely resembles those used in practice,
and thus Theorem 7.1 reflects practice. Generally, for each λ, the problem (7.8) is
physically meaningful with Sλ being nonempty and bounded. The constraint quali-
fication involving ∇xGJ(x, λ) holds generically, and thus is not normally a concern.
lim infs→∞ λ(s) > 0 must be assumed, and this is the fly in the ointment. This con-
dition is achieved by some sort of global monotonicity property (which often does
hold for practical problems, related to energy considerations), the rank condition of
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Corollary 7.1 (extremely hard to verify for a complicated problem), or by the clever
construction of (7.8). There is no silver bullet!
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Abstract. The affine scaling algorithm for linear programming involves a step-size parameter
t that must be chosen in the interval (0, 1). It is known that the algorithm converges to an optimal
solution for values of t ≤ 2/3. In this paper we examine the behavior of the algorithm for values
of t > 2/3. We show that for certain values of t in this range the algorithm can exhibit chaotic
behavior.
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1. Introduction. Shortly after Karmarkar proposed his interior point algorithm
for linear programming in 1984 [8] several authors proposed a conceptually simpler
interior point algorithm, which has become known as the affine scaling algorithm. See
[1] and [15]. The standard linear programming problem requires a linear form to be
minimized over a polyhedron P. The affine scaling algorithm accomplishes this as
follows. Let x0 be an interior point of P and construct an ellipsoid E0 centered at
x0 and contained completely inside P. Let ξ0 denote the point where the linear form
achieves its minimum value over E0. Let x

1 be a point obtained by moving from x0 in
the direction ξ0 − x0 a fraction t of the distance from x0 to the boundary of P. This
step is now repeated using x1 as the starting point. t remains fixed throughout the
process. Our geometric intuition suggests that the sequence {xk} converges to the
optimal solution of our linear programming problem for any value of t in the interval
(0, 1). However, this is not the case. A counterexample has been reported in [9].
But many questions about the convergence behavior of the algorithm remain open.
It seems an anomaly that so simple an algorithm has resisted a complete analysis
for so long. Actually, the analysis of the algorithm began long before Karmarkar’s
work [8]. The affine scaling algorithm was first proposed by the Soviet mathemati-
cian Dikin in 1967 [4]. Dikin did not offer a convergence proof until seven years later
in [5]. His proof assumed the linear programming problem to be primal nondegen-
erate. In those days there was no sizable effort to find an alternative to the simplex
algorithm, so Dikin’s work went largely unnoticed, especially in the West. Then in
1984, Karmarkar proposed an interior point algorithm that outperformed the simplex
algorithm on certain classes of problems. This led to the rapid discovery of several
interior point linear programming algorithms, including the rediscovery of Dikin’s al-
gorithm. Karmarkar’s algorithm is substantially more difficult to motivate, and to
describe, than Dikin’s. Yet it is easier to analyze. In fact, Karmarkar showed that
his algorithm converges in polynomial time, and his proof makes no nondegeneracy
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assumptions. The convergence proofs for Dikin’s algorithm that appeared in [1] and
[15] assume the linear programming problem is both primal and dual nondegenerate.
These proofs are therefore less general than the one Dikin had given more than 10
years earlier. We are now beginning to understand why the convergence question was
so hard to settle. In some cases researchers were asking the wrong question. They
were trying to prove convergence for all values of t in the interval (0, 1), based on
geometric intuition. Actually, the primal variables do converge to some limit, but,
as we see in [9], it may not be the solution of the linear programming problem. The
problem with our geometric interpretation of the affine scaling algorithm is that it
ignores the dual variables, and these are the ones that exhibit unexpected behavior.
In order to be more specific we require a mathematical description of the affine scaling
algorithm. We assume we are given a linear programming problem in the following
standard form:

minimize cTx
subject to Ax = b

x ≥ 0,
(1.1)

where c and x are n-dimensional column vectors, A is an m × n matrix of rank m,
and b is a given m-dimensional column vector. We assume that this problem has a
solution and that the polytope P = {x|Ax = b, x ≥ 0} has a nonempty interior. We
also assume that the linear function cTx is not constant on P. This means that c
does not lie in the row space of A.

The dual of (1.1) is

max bTλ
subject to ATλ ≤ c,

(1.2)

where λ is an m-dimensional column vector.
The affine scaling algorithm chooses a step-size t satisfying 0 < t < 1 and con-

structs primal and dual sequences, {xk} and {λk}, as follows.
• Start with x0 > 0 satisfying Ax0 = b.
• Given xk > 0, k ≥ 0, define Dk = diag(x

k
1 , . . . , x

k
n) and compute the following

vectors:

λk = (AD2
kA

T )−1AD2
kc,

sk = c−ATλk,

xk+1 = xk − t
D2
ks
k

φ(Dksk)
,(1.3)

where φ(s), for any vector s = (s1, s2, . . . , sn) ∈ 
n, is defined by φ(s) = maxi si.
There is a version of this algorithm where the above definition of φ is replaced by

the Euclidean noun of s, and we write φ(s) = ‖s‖. Since max si ≤ ‖s‖, this version
is known as the short-step affine scaling algorithm. The version described in (1.3) is
known as the long-step version. The algorithm proposed by Dikin in 1967 was the
short-step version.

As we have said, the affine scaling algorithm, while simple to describe, resisted
analysis for a long time. But a lot of progress has been made recently. In 1989
Tsuchiya [12] proved, assuming only dual nondegeneracy, that for 0 < t ≤ 1

8 the
sequences {xk} and {λk} generated by the short-step affine scaling algorithm converge
to solutions of the respective problems (1.1) and (1.2). In 1990 Tsuchiya [11] showed



CHAOTIC BEHAVIOR OF AFFINE SCALING 783

that this nondegeneracy assumption can be removed from the analysis. Then in
1991 Dikin [6] gave a convergence proof for the long-step method for 0 < t ≤ 1

4 if
b = 0 and c > 0 in (1.1). In 1992 Tsuchiya and Muramatsu [14] gave a considerable
generalization of this result. They proved that for the long-step method, with step-size
satisfying 0 < t ≤ 2

3 , the sequence x
k converges to an interior point of the optimal face

of solutions of (1.1) and the sequence {λk} converges to the analytic center of the face
of optimal solutions of (1.2). Shortly after this Hall and Vanderbei [7] constructed an
example where the sequence {λk} generated by the long-step method fails to converge
for any step-size t > 2

3 . By contrast, in 1997 Dikin and Roos [16] proved that for the
short-step method both of the sequences {xk} and {λk} converge to solutions of (1.1)
and (1.2), respectively, for any step-size t satisfying 0 < t ≤ 1 if b = 0 and c > 0.
This result was extended to a class of convex programming problems by Monteiro and
Tsuchiya [17]. Their analysis shows that the result in [16] for homogeneous problems
can be extended to the general problem (1.1).

2. An example. The following simple example demonstrates how complicated
the behavior of the affine scaling algorithm can be:

min 10x1 + 10x2 + 5x3 + x4 − x5

subject to x1 + 2x2 − 3x3 − 2x4 − x5 = 0
−x1 + 2x2 − x3 − x4 − x5 = 0
x1, x2, x3, x4, x5 ≥ 0.

(2.1)

The dual of this problem is to

max 0
subject to λ1 − λ2 ≤ 10,

2λ1 + 2λ2 ≤ 10,
−3λ1 − λ2 ≤ 5,
−2λ1 − λ2 ≤ 1,
−λ1 − λ2 ≤ −1.

(2.2)

Thus the dual problem is just to find a feasible point for the inequalities (2.2).
The point (1, 1) is feasible for the dual. Therefore, x = 0 is a solution for the

primal problem (2.1). Clearly this solution is unique, for the conditions

10x1 + 10x2 + 5x3 + x4 − x5 = 0,

−x1 + 2x2 − x3 − x4 − x5 = 0,

xj ≥ 0 imply that xj = 0, j = 1, . . . , 5, as can be seen by eliminating x5 from one of
these equations. The difficulty of analyzing the convergence behavior of (1.3) applied
to (2.1) becomes apparent if we run (1.3) for a few values of t. If we take t = 0.5 and
x0 = (2, 4, 1, 2, 3)t, we obtain, after 31 iterations,

x31 =



45043
225241
48477
93132
27383


× 10−14.

The dual sequence {λk} converges much faster. The first six terms in this sequence
are

λ1 =

(
3.04073319755601
0.44806517311609

)
, λ2 =

(
3.04978042919414
0.53564835204215

)
,
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λ3 =

(
3.05123780355246
0.55152026110043

)
, λ4 =

(
3.05129969865096
0.55216405532858

)
,

λ5 =

(
3.05129983620499
0.55216549196332

)
, λ6 =

(
3.05129983620574
0.55266549197123

)
.

The last term is correct to 12 decimal places.
Suppose now that we take t = 0.84. Starting again with x0 = (2, 4, 1, 2, 3)T we

obtain after 22 iterations

x22 =



462
946
235
454
739


× 10−14.

Thus after 22 iterations the sequence {xk} is very close to the solution of (2.1). On
the other hand, the sequence {λk} does not appear to be converging. For example,
we have

λ17 =

(
3.0432890
0.4674003

)
, λ18 =

(
3.0440522
0.4754970

)
,

λ19 =

(
3.0433001
0.4675194

)
, λ20 =

(
3.0440708
0.4757432

)
,

λ21 =

(
3.0432944
0.4674515

)
, λ22 =

(
3.0440598
0.4755515

)
.

Later on we will do a finer analysis that will show that the subsequence {λ1, λ3, . . .}
of odd indices is converging to the point

ξ =

(
3.0432968
0.46748284

)
(2.3)

and the subsequence {λ2, λ4, . . .} of even terms is converging to the limit

η =

(
3.0440618
0.4756198

)
.(2.4)

For t = 0.89 and x0 = (2, 4, 1, 2, 3)T we have the following results:

x20 =



0.0896
0.1655
0.0442
0.09087
0.1064


× 10−10,

λ13 =

(
3.0318
0.3659

)
, λ14 =

(
2.9891
0.5019

)
, λ15 =

(
3.0314
0.3726

)
, λ16 =

(
2.9650
0.5469

)
,

λ17 =

(
3.0318
0.3659

)
, λ18 =

(
2.9891
0.5019

)
, λ19 =

(
3.0314
0.3725

)
, λ20 =

(
2.9651
0.5467

)
.

(2.5)
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From this it is clear that the subsequence {λ1, λ3, . . .} of odd indices is no longer
converging but has split into two convergent subsequences

{λ1, λ5, λ9, λ13, . . .} and {λ3, λ7, λ11, λ15, . . .}.

Similarly, the subsequence {λ2, λ4, . . .} of terms with even indices is now diverging
but has two convergent subsequences

{λ2, λ6, λ10, λ14, . . .} and {λ4, λ8, λ12, λ16, . . .}.

There is another way to describe the observations we have just made. For t = 0.5
the sequence {λk} converges to the analytic center of the polytope (2.2) as required
by the theorem in [14]. For t = 0.84 the sequence converges to a periodic orbit of
period 2 on the points (2.3) and (2.4). For t = 0.89 the sequence {λk} converges to
a periodic orbit of period 4 as can be seen by examining the terms in (2.5). Thus it
appears that the sequence {λk} always converges to a periodic orbit for certain values
of t > 2/3. The period of the orbit seems to double as t passes through certain values.
As t approaches a certain critical value tc the period doublings occur with increasing
rapidity. Thus as t ↑ tc the lengths of the periods approach ∞. For t slightly larger
than tc the sequence {λk} seems to wander about randomly. It is helpful to think
of it as converging to a periodic orbit with infinite period. Such an orbit of course
never closes, and the sequence {λk} therefore does not behave with any discernible
regularity. We say it is in a state of chaos. This is precisely the kind of behavior that
has been observed in certain dynamical systems of the form zk+1 = F (t, zk). See,
for example, [3]. We will demonstrate this experimentally in section 3 below. The
demonstration will require us to compute hundreds of terms of the sequence {λk} due
to the slow convergence of this sequence. This cannot be done directly, for we have
seen that the sequence {xk} converges very rapidly to 0 as k → ∞. This makes the
computation of the inverse (AD2

kA
T )−1 impractical for values of k only slightly larger

than 30. Fortunately we can compute very large numbers of terms of the sequence
{λk} by properly scaling the variable xk in (1.3). We will explain how this can be done
next. Incidentally, one reason the chaotic behavior we are going to show has probably
not been observed before is that normally the emphasis is on the primal variables,
and these converge after a relatively small number of iterations. But recently the
dual variables generated by interior point methods have begun to be used in column
generation procedures for solving very large linear programming problems. See [2] for
examples of this. Some related uses of the analytic center are given in [18] and [19].
So it is becoming increasingly important to understand the convergence properties of
these dual sequences generated by interior point algorithms.

To emphasize this point we give here a small example showing that the multipli-
ers generated by the affine scaling algorithm are superior to those generated by the
simplex algorithm for use in certain column generation procedures. In large problems
the effect we will demostrate is much more dramatic.

Consider a cutting-stock problem where 11-ft boards are to be cut to satisfy the
following requirements: two 8-ft boards, three 4-ft boards, five 3-ft boards, and three
2-ft boards. By a cutting pattern we mean a column vector p = (α, β, γ, δ)T , where
α, β, γ, and δ are, respectively, the number of 8-ft, 4-ft, 3-ft, and 2-ft boards contained
in the pattern. Cutting patterns are in a 1-1 correspondence with nonnegative integers
α, β, γ, δ satisfying 8α + 4β + 3γ + 2δ ≤ 11. For example, p1 = (1, 0, 1, 0)

T , p2 =
(0, 2, 0, 1)T , p3 = (0, 1, 1, 1)

T , and p4 = (1, 0, 0, 1)
T are cutting patterns. Suppose we
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want to get the cuts we need from these patterns. Let xj denote the number of times
pattern pj is used. We must then solve

min x1 + x2 + x3 + x4

subject to p1x1 + p2x2 + p3x3 + p4x4 ≥ b,
x1, x2, x3, x4 ≥ 0,

(2.6)

where b = (2, 3, 5, 3)t is the requirements vector.
The solution of this problem is

x1 = 2, x2 = 0, x3 = 3, x4 = 0.

It is degenerate. The solution of the corresponding dual problem is not unique. Any
set of variables λ1, λ2, λ3, λ4 satisfying

λ1 + λ3 = 1,

2λ2 + λ4 ≤ 1,(2.7)

λ2 + λ3 + λ4 = 1,

λ1 + λ4 ≤ 1,
λ1, λ2, λ3, λ4 ≥ 0

is optimal for the dual. For our purposes we need a description of the polytope defined
by (2.7). The first and third equation in (2.7) imply that

λ1 = 1− λ3 ≥ 0 and λ2 = 1− λ3 − λ4 ≥ 0.(2.8)

Substituting these expressions for λ1 and λ2 in the inequalities in (2.7) gives the
inequalities

2λ3 + λ4 ≥ 1, λ3 − λ4 ≥ 0(2.9)

for λ3 and λ4. Thus the polytope defined by (2.7) can be described in terms of λ3

and λ4 by the inequalities (2.8) and (2.9), together with λ3 ≥ 0, λ4 ≥ 0.
These inequalities describe the shaded region in Figure 1.
When we solved (2.6) by the simplex algorithm we obtained the following optimal

dual variables:

λ∗
1 =

2

3
, λ∗

2 =
1

3
, λ∗

3 =
1

3
, λ∗

4 =
1

3
.

This solution corresponds to the vertex λ∗ in Figure 1. The simplex algorithm always
gives a vertex solution. Suppose we use λ∗ to generate a new pattern to improve
the solution we obtained by solving (2.6). If such a pattern exists it corresponds to
nonnegative integers α, β, γ, δ satisfying

2

3
α+

1

3
β +

1

3
γ +

1

3
δ > 1

and(2.10)

8α+ 4β + 3γ + 2δ ≤ 11.
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Fig. 1.

Usually the existence of such a pattern is checked by solving the following knapsack
problem:

max
2

3
α+

1

3
β +

1

3
γ +

1

3
δ

subject to 8α+ 4β + 3γ + 2δ ≤ 11,
α, β, γ, δ are integers ≥ 0.

This problem has two solutions: α = β = γ = 0, δ = 5, and α = β = 0, γ = 1, δ = 4.
These solutions satisfy (2.10) so it appears that adding the patterns p5 =

(0, 0, 0, 5)T and p6 = (0, 0, 1, 4)
T to (2.6) will improve our current solution. How-

ever, adding these patterns to (2.6) adds the constraints 5λ4 ≤ 1, λ3 + 4λ4 ≤ 1 to
the dual constraints (2.7). When these constraints are added to Figure 1 some of the
dual variables that were optimal for the dual of (2.6) remain optimal for the dual of
the problem obtained by adding p5 and p6 to (2.6). Thus adding the new patterns
will not improve our solution.

Now consider solving (2.6) by the affine scaling algorithm. We first convert the
constraints in (2.6) to equalities by introducing surplus variables. A starting solution
x0 for the algorithm (1.3) can be obtained by giving x1, x2, x3, x4 sufficiently large
values that all surplus variables are positive. For a step-size t ≤ 2/3 the affine scaling
algorithm converges to a solution x∗ with

x∗
1 = 2, x∗

2 = 0, x∗
3 = 3, x∗

4 = 0.

The corresponding sequence {λk} converges to the optimal dual solution
λc1 = .3653, λc2 = .1827, λc3 = .6347, λc4 = .1827(2.11)

corresponding to the point λc in Figure 1. λc corresponds to the analytic center of
the polytope defined by (2.7). An inequality of the form

αλ1 + βλ2 + γλ3 + δλ4 ≤ 1
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with α, β, γ, δ ≥ 0, which is required to cut away the point λc in Figure 1 is clearly more
likely to cut away the entire polytope than one that is merely required to cut away the
vertex λ∗. This is why the multipliers at the analytic center of the polytope (2.7) are
better for column generation than those at the vertices and generated by the simplex
algorithm. The simplex multipliers tend to be high on the polytope because they
provide a maximum to the objective bTλ.

To see how all this works out in our present example consider generating a column
using the multipliers (2.11). We must solve the problem

max .3653α+ .1827β + .6347γ + .1827δ
subject to 8α+ 4β + 3γ + 2δ ≤ 11,

α, β, γ, δ are integers ≥ 0.
The solution is α = β = 0, γ = 3, δ = 1. Adding the pattern p7 = (0, 0, 3, 1)

T to (2.6)
adds the constraint 3λ3 + λ4 ≤ 1 to (2.7) and clearly cuts away the entire polytope
in Figure 1. Thus adding the pattern p7 to (2.6) will lead to an improvement in our
objective value.

This shows that for our small problem the column generated by the dual prices λc

is superior to the columns generated by the simplex dual prices λ∗. In large problems
it generally happens that many iterations of the simplex algorithm are required to
produce a column that improves the current solution. Interior point algorithms, all
of which include an affine scaling component, tend to require far fewer steps. This
motivates our interest in the dual variables generated by the affine scaling algorithm.

Consider the sequences {xk} and {λk} generated by the algorithm (1.3) applied
to (2.1). We are going to compute an explicit expression for λk. By definition, λk

satisfies the equation

(AD2
kA

T )λk = AD2
kc.

Let M1 denote the matrix obtained by replacing the first column of AD2
kA

T with
AD2

kc, and let M2 denote the matrix obtained by replacing the second column of
AD2

kA
t with AD2

kc. Then by Cramer’s rule we have

λk1 =
detM1

detAD2
kA

T
and λk2 =

detM2

detAD2
kA

T
.

For i < j let

αij = a1ia2j − a2ia1j ,

βij = cia2j − cja2i,(2.12)

γij = cja1i − cia1j .

By the Cauchy–Binet theorem we have

detAD2
kA

T = Σi<jα
2
ij(x

k
i x

k
j )

2,

detM1 = Σi<jαijβij(x
k
i x

k
j )

2,

detM2 = Σi<jαijγij(x
k
i x

k
j )

2.

Therefore,

λk1 =
Σi<jαijβij(x

k
i x

k
j )

2

Σi<jα2
ij(x

k
i x

k
j )

2
and λk2 =

Σi<jαijγij(x
k
i x

k
j )

2

Σi<jα2
ij(x

k
i x

k
j )

2
.(2.13)
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Dikin [5] used this representation of λk to show that the sequence {λk} is always
bounded. However, the sequence {xk} is converging to zero. Therefore, for large
values of k the determinants detAD2

kA
T , detM1, detM2 are practically zero, and

large errors are encountered if one attempts to evaluate λk using the formulas (2.13).
In fact, for degenerate problems the scheme (1.3), as it is written, is very unstable and
cannot be used to compute λk and xk accurately for large values of k. However, there
is a way to modify the scheme so that the sequence {λk} can be computed accurately.
The expression for λk is not changed if the values xkj are scaled. For our purposes it

is convenient to express λk in terms of the variables

zk =
xk2
xk1

, yk =
xk3
xk1

, wk =
xk4
xk1

, vk =
xk5
xk1

.

After computing the constants in (2.13) we can write λk in terms of these variables
as

λ1 =
120z2 + 20y2 + 27w2 + 22v2 − 80z2y2 − 24z2w2 − 4y2w2 − 12y2v2 − 2w2v2

16z2 + 16y2 + 9w2 + 4v2 + 16z2y2 + 4z2w2 + y2w2 + 4y2v2 + w2v2
,

λ2 =
−40z2 − 140y2 − 63w2 − 18v2 + 160z2y2 + 44z2w2 + 7y2w2 + 16y2v2 + 3w2v2

16z2 + 16y2 + 9w2 + 4v2 + 16z2y2 + 4z2w2 + y2w2 + 4y2v2 + w2v2
,

(2.14)

where we have suppressed the superscript k on all variables.
The conditions (2.1) imply that

1 + 2z − 3y − 2w − v = 0,(2.15)

−1 + 2z − y − w − v = 0.

These equations can be solved for y and z in terms of w and v giving

y =
2− w

2
,(2.16)

z =
w + 2v + 4

4
.

Since y and z must remain positive while iterating the scheme (1.3), we must restrict
w and v to the region

0 < w < 2, v > 0.(2.17)

We must discover how the variables y, z, w, v are propagated under the scheme (1.3).
Consider the variable s = c−ATλ. A brief calculation shows that

s =
1

∆(w, v)




400z2y2 + 108z2w2 + 21y2w2 + 68y2v2 + 15w2v2

400y2 + 162w2 + 32v2 + 4y2w2 + 32y2v2 + 8w2v2

400z2 + 63w2 + 68v2 − 8z2w2 + 2w2v2

216z2 − 84y2 + 30v2 + 16z2y2 − 4y2v2

64z2 − 136y2 − 45w2 + 64z2y2 + 16z2w2 + 2y2w2




,
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where

∆(w, v) = 16z2 + 16y2 + 9w2 + 4v2 + 16z2 + 4z2w2 + y2w2 + 4y2v2 + w2v2

is the determinant in the denominator of (2.14), with y and z given in terms of w and
v by (2.16).

By definition we have

D = diag(x1, x2, x3, x4, x5) = x1diag(1, z, y, w, v).

Therefore,

Ds =
x1

∆(w, v)




P1(w, v)
P2(w, v)
P3(w, v)
P4(w, v)
P5(w, v)


 ,

where

P1(w, v) = 400z2y2 + 108z2w2 + 21y2w2 + 68y2v2 + 15w2v2,

P2(w, v) = 400zy2 + 162zw2 + 32zv2 + 4zy2w2 + 32zy2v2 + 8zw2v2,

P3(w, v) = 400z2y + 63w2y + 68v2y − 8z2w2y + 2w2v2y,

P4(w, v) = 216z2w − 84y2w + 30v2w + 16z2y2w − 4y2v2w,

P5(w, v) = 64z2v − 136y2v − 45w2v + 64z2y2v + 16z2w2v + 2y2w2v.

Let P denote the vector (P1, P2, P3, P4, P5). We will write P
k to denote the vector P

with (w, v) = (wk, vk).
We can now write the formula for xk+1 in (1.3) as

xk+1
i = xki

{
1− t

Pi(w
k, vk)

φ(P k)

}
.

From this it follows that

wk+1 =
xk+1

4

xk+1
1

=
xk4

{
1− tP4(w

k,vk)
φ(Pk)

}
xk1

{
1− tP1(wk,vk)

φ(Pk)

}
= wk

φ(P k)− tP4(w
k, vk)

φ(P k)− tP1(wk, vk)
.(2.18)

Similarly

vk+1 = vk
φ(P k)− tP5(w

k, vk)

φ(P k)− tP1(wk, vk)
,(2.19)

yk+1 = yk
φ(P k)− tP3(w

k, vk)

φ(P k)− tP1(wk, vk)
,(2.20)
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and

zk+1 = zk
φ(P k)− tP2(w

k, vk)

φ(P k)− tP1(wk, vk)
.(2.21)

Formulas (2.18) and (2.19) can be used to compute wk and vk accurately for very
large values of k. Given wk and vk we can compute yk and zk from the formulas (2.16).
Finally, λk1 and λk2 can be computed by substituting in (2.14), and the values obtained
are accurate since the denominator in (2.14) is bounded away from zero due to the
inhomogeneity of the equations (2.15). Equation (2.14) was used to compute the
limits (2.3) and (2.4).

3. Numerical experiments for the case 2
3
< t < 1. We are now ready

to analyze the behavior of the sequence {λk} generated by (1.3) for problem (2.1).
Recall that λk1 and λ

k
2 are given in terms of the variables w

k, vk, yk, zk, by the equations
(2.14). We will update these variables using the formulas (2.18)–(2.21). Since each of
these variables is a function of wk and vk, it suffices to analyze the behavior of the
sequence {(wk, vk)}. This sequence has a very complicated behavior. We will only
describe the essence of its behavior.

For 0 < t ≤ 2
3 , and for any starting point (w

0, v0) in the region (2.17), the se-
quence {(wk, vk)} converges to a unique point (w∗, v∗) as required by the convergence
result in [14]. However, as t passes through 2

3 , the limit point (w
∗, v∗) sprouts into six

branches. For a fixed t, slightly larger than 2
3 , the points on these branches separate

into three pairs, which we will denote by {(w+
1 , v+

1 ), (w
−
1 , v−1 )}, {(w+

2 , v+
2 ), (w

−
2 , v−2 )},

and {(w+
3 , v+

3 ), (w
−
3 , v−3 )}, respectively. The region (2.17) is divided into three sub-

regions R1, R2, and R3 such that, if (w
0, v0) is chosen in Ri, the sequence (w

k, vk)
remains in Ri and oscillates between (w

+
i , v

+
i ) and (w

−
i , v

−
i ) as k → ∞. Each of the

regions Ri is irregularly shaped, connected, and global in (2.17). They are described in
detail in [2]. As t increases through certain critical values above 2

3 , some of the points

(w
+

i , v
+

i ) bifurcate and the period of oscillation of the sequence (w
k, vk) doubles.

To show some of the complicated behavior the affine scaling algorithm can exhibit
we will compute the sequence {(wk, vk)} for various values of t, always starting with
w0 = .7 and v0 = 2. For the sake of simplicity, we will just show the behavior of
{vk}. The oscillatory behavior of {wk} is similar to that of {vk}. For each t in the
interval [.65,1] we will generate the sequences {wk} and {vk} using formulas (2.18)–
(2.21) with w0 = .7 and v0 = 2. For each value of t let V (t) denote the set of limit
points of the sequence {vk}. In Figure 2 we have plotted the points (t, v) for each
v ∈ V (t). Such plots are referred to in [3] as Feigenbaum diagrams in honor of the
physicist who used them to study the behavior of complicated dynamical systems.
For t ≤ 2

3 the sequence {vk} converges. Thus V (t) contains a single point. For
2
3 < t < .8700V (t) contains two points. For .8700 < t < .8915V (t) contains four
points. For .8915 < t < .8960V (t) contains eight points. Clearly the number of
points in V (t) doubles at certain critical times. The first six of these times are given,
approximately, by

t1 = .66667, t2 = .8700, t3 = .8915, t4 = .8960, t5 = .90011, t6 = .90025.

There seems to be an infinite sequence of points at which the graph of V (t) bifurcates.
These bifurcations are strongly related to a result by Tsuchiya and Monteiro [13].
These authors show that for a homogeneous problem with unique solution x∗ = 0, the
sequence {xk} generated by the affine scaling algorithm has at least two directions of



792 ILEANA CASTILLO AND EARL R. BARNES

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0

1

2

3

4

5

6

7

8

9

Fig. 2. Feigenbaum diagram for the sequence {vk}.

approach to 0. Now consider the sequences {wk}, {vk}, {yk}, {zk} defined by (2.18)–
(2.21) with w0 = .7 and v0 = 2. For t1 < t < t2 each of these sequences converges to
a 2-cycle. Let’s denote the points in this cycle by {w−, w+}, {v−, v+}, {y−, y+}, and
{z−, z+}, respectively. Then for large values of k we have

w2k =
x2k

4

x2k
1

≈ w−, w2k+1 =
x2k+1

4

x2k+1
1

≈ w+,

and similar equations hold for the terms of the sequences {vk}, {yk}, {zk}. In vector
notation this means that for large values of k,

x2k ≈ x2k
1 (1, z

−, y−, w−, v−)T

and

x2k+1 ≈ x2k+1
1 (1, z+, y+, w+, v+)T .

Since the sequence {xk1} converges to 0, it follows that the sequence {xk} has exactly
two directions of approach to 0 for t1 < t < t2. We have seen that the orbits to
which the sequences {wk}, {vk}, {yk}, {zk} converge depend on their initial values.
Thus the direction of approach to 0 for {xk} has three choices, depending on how x0

is chosen. Similarly, for t2 < t < t3 the sequence {xk} has exactly four directions
of approach to 0, and they depend on x0. Continuing in this way it would appear
that the sequence {xk} always has 2p directions of approach to 0 for some integer p.
However, we will see that there are values of t in (2/3, 1) for which the sequences {wk},
{vk}, {yk}, {zk} converge to periodic orbits with periods 3 and 6. Thus the number
of directions of approach of {xk} to 0 need not be a power of 2. To better understand
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Fig. 3. Inset from Figure 2.
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Fig. 4. Inset from Figure 5.

the bifurcation points for the function V (t) we have enlarged the portion of Figure
2 inside the small rectangle. This magnification is shown in Figure 3. Similarly, the
region inside the small rectangle in Figure 3 is shown in Figure 4. Notice the strong
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Fig. 5. Feigenbaum diagram for the sequence {λk2}.

similarity between Figures 3 and 4. This indicates the fractal nature of Figure 3. It
also suggests that the bifurcation gaps tk+1− tk decrease like a geometric progression.
The convergence properties of the sequence {(wk, vk)} is an interesting topic in itself.
However, our main concern is the convergence of the sequence {λk} generated by (1.3).
For the current example this sequence is given in terms of the sequence {(wk, vk)}
by the formulas (2.14). The bifurcations that occur in the sequence {(wk, vk)} are
transferred to the sequence {λk} through these equations. In Figure 5 we have plotted
the accumulation points of {λk2} against t for each t in the interval .65 ≤ t < 1. The
accumulation points of {λk1} form a similar plot so we do not show them. Note that
for t only slightly larger than 2/3 the two accumulation points of {λk2} are very close
together. In fact for t very close to 2/3 the divergence of the sequence {λk} is hard to
detect. This is why in the numerical experiments given at the beginning of section 2
we started with t = .84.

In order to generate the pictures in Figures 2, 3, 4, and 5 we had to iterate
the affine scaling algorithm long enough to identify the accumulation points of the
sequence {(wk, vk)} for each t in the range 2/3 < t < 1. Typically this required 200
iterations. In practice one would never run the affine scaling algorithm this long. Still
there is a lesson in what we have shown. There are ranges of values of t for which the
sequence {(wk, vk)} has random behavior. And this random behavior can be seen even
for small values of k. For our example this generally happens for t > .9. However,
within this range there are intervals where the sequence {(wk, vk)} converges to a
periodic orbit. For example, for t = .91 {(wk, vk)} converges to a periodic orbit of
period 6. From Figure 5 we see that the corresponding sequence {λk} converges to a
periodic orbit of period 6.

What is more interesting is the fact that for t sufficiently close to 1 the sequence
{λk} converges to a periodic orbit of period 3. Thus for certain values of t > 2/3
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the sequence {λk} converges to a periodic orbit, while for other values the sequence
{λk} has no regular behavior. It appears to wander around randomly. It exhibits
chaotic behavior. We wish to emphasize that this chaotic behavior is not restricted
to specially constructed examples. It can happen in meaningful linear programming
models. For instance the sequence {λk} generated by the affine scaling algorithm for
the cutting-stock problem in section 2 is chaotic for t sufficiently large.
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1. Introduction. Given a real-valued polynomial p(x) : Rn → R, we are inter-
ested in solving the problem

P �→ p∗ := min
x∈Rn

p(x),(1.1)

that is, finding the global minimum p∗ of p(x) and, if possible, a global minimizer x∗.
We are also interested in solving

PK �→ p∗K := min
x∈K

p(x),(1.2)

where K is a (not necessarily convex) compact set defined by polynomial inequalities
gi(x) ≥ 0, i = 1, . . . , r, which includes many applications of interest and standard
problems like quadratic, linear, and 0-1 programming as particular cases.
In the one-dimensional case, that is, when n = 1, Shor [17] first showed that

(1.1) reduces to a convex problem. Next, Nesterov [13], invoking a well-known rep-
resentation of nonnegative polynomials as a sum of squares of polynomials, provided
a self-concordant barrier for the cone K2n of nonnegative univariate polynomials so
that efficient interior point algorithms are available to compute a global minimum.
However, the multivariate case radically differs from the one-dimensional case, for

not every nonnegative polynomial can be written as a sum of squares of polynomials.
Even more, as mentioned in Nesterov [13], the global unconstrained minimization of a
4-degree polynomial is an NP-hard problem. Via successive changes of variables, Shor
[18] (see also Ferrier [5]) proposed to transform (1.2) into a quadratic, quadratically
constrained optimization problem and then solve a standard convex linear matrix
inequality (LMI) relaxation to obtain good lower bounds. By adding redundant
quadratic constraints one may improve the lower bound and sometimes obtain the
optimal value.
In this paper, we will show that the global unconstrained minimization (1.1) of

a polynomial can be approximated as closely as desired (and often can be obtained
exactly) by solving a finite sequence of convex LMI optimization problems of the
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same flavor as in the one-dimensional case. A similar conclusion also holds for the
constrained optimization problem PK in (1.2), when K is a compact set, not neces-
sarily convex, defined by polynomial inequalities. The difference between nonnegative
and strictly positive polynomials is the reason why, in some cases, only an asymp-
totic result is possible. Indeed, for the latter, several representations in terms of
weighted sums of squares are always possible, whereas few results are known for the
former. However, from a numerical point of view, the distinction is irrelevant. In the
constrained case, the nonnegative squared polynomials in the representation of the
polynomial p(x)−p∗K can be interpreted as generalized Karush–Kuhn–Tucker multipli-
ers whose value at a global minimizer are precisely the original Karush–Kuhn–Tucker
scalar multipliers. This representation of nonnegative polynomials thus provides a
natural optimality condition for global optimality.
When the optimal value is obtained at a particular LMI relaxation, the con-

strained global optimization problem thus has a natural “primal” LMI formulation,
whose optimal solution provides a global minimizer, whereas an optimal solution of
the dual LMI problem provides the Karush–Kuhn–Tucker polynomial multipliers in a
representation of p(x)− p∗K . Hence, the primal and dual LMI formulations perfectly
match both sides of the same theory (moments and positive polynomials).
This approach is also valid for handling combinatorial problems, e.g., 0-1 program-

ming problems, since the integrality constraint xi ∈ {0, 1} can be written x2
i − xi ≥ 0

and xi − x2
i ≥ 0. An elementary illustrative example is provided. We finally consider

the general convex quadratic, quadratically constrained problem and provide a nat-
ural exact LMI formulation for both primal and dual problems (the Shor relaxation
and its dual). The standard linear programming problem also appears as a particular
case.
In [13], for the univariate case, the idea was to characterize the nonnegative

polynomial p(x) − p∗ as a sum of squares. However, we will adopt a dual point of
view. Namely, we replace P and PK with the equivalent problems

P �→ p∗ := min
µ∈P(Rn)

∫
p(x)µ(dx)(1.3)

and

PK �→ p∗ := min
µ∈P(K)

∫
p(x)µ(dx),(1.4)

respectively, where P(Rn) (respectively, P(K)) is the space of finite Borel signed
measures on R

n (respectively, on K). That P is equivalent to P is trivial. Indeed,
as p(x) ≥ p∗, then

∫
pdµ ≥ p∗ and thus inf P ≥ p∗. Conversely, if x∗ is a global

minimizer of P, then the probability measure µ∗ := δx∗ (the Dirac at x∗) is admissible
for P. We then observe that if p is a polynomial of degree, say m, the criterion to
minimize is a linear criterion a′y on the finite collection of moments {yα}, up to order
m, of the probability measure µ. We can then in turn replace P (respectively, PK)
with an optimization problem on the yα variables with the constraint that the yα’s
must be moments of some probability measure µ. The theory of moments provides
adequate conditions on the yα variables. It has been known for a long time that the
theory of moments is strongly related to—and in fact, in duality with—the theory of
nonnegative polynomials and Hilbert’s 17th problem on the representation of nonneg-
ative polynomials. For the historical development and recent results on the theory
of moments, the interested reader is referred to Berg [1], Curto and Fialkow [2], [3],
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Jacobi [8], Putinar [15], Putinar and Vasilescu [14], Simon [19], Schmüdgen [16], and
references therein.
The paper is organized as follows. We introduce the notation and some prelim-

inary results in section 2. The unconstrained case is treated in section 3 and the
constrained case (1.2) in section 4. Some elementary as well as nontrivial examples
are presented for illustration. In the last section we show that when p(x) − p∗K is a
weighted sum of squares, then the squared polynomials can be interpreted as general-
ized Karush–Kuhn–Tucker multipliers. The convex quadratic case is also investigated.

2. Notation and preliminary results. Let

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, x2x3, . . . , x

2
n, . . . , x

m
1 , . . . , xmn(2.1)

be a basis for the m-degree real-valued polynomials p(x) : R
n → R, and let s(2m)

be its dimension. We adopt the following standard notation. If p(x) : Rn → R is an
m-degree polynomial, write

p(x) =
∑
α

pαx
α with xα := xα1

1 xα2
2 · · ·xαn

n and
∑
i

αi ≤ m,(2.2)

where p = {pα} ∈ R
s(m) is the coefficient vector of p(x) in the basis (2.1). When

needed, a polynomial of degree m can be considered as a polynomial of higher degree,
say r, with coefficient vector p ∈ R

s(r), where the coefficients of monomials of degree
higher than m are set to zero.
Given an s(2m)-vector y := {yα} with first element y0,...,0 = 1, let Mm(y) be

the moment matrix of dimension s(m), with rows and columns labeled by (2.1). For
instance, for illustration and clarity of exposition, consider the two-dimensional case.
The moment matrix Mm(y) is the block matrix {Mi,j(y)}0≤i,j≤2m defined by

Mi,j(y) =




yi+j,0 yi+j−1,1 . . . yi,j
yi+j−1,1 yi+j−2,2 . . . yi−1,j+1

. . . . . . . . . . . .
yj,i yi+j−1,1 . . . y0,i+j


 ,(2.3)

where yi,j represents the (i+ j)-order moment
∫
xiyj µ(d(x, y)) for some probability

measure µ. To fix ideas, when n = 2 and m = 2, one obtains

M2(y) =




1 | y1,0 y0,1 | y2,0 y1,1 y0,2

− − − − − − −
y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2

y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3

− − − − − − −
y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2

y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3

y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4



.

For the three-dimensional case, Mm(y) is defined via blocks {Mi,j,k(y)}, 0 ≤ i, j, l ≤
2m in a similar fashion, and so on.
Let y = {yα} (with y0,...,0 = 1) be the vector of moments up to order 2m of

some probability measure µy. Let Am be the vector space of real-valued polynomials
q(x) : R

n → R of degree at most m. Identifying q(x) with its vector q ∈ R
s(m) of
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coefficients in the basis (2.1), one may then define a bilinear form 〈., 〉y : Am×Am → R

by

〈q(x), p(x)〉y = 〈q,Mm(y)p〉 =
∑
α

(qp)αyα =

∫
q(x)p(x)µy(dx).(2.4)

This bilinear form also defines a positive semidefinite form on Am since

〈q(x), q(x)〉y =
∑
α

(q2)αyα =

∫
q(x)2 µy(dx) ≥ 0(2.5)

for all polynomials q(x) ∈ Am. The theory of moments identifies those sequences y
with Mm(y) � 0 that correspond to moments of some probability measure µy on R

n.
We first briefly outline the idea developed in the next section: WithK an arbitrary

(Borel) subset of R
n, one first reduces PK to the equivalent convex optimization

problem PK ,

PK �→ min
µ∈P(K)

∫
p(x) dµ,(2.6)

on the space of Borel probability measures µ with support contained in K. Indeed,
we have the following.

Proposition 2.1. The problems PK and PK are equivalent, that is,
(a) inf PK = inf PK .
(b) if x∗ is a global minimizer of PK , then µ∗ := δx∗ is a global minimizer of PK .
(c) assuming PK has a global minimizer, then, for every optimal solution µ∗ of

PK , p(x) = minPK , µ∗-almost everywhere (µ∗-a.e.).
(d) if x∗ is the unique global minimizer of PK , then µ∗ := δx∗ is the unique global

minimizer of PK .
Proof. (a) As for every x ∈ K, p(x) =

∫
p dδx, it follows that inf PK ≤ inf PK

(including the case −∞). Conversely, assume that p∗ := inf PK > −∞. As p(x) ≥ p∗

for all x ∈ K, it follows that
∫
pdµ ≥ p∗ for every probability measure µ with support

contained in K.
(b) This proof is trivial.
(c) From (b), PK has at least one optimal solution. For an arbitrary optimal

solution µ∗, we have
∫
pdµ∗ = p∗ with p∗ = minPK . Assume that there is a Borel set

B ⊂ K such that µ∗(B) > 0 and p(x) �= p∗ on B, that is, p(x) > p∗ on B. Then,∫
p dµ∗ =

∫
B

p dµ∗ +
∫
K−B

p dµ∗ > p∗,

in contradiction with
∫
pdµ∗ = p∗.

(d) This proof follows from (c).
Observe that since p(x) is a polynomial of degree, say m, the criterion

∫
pdµ

involves only the moments of µ, up to order m and, in addition, is linear in the
moment variables. Therefore, one next replaces µ with the finite sequence y = {yα}
of all its moments, up to order m, that is,

yα :=

∫
xα dµ,

n∑
i=1

αi = k, k = 0, 1, . . . ,m,
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and one works with the finite sequence y of the moments of µ, up to order m, in-
stead of µ itself. Of course, not every sequence y has a representing measure µ; that
is, given an arbitrary finite sequence y, there might not be any probability measure
µ, all of whose moments up to order m coincide with the yα scalars. In the one-
dimensional case, characterizing those sequences y that have a representing measure
on X (respectively, on [0,∞) and [a, b]) is called the (truncated) Hamburger (respec-
tively, Stieltjes and Hausdorff) moment problem (see Curto and Fialkow [3] or Simon
[19] and references therein). The various necessary and sufficient conditions for the
existence of a representing measure µy all invoke the positive semidefiniteness of the
related (Hankel) moment matrix

Hm(y) :=




y0 y1 y2 . ym
y1 y2 . . ym+1

.. . . . .
ym ym+1 . y2m−1 y2m


(2.7)

(see, for instance, the various conditions related to the truncated Hamburger, Stielt-
jes, and Hausdorff moment problems in Curto and Fialkow [3]). For trigonometric
polynomials, Toeplitz matrices are the analogues of the Hankel matrices.
As mentioned earlier, this theory of moments is in duality with the theory of

nonnegative polynomials and Hilbert’s 17th problem on the representation of nonneg-
ative polynomials as sum of squares (always possible in the one-dimensional case).
However, the multivariate case radically differs from the univariate case, for not ev-
ery nonnegative polynomial can be written as a sum of squares. Also, in contrast to
the univariate case, with Mm(y) the moment matrix previously introduced (in lieu
of the Hankel matrix (2.7)), there are vectors y for which Mm(y) � 0 but with no
representing measure µy.

3. Unconstrained global optimization. Let p(x) : Rn → R be a real-valued
polynomial of degree 2m with coefficient vector p ∈ R

s(2m). Since we wish to minimize
p(x), we may and will assume that the constant term vanishes, that is, p0 = 0. Let
us introduce the following convex LMI optimization problem (or positive semidefinite
(psd) program):

Q �→


inf
y

∑
α

pαyα,

Mm(y) � 0,
(3.1)

or equivalently,

Q �→



inf
y

∑
α

pαyα,∑
α�=0

yαBα � −B0,
(3.2)

where the matrices B0 and Bα are easily understood from the definition of Mm(y).
The dual problem Q

∗ of Q is the convex LMI problem defined by

Q
∗ �→



sup
X
〈X,−B0〉 (= −X(1, 1)),

〈X,Bα〉 = pα, α �= 0,
X � 0,

(3.3)
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where X is a real-valued symmetric matrix and 〈A,B〉 stands for the usual Frobenius
inner product trace(AB) for real-valued symmetric matrices. The reader is referred
to Vandenberghe and Boyd [20] for a survey on semidefinite programming.
We first have the following result.
Proposition 3.1. Assume that Q

∗ has a feasible solution. Then Q
∗ is solvable

and there is no duality gap, that is,

inf Q = maxQ
∗.(3.4)

Proof. The result follows from the duality theory of convex programming if we can
prove that there is a feasible solution y of Q with Mm(y) � 0. Let µ be a probability
measure on R

n with a strictly positive density f with respect to the Lebesgue measure
and with all its moments finite; that is, µ is such that

yα :=

∫
xα dµ < ∞

for every combination α1 + α2 + αn = r, r = 1, 2, . . . . Then the matrix Mm(y), with
y as above, is such that Mm(y) � 0. Indeed, for every polynomial q(x) : Rm → R, we
have

〈q(x), q(x)〉y = 〈q,Mm(y)q〉 =
∫

q2(x)µ(dx) (by (2.5))

=

∫
q(x)2f(x) dx

> 0 whenever q �= 0 (as f > 0).

Therefore, y is feasible for Q and Mm(y) � 0, the desired result.
Let p(x) : R

n → R be a real-valued polynomial with p0 := p(0) = 0. The first
result of this paper is as follows.

Theorem 3.2. Let p(x) : R
n → R be a 2m-degree polynomial as in (2.2) with

global minimum p∗ = minP.
(i) If the nonnegative polynomial p(x) − p∗ is a sum of squares of polynomials,

then P is equivalent to the convex LMI problem Q defined in (3.1). More precisely,
minQ = minP and, if x∗ is a global minimizer of P, then the vector

y∗ := (x∗
1, . . . , x

∗
n, (x

∗
1)

2, x∗
1x

∗
2, . . . , (x

∗
1)

2m, . . . , (x∗
n)

2m)(3.5)

is a minimizer of Q.
(ii) Conversely, if Q

∗ has a feasible solution, then minP = minQ only if p(x)−p∗
is a sum of squares.

Proof. (i) Let p(x)− p∗ be a sum of squares of polynomials, that is,

p(x)− p∗ =
r∑
i=1

qi(x)
2, x ∈ R

n,(3.6)

for some polynomials qi(x) : R
n → R, with coefficient vector qi ∈ R

s(m), i = 1, 2, . . . , r.
Equivalently,

p(x)− p∗ = 〈X,Mm(y)〉, x ∈ R
n,(3.7)
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with X =
∑r

1 qiq
′
i and y = (x1, . . . , (x1)

2m, . . . , (xn)
2m). But from (3.7) and

p(x)− p∗ = −p∗ +
∑
α

pαx
α,

it follows that

X(1, 1) = −p∗ and 〈X,Bα〉 = pα for all α �= 0

so that (as X � 0) X is feasible for Q
∗ with value −X(1, 1) = p∗. Next, observe that

y∗ in (3.5) is feasible for Q with value p∗ so that minQ = maxQ
∗ and y∗ and X are

optimal solutions of Q and Q
∗, respectively.

(ii) Assume that Q
∗ has a feasible solution and minP = minQ. Then, from

Proposition 3.1, Q∗ is solvable and there is no duality gap, that is, maxQ
∗ = inf Q =

minQ. Let X∗ be an optimal solution of Q
∗, guaranteed to exist. Write X∗ =∑r

i=1 λiqiq
′
i with the qi’s being the eigenvectors of X

∗ corresponding to the positive
eigenvalues λi, i = 1, . . . , r.
As λ∗ := maxQ

∗ = minQ, and minQ = minP, let y∗ as in (3.5) be an optimal
solution of Q. From the optimality of both X∗ and y∗, we must have

〈X∗,Mm(y
∗)〉 = 0.

Equivalently,

0 =
r∑
i=1

λi〈qi,Mm(y
∗)qi〉 =

r∑
i=1

λiqi(x
∗)2.

For an arbitrary x ∈ R
n, let

y := (x1, . . . , xn, x
2
1, x1x2, . . . , x

2m
1 , . . . , x2m

n )

so that, as we did for x∗,

〈X∗,Mm(y)〉 =
r∑
i=1

λiqi(x)
2.

On the other hand,

〈X∗,Mm(y)〉 = λ∗ +
∑
α�=0

yα〈X∗, Bα〉

= λ∗ +
∑
α�=0

pαyα = λ∗ + p(x).

Therefore, as X∗ is optimal, −X∗(1, 1) = −λ∗ = p∗, and we obtain

r∑
i=1

λiqi(x)
2 = p(x)− p∗,

the desired result.
From the proof of Theorem 3.2, it is obvious that if minQ = minP, then x∗ is

a root of each polynomial qi(x), where X
∗ =

∑r
i=1 qiq

′
i at an optimal solution X

∗ of
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Q
∗. When p(x)− p∗ is a sum of squares, solving the dual LMI problem Q

∗ provides
the qi polynomials of such a decomposition. As a corollary, we obtain the following.

Corollary 3.3. Let p(x) : R
n → R be a real-valued polynomial of degree 2m.

Assume that Q
∗ has a feasible solution. Then,

p(x)− p∗ =
r∑
i=1

qi(x)
2 − [minP− inf Q](3.8)

for some real-valued polynomials qi(x) : R
n → R of degree at most m, i = 1, 2, . . . , r.

The proof is the same as the proof of Theorem 3.2(ii), except now we may not
have minQ = minP, but instead inf Q ≤ minP. Hence, inf Q always provides a lower
bound on p∗.
Corollary 3.3 states that one may always write p(x) − p∗ as a sum of squares of

polynomials up to some constant whenever Q
∗ has a feasible solution.

One may ask whether a nonnegative polynomial can be “approached” by polyno-
mials that are the sum of squares. The answer is yes (see Remark 3.6 below).

Example 1. Consider the polynomial p(x) : R2 → R

(x1, x2) �→ (x2
1 + 1)

2 + (x2
2 + 1)

2 + (x1 + x2 + 1)
2.

It is not obvious a priori that with x∗ a global minimizer, p(x)−p∗ is a sum of squares.
Solving Q yields a minimum value of −0.4926, and from the solution y, one may check
that

y = (x∗
1, x

∗
2, (x

∗
1)

2, x∗
1x

∗
2, (x

∗
2)

2, . . . , (x∗
1)

4, . . . , (x∗
2)

4),

with x∗
1 = x∗

2 = −0.2428, is a good approximation of a global minimizer of P since
the gradient vector

∂p(x∗
1,

∗
2 )

∂x1
=

∂p(x∗
1, x

∗
2)

∂x2
= 4 ∗ 10−9.

Solving Q
∗ yields

X∗ ≈




0.4926 1.0000 1.0000 −0.0196 −0.0316 −0.0668
1.0000 3.0392 1.0316 0 −0.0276 −0.1666
1.0000 1.0316 3.1335 0.0276 0.1666 0
−0.0196 0 0.0276 1.0000 0 −0.5539
−0.0316 −0.0276 0.1666 0 1.1078 0
−0.0668 −0.1666 0 −0.5539 0 1.0000




with eigenvalues

[1.0899, 1.5414, 2.0885, 0.4410, 0.0000, 4.6123]

and corresponding eigenvectors


0.0579 0.0144 0.0163 0.0675 0.9414 −0.3246
−0.0972 0.1118 0.6999 −0.0759 −0.2286 −0.6559
0.1010 −0.0657 −0.6861 0.0114 −0.2286 −0.6800
0.0224 −0.7105 0.0503 −0.6993 0.0555 −0.0092
−0.9882 −0.0334 −0.1368 −0.0028 0.0555 −0.0242
−0.0006 0.6907 −0.1337 −0.7075 0.0555 0.0377



.
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Example 2. Consider the polynomial p(x) : R2 → R

(x1, x2) �→ (x2
1 + 1)

2 + (x2
2 + 1)

2 − 2(x1 + x2 + 1)
2.

Solving Q yields an optimal value p∗ ≈ −11.4581 and an optimal solution
(x∗

1, x
∗
2) = (1.3247, 1.3247)

with corresponding gradient

∂p(x∗
1, x

∗
2)

∂x1
=

∂p(x∗
1, x

∗
2)

∂x2
= −8.7 ∗ 10−6.

Solving Q
∗ yields an optimal solution

X∗ ≈




11.4581 −2.0000 −2.0000 −1.0582 −1.1539 −1.2977
−2.0000 2.1164 −0.8461 0 −0.0868 0.2676
−2.0000 −0.8461 2.5953 0.0868 −0.2676 0
−1.0582 0 0.0868 1.0000 0 −0.4625
−1.1539 −0.0868 −0.2676 0 0.9250 0
−1.2977 0.2676 0 −0.4625 0 1.0000



.

The eigenvalues of X∗ are

[1.2719, 1.4719, 0.5593, 0.0000, 3.2582, 12.5336]

with corresponding eigenvectors (in columns below)


0.0854 −0.0552 −0.0615 0.2697 0.0177 −0.9554
0.5477 −0.1658 −0.3615 0.3573 −0.6204 0.1712
0.3274 −0.2171 −0.2965 0.3573 0.7740 0.1760
0.2384 0.6906 0.4831 0.4733 0.0403 0.0847
−0.6736 0.2490 −0.4967 0.4733 −0.0744 0.0896
−0.2740 −0.6191 0.5454 0.4733 −0.0919 0.1081



.

Hence,

p(x1, x2)− p∗

≈1.2719(0.0854 + 0.5477x1 + 0.3274x2 + 0.2384x
2
1 − 0.6736x1x2 − 0.2740x2

2)
2

+1.4719(−0.0552− 0.1658x1 − 0.2171x2 + 0.6906x
2
1 + 0.2490x1x2 − 0.6191x2

2)
2

+0.5593(−0.0615− 0.3615x1 − 0.2965x2 + 0.4831x
2
1 − 0.4967x1x2 + 0.5454x

2
2)

2

+3.2582(0.0177− 0.6204x1 + 0.7740x2 + 0.0403x
2
1 − 0.0744x1x2 − 0.0919x2

2)
2

+12.5336(−0.9554 + 0.1712x1 + 0.1760x2 + 0.0847x
2
1 + 0.0896x1x2 + 0.1081x

2
2)

2.

General case. We now provide a result valid in the general case, that is, when
p(x)− p∗ is not necessarily a sum of squares.
We first need to introduce some notation: Let q(x) : R

n → R be a real-valued
polynomial of degree w with coefficient vector q ∈ R

s(w).
If the entry (i, j) of the matrix Mm(y) is yβ , let β(ij) denote the subscript β of

yβ . Let Mm(qy) be the matrix defined by

Mm(qy)(i, j) =
∑
α

qαy{β(i,j)+α}.(3.9)
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For instance, with

M1(y) =


 1 y10 y01

y10 y20 y11

y01 y11 y02


 and x �→ q(x) = a− x2

1 − x2
2,

we obtain

M1(qy) =


 a− y20 − y02, ay10 − y30 − y12, ay01 − y21 − y03

ay10 − y30 − y12, ay20 − y40 − y22, ay11 − y31 − y13

ay01 − y21 − y03, ay11 − y31 − y13, ay02 − y22 − y04


 .

Let {yα} (with y0 = 1) be an s(2m)-vector of moments up to order 2m of some
probability measure µy on R

n. Then, for every polynomial v(x) : Rn → R, of degree
at most m, with coefficient vector v ∈ R

s(m),

〈v,Mm(qy)v〉 =
∫

q(x)v(x)2 µy(dx).(3.10)

Therefore, with Kq := {x ∈ R
n | q(x) ≥ 0}, if µy has its support contained in Kq,

then it follows from (3.10) that Mm(qy) � 0.
Suppose that we know in advance that a global minimizer x∗ of p(x) has norm

less than a for some a > 0, that is, p(x∗) = p∗ = minP and ‖x∗‖ ≤ a. Then, with
x �→ θ(x) = a2 − ‖x‖2, we have p(x)− p∗ ≥ 0 on Ka := {θ(x) ≥ 0}.
We will use the fact that every polynomial p(x), strictly positive on Ka, can be

written

p(x) =

r1∑
i=1

qi(x)
2 + θ(x)

r2∑
j=1

tj(x)
2,

for some polynomials qi(x), tj(x), i = 1, . . . , r1, j = 1, . . . , r2 (see, e.g., Berg [1, p.
119]). For every N ≥ m, let Q

N
a be the convex LMI problem

Q
N
a



inf
y

∑
α

pαyα,

MN (y) � 0,
MN−1(θy) � 0.

(3.11)

WritingMN−1(θy) =
∑
α yαCα, for appropriate matrices {Cα}, the dual of QN

a is the
convex LMI problem

(QN
a )

∗
{
sup
X,Z�0

−X(1, 1)− a2Z(1, 1),

〈X,Bα〉+ 〈Z,Cα〉 = pα, α �= 0.
(3.12)

Now we have the following theorem.
Theorem 3.4. Let p(x) : R

n → R be a 2m-degree polynomial as in (2.2) with
global minimum p∗ = minP and such that ‖x∗‖ ≤ a for some a > 0 at some global
minimizer x∗. Then
(a) as N →∞, one has

inf QN
a ↑ p∗.(3.13)
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Moreover, for N sufficiently large, there is no duality gap between Q
N
a and its dual

(QN
a )

∗, and (QN
a )

∗ is solvable.
(b) minQ

N
a = p∗ if and only if

p(x)− p∗ =
r1∑
i=1

qi(x)
2 + θ(x)

r2∑
j=1

tj(x)
2(3.14)

for some polynomials qi(x), i = 1, . . . , r1, of degree at most N , and some polynomials
tj(x), j = 1, . . . , r2, of degree at most N − 1. In this case, the vector

y∗ := (x∗
1, . . . , x

∗
n, (x

∗
1)

2, x∗
1x

∗
2, . . . , (x

∗
1)

2N , . . . , (x∗
n)

2N )(3.15)

is a minimizer of Q
N
a . In addition, max(QN

a )
∗ = minQ

N
a and for every optimal

solution (X∗, Z∗) of (QN
a )

∗,

p(x)− p∗ =
r1∑
i=1

λiqi(x)
2 + θ(x)

r2∑
j=1

γjtj(x)
2,(3.16)

where the vectors of coefficients of the polynomials qi(x),tj(x) are the eigenvectors of
X∗ and Z∗ with respective eigenvalues λi, γj.

Proof. (a) From x∗ ∈ Ka, and with

y∗ := (x∗
1, . . . , (x

∗
1)

2N , . . . , (x∗
n)

2N ),

it follows that MN (y
∗),MN−1(θy

∗) � 0 so that y∗ is admissible for Q
N
a and thus

inf QN
a ≤ p∗.
Now, fix ε > 0 arbitrary. Then, p(x)− (p∗ − ε) > 0 and, therefore, there is some

N0 such that

p(x)− p∗ + ε =

r1∑
i=1

qi(x)
2 + θ(x)

r2∑
j=1

tj(x)
2

for some polynomials qi(x), i = 1, . . . , r1, of degree at most N0, and some polynomials
tj(x), j = 1, . . . , r2, of degree at most N0 − 1 (see Berg [1, p. 119]).
Let qi ∈ R

s(N0), tj ∈ R
s(N0−1) be the vector of coefficients of the polynomials

qi(x), tj(x), respectively, and let

X :=

r1∑
i=1

qiq
′
i, Z :=

r2∑
j=1

tjt
′
j

so that X,Z � 0. It is immediate to check that (X,Z) is admissible for (QN0
a )

∗ with
value −X(1, 1) − a2Z(1, 1) = (p∗ − ε). From weak duality it follows that inf QN0

a ≥
−(X(1, 1) + a2Z(1, 1)) = p∗ − ε, and the desired result follows from

p∗ − ε ≤ inf QN0
a ≤ p∗.

We next prove that there is no duality gap between Q
N
a and its dual (Q

N
a )

∗ as soon
as N ≥ N0. Indeed, let µ be a probability measure with uniform distribution in Ka.
Let yµ = {yα} with

yα :=

∫
xαµ(dx)
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for all combinations (α1, . . . , αn) = r, r = 1, . . . , N . All the yα’s are well defined since
µ has its support contained in the compact set Ka. From (2.4),

〈q,MN (yµ)q〉 =
∫

q(x)2µ(dx) > 0 whenever 0 �= q ∈ R
s(N),

and from (3.10),

〈q,MN−1(θyµ)q〉 =
∫

θ(x)q(x)2µ(dx) > 0 whenever 0 �= q ∈ R
s(N−1).

It follows thatMN (yµ),MN−1(θyµ) � 0; that is, yµ is (strictly) admissible for QN
a and,

as (QN
a )

∗ has an admissible solution, from a standard result in convex optimization,
there is no duality gap between (QN

a )
∗ and Q

N
a . In addition, (Q

N
a )

∗ is solvable, that
is, sup(QN

a )
∗ = max(QN

a )
∗.

That inf QN
a ↑ p∗ follows from the fact that, obviously, MN (y) � 0 implies

MN ′(y) � 0 for every N ≥ N ′ (since MN ′(y) is a submatrix of MN (y)) and simi-
larly for MN−1(θy). Therefore, for every solution y of Q

N
a , the adequate truncated

vector y′ is admissible for Q
N ′
a , whenever N

′ ≤ N , with the same value. Hence,
inf QN

a ≥ inf QN ′
a whenever N ≥ N ′.

(b) Only if part. That y∗ in (3.15) is a minimizer of Q
N
a is obvious. From (a)

we know that there is no duality gap between Q
N
a and (Q

N
a )

∗ for N sufficiently large,
and (QN

a )
∗ is solvable. Therefore, for N sufficiently large, let (X∗, Z∗) be an optimal

solution of (QN
a )

∗, guaranteed to exist.
As X∗ � 0, Z∗ � 0, write

X∗ =
r1∑
i=1

λiqiq
′
i; Z

∗ =
r2∑
j=1

γjtjt
′
j ,

where the qi’s (respectively, the tj ’s) are the eigenvectors of X
∗ (respectively, Z∗),

with eigenvalues λi (respectively, γj). With

y = (x1, . . . , xn, . . . , (x1)
2N , . . . , (xn)

2N ),

we have

〈X∗,MN (y)〉+ 〈Z∗,MN−1(θy)〉 = X∗(1, 1) + a2Z∗(1, 1)

+
∑
α�=0

yα[〈X∗, Bα〉+ 〈Z∗, Cα〉]

= X∗(1, 1) + a2Z∗(1, 1) + p(x)

= p(x)− p∗,

where the last equality follows from

minQ
N
a = p∗ = max(QN

a )
∗ = −X∗(1, 1)− a2Z∗(1, 1).

On the other hand,

〈X∗,MN (y)〉 =
r1∑
i=1

λi〈qi,MN (y)qi〉 =
r1∑
i=1

λiqi(x)
2



808 JEAN B. LASSERRE

and

〈Z∗,MN−1(θy)〉 =
r2∑
j=1

γj〈tj ,MN−1(θy)tj〉 = θ(x)

r2∑
j=1

γjtj(x)
2.

Therefore,

p(x)− p∗ =
r1∑
i=1

λiqi(x)
2 + θ(x)

r2∑
j=1

γjtj(x)
2,

the desired result.
If part. If (3.14) holds, then one proves as in (a) (but with ε = 0) that sup(QN

a )
∗ ≥

p∗ so that, in fact, max(QN
a )

∗ = p∗ = minQ
N
a for N sufficiently large.

Thus, one may approach the global optimal value p∗ as closely as desired by
solving a finite number of convex LMI problems Q

N
a , and if p(x)− p∗ (which is only

nonnegative and not strictly positive) can be written as a weighted sum of squares, one
obtains the exact optimal value by solving a finite number of problems Q

N
a . However,

from a computational point of view, the remark is irrelevant, especially if one solves
Q
N
a with an interior point method.
Remark 3.5. Theorem 3.4 also applies for the global minimization of p(x) on

Ka if Ka does not contain any global minimizer of p(x) on R
n. It suffices to replace

p∗ with δ∗ := minx∈Ka
p(x).

Example 3. Consider the polynomial p(x) : R2 → R,

x �→ p(x) := x2
1x

2
2(x

2
1 + x2

2 − 1).
1 + p(x) is positive but is not a sum of squares (see Berg [1]). A global minimizer of
p(x) is x2

1 = x2
2 = 1/3 with optimal value p

∗ = −1/27.
Solving the LMI problem Q in Theorem 3.2 yields an approximated optimal value

of −33.157352 < p∗. With K1 (the unit ball), solving Q
3
1, one obtains exactly the

global minimum p∗ and a global minimizer x∗. In fact, as p(x) contains only even
powers of x1 and x2, y

∗ is the convex combination of 0.5y∗1 + 0.5y
∗
2 with y

∗
1 , y

∗
2 being

the sequences of moments corresponding to the Dirac measures at x∗
1 = −

√
1/3 and

at x∗
2 =

√
1/3, respectively.

This shows that in some cases one will obtain the exact global optimal value
with few trials. In the present example, p(x) is of degree 6 and we do not need to
increase the degree to get the weighted sum of squares (3.14) when it exists; that is,
qi(x)

2, tj(x)
2 in (3.14) are of degree at most 6, as p(x).

Remark 3.6. One may ask whether a nonnegative polynomial can be “ap-
proached” by polynomials that are sums of squares. An answer is given in Berg [1].
Indeed, let A be the space of real-valued polynomials p(x) : Rn → R equipped with the
norm ‖p(x)‖A = ‖p‖ with p the (finite-dimensional) vector of the coefficients of p(x)
(for instance, in the (extended) basis (2.1)). Then, the cone Σ of polynomials that
are sums of squares is dense (for the norm ‖.‖A) in the set of polynomials that are
nonnegative on [−1, 1]n.
For instance, as we know that p(x)− p∗ is positive in [−1, 1]2, for the polynomial

p(x) in the above example we may try to solve the LMI problem Q with M4(y) � 0
instead of M3(y) � 0 and perturbate p(x) by adding the terms 0.01(x8

1 + x8
2) whose

effect in [−1, 1]2 is negligible. Solving Q for p̃(x) = p(x) + 0.01(x8
1 + x8

2) yields the
optimal value p̃∗ = −0.036792 to compare with −0.037037 and a global minimizer
(x̃∗

1)
2 = (x̃∗

2)
2 = 0.3319 to compare with (x∗

1)
2 = (x∗

2)
2 = 1/3. In this case, p̃(x)− p̃∗

is a sum of squares. However, the smaller perturbation 0.001(x8
1+x8

2) does not work.
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4. Constrained case. We now consider the constrained case, that is,

PK �→ p∗K := min
x∈K

p(x),(4.1)

where

• p(x) : Rn → R is a real-valued polynomial of degree at most m.
• K is a compact set defined by polynomials inequalities gi(x) ≥ 0 with gi(x) :

R
n → R being a real-valued polynomial of degree at most wi, i = 1, 2, . . . , r.

Concerning the semi-algebraic compact set K, we make the following assumption.

Assumption 4.1. The set K is compact and there exists a real-valued polynomial
u(x) : Rn → R such that {u(x) ≥ 0} is compact, and

u(x) = u0(x) +

r∑
k=1

gi(x)ui(x) for all x ∈ R
n,(4.2)

where the polynomials ui(x) are all sums of squares, i = 0, . . . , r.

Assumption 4.1 is satisfied in many cases, for instance, if there is one polynomial
gi(x) such that {gi(x) ≥ 0} is compact (take uk(x) ≡ 0 except ui(x) ≡ 1 in (4.2)).
It is also satisfied if all the pi’s are linear (see Jacobi and Prestel [9]) and for 0-1
programs, that is, when K includes the inequalities x2

i ≥ xi and xi ≥ x2
i for all i.

Therefore, one way to ensure that Assumption 4.1 holds is to add to the definition of
K the extra constraint gr+1(x) = a2 − ‖x‖2 ≥ 0 for some a sufficiently large.
It is important to emphasize that we do not assume that K is convex (it may even

be disconnected). We will use the fact that whenever Assumption 4.1 holds, every
polynomial p(x), strictly positive on K, can be written

p(x) = q(x) +
r∑

k=1

gk(x)tk(x) for all x ∈ R
n(4.3)

for some polynomials q(x), tk(x), k = 1, . . . , r, that are all sums of squares (see, e.g.,
Lemma 4.1 in Putinar [15] and also Jacobi [8]). In fact, Assumption 4.1 is an if and
only if condition for (4.3) to hold. Of course, one does not know in advance the
degrees of these polynomials.

As we did for θ(x) in the previous section, for every i = 1, . . . , r, let Mm(giy) be
the matrices defined as in (3.9), with gi(x) in lieu of θ(x). Therefore, if y is an s(2m)
moment vector for some probability measure µ on R

n, then for every i = 1, 2, . . . , r,
and every polynomial q(x) of degree at most m,

〈q(x), q(x)〉giy := 〈q,Mm(giy)q〉 =
∫

gi(x)q(x)
2 µ(dx)(4.4)

so that, if µ has its support contained in K, then Mm(giy) � 0 for all i = 1, 2, . . . , r.
Let w̃i := �wi/2� be the smallest integer larger than wi/2, and with N ≥ �m/2�

and N ≥ maxi w̃i, consider the convex LMI problem

Q
N
K



inf
y

∑
α

pαyα,

MN (y) � 0,
MN−w̃i(giy) � 0, i = 1, . . . , r.

(4.5)
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Writing MN−w̃i
(giy) =

∑
α Ciαyα, for appropriate symmetric matrices {Ciα}, the

dual of Q
N
K is the convex LMI problem

(QN
K)

∗




sup
X,Zi

−X(1, 1)−
r∑
i=1

gi(0)Zi(1, 1),

〈X,Bα〉+
r∑
i=1

〈Zi, Ciα〉 = pα, α �= 0,
X, Zi � 0, i = 1, . . . , r.

(4.6)

Now we have the following theorem.
Theorem 4.2. Let p(x) : R

n → R be an m-degree polynomial and K be the
compact set {gi(x) ≥ 0, i = 1, . . . , r}. Let Assumption 4.1 hold, and let p∗K :=
minx∈K p(x). Then
(a) as N →∞, one has

inf QN
K ↑ p∗K .(4.7)

Moreover, for N sufficiently large, there is no duality gap between Q
N
K and its dual

(QN
K)

∗ if K has a nonempty interior.
(b) if p(x)− p∗K has the representation (4.3), that is,

p(x)− p∗K = q(x) +

r∑
i=1

gi(x)ti(x)(4.8)

for some polynomial q(x) of degree at most 2N , and some polynomials ti(x) of degree
at most 2N − wi, i = 1, . . . , r, all sums of squares, then minQ

N
K = p∗K = max (Q

N
K)

∗

and the vector

y∗ := (x∗
1, . . . , x

∗
n, (x

∗
1)

2, x∗
1x

∗
2, . . . , (x

∗
1)

2N , . . . , (x∗
n)

2N )(4.9)

is a global minimizer of Q
N
K . In addition, for every optimal solution (X∗, Z∗

1 , . . . , Z
∗
r )

of (QN
K)

∗,

p(x)− p∗K =
r0∑
i=1

λiqi(x)
2 +

r∑
i=1

gi(x)

ri∑
j=1

γijtij(x)
2,(4.10)

where the vectors of coefficients of the polynomials qi(x),tij(x) are the eigenvectors of
X∗ and Z∗

i with respective eigenvalues λi, γij.
Proof. The proof is similar to that of Theorem 3.4. For (a) it is immediate that

inf QN
K ≤ p∗K since the sequence of moments y

∗ constructed from a global minimizer
x∗ is admissible with value p∗K . Also, as in Theorem 3.4, the sequence {inf QN

K} is
easily seen to be monotone nondecreasing in N . Moreover,
(i) given ε > 0 arbitrary, the polynomial p(x) − p∗K + ε is strictly positive on K

and thus can be written as in (4.3) for some polynomial q(x) of degree at most 2N
and some polynomials ti(x), i = 1, . . . , r, of degree at most 2N −wi, that are all sums
of squares. As in Theorem 3.4, writing q(x) =

∑
i qi(x)

2 and ti(x) =
∑
j tij(x)

2, from
the vector of coefficients qi of qi(x) (and tij of tij(x)), one may construct matrices
X :=

∑
i qiq

′
i � 0 and Zi :=

∑
j tijt

′
ij � 0, i = 1, . . . , r, that are admissible for (QN

K)
∗,

with value −X(1, 1)−∑i gi(0)Zi(1, 1) = p∗K − ε. Indeed, with

y = (x1, . . . , (x1)
2N , . . . , (xn)

2N ),
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we obtain

〈X,MN (y)〉+
r∑
i=1

〈Zi,MN−w̃i
(giy)〉 = p(x)− p∗K + ε

so that, as x was arbitrary,

〈X,Bα〉+
r∑
i=1

〈Zi, Ciα〉 = pα for all α �= 0,

and X(1, 1) +
∑
i gi(0)Zi(1, 1) = −(p∗K − ε). Hence, p∗K − ε ≤ sup(QN

K)
∗ ≤ inf QN

K ≤
p∗K . As ε was arbitrary, (4.7) follows.
(ii) That there is no duality gap between Q

N
K and its dual (Q

N
K)

∗ follows from the
fact that Q

N
K admits a strictly admissible solution. It suffices to consider a probability

measure µ with uniform distribution on K. The vector yµ of its moments up to order
2N is such that MN (y) � 0 and MN−w̃i(giy) � 0. Therefore, as (QN

K)
∗ has a feasible

solution, by a standard result in convexity, sup(QN
K)

∗ = max(QN
K)

∗ = inf QN
K .

The proof of (b) is also similar. If p(x)−p∗K has the representation (4.3), then from
the polynomials q(x) and {ti(x)}, of degree at most 2N and 2N−wi, respectively, one
may construct matrices X,Zi � 0, i = 1, . . . , r, as in (a), such that (X,Z1, . . . , Zr) is
an admissible solution for (QN

K)
∗, with value −X(1, 1)−∑i gi(0)Zi(1, 1) = p∗K . From

p∗K ≤ sup(QN
K)

∗ ≤ inf QN
K ≤ p∗K , it follows immediately that max(Q

N
K)

∗ = p∗K =
minQ

N
K and (X,Z1, . . . , Zk) is an optimal solution of (Q

N
K)

∗. The last statement is
obtained in a similar fashion.
One may also prove that if K has a nonempty interior, then (4.8) is also necessary

for minQNK = p∗K to hold.
When K is compact and Assumption 4.1 does not hold, there is still a rep-

resentation of polynomials, strictly positive on K (see Corollary 3 in Schmüdgen
[16]). But, instead of being “linear” as in (4.3), there are product terms of the
form gi1(x)gi2(x) . . . gil(x) times a sum of squares of polynomials, with i1, . . . , il ∈
{1, . . . , r}. It then suffices to include the corresponding constraintsMm(gi1 . . . gily) �
0 in the LMI problem QNK . However, the number of LMI constraints in Q

N
K grows

exponentially with the number of constraints.
Example 4. Let p(x) : R2 → R be the polynomial x �→ p(x) := −a1x

2
1 − a2x

2
2 and

K be the compact set

K := {x ∈ R
2 |x1 + x2 ≤ b1; ax1 + y ≤ b2; x1, x2 ≥ 0}.

Whenever ai > 0, p(x) is concave so that we have a concave minimization problem
and thus, some vertex of K is a global minimizer.
We have solved Q

2
K for several values of ai > 0, bi, i = 1, 2, and a < 0, each time

providing a global minimizer exactly, so that

p(x)− p∗K = q(x) + (b1 − x1 − x2)t1(x) + (b2 − ax1 − x2)t2(x) + x1t3(x) + x2t4(x)

for some 4-degree polynomial q(x) and 2-degree polynomials ti(x), all sums of squares,
i = 1, . . . , 4.

Example 5. Let p(x) : R
2 → R be the concave polynomial x �→ p(x) :=

−(x1 − 1)2 − (x1 − x2)
2 − (x2 − 3)2 and

K := {(x1, x2) ∈ R
2 | 1− (x1 − 1)2 ≥ 0; 1− (x1 − x2)

2 ≥ 0; 1− (x2 − 3)2 ≥ 0}.
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The point (1, 2) is a global minimizer with optimal value −2. Solving Q
1
K , that is,

with N = 1 and p̃(x) = p(x) + 10 (since we eliminate the constant term −10), yields
an optimal value of 7 instead of the desired value 8. On the other hand, solving Q

2
K

yields an optimal value 8.00017 and an approximate global minimizer (1.0043, 2.0006)
(the error 0.00017 is likely due to the use of an interior point method in the LMI
toolbox of MATLAB). Hence, with polynomials of degree 4 instead of 2, one obtains
a good approximation of the correct value. Observe that there exist λi = 1 ≥ 0 such
that

p(x) + 3 = 0 +

r∑
i=1

λigi(x),

but p(x)− p∗K (= p(x) + 2) cannot be written that way.
Therefore, for the general nonconvex and quadratically constrained quadratic

problem, Q1
K may sometimes provide directly the exact global minimum, but in gen-

eral a lower bound only (if (Q1
K)

∗ has a feasible solution).

Solving some test problems. We have also solved the following test problems
proposed in Floudas and Pardalos [6].

Problem 2.2 in [6].

min
x,y

p(x, y) := cTx− 0.5xTQx+ dT y;

6x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 6.5;
10x1 + 10x3 + y ≤ 20;
0 ≤ y; 0 ≤ xi ≤ 1, i = 1, . . . , 5

with Q := I and c = [−10.5,−7.5,−3.5,−2.5,−1.5]. The optimal value −213 is
obtained at the Q

2
K relaxation.

Problem 2.6 in [6].

min
x

p(x) := cTx− 0.5xTQx;
Ax ≤ b;
0 ≤ xi ≤ 1, i = 1, . . . , 10

with A being the matrix

−2 −6 −1 0 −3 −3 −2 −6 −2 −2
6 −5 8 −3 0 1 3 8 9 −3
−5 6 5 3 8 −8 9 2 0 −9
9 5 0 −9 1 −8 3 −9 −9 −3
−8 7 −4 −5 −9 1 −7 −1 3 −2


 ,

c = [48, 42, 48, 45, 44, 41, 47, 42, 45, 46], b = [−4, 22,−6,−23,−12], and Q = 100I. The
optimal value −39 is obtained at the Q

2
K relaxation.

Problem 2.9 in [6].

max
x

p(x) :=

9∑
i=1

xixi+1 +

8∑
i=1

xixi+2 + x1x7 + x1x9 + x1x10 + x2x10 + x4x7;∑10
i=1 xi = 1; xi ≥ 0, i = 1, . . . , 10.
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The optimal value 0.375 is obtained at the Q
2
K relaxation.

Problem 3.3 in [6].


min
x

p(x) := −25(x1 − 2)2 − (x2 − 2)2
−(x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2;

(x3 − 3)2 + x4 ≥ 4; (x5 − 3)2 + x6 ≥ 4;
x1 − 3x2 ≤ 2; −x1 + x2 ≤ 2;
x1 + x2 ≤ 6; x1 + x2 ≥ 2;
1 ≤ x3 ≤ 5; 0 ≤ x4 ≤ 6;
1 ≤ x5 ≤ 5; 0 ≤ x6 ≤ 10;
x1, x2,≥ 0.

The optimal value −310 is obtained at the Q
2
K relaxation.

Problem 3.4 in [6].


min
x

p(x) := −2x1 + x2 − x3;

x1 + x2 + x3 ≤ 4;
x1 ≤ 2; x3 ≤ 3; 3x2 + x3 ≤ 6;
xi ≥ 0, i = 1, 2, 3;
xTBTBx− 2rTBx+ ‖r‖2 − 0.25‖b− v‖2 ≥ 0

with r = [1.5,−0.5,−5] and

B =


 0 0 1
0 −1 0
−2 1 −1


; b =


 3
0
−4


; v =


 0
−1
−6


 .

The optimal value −4 is obtained at the Q
4
K relaxation, whereas inf Q

3
K = −4.0685.

Problem 4.6 in [6].

min
x

p(x) := −x1 − x2;

x2 ≤ 2x4
1 − 8x3

1 + 8x
2
1 + 2;

x2 ≤ 4x4
1 − 32x3

1 + 88x
2
1 − 96x1 + 36;

0 ≤ x1 ≤ 3; 0 ≤ x2 ≤ 4.

The feasible set K is almost disconnected. The Q
4
K relaxation provides the optimal

value −5.5079, the best value known so far, and therefore proves its global optimality.

Problem 4.7 in [6].

min
x

p(x) := −12x1 − 7x2 + x2
2;

−2x4
1 + 2− x2 = 0;

0 ≤ x1 ≤ 2; 0 ≤ x2 ≤ 3.

The Q
5
K relaxation provides the optimal value −16.73889, the best known solution so

far, and therefore proves its global optimality.
0-1 programming. It is also worth mentioning that constrained and uncon-

strained 0-1 programming problems can also be treated by solving convex LMI
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problems Q
N
K since the integral constraints xi ∈ {0, 1} can be written x2

i ≥ xi;x
2
i ≤ xi

for all i = 1, . . . , n. Therefore, the set

K1 := {xi − x2
i ≥ 0; x2

i − xi ≥ 0; i = 1, 2, . . . , n}(4.11)

(and its intersection with other additional polynomial constraints) is compact and
Assumption 4.1 holds. However, there is no strictly admissible solution (or interior
point). For illustration we have solved the elementary problem

min{−ax1 − bx2 | r − x1 − cx2 ≥ 0;x1, x2 ≥ 0; x1, x2 ∈ {0, 1}},

replacing the integrality constraints with (x1, x2) ∈ K1, and K1 as in (4.11).
Solving Q

2
K with 0 < a < b, and several random values of c, yields the global

optimal value in all cases and a global minimizer at one of the integral points (0, 1),
(1, 0), and (1, 1) of K.
Also, the first experimental results on a sample of randomly generated MAX-CUT

problems in R
n (that is, maximizing a quadratic form with no squared terms under

the integrality constraints x2
i = 1 for all i) are encouraging. Indeed, the optimal value

was obtained at the Q
2
K relaxation in all cases (see Lasserre [12]) for n = 5 and even

n = 10.

5. Karush–Kuhn–Tucker global optimality conditions. In this section we
still consider the problem PK with a compact setK defined by polynomials inequalities
gi(x) ≥ 0, i = 1, . . . , r.

Proposition 5.1. Let p∗K := minPK and assume that x∗ ∈ K is a global
minimizer. If p(x)− p∗K can be written

p(x)− p∗K =
r0∑
i=1

qi(x)
2 +

r∑
k=1

gk(x)

rk∑
j=1

tkj(x)
2, x ∈ R

n,(5.1)

for some polynomials qi(x), tkj(x), i = 1, . . . , r0, k = 1, . . . , r, j = 1, . . . rk, then

0 = gk(x
∗)


 rk∑
j=1

tkj(x
∗)2


 , k = 1, . . . , r.(5.2)

∇p(x∗) =
r∑

k=1

∇gk(x∗)


 rk∑
j=1

tkj(x
∗)2


 .(5.3)

Moreover, if there exist associated Lagrange Karush–Kuhn–Tucker multipliers
λ∗ ∈ (Rr)+ and if the gradients ∇gk(x∗) are linearly independent, then

rk∑
j=1

tkj(x
∗)2 = λ∗

k, k = 1, . . . , r.(5.4)

Proof. As x∗ is a global minimizer of PK , it follows from p(x∗)−p∗K = 0 and (5.1)
that

0 =

r0∑
i=1

qi(x
∗)2 +

r∑
k=1

gk(x
∗)

rk∑
j=1

tkj(x
∗)2



GLOBAL OPTIMIZATION AND THE PROBLEM OF MOMENTS 815

so that

0 = qi(x
∗), i = 1, . . . , r0, and 0 = gk(x

∗)
rk∑
j=1

tkj(x
∗)2, k = 1, . . . , r.

Moreover, from (5.1) and in view of the above,

∇p(x∗) =
r∑

k=1

∇gk(x∗)
rk∑
j=1

tkj(x
∗)2

=

r∑
k=1

λ∗
k∇gk(x∗)

so that (5.4) follows from the linear independence of the ∇gk(x∗).
Hence, the representation (5.1) can be viewed as a global optimality condition of

the Karush–Kuhn–Tucker type, where the multipliers are now nonnegative polynomi-
als instead of nonnegative constants. In general, and in contrast to the usual (local)
Karush–Kuhn–Tucker optimality conditions, the polynomial multiplier associated to
a constraint gk(x) ≥ 0, nonactive at x∗, is not identically null, but vanishes at x∗.
If p(x) − p∗K cannot be written as (5.1), we still have that p(x) − p∗K + ε can be

written as (5.1) for every ε > 0. Of course, the degrees of qi(x) and tkj(x) in (5.1)
depend on ε, but we have

lim
ε→0

r0(ε)∑
i=1

qi(x
∗)2 = 0 and lim

ε→0

rk(ε)∑
j=1

tkj(x
∗)2 = 0

for every k such that gk(x
∗) > 0.

Convex quadratic programming. In the case where p(x) is a convex quadratic
polynomial and gk(x) are concave quadratic (or linear) polynomials, then, at a Karush–
Kuhn–Tucker point (x∗, λ∗), and with the Lagrangian L(x, λ∗) := p(x)−∑r

k=1 λ
∗
kgk(x),

we have

p(x)− p∗K = L(x, λ∗)− L(x∗, λ∗) +
r∑

k=1

λ∗
kgk(x)

=
1

2
〈x− x∗,∇2

xxL(x
∗, λ∗)(x− x∗)〉+

r∑
k=1

λ∗
kgk(x)

=

n∑
i=1

αi(〈qi, x− x∗〉)2 +
r∑

k=1

λ∗
kgk(x),

where the qi’s are the eigenvectors of the psd form ∇2
xxL/2 with respective eigenvalues

αi, i = 1, . . . , n.
In this case, p(x)− p∗K can be written as (5.1) with rk = 1 and tk(x) ≡

√
λ∗
k, and

qi(x) =
√
αi〈qi, x− x∗〉, i = 1, . . . , n.

That is, the polynomial
∑
j tkj(x)

2 is just the constant λ∗
k. Therefore, we have the

following theorem.
Theorem 5.2. Let p(x) : Rn → R be a convex quadratic polynomial and K :=

{gi(x) ≥ 0} be a compact convex set defined by concave quadratic polynomials gi(x),
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i = 1, . . . , r. Let x∗ be a local (hence global) minimum of PK with associated Karush–
Kuhn–Tucker multipliers λ∗ ∈ (Rr)+. Then,

y∗ = (x∗
1, . . . , x

∗
n, (x

∗
1)

2, . . . , (x∗
n)

2)

is an optimal solution of the convex LMI problem

Q
1
K



min
y

∑
α

pαyα,∑
α

(gi)αyα ≥ −gi(0), i = 1, . . . , r,

M1(y) � 0

and λ∗ is an optimal solution of the dual LMI problem

(Q1
K)

∗




max
X�0,λ≥0

−X(1, 1)−
r∑
i=1

λigi(0),

〈X,Bα〉+
r∑
i=1

λi(gi)α = pα, α �= 0.

Hence (Q1
K)

∗, which is the well-known Shor’s relaxation for nonconvex quadratic
programs, is also the natural dual problem of the general convex quadratically con-
strained quadratic program. In fact, Theorem 5.2 is also true in the more general
case where ∇2

xxL(x
∗, λ∗) � 0, which may also happen at a global minimizer of some

nonconvex quadratic programs. For instance, the particular nonconvex quadratic
problems investigated in [4] reduce to solving the single LMI problem Q1

K .
The difference between the convex and nonconvex cases is that Q

1
K provides an

exact solution in the convex case, whereas one has to solve an (often finite) sequence
of problems {QNK} in the nonconvex case.
In the case where p(x), gi(x) are all linear, then the standard linear programming

problem minx{c′x|Ax ≥ b} is just Q
0
K , with K := {Ax ≥ b}.

6. Conclusion. We have shown that the constrained and unconstrained global
optimization problem with polynomials has a natural sequence of convex LMI re-
laxations {QNK} whose optimal values converge to the optimal value p∗K . In some
cases, the exact optimal value and a global minimizer are obtained at a particular
relaxation. When this happens, every optimal solution of the dual LMI problem pro-
vides the Karush–Kuhn–Tucker polynomials in the representation of the polynomial
p(x)− p∗K , nonnegative on K, the analogues of the scalar multipliers in the standard
Karush–Kuhn–Tucker (local) optimality condition. Identifying classes of problems,
for which the dimension of the LMI problem Q

N
K to solve is known in advance, is a

topic of further research.

Acknowledgments. The author wishes to thank Prof. Jim Renegar and an
anonymous referee for their fruitful suggestions that helped improve the paper.
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Abstract. We present bounds on various quantities of interest regarding the central trajectory
of a semidefinite program, where the bounds are functions of Renegar’s condition number C(d) and
other naturally occurring quantities such as the dimensions n and m. The condition number C(d)
is defined in terms of the data instance d = (A, b, C) for a semidefinite program; it is the inverse
of a relative measure of the distance of the data instance to the set of ill-posed data instances,
that is, data instances for which arbitrary perturbations would make the corresponding semidefinite
program either feasible or infeasible. We provide upper and lower bounds on the solutions along
the central trajectory, and upper bounds on changes in solutions and objective function values along
the central trajectory when the data instance is perturbed and/or when the path parameter defining
the central trajectory is changed. Based on these bounds, we prove that the solutions along the
central trajectory grow at most linearly and at a rate proportional to the inverse of the distance to
ill-posedness, and grow at least linearly and at a rate proportional to the inverse of C(d)2, as the
trajectory approaches an optimal solution to the semidefinite program. Furthermore, the change in
solutions and in objective function values along the central trajectory is at most linear in the size of
the changes in the data. All such bounds involve polynomial functions of C(d), the size of the data,
the distance to ill-posedness of the data, and the dimensions n and m of the semidefinite program.

Key words. semidefinite programming, perturbation of convex programs, central trajectory,
interior-point methods, ill-posed problems, condition numbers
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1. Introduction. We study various properties of the central trajectory of a
semidefinite program P (d) : min{C • X : AX = b,X � 0}. Here X and C are
symmetric matrices; C • X denotes the trace inner product; A is a linear operator
that maps symmetric matrices into �m; b ∈ �m; X � 0 denotes that X is a symmetric
positive semidefinite matrix; and the data for P (d) is the array d = (A, b, C). The
central trajectory of P (d) is the solution to the logarithmic barrier problem Pµ(d) :
min{C • X − µ ln det(X) : AX = b,X � 0} as the trajectory parameter µ ranges
over the interval (0,∞). Semidefinite programming (SDP) has been the focus of an
enormous amount of research in the past decade and has proven to be a unifying model
for many convex programming problems amenable to efficient solution by interior-
point methods; see [1, 14, 27], and [2], among others. Our primary concern lies in
bounding a variety of measures of the behavior of the central trajectory of P (d) in
terms of the condition number C(d) for P (d) originally developed by Renegar.

By the condition number C(d) of the data d = (A, b, C), we mean a scale-invariant
positive measure depending on a given feasible data instance d = (A, b, C) and
with the following property: the condition number approaches infinity as the data
approaches the set of data instances for which the problem P (d), or its dual,
becomes infeasible. In particular, we say that a data instance is ill-posed whenever its
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corresponding condition number is unbounded, that is, whenever the data instance is
on the boundary of the set of primal-dual feasible data instances. This notion of con-
ditioning (formally presented in subsection 2.3) was originally developed by Renegar
in [17] within a more general convex programming context and has proven to be a
key concept in the understanding of the continuous complexity of convex optimization
methods (see, for instance, [4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 28, 29] among others). In
this paper, we show the relevance of using this measure of conditioning in the analysis
of the central trajectory of a semidefinite program of the form P (d).

More specifically, in section 3 we present a variety of results that bound certain
behavioral measures of the central trajectory of P (d) in terms of the condition number
C(d). In Theorem 3.1, we present upper bounds on the norms of solutions along the
central trajectory. These bounds show that the solutions along the central trajectory
grow at most linearly in the trajectory parameter µ and at a rate proportional to
the inverse of the distance to ill-posedness of d. In Theorem 3.2, we present lower
bounds on the values of the eigenvalues of solutions along the central trajectory.
These bounds show that the eigenvalues of solutions along the central trajectory grow
at least linearly in the trajectory parameter µ and at a rate proportional to C(d)−2.

In Theorem 3.3, we present bounds on changes in solutions along the central tra-
jectory under simultaneous changes (perturbations) in the data d as well as changes
in the trajectory parameter µ. These bounds are linear in the size of the data per-
turbation, quadratic in the inverse of the trajectory parameter, and are polynomial
functions of the condition number and the dimensions m and n. Finally, in Theo-
rem 3.4 we present similar bounds on the change in the optimal objective function
values of the barrier problem along the central trajectory, under data and trajec-
tory parameter perturbations. These bounds also are linear in the size of the data
perturbation and in the size of the change in the trajectory parameter.

The use of continuous complexity theory in convex optimization, especially the
theory developed by Renegar in [17, 18, 19, 20], has added significant insight into
what makes certain convex optimization problems better or worse behaved (in terms
of the deformation of problem characteristics under data perturbations) and conse-
quently what makes certain convex optimization problems easier or harder to solve.
We believe that the results presented in this paper contribute to this understand-
ing by providing behavioral bounds on relevant aspects of the central trajectory of a
semidefinite program.

The main results presented in this paper can be viewed as extensions of related
results for the linear programming (LP) case presented in [15]. While some of the
extensions contained herein are rather straightforward generalizations of analogous
results for the LP case, other extensions have proven to be mathematically challenging
to us and have necessitated (in their proofs) the development of further properties
of matrices arising in the analysis of SDP; see Propositions 5.1 and 5.3, for example.
One reason why we have found the extension from LP to SDP to be mathematically
challenging has to do with the linear algebra of certain linear operators that arise in the
study of the central trajectory. In the case of LP, we haveXX̄ = X̄X wheneverX and
X̄ are diagonal matrices. Matrix products like this appear when dealing with solutions
x and x̄ on the central trajectory of a data instance and its perturbation, respectively,
thus streamlining the proofs of results in the LP case. When dealing with analogous
solutions in the case of SDP, we no longer have the same commutative property of the
matrix product, and so it is necessary to develop more complicated linear operators
in the analysis of the central trajectory. Another difficulty in the extension from the
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LP case to the SDP case is the lack of closedness of certain projections of the cone of
positive semidefinite symmetric matrices. This lack of closedness prevents the use of
“nice” LP properties such as strict complementarity of solutions.

Literature review. The study of perturbation theory and continuous complex-
ity for convex programs in terms of the distance to ill-posedness and condition number
of a given data instance was introduced in [17] by Renegar, who studied perturbations
in a very general setting of the problem (RLP ) : sup{c∗x : Ax ≤ b, x ≥ 0, x ∈ X},
where X and Y denote real normed vector spaces, A : X → Y is a continuous linear
operator, c∗ : X → � is a continuous linear functional, and the inequalities Ax ≤ b
and x ≥ 0 are induced by any closed convex cones (linear or nonlinear) containing
the origin in X and Y, respectively. Previous to the paper of Renegar, many papers
were written on perturbations of linear programs and systems of linear inequalities,
but not in terms of the distance to ill-posedness (see, for instance, [12, 22, 23, 24, 25]).

Even though there is now a vast literature on SDP, there are only a few papers
that study SDP in terms of some notion of a condition measure. Renegar [17] presents
a bound on solutions to RLP , a bound on the change in optimal solutions when
only the right-hand side vector b is perturbed, and a bound on changes in optimal
objective function values when the whole data instance is perturbed. All of these
bounds depend on the distance to ill-posedness of the given data instance. Because of
their generality, these results also apply to the SDP case studied in this paper. Later,
in [19] and [20] Renegar presented upper and lower bounds on the inverse of the
Hessian matrix resulting from the application of Newton’s method to the optimality
conditions of RLP along the central trajectory. Again, these bounds depend on the
distance to ill-posedness of the data instance, and they apply to the SDP case. These
bounds are important because they can be used to study the continuous complexity of
interior-point methods for solving semidefinite programs (see [19]) as well as the use
of the conjugate gradient method in the solution of semidefinite programs (see [20]).

Nayakkankuppam and Overton in [13] study the conditioning of SDP in terms
of a condition measure that depends on the inverse of a certain Jacobian matrix.
This Jacobian matrix arises when applying Newton’s method to find a root of a
semidefinite system of equations equivalent to the system of equations that arise from
the Karush–Kuhn–Tucker optimality conditions for P (d). In particular, under the
assumption that both P (d) and its dual have unique optimal solutions, they present
a bound on the change in the optimal solution to P (d) and P (d +∆d), where ∆d is
a data perturbation, in terms of their condition number. This bound is linear in the
norm of ∆d. Their analysis pertains to the study of the optimal solution of P (d), but
is not readily applicable to the central trajectory of a semidefinite program.

Sturm and Zhang [26] study the sensitivity of the central trajectory of a semi-
definite program in terms of changes in the right-hand side of the constraints
AX = b in P (d). Given a data instance d = (A, b, C) of a semidefinite program,
they consider data perturbations of the form d + ∆d = (A, b + ∆b, C). Using this
kind of perturbation, and under a primal and dual Slater condition as well as a
strict complementarity condition, they show several properties of the derivatives of
central trajectory solutions with respect to the right-hand side vector. The results
presented herein differ from these results in that we use data perturbations of the form
d+∆d = (A+∆A, b+∆b, C+∆C), and we express our results in terms of the distance
to ill-posedness of the data. As a result, our results are not as strong in terms of the
size of bounds, but our results are more general, as they do not rely on any particular
assumptions.
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2. Notation, definitions, and preliminaries.

2.1. Space of symmetric matrices. Given two matrices U and V in �n×n,
we define the inner product of U and V as U • V := trace(UTV ), where trace(W ) :=∑n
j=1 Wjj for all W ∈ �n×n. Given a matrix U ∈ �n×n, we denote by σ(U) =

(σ1, . . . , σn)
T the vector in �n whose components are the ordered singular values of

U ; that is, each σj is a singular value of U , and 0 ≤ σ1 ≤ · · · ≤ σn. Furthermore, we
denote by σj(U) the jth singular value of U chosen according to the increasing order
in σ(U). In particular, σ1(U) and σn(U) are the smallest and the largest singular
values of U , respectively. We use the following norms in the space �n×n:

‖U‖1 :=

n∑
j=1

σj(U),(1)

‖U‖2 :=


 n∑
j=1

σj(U)
2




1/2

= (U • U)1/2 ,(2)

‖U‖∞ := max
1≤j≤n

σj(U) = σn(U)(3)

for all matrices U ∈ �n×n. The norm (1) is known as the Ky Fan n-norm or trace
norm (see [3]); the norm (2) is known as the Hilbert–Schmidt norm or Frobenius norm
and is induced by the inner product • defined above; (3) is the operator norm induced
by the Euclidean norm on �n. Notice that all these norms are unitarily invariant in
that ‖U‖ = ‖PUQ‖ for all unitary matrices P and Q in �n×n. We also have the
following proposition that summarizes a few properties of these norms.
Proposition 2.1. For all U, V ∈ �n×n we have
(i) Hölder’s inequalities (see [3])

|U • V | ≤ ‖U‖∞‖V ‖1,(4)

|U • V | ≤ ‖U‖2‖V ‖2.(5)

(ii) ‖UV ‖2 ≤ ‖U‖2‖V ‖2.
(iii) ‖U‖∞ ≤ ‖U‖2 ≤

√
n‖U‖∞.

(iv) 1√
n
‖U‖1 ≤ ‖U‖2 ≤ ‖U‖1.

From now on, whenever we use a Euclidean norm over any space, we will omit
subscripts. Hence, ‖U‖ := ‖U‖2 for all U in �n×n.

Let Sn denote the subspace of �n×n consisting of symmetric matrices. Given a
matrix U ∈ Sn, let U � 0 denote that U is a positive semidefinite matrix, and let
U � 0 denote that U is a positive definite matrix. We denote by S+

n the set of positive
semidefinite matrices in Sn, that is, S+

n = {U ∈ Sn : U � 0}. Observe that S+
n is a

closed convex pointed cone in Sn with nonempty interior given by {U ∈ Sn : U � 0}.
Furthermore, notice that the polar (S+

n )
∗ of the cone S+

n is the cone S+
n itself. When

U ∈ Sn, we denote by λ(U) := (λ1, . . . , λn)
T the vector in �n whose components are

the real eigenvalues of U ordered as 0 ≤ |λ1| ≤ · · · ≤ |λn|. Moreover, we denote by
λj(U) the jth eigenvalue of U chosen according to the order in λ(U). In particular,
notice that σj(U) = |λj(U)| whenever U ∈ Sn.

Given matrices A1, . . . , Am ∈ Sn, we define the linear operator A = (A1, . . . , Am)
from Sn to �m as follows:

AX := (A1 •X, . . . , Am •X)T(6)
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for all X ∈ Sn. We denote by Lm,n the space of linear operators from Sn to �m of
the form (6). Given a linear operator A = (A1, . . . , Am) ∈ Lm,n, we define the rank
of A as the dimension of the subspace generated by the matrices A1, . . . , Am, that
is, rank(A) := dim (〈A1, . . . , Am〉). We say that A has full-rank whenever rank(A) =
min{m,n(n − 1)/2}. Throughout the remainder of this paper we will assume that
m ≤ n(n−1)/2, so that A has full-rank if and only if rank(A) = m. The corresponding
adjoint transformation AT : �m �→ Sn, associated with A, is given by

AT [y] =

m∑
i=1

yiAi

for all y ∈ �m. Furthermore, we endow the space Lm,n with the operator norm
‖A‖ := max{‖AX‖ : X ∈ Sn, ‖X‖ ≤ 1} for all operators A ∈ Lm,n. Finally, if we
define the norm of the adjoint operator as ‖AT ‖ := max{‖AT [y]‖ : y ∈ �m, ‖y‖ ≤ 1},
then it follows that ‖AT ‖ = ‖A‖.

2.2. Data instance space. Consider the vector space D defined as D := {d =
(A, b, C) : A ∈ Lm,n, b ∈ �m, C ∈ Sn}. We regard D as the space of data instances
associated with the following pair of dual semidefinite programs:

P (d) : min {C •X : AX = b,X � 0} ,
D(d) : max

{
bT y : AT [y] + S = C, S � 0} ,

where d = (A, b, C) ∈ D. To study the central trajectory of a data instance in D, we
use the functional p(·) defined as p(U) = − ln detU for all U � 0. Notice that, as
proven in [14], p(·) is a strictly convex n-normal barrier for the cone S+

n . Given a data
instance d = (A, b, C) ∈ D and a fixed scalar µ > 0, we study the following parametric
family of dual logarithmic barrier problems associated with P (d) and D(d):

Pµ(d) : min {C •X + µp(X) : AX = b,X � 0} ,
Dµ(d) : max

{
bT y − µp(S) : AT [y] + S = C, S � 0} .

Let X(µ) and (y(µ), S(µ)) denote the optimal solutions of Pµ(d) and Dµ(d), respec-
tively (when they exist). Then the primal central trajectory is the set {X(µ) : µ > 0}
and is a smooth mapping from (0,∞) to S+

n [10, 27]. Similarly, the dual central
trajectory is the set {(y(µ), S(µ)) : µ > 0} and is a smooth mapping from (0,∞) to
�m × S+

n .
We provide the data instance space D with the norm

‖d‖ := max {‖A‖, ‖b‖, ‖C‖}(7)

for all data instances d = (A, b, C) ∈ D. Using this norm, we denote by B(d, δ) the
open ball {d+∆d ∈ D : ‖∆d‖ < δ} in D centered at d and with radius δ > 0 for all
d ∈ D.

2.3. Distance to ill-posedness. We are interested in studying data instances
for which both programs P (·) and D(·) are feasible. Consequently, consider the fol-
lowing subset of the data set D:

F := {(A, b, C) ∈ D : b ∈ A(S+
n ) and C ∈ AT [�m] + S+

n

}
,

that is, the elements in F correspond to those data instances d in D for which P (d)
and D(d) are feasible. The complement of F , denoted by FC , is the set of data
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instances d = (A, b, C) for which P (d) or D(d) is infeasible. The boundary of F ,
denoted by ∂F , is called the set of ill-posed data instances. This is because arbitrarily
small changes in a data instance d ∈ ∂F can yield data instances in F as well as data
instances in FC .

For a data instance d ∈ D, the distance to ill-posedness is defined as

ρ(d) := inf{‖∆d‖ : d+∆d ∈ ∂F}

(see [17, 21, 18]), and so ρ(d) is the distance of the data instance d to the set of
ill-posed instances ∂F . The condition number C(d) of the data instance d is defined
as

C(d) :=
{

‖d‖
ρ(d) if ρ(d) > 0,

∞ if ρ(d) = 0.

The condition number C(d) can be viewed as a scale-invariant reciprocal of ρ(d), as it
is elementary to demonstrate that C(d) = C(αd) for any positive scalar α. Moreover,
for d = (A, b, C) /∈ ∂F , let ∆d = (−A,−b,−C). Observe that d+∆d = (0, 0, 0) ∈ ∂F
and, since ∂F is a closed set, we have ‖d‖ = ‖∆d‖ ≥ ρ(d) > 0 so that C(d) ≥ 1. The
value of C(d) is a measure of the relative conditioning of the data instance d.

As proven in [24], the interior of F , denoted Int(F), is characterized as follows:

(8)

Int(F) = {(A, b, C) ∈ D : b ∈ A(Int(S+
n )), C ∈ AT [�m] + Int(S+

n ), A has full-rank
}
.

In particular, notice that data instances in Int(F) correspond to data instances for
which both Pµ(·) and Dµ(·) are feasible (for any µ > 0). Also, observe that d =
(A, b, C) ∈ F and ρ(d) > 0 if and only if d ∈ Int(F), and so, if and only if the
characterization given in (8) holds for d. We will use this characterization of the
interior of F throughout the remainder of this paper.

We will also make use of the following elementary sufficient certificates of infea-
sibilty.
Proposition 2.2. Let d = (A, b, C) ∈ D.
1. If there exists y ∈ �m satisfying AT [y] ≺ 0 and bT y ≥ 0, then Pµ(d) is

infeasible.
2. If there exists X ∈ Sn satisfying AX = 0, X � 0, and C •X ≤ 0, then Dµ(d)

is infeasible.

3. Statement of main results. For a given data instance d ∈ Int(F) and a
scalar µ > 0, we denote by X(d, µ) the unique optimal solution to Pµ(d) and by
(y(d, µ), S(d, µ)) the unique optimal solution to Dµ(d). Furthermore, we use the
following function of d and µ as a condition measure for the programs Pµ(d) and
Dµ(d):

K(d, µ) := C(d)2 + µn

ρ(d)
.(9)

As with the condition number C(d), it is not difficult to show that K(d, µ) ≥ 1
and K(d, µ) is scale-invariant in the sense that K(λd, λµ) = K(d, µ) for all λ > 0.
The reason why we call K(d, µ) a condition measure will become apparent from the
theorems stated in this section.
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Our first theorem concerns upper bounds on the optimal solutions to Pµ(d) and
Dµ(d), respectively. The bounds are given in terms of the condition measure K(d, µ)
and the size of the data ‖d‖. In particular, the theorem shows that the norm of the
optimal primal solution along the central trajectory grows at most linearly in the
barrier parameter µ and at a rate no larger than n/ρ(d). The proof of this theorem
is presented in section 4.
Theorem 3.1. Let d ∈ Int(F) and µ be a positive scalar. Then

‖X(d, µ)‖ ≤ K(d, µ),(10)

‖y(d, µ)‖ ≤ K(d, µ),(11)

‖S(d, µ)‖ ≤ 2‖d‖K(d, µ),(12)

where K(d, µ) is the condition measure defined in (9).
As the proof of Theorem 3.1 will show, there is a tighter bound on ‖X(d, µ)‖,

namely, ‖X(d, µ)‖ ≤ M(d, µ), where

M(d, µ) :=




C(d) if C •X(d, µ) ≤ 0,

max
{
C(d), µn

ρ(d)

}
if 0 < C •X(d, µ) ≤ µn,

C(d)2 + µn
ρ(d) if µn < C •X(d, µ),

(13)

whenever d ∈ Int(F) and µ > 0. Notice that because of the uniqueness of the optimal
solution to Pµ(d) for µ > 0, the condition measure M(d, µ) is well defined. Also,
observe thatM(d, µ) can always be bounded from above by K(d, µ).

It is not difficult to create data instances for which the condition measureM(d, µ)
is a tight bound on ‖X(d, µ)‖. Even though the condition measureM(d, µ) provides
a tighter bound on ‖X(d, µ)‖ than K(d, µ), we will use the condition measure K(d, µ)
for the remainder of this paper. This is because K(d, µ) conveys the same general
asymptotic behavior as M(d, µ) and also because using K(d, µ) simplifies most of
the expressions in the theorems to follow. Similar remarks apply to the bounds on
‖y(d, µ)‖ and ‖S(d, µ)‖.

In particular, when C = 0, that is, when we are solving a semidefinite analytic
center program, we obtain the following corollary.
Corollary 3.1. Let d = (A, b, C) ∈ Int(F) be such that C = 0 and µ be a

positive scalar. Then

‖X(d, µ)‖ ≤ C(d).
The following theorem presents lower bounds on the eigenvalues of solutions along

the primal and dual central trajectories. In particular, the lower bound on the eigen-
values of solutions along the primal central trajectory implies that the convergence of
X(d, µ) to an optimal solution to P (d), as µ goes to zero, is at least asymptotically
linear in µ and at a rate of 1/(2‖d‖C(d)2).
Theorem 3.2. Let d ∈ Int(F) and µ be a positive scalar. Then for all j =

1, . . . , n,

λj(X(d, µ)) ≥ µ

2‖d‖K(d, µ) ,

λj(S(d, µ)) ≥ µ

K(d, µ) .
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The proof of Theorem 3.2 is presented in section 4.
The next theorem concerns bounds on changes in optimal solutions to Pµ(d) and

Dµ(d) as the data instance d and the parameter µ are perturbed. In particular,
we present these bounds in terms of an asymptotically polynomial expression of the
condition number C(d), the condition measure K(d, µ), the size of the data ‖d‖, the
scalar µ, and the dimensions m and n. It is also important to notice the linear
dependence of the bound on the size of the data perturbation ‖∆d‖ and the parameter
perturbation |∆µ|.
Theorem 3.3. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then,

‖X(d+∆d, µ+∆µ)−X(d, µ)‖ ≤ ‖∆d‖ 640n
√
mC(d)2K(d, µ)5(µ+ ‖d‖)

µ2

+ |∆µ| 6n‖d‖K(d, µ)
2

µ2
,(14)

‖y(d+∆d, µ+∆µ)− y(d, µ)‖ ≤ ‖∆d‖ 640
√
mC(d)2K(d, µ)5(µ+ ‖d‖)

µ2

+ |∆µ| 32
√
m‖d‖C(d)2K(d, µ)2

µ2
,(15)

‖S(d+∆d, µ+∆µ)− S(d, µ)‖ ≤ ‖∆d‖ 640
√
mC(d)2K(d, µ)5(µ+ ‖d‖)2

µ2

+ |∆µ| 32
√
m‖d‖2C(d)2K(d, µ)2

µ2
.(16)

The proof of Theorem 3.3 is presented in section 5.
Finally, we present a theorem concerning changes in optimal objective function

values of the program Pµ(d) as the data instance d and the parameter µ are perturbed.
We denote by z(d, µ) the optimal objective function value of the program Pµ(d),
namely, z(d, µ) := C •X(d, µ)+µp(X(d, µ)), where X(d, µ) is the optimal solution of
Pµ(d).
Theorem 3.4. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then

|z(d+∆d, µ+∆µ)− z(d, µ)| ≤ ‖∆d‖ 9K(d, µ)2
+ |∆µ| n (ln 16 + | lnµ|+ | ln ‖d‖|+ lnK(d, µ)) .

Notice that it follows from Theorem 3.4 that changes in objective function values
of Pµ(d) are at most linear in the size of the perturbation of the data instance d and the
parameter µ. As with Theorem 3.3, the bound is polynomial in terms of the condition
measure K(d, µ) and the size of the data instance d. Also observe that if ∆d = 0, and
we let ∆µ go to zero, from the analytic properties of the central trajectory [10, 27]
we obtain the following bound on the derivative of z(·) with respect to µ:∣∣∣∣∂z(d, µ)∂µ

∣∣∣∣ ≤ n (ln 16 + | lnµ|+ | ln ‖d‖|+ lnK(d, µ)) .
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We remark that it is not known to us if the bounds in Theorem 3.1, 3.2, 3.3, or
3.4 are tight (even up to a constant) for some data instances, but we suspect that
they are not. However, our concern herein is not the exploration of the best possible
bounds but rather the demonstration of bounds that are some polynomial function of
appropriate natural behavior measures of a semidefinite program.

The remaining two sections of this paper are devoted to proving the four theorems
stated in this section.

4. Proof of bounds on optimal solutions. This section presents the proofs
of the results on lower and upper bounds on sizes of optimal solutions along the
central trajectory for the pair of dual logarithmic barrier problems Pµ(d) and Dµ(d).
We start by proving Theorem 3.1. Our proof is an immediate generalization to the
semidefinite case of the proof of Theorem 3.1 in [15] for the case of a linear program.

Proof of Theorem 3.1. Let X̂ := X(d, µ) be the optimal solution to Pµ(d) and

(ŷ, Ŝ) := (y(d, µ), S(d, µ)) be the optimal solution to the corresponding dual problem
Dµ(d). Notice that the optimality conditions of Pµ(d) and Dµ(d) imply that C • X̂ =
bT ŷ + µn.

Observe that since Ŝ = C − AT [ŷ], then ‖Ŝ‖ ≤ ‖C‖ + ‖AT ‖‖ŷ‖. Since ‖AT ‖ =
‖A‖, we have that ‖Ŝ‖ ≤ ‖d‖(1+‖ŷ‖), and using the fact that K(d, µ) ≥ 1 the bound
(12) on ‖Ŝ‖ is a consequence of the bound (11) on ‖ŷ‖. It therefore is sufficient to
prove the bounds on ‖X̂‖ and on ‖ŷ‖. Furthermore, the bound on ‖ŷ‖ is trivial if
ŷ = 0; therefore from now on we assume that ŷ �= 0. Also, let X̄ = X̂/‖X̂‖ and
ȳ = ŷ/‖ŷ‖. Clearly, X̄ • X̂ = ‖X̂‖, ‖X̄‖ = 1, ȳT ŷ = ‖ŷ‖, and ‖ȳ‖ = 1.

The rest of the proof proceeds by examining three cases:
(i) C • X̂ ≤ 0,
(ii) 0 < C • X̂ ≤ µn, and
(iii) µn < C • X̂.
In case (i), let ∆Ai := −biX̄/‖X̂‖ for i = 1, . . . ,m. Then, by letting the operator

∆A := (∆A1, . . . ,∆Am) and ∆d := (∆A, 0, 0) ∈ D, we have (A + ∆A)X̂ = 0,
X̂ � 0, and C • X̂ ≤ 0. It then follows from Proposition 2.2 that Dµ(d + ∆d)

is infeasible, and so ρ(d) ≤ ‖∆d‖ = ‖∆A‖ = ‖b‖/‖X̂‖ ≤ ‖d‖/‖X̂‖. Therefore,
‖X̂‖ ≤ ‖d‖/ρ(d) = C(d) ≤ K(d, µ). This proves (10) in this case.

Consider the following notation: θ := bT ŷ, ∆b := −θȳ/‖ŷ‖, ∆Ai := −ȳiC/‖ŷ‖
for i = 1, . . . ,m, ∆A := (∆A1, . . . ,∆Am), and ∆d := (∆A,∆b, 0) ∈ D. Observe
that (b + ∆b)T ŷ = 0 and (A + ∆A)T [ŷ] ≺ 0, so from Proposition 2.2 we conclude
that Pµ(d+∆d) is infeasible. Therefore, ρ(d) ≤ ‖∆d‖ = max{‖C‖, |θ|}/‖ŷ‖. Hence,
‖ŷ‖ ≤ max{C(d), |θ|/ρ(d)}. Furthermore, |θ| = |bT ŷ| = |C•X̂−µn| ≤ ‖X̂‖‖C‖+µn ≤
C(d)‖d‖+ µn. Therefore, using the fact that C(d) ≥ 1 for any d, we have (11).

In case (ii), let ∆d := (∆A, 0,∆C) ∈ D, where ∆Ai := −biX̄/‖X̂‖ for i =
1, . . . ,m and ∆C := −µnX̄/‖X̂‖. Observe that (A+∆A)X̂ = 0 and (C+∆C)• X̂ ≤
0. Hence, from Proposition 2.2 Dµ(d + ∆d) is infeasible, and so we conclude that

ρ(d) ≤ ‖∆d‖ = max{‖∆A‖, ‖∆C‖} = max{‖b‖, µn}/‖X̂‖ ≤ max{‖d‖, µn}/‖X̂‖.
Therefore, ‖X̂‖ ≤ max{C(d), µn/ρ(d)} ≤ K(d, µ). This proves (10) for this case.

Now let ∆d := (∆A,∆b, 0), where ∆Ai := −ȳiC/‖ŷ‖ for i = 1, . . . ,m and ∆b :=
µnȳ/‖ŷ‖. Observe that (b+∆b)T ŷ = bT ŷ+µn = C •X̂ > 0 and (A+∆A)T [ŷ] ≺ 0. As
before, we have from Proposition 2.2 that Pµ(d+∆d) is infeasible, and so we conclude
that ρ(d) ≤ ‖∆d‖ = max{‖∆A‖, ‖∆b‖} = max{‖C‖, µn}/‖ŷ‖ ≤ max{‖d‖, µn}/‖ŷ‖.
Therefore, we obtain ‖ŷ‖ ≤ max{C(d), µn/ρ(d)} ≤ K(d, µ).

In case (iii), we first consider the bound on ‖ŷ‖. Let ∆d := (∆A, 0, 0) ∈ D, where
∆Ai := −ȳiC/‖ŷ‖ for i = 1, . . . ,m. Since (A+∆A)T [ŷ] ≺ 0 and bT ŷ = C•X̂−µn > 0,
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it follows from Proposition 2.2 that Pµ(d +∆d) is infeasible, and so ρ(d) ≤ ‖∆d‖ =
‖C‖/‖ŷ‖. Therefore, ‖ŷ‖ ≤ C(d) ≤ K(d, µ).

Finally, let ∆Ai := −biX̄/‖X̂‖ for i = 1, . . . ,m, and ∆C := −θX̄/‖X̂‖, where
θ := C • X̂. Observe that (A + ∆A)X̂ = 0 and (C + ∆C) • X̂ = 0. Thus, from
Proposition 2.2 we conclude that Dµ(d + ∆d) is infeasible, and so ρ(d) ≤ ‖∆d‖ =
max{‖∆A‖, ‖∆C‖} = max{‖b‖, θ}/‖X̂‖ so that ‖X̂‖ ≤ max{C(d), θ/ρ(d)}. Further-
more, θ = C • X̂ = bT ŷ + µn ≤ ‖b‖‖ŷ‖ + µn ≤ ‖d‖C(d) + µn. Therefore, ‖X̂‖ ≤
K(d, µ).

The following corollary presents upper bounds on optimal solutions to Pµ+∆µ(d+
∆d) and Dµ+∆µ(d + ∆d), where ∆d is a data instance in D representing a small
perturbation of the data instance d, and ∆µ is a scalar.
Corollary 4.1. Let d ∈ Int(F) and µ > 0. If ‖∆d‖ ≤ ρ(d)/3 and |∆µ| ≤ µ/3,

then

‖X(d+∆d, µ+∆µ)‖ ≤ 4K(d, µ),
‖y(d+∆d, µ+∆µ)‖ ≤ 4K(d, µ),
‖S(d+∆d, µ+∆µ)‖ ≤ 6‖d‖K(d, µ).

Proof. The proof follows by observing that

‖d+∆d‖ ≤ ‖d‖+ ρ(d)

3
,

µ+∆µ ≤ 4µ

3
,

ρ(d+∆d) ≥ 2ρ(d)

3
.

From these inequalities, we have C(d + ∆d) ≤ 3
2 (‖d‖ + ρ(d)/3)/ρ(d) = 3

2 (C(d) +
1/3) ≤ 2C(d) and ‖d + ∆d‖ ≤ 4

3‖d‖ ≤ 1.5‖d‖, since C(d) ≥ 1. Furthermore,
(µ+∆µ)n/ρ(d+∆d) ≤ 2µn/ρ(d). Therefore, K(d+∆d, µ+∆µ) ≤ 4K(d, µ), and the
result follows.

The following proof of Theorem 3.2 is a generalization of part of the proof of
Theorem 3.2 in [15] for the case of a linear program.

Proof of Theorem 3.2. Because of the Karush–Kuhn–Tucker optimality conditions
of the dual pair of programs Pµ(d) and Dµ(d), we have X(d, µ)S(d, µ) = µI. This
being the case, X(d, µ) and S(d, µ) can be simultaneously diagonalized, and so there
exists an orthogonal matrix U such thatX(d, µ) = UDUT , whereD = diag(λ(X(d, µ)))
and S(d, µ) = µUD−1UT . Then

1

λj(X(d, µ))
≤ 1

D11
=
‖S(d, µ)‖∞

µ
,

and so λj(X(d, µ)) ≥ µ
‖S(d,µ)‖∞

for j = 1, . . . , n, and the result for λj(X(d, µ)) follows

from Theorem 3.1. Similarly,

1

λj(S(d, µ))
≤ Dnn

µ
=
‖X(d, µ)‖∞

µ
,

and so λj(S(d, µ)) ≥ µ
‖X(d,µ)‖∞

for j = 1, . . . , n, and the result for λj(S(d, µ)) again

follows from Theorem 3.1.



828 MANUEL A. NUNEZ AND ROBERT M. FREUND

Corollary 4.2. Let d ∈ Int(F) and µ > 0. If ‖∆d‖ ≤ ρ(d)/3 and |∆µ| ≤ µ/3,
then for all j = 1, . . . , n,

λj (X(d+∆d, µ+∆µ)) ≥ µ

16‖d‖K(d, µ) ,

λj (S(d+∆d, µ+∆µ)) ≥ µ

6K(d, µ) .

Proof. The proof follows immediately from Theorem 3.2 by observing that
‖d+∆d‖ ≤ 4

3‖d‖, µ+∆µ ≥ 2
3µ, and K(d+∆d, µ+∆µ) ≤ 4K(d, µ).

5. Proof of bounds on changes in optimal solutions. In this section we
prove Theorems 3.3 and 3.4. Before presenting the proofs, we first present properties
of certain linear operators that arise in our analysis, in Propositions 5.1–5.5, and
Corollary 5.1.
Proposition 5.1. Given a data instance d = (A, b, C) ∈ D and matrices X and

X̄ such that X, X̄ � 0, let P be the linear operator from �m to �m defined as

Pw := A
(
X
(
AT [w]

)
X̄
)

for all w ∈ �m. If A has rank m, then the following statements hold true:
1. P corresponds to a symmetric positive definite matrix in �m×m,
2. Pw = A

(
X̄
(
AT [w]

)
X
)

for all w ∈ �m.
Proof. By using the canonical basis for �m and slightly amending the notation,

we have that the (i, j)-coordinate of the matrix corresponding to P is given by

Pij = Ai • (XAjX̄).(17)

Hence, if w is such that Pw = 0, then for all i = 1, . . . ,m,

m∑
j=1

(
Ai • (XAjX̄)

)
wj = 0,

m∑
j=1

(
(X1/2Ai) • (X1/2AjX̄)

)
wj = 0,

m∑
j=1

(
(X1/2AiX̄

1/2) • (X1/2AjX̄
1/2)

)
wj = 0.

It therefore follows that

wTPw =

m∑
i=1

m∑
j=1

wi

(
(X1/2AiX̄

1/2) • (X1/2AjX̄
1/2)

)
wj = 0.(18)

This in turn can be written as

‖X1/2(AT [w])X̄1/2‖22 = 0,

from which we obtain AT [w] = 0. Using the fact that A has rank m, we have w = 0.
Therefore the matrix corresponding to P is nonsingular.

On the other hand, notice that from (17) we have Pij = Ai•(XAjX̄) = (XAiX̄)•
Aj = Aj • (XAiX̄) = Pji for all 1 ≤ i, j ≤ m. Hence, P is a symmetric operator.
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Furthermore, if we let Â := (X1/2A1X̄
1/2, . . . , X1/2AmX̄

1/2), we obtain from (18)
wTPw = ‖ÂT [w]‖22 ≥ 0 for all w ∈ �m. Hence, P is a positive semidefinite operator.
Using that P is nonsingular, we conclude the first statement.

Finally, the second statement follows from well-known properties of the trace:

trace
(
AiXAjX̄

)
= trace

(
XAjX̄Ai

)
= trace

(
(XAjX̄Ai)

T
)

= trace
(
AiX̄AjX

)
for all 1 ≤ i, j ≤ m. Therefore, Pw = A

(
X̄
(
AT [w]

)
X
)
for all w ∈ �m, and the

result follows.
Proposition 5.2. Let d = (A, b, C) ∈ Int(F) and P be the linear operator from

�m to �m defined as

Pw := A
(
AT [w]

)
for all w ∈ �m. Then P is a symmetric positive definite matrix and

ρ(d) ≤
√
λ1(P ).

Proof. Observe that since d ∈ Int(F), A has rank m, and so from Proposition 5.1
(setting X̄ := X := I), P is a symmetric and positive semidefinite matrix.

Let λ := λ1(P ). There exists a vector v ∈ �m with ‖v‖ = 1 and Pv = λv. Hence,
vTPv = λ. Let ∆A ∈ Lm,n be defined as

∆A :=
(−v1(A

T [v]), . . . ,−vm(AT [v])
)T

,

and ∆b = εv for any ε > 0 and small. Then, (A + ∆A)T [v] = 0 and (b + ∆b)T v =
bT v + ε �= 0 for all ε > 0 and small. Hence, (A +∆A)X = b +∆b is an inconsistent
system of equations for all ε > 0 and small. Therefore, ρ(d) ≤ max{‖∆A‖, ‖∆b‖} =
‖∆A‖ = ‖AT [v]‖ = √λ, thus proving this proposition.
Proposition 5.3. Given a data instance d = (A, b, C) ∈ D such that A has rank

m, and matrices X and X̄ such that X, X̄ � 0, let Q be the linear operator from �n×n
to �n×n defined as

QV := V − X̄1/2
(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2

for all V ∈ �n×n, where P is the matrix from Proposition 5.1. Then Q corresponds
to a symmetric projection operator.

Proof. Let RV := X̄1/2
(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2 for all V ∈ �n×n. Since

QV = V − RV = (I − R)V , then Q is a symmetric projection if and only if R is a
symmetric projection. It is straightforward to show that

RV =
m∑
i=1

m∑
j=1

P−1
ij

(
Aj •

(
X̄1/2V X1/2

))(
X̄1/2AiX

1/2
)

(19)

for all V ∈ �n×n. For a fixed matrix V in �n×n, it follows from this identity that

W • (RV ) =

 m∑
i=1

m∑
j=1

P−1
ij

(
Ai •

(
X̄1/2WX1/2

))(
X̄1/2AjX

1/2
) • V
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for all W in �n×n. Hence, we have

RT [W ] =

m∑
i=1

m∑
j=1

P−1
ij

(
Ai •

(
X̄1/2WX1/2

))(
X̄1/2AjX

1/2
)

for all W in �n×n. By noticing that P is a symmetric matrix and using (19), we
obtain R = RT ; that is, R is a symmetric operator.

On the other hand, for a given V in �n×n, let w := P−1A
(
X̄1/2V X1/2

)
. Thus,

using Proposition 5.1, statement 2, we obtain

RRV = X̄1/2
(
AT

[
P−1A

(
X̄1/2(RV )X1/2

)])
X1/2

= X̄1/2
(
AT

[
P−1A

(
X̄1/2

(
X̄1/2

(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2

)
X1/2

)])
X1/2

= X̄1/2
(
AT

[
P−1A

(
X̄
(
AT [w]

)
X
)])

X1/2

= X̄1/2
(
AT

[
P−1Pw

])
X1/2

= X̄1/2
(
AT [w]

)
X1/2

= RV,

where the fourth equality above follows from statement 2 of Proposition 5.1. There-
fore, from [11, Theorem 1, page 73], R is a projection and the result follows.
Proposition 5.4. Given a data instance d = (A, b, C) ∈ D and matrices X and

X̄ such that X, X̄ � 0, let P be the linear operator from �m to �m defined as

Pw := A
(
X
(
AT [w]

)
X̄
)

for all w ∈ �m. Then if A has rank m,

‖P−1‖∞ ≤ ‖X−1‖∞‖X̄−1‖∞‖(AAT )−1‖∞.

Proof. From Proposition 5.1, it follows that P is nonsingular. Let w be any vector
in �m normalized so that ‖w‖ = 1, and consider a spectral decomposition of X as

X =
n∑
k=1

λk(X)uku
T
k ,

where {u1, . . . , un} is an orthonormal basis for �n. By using that trace(uku
T
k ) ≥ 0 for

all 1 ≤ k ≤ n, and
∑n
k=1 uku

T
k = I, we have

wTPw =

m∑
i=1

m∑
j=1

trace
(
AiXAjX̄

)
wiwj

= trace


 m∑
i=1

m∑
j=1

AiXAjX̄wiwj




= trace


X̄1/2

(
m∑
i=1

Aiwi

)
X


 m∑
j=1

Ajwj


 X̄1/2




=
n∑
k=1

λk(X)trace


X̄1/2

(
m∑
i=1

Aiwi

)
uku

T
k


 m∑
j=1

Ajwj


 X̄1/2
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≥ ‖X−1‖−1
∞ trace


X̄1/2

(
m∑
i=1

Aiwi

) m∑
j=1

Ajwj


 X̄1/2




= ‖X−1‖−1
∞ trace


( m∑

i=1

Aiwi

)
X̄


 m∑
j=1

Ajwj




 .

Now, consider a spectral decomposition of X̄ as

X̄ =

n∑
k=1

λk(X̄)vkv
T
k ,

where, as before, {v1, . . . , vn} is an orthonormal basis for �n, and so
∑n
k=1 vkv

T
k = I.

Notice that from Proposition 5.1, it follows that the operator AAT is nonsingular.
Then, we have

wTPw ≥ ‖X−1‖−1
∞

n∑
k=1

λk(X̄)trace


( m∑

i=1

Aiwi

)
vkv

T
k


 m∑
j=1

Ajwj






≥ ‖X−1‖−1
∞ ‖X̄−1‖−1

∞ trace


( m∑

i=1

Aiwi

) m∑
j=1

Ajwj






≥ ‖X−1‖−1
∞ ‖X̄−1‖−1

∞ ‖(AAT )−1‖−1
∞ .

Notice that in the last inequality we used

trace


( m∑

i=1

Aiwi

) m∑
j=1

Ajwj




 = wT P̂w ≥ min

k
λk(P̂ ) = ‖(AAT )−1‖−1

∞ ,

where P̂ = AAT .
Now let ŵ be the normalized eigenvector corresponding to the smallest eigenvalue

of P , i.e., ‖ŵ‖ = 1 and Pŵ = λ1(P )ŵ. Then from above we have

‖P−1‖−1
∞ = λ1(P ) = ŵTPŵ ≥ ‖X−1‖−1

∞ ‖X̄−1‖−1
∞ ‖(AAT )−1‖−1

∞

and the result follows.
Corollary 5.1. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then

‖P−1‖ ≤ 32√m
(C(d)K(d, µ)

µ

)2

,

where P is the linear operator from �m to �m defined as

Pw := A
(
X(d, µ)

(
AT [w]

)
X(d+∆d, µ+∆µ)

)
for all w ∈ �m, and K(d, µ) is the scalar defined in (9).

Proof. Let X = X(d, µ) and X̄ = X(d +∆d, µ +∆µ). From Proposition 5.4 we
know that

‖P−1‖∞ ≤ ‖X−1‖∞‖X̄−1‖∞‖(AAT )−1‖∞.
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From Theorem 3.2 and Corollary 4.2, respectively, we have

‖X−1‖∞ ≤ 2‖d‖K(d, µ)
µ

,

‖X̄−1‖∞ ≤ 16‖d‖K(d, µ)
µ

.

Furthermore, from Proposition 5.2 we have

‖(AAT )−1‖∞ ≤ 1

ρ(d)2
.

By combining these results and using Proposition 2.1, we obtain the corollary.
Proposition 5.5. Let d = (A, b, C) be a data instance in Int(F), µ be a positive

scalar, ∆d = (∆A,∆b,∆C) ∈ D be a data perturbation such that ‖∆d‖ ≤ ρ(d)/3, and
∆µ be a scalar such that |∆µ| ≤ µ/3. Then,

‖∆b−∆AX(d+∆d, µ+∆µ)‖ ≤ 5‖∆d‖K(d, µ),
‖∆C −∆AT [y(d+∆d, µ+∆µ)]‖ ≤ 5‖∆d‖K(d, µ).

Proof. Let X̄ := X(d + ∆d, µ + ∆µ) and ȳ := y(d + ∆d, µ + ∆µ). From Corol-
lary 4.1, we have

‖∆b−∆AX̄‖ ≤ ‖∆d‖ (1 + ‖X̄‖)
≤ ‖∆d‖ (1 + 4K(d, µ))
≤ 5‖∆d‖K(d, µ),

‖∆C −∆AT [ȳ]‖ ≤ ‖∆d‖ (1 + ‖ȳ‖)
≤ ‖∆d‖ (1 + 4K(d, µ))
≤ 5‖∆d‖K(d, µ),

and so the proposition follows.
Now we are ready to present the proof of Theorem 3.3.
Proof of Theorem 3.3. To simplify the notation, let (X, y, S) := (X(d, µ), y(d, µ),

S(d, µ)), (X̄, ȳ, S̄) := (X(d+∆d, µ+∆µ), y(d+∆d, µ+∆µ), S(d+∆d, µ+∆µ)), and
µ̄ := µ +∆µ. From the Karush–Kuhn–Tucker optimality conditions associated with
the programs Pµ(d) and Pµ+∆µ(d+∆d), respectively, we obtain

XS = µI, X̄S̄ = µ̄I,
AT [y] + S = C, (A+∆A)T [ȳ] + S̄ = C +∆C,

AX = b, (A+∆A)X̄ = b+∆b,
X � 0, X̄ � 0.

Let ∆E := ∆b−∆AX̄ and ∆F := ∆C −∆AT [ȳ]. Therefore,

X̄ −X =
1

µµ̄
X̄(µ̄S − µS̄)X

=
1

µµ̄
X̄
(
µ̄(C −AT [y])− µ(C +∆C − (A+∆A)T [ȳ]))X

=
1

µµ̄
X̄
(
∆µC − µ(∆C −∆AT [ȳ])−AT [µ̄y − µȳ]

)
X

=
∆µ

µµ̄
X̄CX − 1

µ̄
X̄∆FX − 1

µµ̄
X̄
(
AT [µ̄y − µȳ]

)
X.(20)
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On the other hand, A(X̄ − X) = ∆b − ∆AX̄ = ∆E. Since d ∈ Int(F), then A has
full-rank (see (8)). It follows from Proposition 5.1 that the linear operator P from �m
to �m defined as Pw := A(X̄(AT [w])X), for all w ∈ �m, corresponds to a positive
definite matrix in �m×m. By combining this result with (20), we obtain

∆E =
∆µ

µµ̄
A
(
X̄CX

)− 1

µ̄
A
(
X̄∆FX

)− 1

µµ̄
P (µ̄y − µȳ),

and so

P−1∆E =
∆µ

µµ̄
P−1A

(
X̄CX

)− 1

µ̄
P−1A

(
X̄∆FX

)− 1

µµ̄
(µ̄y − µȳ).

Therefore, we have the following identity:

1

µµ̄
(µ̄y − µȳ) =

∆µ

µµ̄
P−1A

(
X̄CX

)− 1

µ̄
P−1A

(
X̄∆FX

)− P−1∆E.(21)

Combining (21) and (20), we obtain

X̄ −X =
∆µ

µµ̄
X̄CX − 1

µ̄
X̄∆FX

− X̄

(
AT

[
∆µ

µµ̄
P−1A

(
X̄CX

)− 1

µ̄
P−1A

(
X̄∆FX

)− P−1∆E

])
X

=
∆µ

µµ̄

(
X̄CX − X̄

(
AT

[
P−1A

(
X̄CX

)])
X
)

− 1

µ̄

(
X̄∆FX − X̄

(
AT

[
P−1A

(
X̄∆FX

)])
X
)

+ X̄
(
AT

[
P−1∆E

])
X

=
∆µ

µµ̄
X̄1/2Q

(
X̄1/2CX1/2

)
X1/2 − 1

µ̄
X̄1/2Q

(
X̄1/2∆FX1/2

)
X1/2

+ X̄
(
AT

[
P−1∆E

])
X,(22)

where by Q we denote the following linear operator from �n×n to �n×n:

Q(V ) := V − X̄1/2
(
AT

[
P−1A

(
X̄1/2V X1/2

)])
X1/2

for all V ∈ �n×n. By using Proposition 5.3, it follows that Q is a symmetric projection
operator, and so ‖QV ‖ ≤ ‖V ‖ for all V ∈ �n×n. Since ‖V 1/2‖2 ≤ √n‖V ‖ for all V
in S+

n , from (22), Theorem 3.1, Corollary 4.1, Corollary 5.1, and Proposition 5.5, it
follows that

‖X̄ −X‖ ≤ |∆µ|
µµ̄
‖X̄1/2‖2‖C‖‖X1/2‖2 + 1

µ̄
‖X̄1/2‖2‖∆F‖‖X1/2‖2

+‖X̄ (
AT [P−1∆E]

)
X‖

≤ n|∆µ|
µµ̄

‖X̄‖‖C‖‖X‖+ n

µ̄
‖X̄‖‖∆F‖‖X‖+ ‖X̄‖‖AT ‖‖P−1‖‖∆E‖‖X‖

≤ 4n|∆µ|
µµ̄

‖d‖K(d, µ)2 + 20n‖∆d‖
µ̄

K(d, µ)3 + 640

µ2

√
m‖∆d‖‖d‖C(d)2K(d, µ)5.
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Therefore, by noticing that µ̄ ≥ 2
3µ, we obtain

‖X̄ −X‖ ≤ 6n

µ2
|∆µ|‖d‖K(d, µ)2 + 640n

√
m

µ2
‖∆d‖C(d)2K(d, µ)5 (µ+ ‖d‖) ,

and so (14) follows.
Next, we prove the bound on ‖ȳ − y‖. From the identities (A +∆A)T [ȳ] + S̄ =

C +∆C and AT [y] + S = C, it follows that

S̄ − S = ∆F −AT [ȳ − y],

µ̄X̄−1 − µX−1 = ∆F −AT [ȳ − y],

X̄−1(µ̄X − µX̄)X−1 = ∆F −AT [ȳ − y].

Hence,

µ̄X − µX̄ = X̄
(
∆F −AT [ȳ − y]

)
X

= X̄∆FX − X̄
(
AT [ȳ − y]

)
X.

By premultiplying this identity by A, we obtain

∆µb− µ∆E = A
(
X̄∆FX

)− P (ȳ − y),

and so,

P (ȳ − y) = −∆µb+ µ∆E +A
(
X̄∆FX

)
,

ȳ − y = −∆µP−1b+ µP−1∆E + P−1A
(
X̄∆FX

)
.

Therefore, using this identity, Theorem 3.1, Corollary 4.1, Corollary 5.1, and Propo-
sition 5.5, we obtain

‖ȳ − y‖ ≤ |∆µ|‖P−1‖‖b‖+ µ‖P−1‖‖∆E‖+ ‖P−1‖‖A‖‖X̄‖‖∆F‖‖X‖
≤ 32√m|∆µ|‖d‖C(d)

2K(d, µ)2
µ2

+ 160
√
m‖∆d‖C(d)

2K(d, µ)3
µ

+ 640
√
m‖∆d‖‖d‖C(d)

2K(d, µ)5
µ2

≤ 32√m|∆µ|‖d‖C(d)
2K(d, µ)2
µ2

+ 640
√
m‖∆d‖C(d)

2K(d, µ)5(µ+ ‖d‖)
µ2

,

and so we obtain inequality (15).
Finally, to obtain the bound on ‖S̄ − S‖, we proceed as follows. Notice that

S̄ − S = ∆F −AT [ȳ − y]. Hence, from (15) and Proposition 5.5, we have

‖S̄ − S‖ ≤ ‖∆F‖+ ‖AT ‖‖ȳ − y‖
≤ 5‖∆d‖K(d, µ) + ‖d‖

(
32
√
m|∆µ|‖d‖C(d)

2K(d, µ)2
µ2

+ 640
√
m‖∆d‖C(d)

2K(d, µ)5(µ+ ‖d‖)
µ2

)

≤ 32√m|∆µ|‖d‖2 C(d)
2K(d, µ)2
µ2

+ 640
√
m‖∆d‖C(d)

2K(d, µ)5(µ+ ‖d‖)2
µ2

,
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which establishes (16), concluding the proof of this theorem.
Finally, we present the proof of Theorem 3.4.
Proof of Theorem 3.4. To simplify the notation, let z̄ := z(d+∆d, µ+∆µ) and z =

z(d, µ). Consider the Lagrangian functions associated with Pµ(d) and Pµ+∆µ(d+∆d),
respectively:

L(X, y) := C •X + µp(X) + yT (b−AX),

L̄(X, y) := (C +∆C) •X + (µ+∆µ)p(X) + yT (b+∆b− (A+∆A)X),
and define M(X, y) := L(X, y) − L̄(X, y). Let X̂ and (ŷ, Ŝ) denote the optimal
solutions to Pµ(d) and Dµ(d), respectively, and let X̄ and (ȳ, S̄) denote the optimal
solutions to Pµ+∆µ(d+∆d) and Dµ+∆µ(d+∆d), respectively. Hence, we have

z = L(X̂, ŷ)

= max
y

L(X̂, y)

= max
y

{
L̄(X̂, y) +M(X̂, y)

}
≥ L̄(X̂, ȳ) +M(X̂, ȳ)

≥ min
X	0

L̄(X, ȳ) +M(X̂, ȳ)

= z̄ +M(X̂, ȳ).

Thus, z− z̄ ≥M(X̂, ȳ). Similarly, we can prove that z− z̄ ≤M(X̄, ŷ). Therefore, we
obtain that either |z̄ − z| ≤ |M(X̂, ȳ)| or |z̄ − z| ≤ |M(X̄, ŷ)|. On the other hand, by
using Theorem 3.1 and Corollary 4.1, we have

|M(X̂, ȳ)| = |∆C • X̂ +∆µp(X̂) + ȳT∆b− ȳT∆AX̂|
≤ ‖∆C‖‖X̂‖+ |∆µ||p(X̂)|+ ‖ȳ‖‖∆b‖+ ‖ȳ‖‖∆A‖‖X̂‖
≤ ‖∆d‖

(
‖X̂‖+ ‖ȳ‖+ ‖ȳ‖‖X̂‖

)
+ |∆µ||p(X̂)|

≤ 9‖∆d‖K(d, µ)2 + |∆µ||p(X̂)|.
Similarly, it is not difficult to show that

|M(X̄, ŷ)| ≤ 9‖∆d‖K(d, µ)2 + |∆µ||p(X̄)|.
Therefore,

|z̄ − z| ≤ 9‖∆d‖K(d, µ)2 + |∆µ|max
{
|p(X̂)|, |p(X̄)|

}
.

By using Theorems 3.1 and 3.2 and Corollaries 4.1 and 4.2, we obtain

−n ln (K(d, µ)) ≤p(X̂)≤ −n ln
(

µ

2‖d‖K(d, µ)
)

−n ln (4K(d, µ)) ≤p(X̄)≤ −n ln
(

µ

16‖d‖K(d, µ)
)
.

Thus, we have the following bound:

max
{
|p(X̂)|, |p(X̄)|

}
≤ nmax

{
ln (4K(d, µ)) ,

∣∣∣∣ln
(

µ

16‖d‖K(d, µ)
)∣∣∣∣
}

≤ n (ln 16 + | lnµ|+ | ln ‖d‖|+ lnK(d, µ)) ,
and so the result follows.
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A DIRECT SEARCH ALGORITHM FOR OPTIMIZATION
WITH NOISY FUNCTION EVALUATIONS∗
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Abstract. We consider the unconstrained optimization of a function when each function eval-
uation is subject to a random noise. We assume that there is some control over the variance of the
noise term, in the sense that additional computational effort will reduce the amount of noise. This
situation may occur when function evaluations involve simulation or the approximate solution of a
numerical problem. It also occurs in an experimental setting when averaging repeated observations
at the same point can lead to a better estimate of the underlying function value. We describe a new
direct search algorithm for this type of problem. We prove convergence of the new algorithm when
the noise is controlled so that the standard deviation of the noise approaches zero faster than the
step size. We also report some numerical results on the performance of the new algorithm.

Key words. optimization, direct search, noisy functions
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1. Introduction. During the past few years there has been an increasing interest
in direct search methods for unconstrained optimization (Hooke and Jeeves (1961),
Nelder and Mead (1965), Spendley, Hext, and Himsworth (1962)). These methods
do not make gradient estimates and involve relatively few function evaluations at
each iteration. The most commonly used method in this class is due to Nelder and
Mead (1965): this is a simplicial method which works using the repeated operations
of reflection, expansion, and contraction applied to a simplex of n + 1 points in �n.
Although the Nelder–Mead method was invented more than 30 years ago, some version
of this approach probably still is the most common way to carry out optimization when
each function evaluation requires a separate experiment; this is despite the apparent
superiority of other direct search methods, such as that due to Powell (see Brent
(1973), Powell (1964), and del Valle et al. (1990)).

Methods based on a simplicial approach have the disadvantage that for poorly
behaved problems they can fail to converge. (There are even examples of well-behaved
problems for which Nelder–Mead converges in theory to a nonstationary point; see
McKinnon (1998).) This has been recognized for some time and has led to a variety
of suggestions for modifications which can help the convergence behavior in practice
(e.g., Parker, Cave, and Barnes (1985) and Hedlund and Gustavsson (1992)). At the
same time researchers have developed versions of the basic simplicial algorithm that
have provable convergence for certain classes of objective function. Examples include
the work of Yu (1979), Rykov (1980), Torczon (1991, 1997), Lagarias et al. (1998),
and Tseng (2000).

Another important restriction on methods in this class is that they have compu-
tation times that are heavily dependent on the dimension of the problem; they are not
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usually suitable for problems with more than a small number of variables. Indeed, for
Nelder–Mead, there are even difficulties with convergence when the dimension of the
problems becomes reasonably large. However, this disadvantage may be partially off-
set by the fact that some direct search algorithms are capable of easy parallelization;
see Dennis and Torczon (1991).

A major factor in the continuing popularity of simplicial methods among users
of optimization software is their ability to deal effectively with situations in which
function evaluations are inaccurate. In this case more complex methods which ap-
proximate the function with some polynomial based on recent function evaluations
(see Conn and Toint (1996) and Powell (1994)) may be led seriously astray: even the
estimation of gradient information by finite differencing must be carried out carefully;
see Gill et al. (1983).

In this paper we deal explicitly with the optimization of functions where the accu-
racy of the function evaluation depends on the time devoted to it. An example occurs
when the function evaluation involves the solution of a PDE, where the accuracy de-
pends on the grid size used. A second example occurs when attempting to optimize
settings to achieve the maximum yield from a chemical reaction. Here the objective
function is evaluated by carrying out a chemical experiment which is subject to ran-
dom errors. For a given set of parameter values the experiment can be carried out
many times over and then the average yield over the whole set of experiments gives
an improved estimate of the objective function. Finally, the same situation occurs in
the design of a facility, for example, a new warehouse, using a simulation model. The
performance of the facility for some particular set of parameter values can be esti-
mated using the simulation, and the longer the simulation is run the more accurate
will be the result. In each of these examples, finding the best choice of parameter val-
ues requires the judicious balancing of time spent on improving the estimation of the
objective function at a single point against time spent in making function evaluations
at different parameter settings.

There are a variety of approaches to the problems of optimization with noise in
the function evaluations. One approach is called the response surface methodology (see
Khuri and Cornell (1987)). This is straightforward: an estimation of the behavior of
the objective function around the current point x is obtained by making some kind of
factorial experiment using points in the neighborhood of x. A regression fit of a low
order polynomial (usually linear) is then made to these points. Then a line search is
carried out in the negative gradient direction before the whole process is repeated.

A related method that uses a quadratic function which best fits the function
values and chooses a descent direction based on this quadratic approximation has
been proposed by Glad and Goldstein (1977). They establish a form of convergence
result for the case where the noise is bounded. A similar approach has been used by
Elster and Neumaier (1995), whose grid algorithm can be shown to be superior to
Nelder–Mead on a variety of test problems when noise is included.

Another approach from the area of stochastic approximation is the Keifer–
Wolkowitz method; see, for example, Kushner and Clark (1978) and Polyak (1987).
This method estimates the gradient by evaluating the function at points x ± αkei,
where ei are the n unit vectors and αk is a constant depending on the iteration, and
then taking a step of length γk in the negative gradient direction (rather than carrying
out a line search). In order to obtain convergence when there is noise it is necessary
to let γk and, especially αk, tend to zero very slowly. There are various conditions
but the crucial ones are that the infinite sum

∑
γk diverges and that the infinite sum
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∑
(γk/αk)

2 converges. There are other stochastic approximation techniques which
use increased sampling of f(x) rather than decreasing step lengths to ensure conver-
gence; see, for example, Dupuis and Simha (1991). There are also some stochastic
approximation techniques that involve a line search; see Wardi (1988, 1990).

Barton and Ivey (1996) consider variations of the Nelder–Mead algorithm
designed to cope with noisy function evaluations. These authors test alternative
Nelder–Mead variants on a suite of test problems and use a stochastic noise term
sampled from a truncated normal distribution which is added to the underlying func-
tion.

In this paper we introduce a new simplicial direct search method which is designed
for use with function evaluations subject to noise. We will prove convergence of this
method subject to some assumptions on the behavior of the objective function. We
believe that this is the first time that an analysis of the convergence behavior of
a direct search algorithm with unbounded random noise has been carried out. We
also present some preliminary computational results which demonstrate that the new
method can be effective in practice.

There are a number of points of interest. First, the algorithm includes a stochastic
element. This is found to be advantageous in practice and is easily incorporated into
the stochastic framework of our analysis. The reader should note that the new method
is not a pattern search method in the usual sense: there is no reason for the points at
which the function is evaluated to be drawn from any kind of regular grid of points
in �n.

Second, the stochastic nature of the function noise actually acts as an advantage
in establishing convergence of the new algorithm. Paradoxically, we do not have a
proof of convergence for this algorithm in the case where there is no function noise.
The reason for this is that, in the absence of noise, our algorithm might make an
infinite sequence of iterations without contracting the size of the structure, and with
function improvements tending to zero, without this implying that the gradient is
close to zero. Our algorithm contains nothing to stop it from cycling back to points
closer to points that have been visited before.

Finally, the balance between function accuracy and step size is of interest. We
show that convergence can be obtained when the standard deviation of the error of
the function estimate decreases to zero faster than the step length size. There are
valid reasons for thinking that convergence is unlikely if the standard deviation of the
error becomes large in comparison to the step length, so our result may be the best
possible result.

2. Description of the algorithm. The algorithm we propose operates with a
set of m points in �n at each iteration (with m ≥ n+ 1). This set of points is called
a structure.

In specifying the algorithm we need to ensure that each structure is of full dimen-
sion. For our purposes, a convenient way to measure the extent to which the structure
is “flat” is to define, for any structure S = {x1, x2, . . . , xm},

d(S) = min
j=1,2,...,m, u∈�n, |u|=1

{
max

k=1,2,...,m
|(xj − xk)

Tu|
}

.

We also define the size of a structure S as

D(S) = max
j,k=1,2,...,m

|xj − xk|.
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We assume that there is an underlying objective function f defined on �n which
we wish to minimize and that each function evaluation we make is subject to some
random noise. Thus the apparent function value at a point x is f̂(x) = f(x) + ξ,
where ξ is drawn from a distribution with zero mean and finite variance σ2. We will
assume that the size of σ is under our control. For example, we might take N function
evaluations at a single point x and estimate the underlying function value f(x) by
averaging the results, in which case varying N allows us to control σ. The noise on
successive function evaluations is independent. We will require increasing accuracy in
our function evaluations as the structure size decreases.

We can generate new structures from a given structure S with the operations of
reflection around a point x or expansion around a point x (in each case x is one of
the points of S):

reflect(S, x) = {2x− xi|xi ∈ S},

expand(S, x) = {2xi − x|xi ∈ S}.

We also need to define a structure contract(S, x) which is the result of a con-
traction operation. Just as expansion will double the size of a structure, contraction
is defined in a way which essentially halves the size of a structure. This enables us to
define the level, l(S), of a structure, S, such that the size of a structure S is a multiple
2−l(S) of the size of the initial structure. A contraction operation increases the level
by 1 and an expansion operation decreases the level by 1. More precisely, we assume
that there are constants z1 and z2 such that for a structure S at level l(S),

z1

2l(S)
< d(S) < D(S) <

z2

2l(S)
.(2.1)

We allow considerable freedom in the contraction operation. We require the
structure contract(S, x) to contain the point x (which again is a point in S) and be
such that inequalities (2.1) will hold at all stages. There are a number of ways in
which this can be done. One straightforward option is to take

contract(S, x) = {0.5(x+ xi)|xi ∈ S}.(2.2)

Another possibility is to apply a random rotation around x to the set {0.5(x+xi)|xi ∈
S}. A third option is to apply a random perturbation to the elements in a core
structure.

We suppose that the accuracy of the function evaluations made at any point
depends on the level of the structure. At a higher level, when structures are smaller,
we will need greater accuracy. We assume that the points in a structure S at level l
are each evaluated in such a way that the noise has standard deviation σl, where

2k12
−l(1+k2) ≥ σl < k12

−l(1+k2)

for (small) constants k1 > 0, 1/(m−2) > k2 > 0. Essentially this halves the standard
deviation of the noise for each halving of structure size. Ignoring the small constant
k2, the standard deviation of the errors decreases at essentially the same rate as the
size of the structure D(S).
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Given S0 of full dimension and a sequence ηi > 0, i = 1, 2, . . .
set l = l0, i = 0, b = F (S0)
while not satisfying termination criteria
begin

vi = v(Si)
T = reflect(Si, vi)
if F (T ) < F (Si) then
begin

if F (T ) < b then b = F (T )
U = expand(T, vi)
if F (U) < b− ηl and l > 0 then
begin

Si+1 = U
b = F (U)
l = l − 1

end
else Si+1 = T

end
else
begin

Si+1 = contract(Si, vi)
if F (Si+1) < b then b = F (Si+1)
l = l + 1

end
i = i+ 1

end

Fig. 2.1. Pseudocode description of the algorithm.

For a structure S we define its value function as

F (S) = min{f̂(xj)|xj ∈ S}

and its best point (that we call the pivot point) as

v(S) = argmin{f̂(xj)|xj ∈ S}.

The algorithm operates at each stage by pivoting about the point v(S) for the
current structure. The basic operation of reflection in the pivot point is carried out
until no further improvement can be made, when there is contraction around the
pivot point and the whole process repeats. At each stage that reflection produces an
improvement, an expanded structure is tested and accepted if this produces sufficient
improvement on the best value so far. We can give a more formal definition of the
algorithm with the pseudocode of Figure 2.1.

We shall assume that the algorithm has no memory of the points it has already
evaluated, so that previous function evaluations at any point are not re-used if that
point is revisited. This is also true for the pivot point when contraction takes place,
but previous function values for the pivot point are used again for the reflection and
expansion operations.
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3. Convergence of the algorithm. In this section we establish convergence of
the algorithm under the following assumptions:

A1 The function f is uniformly Lipschitz, continuously differentiable, and has
compact lower level sets.

A2 The noise distribution is normal.

A3 The sequence ηi is bounded away from zero.

The first assumption is stronger than the assumptions made by Tseng (2000) and
Torczon (1991) in their proofs of convergence for direct search methods where there
is no noise component. These authors require that the function f be continuously
differentiable and that the lower level set L0 = {x ∈ �n|f(x) ≤ F (S(0)} be compact.
Because of the stochastic nature of our algorithm, the structures generated do not
necessarily contain a point in L0 and this is one reason for the stronger assumption.
We believe that some form of convergence will occur with a condition weaker than
assumption A1: as it stands, this restriction rules out well-behaved functions such as
f(x) = xTx. The final assumption effectively ensures that the probability of expansion
decreases to zero as the algorithm proceeds.

Our analysis here is stochastic and all probability statements we make are to be
understood with respect to realizations of the noise process. We shall write γ(x) for
the probability in the tail of the standardized normal distribution, so γ(x) = Prob(ξ ≥
σx), where the noise ξ has an N(0, σ2) distribution.

We need to make use of the following inequality on γ(x); see, for example, Feller
(1968):

1√
2π

(
1

x
− 1

x3

)
e−x

2/2 ≤ γ(x) ≤ 1√
2π

1

x
e−x

2/2.(3.1)

We write γl(x) for the probability in the tail of the distribution for the errors in
evaluations at level l; thus γl(x) = γ(x/σl).

Before beginning the detailed analysis of the behavior of the algorithm it may
be helpful to make some general remarks. The difficulty of the proof we give below
arises primarily because the apparent function values are likely to increase whenever
there is a contraction. To see why this is so, observe that, during the operation of the
algorithm, we continually pivot around the best point in the structure: especially when
the function is relatively flat, this is likely to be a point with a negative evaluation
error. The more negative the error, and the lower the apparent function value, the
more likely it is that none of the points in the reflected structure have an apparent
value as small, and a contraction takes place. The pivot point is then re-evaluated
and is equally likely to have positive or negative error, giving a high probability of an
increase in the apparent function value. Most of the work in the proof (Lemmas 3.2
and 3.3) is required to establish that there is only a small probability of a large increase
in apparent function value arising from a series of contractions.

We begin by showing that the structure size decreases to zero, i.e., that the level
increases indefinitely.

Lemma 3.1. Under assumptions A1 and A2, l(Si) → ∞ as i → ∞ with proba-
bility 1. If, in addition, assumption A3 holds, then with probability 1 there is only a
finite number of expansions.

Proof. We will prove this by regarding the algorithm as defining a stochastic
process moving on the set of levels. First observe that, from assumption A1, the
function f has a lower bound, which we will denote f∗.
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We first suppose that the stochastic process is recurrent, so that there are infinitely
many returns to some level i.

Since the function is uniformly Lipschitz, there is some number k such that the
real function difference between two points in a structure S at level i is less than
kD(S) < kz2(0.5)

i. From the above remarks we know that there is a probability of at
least 1/2 that the pivot point has a negative error. (In what follows we use the term

“error” to refer to f̂(x) − f(x) at some point x, where the error is “signed” rather
than being an absolute magnitude.) Thus the probability of a contraction is always
at least qi/2, where qi is the probability that all the points in the reflected structure
(other than the pivot point) have errors greater than kz2(0.5)

i. This means that the
probability of remaining at level i indefinitely (without steps to other levels) is zero.

Suppose that there are infinitely many steps taken away from the level i. The
implication is that there are infinitely many expansion steps at either level i or i− 1.
Without loss of generality we suppose that these occur at level i. At each expansion
step at level i, b decreases at least by a fixed amount. Thus we may choose a number
M , so that after M + j expansions at level i, b < f∗ −Kjσi−1 for some K > 0.

Expansion can take place only if the apparent function value at one of the points
in the expanded structure is less than b. Thus the probability that an expansion step
afterM+j returns to level i is less than the probability that one or more of the errors
in the points used in the expanded structure is more negative than −Kjσi−1. Since
we re-use the pivot point in expansion, there are m − 1 of these points we need to
consider. The probability that one or more errors are less than −Kjσi−1 is thus less
than m− 1 times the probability that a single error is less than −Kjσi−1. Hence, if
we write pj for the probability of an expansion at level i after the M + jth return to
that level, then

pj < (m− 1)γi−1(Kjσi−1)

<
m− 1
Kj
√
2π

e−(Kj)2/2

< L−j2

for some constant L > 1, provided j is chosen large enough.

We write p̃j for the probability that, after M + j returns to level i, the next step
away from i is to i − 1 (rather than i + 1). Now p̃j is equal to pj divided by the
probability of an expansion or contraction. This is no greater than pj/(pj + qi/2) <
2pj/qi. The expected value of the remaining number of jumps from i to i − 1 after
M returns to level i is given by

∑∞
j=1 p̃j <

∑∞
j=1 2pj/qi < (2/qi)

∑∞
j=1 L

−j2 which
converges. Since this expectation is finite we can deduce that with probability 1 there
is only a finite number of such jumps.

Thus with probability 1, the algorithm produces a sequence of levels which is not
recurrent. Since the algorithm statement precludes l from becoming negative, the
level must tend to ∞.

Under assumption A3, b decreases by at least some fixed amount at each expansion
step, regardless of the level. We suppose that a sufficient number of expansion steps
has taken place so that b < f∗ −K, K > 0. Now consider the expected number of
levels at which there is an expansion before a contraction on the first visit to the level.
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This is less than
∞∑
l=1

Prob (expansion before contraction at level l)

<

∞∑
l=1

2(m− 1)γl(K)
ql

< 2(m− 1)
∞∑
l=1

γl(K)

γl(kz2(0.5)l)m−1

< 2(m− 1)
∞∑
l=1

γ(K/σl)

γ(kz2(0.5)l/σl)m−1

< C1

∞∑
l=1

exp(−C2/σ
2
l )

exp(−C3(0.5)2l/σ2
l )

< C1

∞∑
l=1

exp(−C2k14
(1+k2)l + C32k14

k2l)

for some positive constants C1, C2, C3.
The constant C1 here must be chosen greater than

Q(l) = 2(m− 1)(
√
2π)m−2 σl

K

(
1

x
− 1

x3

)−(m−1)

for x = kz2(0.5)
l/σl > k

√
k1z22

lk2/σ. To show that this is possible observe that,
when l is large, x will be large enough for

(
1
x − 1

x3

)
> 1

2x and so

Q(l) < 2(m− 1)(
√
2π)m−2 σl

K
(2x)m−1

< C42
l(mk2−2k2−1)

for some constant C4, due to the upper bound on N(l). This expression is bounded
because of the choice of k2.

Since for large enough l the term involving C2 dominates that involving C3, it
is easy to see that this series has a finite value. Consequently there is probability
0 of there being an infinite number of levels at which there is an expansion before
a contraction on the first visit to the level. Since we have already shown that with
probability 1 there is only a finite number of expansions at any given level, we are
done.

The next step is to show that the probability of an increase in f̂ of a fixed size
is bounded in an appropriate way. Throughout our analysis we will continue to make
assumptions A1, A2, and A3.

Note that Lemma 3.1 shows that with probability 1 there is an iteration I after
which there are no further expansion steps. Let L(j) be an iteration at which a
contraction at level j takes place. We write fj for the function value f at v(SL(j))

and f̂j for the apparent function value at v(SL(j)) after contraction takes place. At
this stage v(SL(j)) is one of the points in SL(j)+1 but need not be the pivot point. We

will keep track of both the function values fj and the apparent function values f̂j .
Lemma 3.2. Suppose that at step i of the algorithm at level l = l(Si), θ is chosen

large enough so that

2t > u > 2σl
√
2,
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where t = θ − f(v(Si)) and u = θ − f̂(v(Si)); then, if i > I,

Prob(max(fl, f̂l) > θ) ≤ γl(t) + αγl(u/2),(3.2)

where α = m/γ(2
√
2)m−1 − 1.

Proof. The probability we require depends on the function values which occur in
all the structures that are evaluated between step i of the algorithm and the point
at which contraction takes place for this level. We establish the bound we require by
maximizing this probability over choices of function values.

Let Vn(t, u) be the maximum value for the probability that the maximum of fl and

f̂l is greater than θ conditional on a contraction occurring before n iterations. This is
the maximum value of the probability in (3.2) with the restriction that a contraction
at level l occurs within n steps. The maximum is taken over the choice of function
values at the points in the structure reflect(Si, vi) and in succeeding structures.

There is a dynamic programming recursion which links Vn and Vn−1 of the form

Vn(t, u) = max
θ1,θ2,...,θm−1

(Prob (immediate contraction)γl+1(t)

+ Prob (reflection)E[Vn−1(t
′, u′)]) ,

where θj are the real function values in reflect(Si, vi). Here t′ and u′ are the new
values of t and u after reflection. The γl+1(t) in the first term is the probability that

f̂l is greater than θ if contraction occurs immediately (we have assumed t > 0 so
f(vi) < θ).

Observe that V0(t, u) is maximized by taking each θj very large, forcing contrac-
tion. Hence V0(t, u) = γl+1(t) < γl(t) which satisfies the bound in (3.2). We will
prove the result by induction on Vn. Once the bound is established for all values of n
we are done. So we assume that the bound holds for Vn−1(t, u).

Let w = f̂(vi)− 2σl
√
2. We shall consider two cases.

Case 1. Each θk > w, k = 1, 2, . . . ,m− 1.
We consider three possible events:

a. Contraction occurs at this step;
b. reflection occurs at this step and f(vi+1) > θ − u/2;
c. reflection occurs at this step and f(vi+1) ≤ θ − u/2.

Let pA, pB , and pC be the probabilities of these events. Since there will be a
contraction if all the errors are greater than 2σl

√
2,

pA > γl(2σl
√
2)m−1 = γ(2

√
2)m−1.

If B occurs, then, since the apparent pivot value is less than f̂(vi), the error is
less than −u/2. The probability that one of the errors in the reflected structure is
less than −u/2 is less than (m− 1)γl(u/2) which is thus an upper bound on pB .

Finally, note that if C occurs, then t′ = θ − f(vi+1) ≥ u/2 and, as the apparent

function value at the new pivot is smaller than at the old one, u′ = θ − f̂(vi+1) ≥ u.
So if C occurs, then Vn−1(t

′, u′) ≤ Vn−1(u/2, u). Using the fact that Vn−1(t, u) ≤ 1,
we have

Vn(t, u) ≤ pAγl+1(t) + pB + pCVn−1

(u
2
, u
)
.
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Since pA ≤ 1 and pC ≤ 1− pA ≤ 1− γ(2
√
2)m−1, we obtain the bound

Vn(t, u) ≤ γl+1(t) + (m− 1)γl
(u
2

)
+ (1− γ(2

√
2)m−1)Vn−1

(u
2
, u
)

≤ γl(t) + (m− 1)γl
(u
2

)
+ (1− γ(2

√
2)m−1)(α+ 1)γl

(u
2

)
= γl(t) + (m+ α− γ(2

√
2)m−1(α+ 1))γl

(u
2

)
= γl(t) + αγl

(u
2

)
as required.

Case 2. At least one θk is less than w.
We now need to consider four possibilities:
a. Contraction occurs at this step;
b. reflection occurs and f(vi+1) ≥ θ − u/2;

c. reflection occurs, f(vi+1) < θ − u/2, and f̂(vi+1) ≥ w;

d. reflection occurs, f(vi+1) < θ − u/2, and f̂(vi+1) < w.
As in Case 1, we write pA, pB , etc. for the probabilities of these events, and we

have the same upper bound on pB . Also, as before, if C occurs, then Vn−1(t
′, u′) ≤

Vn−1(u/2, u). If D occurs, u′ is larger and we obtain the stronger bound Vn−1(t
′, u′) ≤

Vn−1(u/2, u+ 2σl
√
2). Thus

Vn(t, u) ≤ pAγl+1(t) + pB + pCVn−1

(u
2
, u
)
+ pDVn−1

(u
2
, u+ 2σl

√
2
)
.

Since pD ≤ 1− pC , we have

Vn(t, u) ≤ γl+1(t) + (m− 1)γl
(u
2

)
+ pCVn−1

(u
2
, u
)

+ (1− pC)Vn−1

(u
2
, u+ 2σl

√
2
)
.

The event C can occur only if all θk with a value less than w have a positive
error, so pC ≤ 1/2. The right-hand side of the inequality above is maximized when
pC = 1/2, so we obtain

Vn(t, u) ≤ γl(t) + (m− 1)γl
(u
2

)
+

α+ 1

2
γl

(u
2

)
+
1

2
γl

(u
2

)
+

α

2
γl

(u
2
+
√
2σl

)
= γl(t) +

(
m+

α

2

)
γl

(u
2

)
+

α

2
γl

(u
2
+
√
2σl

)
.

Now

γl

(u
2
+
√
2σl

)
= γ

(
u

2σl
+
√
2

)

<
1√
2π

2σl

u+ 2σl
√
2
exp

(−u2

8σ2

)
exp(−1)

<
2

e
√
2π

(
2σl
u
−
[
2σl
u

]3)
exp

(−u2

8σ2

)
,



OPTIMIZATION OF NOISY FUNCTIONS 847

since (2σl/u)
3 < σl/u. Thus, again using inequality (3.1),

γl

(u
2
+
√
2σl

)
<
2

e
γ

(
u

2σl

)
=
2

e
γl

(u
2

)
.

So

Vn(t, u) ≤ γl(t) +
(
m+

α

2
+

α

e

)
γl

(u
2

)
.

It is now easy to check that α is large enough for m+ (α/2)+ (α/e) < α which is the
inequality we require to establish the bound in this case.

Lemma 3.2 relates to the probability of achieving a high function value (or
apparent function value) immediately after the next contraction. The next result
is concerned with the probability of achieving a high value at any point after the
current iteration. We will prove this by stringing together applications of Lemma 3.2.
Let W (δ, i) be the probability that there is some level j, j ≥ i, with either f̂j > f̂i+ δ

or fj > f̂i + δ. Let W̄ (δ, i) be the probability W (δ, i) conditional on i > I.
Lemma 3.3. If i0 is large enough, then W̄ (δ, i0) → 0 as δ → ∞, and for any

δ > 0, W (δ, i0)→ 0 as i0 →∞.
Proof. First note the identity

∑∞
k=1 k/2

k = 2. Thus W̄ (δ, i0) is less than the

probability, conditional on i > I, that for some j, j ≥ i0, either f̂j or fj is greater
than

∆j = f̂i0 + δ/2 + (δ/4)

j−i0∑
k=1

k/2k.

We can bound W̄ (δ, i0) by the sum of the probabilities qj , j ≥ i0, where qj is the

probability that either f̂j or fj is greater than ∆j , but that f̂h and fh are both less
than ∆h for i0 ≤ h < j; i.e., qj is the probability that one of the inequalities is broken
for the first time at level j.

Now qi0 is the probability that fi0 > f̂i0 + δ/2, so qi0 = γi0(δ/2).
In general, for j > i0 we wish to apply Lemma 3.2 to bound qj . We know

that both f̂j−1 and fj−1 are less than ∆j−1. If vL(j−1) is also the pivot point in
SL(j−1)+1, then we will apply Lemma 3.2 with i = L(j − 1) + 1. Otherwise we
let S∗ = reflect(SL(j−1)+1, vL(j−1)) be an artificial predecessor for SL(j−1)+1. The
bound in Lemma 3.2 is independent of the apparent function values at the points
in structure Si other than the pivot point. Hence we can apply Lemma 3.2 with
i = L(j − 1) and using S∗ instead of SL(j−1). In either case we obtain

qj < γj(∆j − fj−1) + αγj

(
∆j − f̂j−1

2

)

< γj

(
δ(j − i0)

2j−i0+2

)
+ αγj

(
δ(j − i0)

2j−i0+3

)

< (1 + α)γj

(
δ(j − i0)

2j−i0+3

)
.

In order to apply Lemma 3.2 we require that δ(j − i0)/(2
j−i0+2) be greater than

2σj
√
2. This inequality will hold provided i0, and hence j, is chosen large enough.
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Hence

W̄ (δ, i0) ≤ γi0(δ/2) +

∞∑
j=i0+1

(1 + α)γj

(
δ(j − i0)

2j−i0+3

)
.

Now σ2
i0+j
≤ σ2

i0
/4j(1+k2), so we can use Chebyshev’s inequality to show that

γi0+j(x) ≤
σ2
i0

x24j(1+k2)
.

Thus, for j ≥ 1,

γi0+j

(
δj

23+j

)
≤ σ2

i0

δ2j24jk2−3
.

It also follows from Chebyshev’s inequality that γi0(δ/2) ≤ 4σ2
i0
/δ2 and so

W̄ (δ, i0) ≤
σ2
i0

δ2


4 + 64(1 + α)

∞∑
j=1

1

j24jk2


 .

Since the infinite sum converges, the first part of the result follows.
The second part of the result follows from observing that

W (δ, i0) ≤ Prob(I > i0) + W̄ (δ, i0),

where the first term tends to zero from Lemma 3.1 and the second term also tends to
zero since σi0 → 0 as i0 →∞.

With these three lemmas established we can now go on to prove our main result.
We will show that, starting from a point with nonzero gradient, there is, for a high
enough level, a high probability of a succession of reflection steps leading to a reduction
in f̂j of a certain size, where the amount of reduction is independent of the level. Since

the probability of ever seeing the same increase in f̂j decreases to zero from Lemma 3.3,
the probability of an infinite number of returns to a neighborhood of the initial point is
zero. The consequence is that any cluster point has zero gradient—though we cannot
establish that the cluster point is a local minimum.

This theorem concerns the behavior of a single sequence {vi} generated from
running the algorithm. This may have multiple cluster points, but we will show that
with probability 1 they will all have the same function value. Notice, however, that a
new sequence generated from running the algorithm again might converge to a point
with a different function value.

Theorem 3.4. If {vi} is the sequence of pivot points occurring when the algorithm
is run, and assumptions A1, A2, and A3 hold, then with probability 1 there is a cluster
point v∗ for the sequence vi and with probability 1, ∇f(v∗) = 0 for each such cluster
point. Moreover, with probability 1 each cluster point has the same function value
f̃ = f(v∗) and f̂(vi) converges in probability to f̃ .

Proof. It will be convenient in the proof below to assume that z2 ≤ 1. Since z2 is
an upper bound on the size of the structure at level 0, we can make this assumption
without any loss of generality.

We begin by discarding the first iterations of the algorithm until we reach a
position in which the first statement of Lemma 3.3 applies. We choose an arbitrary
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H0 > 0 and write v0 for the pivot point after H0 further steps of the algorithm.
Let ε1 > 0 be arbitrary. Using Lemma 3.3 we can choose M large enough so that,
conditional on there being no more expansion steps, there is a probability of less
than ε1 that fj > f̂(v0) +M . Let S = {x|f(x) ≤ f̂(v0) +M} which is compact by
assumption A1. Hence there is a probability of at least 1 − ε1 that all the points at
which there is a contraction are in S. However, in this case there must be a cluster
point in S. Since ε1 was arbitrary, this establishes that, conditional on I < H0, there
is a cluster point with probability 1. Now, since this holds for all choices of H0, we
deduce that there is a cluster point with probability 1.

If v∗ is a cluster point for vi and we choose a subsequence vk(i) which converges
to v∗, then f(vk(i))→ f(v∗). Now observe that the choice of pivot point is influenced
by the errors in evaluating all the points of a structure, but the error is equal to one
of at most 2m− 1 independent evaluation errors which can be involved at each step.
Using Lemma 3.1 all evaluation errors approach zero, and hence f̂(vk(i)) converges in
probability to f(v∗).

Suppose there is a subsequence vk(i) with f̂(vk(i)) converging to f ′ > f(v∗). Since
the apparent function values of the pivots can decrease only when the step is not a
contraction, this implies that there is an infinite subsequence of f̂j which is greater

than or equal to f ′. But since the f̂j values must also make infinitely many visits to
a neighborhood of f(v∗), Lemma 3.3 implies that this occurs with probability 0. The
same argument can be used to show that there is probability 0 of a subsequence with
apparent values converging to f ′ < f(v∗).

We continue under the assumption of arbitrary ε1 > 0 and hence of the compact
set S. Since f is continuously differentiable, ∇f is uniformly continuous on S. Let
ε2 > 0 be arbitrary. Choose δ1 > 0 such that for any y ∈ S, |∇f(x) − ∇f(y)| <
(z1/z2)(ε2/4) for all |x− y| < δ1. Let δ2 = z1δ1/(64 + z1).

Since S is compact we can find a finite set y1, y2, . . . , yk with

S ⊂
⋃

j=1,2,...,k

Bδ2(yj).

Let A = Bδ2(y
∗) be chosen from among this cover of S. We suppose that 3ε2/2 >

|∇f(x′)| > ε2 for some x′ ∈ A. From the definition of δ1, 2ε2 > |∇f(x)| > ε2/2 for
every x ∈ B = Bδ1(y

∗).
Consider the steps of the algorithm while within B. We suppose that the current

pivot point is vh and l = l(Sh). If ∇f was constant within B and there were no
evaluation errors, then we would obtain an improvement of maxj |∇fT (vh − xj)|,
where xj are the other points in the current structure. This happens because we can
choose either vh+(vh−xj) or v

h−(vh−xj) as the next pivot: since the function values
at these two points bracket that at vh, only the one with the lower value appears in
reflect(Sh, vh).

From the definition of d(S) we see that this improvement is at least |∇f | d(Sh) >
d(Sh)ε2/2. Now we need to consider the variation in ∇f over B. The actual function
value at the new and improved point xj may not be as low as would be predicted on
the basis of a constant gradient of ∇f(vh). Using the mean value theorem we have

f(xj) = f(vh) +∇f(vh)T (xj − vh) + (∇f(x)−∇f(vh))T (xj − vh)

for some x on the line segment (vh, xj). Thus the overall improvement predicted could
be reduced by at most |∇f(x) −∇f(vh)||xj − vh|, and since |xj − vh| < D(Sh), the
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reduction is less than d(Sh)ε2/4. Hence, unless at least one evaluation error among
the 2m− 1 errors in the current and reflected structure is greater than d(Sh)ε2/8 in
magnitude, we will observe an improvement of at least d(Sh)ε2/8 in both the actual
and apparent values of f .

Suppose we start with the pivot point vh in the smaller ball A. Consider a
sequence of κ = (δ1 − δ2)/D(S

h) steps of the algorithm. Note that throughout these
steps the pivot point will be within B. If there is an improvement of d(Sh)ε2/8 at
each step, then the total improvement after these κ steps is at least

(δ1 − δ2)
d(Sh)ε2
8D(Sh)

>
64δ1
64 + z1

ε2z1

8z2
> 8ε2δ2,

where we use the fact that z2 < 1.
We will obtain this overall improvement unless at one of these κ steps the

improvement is less than d(Sh)ε2/8. At each step there is an improvement of less
than d(Sh)ε2/8 with probability that is less than (2m − 1)γl(d(Sh)ε2/8). Hence the
probability of not seeing the overall improvement is less than

κ(2m− 1)γl(d(Sh)ε2/8) = δ1 − δ2
D(Sh)

(2m− 1)γ(d(Sh)ε2/(8σl)).

However, d(Sh)/σl > z1

√
k12

lk2 , and so, using inequality (3.1), it is easy to see that
there will be a term in exp(−22lk2) arising from the γ function which will dominate the
multiplier 1/D(Sh). Thus the probability of not obtaining the overall improvement
8ε2δ2 approaches zero as the level l approaches ∞. Hence, we can choose an iteration
h large enough that the probability of an improvement of this size is greater than 1/2.

The maximum difference in function values between points in A is 4ε2δ2. We
choose h large enough so that the probability of the error at vh being greater than
ε2δ2 is less than 1/2. Thus with probability at least 1/4 both the apparent and actual
function values are at least 3ε2δ2 less than the smallest function value in A by the
end of the sequence of κ steps in B. We choose h large enough for W (3ε2δ2, l) < 1/2.
So provided h is sufficiently large, the probability of never returning to A is at least
1/8. Thus the probability of an infinite number of returns is zero.

This establishes that the probability of a cluster point occurring in A is zero.
Hence, with probability 1 the cluster points of the pivot sequence occur in sets
Bδ2(yj) in which every point has either |∇f | > 3ε2/2 or |∇f | < ε2. Therefore at
each cluster point v∗ either |∇f(v∗)| > 3ε2/2 or |∇f(v∗)| < ε2. Since ε2 is arbitrary,
the appropriate choice of ε2 rules out any strictly positive value of ∇f(v∗). Thus
∇f(v∗) = 0.

4. Computational results. In this section we report the results of some limited
computational testing of the algorithm. Our aim is to investigate the performance of
the new algorithm on a small set of test functions, and we will look at its behavior both
when function evaluations are noisy and when they are not. The algorithm requires
the user to set some parameters, to choose an initial structure, and to determine
whether or not to apply some sort of perturbation on contraction. The experiments
we report are enough to indicate a reasonable choice of structure and settings for the
parameters, as well as to demonstrate the value of allowing a perturbation when there
is controlled noise.

The algorithm we use is as described in section 2. The contraction operation (in
the absence of a perturbation) just uses the definition of (2.2).
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We have chosen to use a test suite of 11 problems. Two of these are well known:
rosen and powell. The Rosenbrock function rosen (Moré, Garbow, and Hillstrom
1981) is a two-dimensional problem with a single banana-shaped valley and is known
to cause difficulties, particularly for direct search algorithms. The test function powell
(Powell 1970) of dimension four is also well known. The problems camel, ill3a, ill3b,
sincusp, and smalla are taken from the problem set given in Aluffi-Pentini, Parisi, and
Zirilli (1988), being problem numbers 6, 10, 13, 35, and 37 from this set. The other
four problems are straightforward quadratic functions. Problems quad6 and quad6bad
are of dimension six with quad6bad being poorly conditioned (the reciprocal condition
number is approximately 1e-6). Similarly, quad10 and quad10bad are quadratics of
dimension 10, with the second function being poorly conditioned. All problems have
small dimension; as we have already observed, direct search methods do not perform
well when problems have a large number of variables.

We shall investigate two versions of the initial structure. Each version has the
same basic “cross” form with points radiating from a central point along all the axes.
The smaller structure SA uses points

x0, x0 ± ξei, x0 ± 2ξei.

Here ei represents the ith unit vector in �nand ξ is a scaling parameter initially set
to 1. The larger structure SB adds the points x

0 ± 3ξei and x0 ± 5ξei to SA.
We ran the algorithm from 200 randomly generated starting points whose coordi-

nates were uniformly generated within (−10, 10). In each case we continued until the
size of the structure was reduced so that adjacent points in the structure were within
a distance 0.0001 of each other. This roughly parallels the stopping criteria used by
Barton and Ivey (1996).

The first set of runs is reported in Table 4.1. These describe the performance of
the algorithm for each test problem when there is no noise. In the absence of noise,
ηl is the only parameter to set. We choose ηl = 10−8 at every step. Notice that in
this case the algorithm is a pattern search method and the results of Torczon (1997)
will imply convergence of the algorithm.

In the table we report, for both structures SA and SB , the average number of
iterations, the average number of function evaluations required, the mean error in the
solution value, and the average distance of the final point found to the solution. In
addition we report the number of failures of the algorithm in the final column—the
first figure is the number of runs (out of 200) in which both the error in the solution
value and the distance to the known solution are greater than 10−2. The second figure
in parentheses is the number of major failures—identified as solutions in which both
the error in the solution value and the distance to the solution are more than 10−1.
The problems camel, ill3a, ill3b all have multiple local optima. For these problems
we take the closest local optima as the correct solution—this seems appropriate since
the algorithm has not been designed to find a global optimum (even though in the
early part of a run the method may well avoid being trapped in a local optimum in
circumstances where more sophisticated techniques could fail).

It can be observed that the use of the larger structure SB does not produce a
significantly better-quality solution as measured by the distance to the solution or by
the error in the function value. For rosen, and the ill-conditioned problems quad6bad
and quad10bad, the larger structure produces faster convergence with fewer function
evaluations, but for the other functions the average number of function evaluations is
smaller using SA. Overall there is no significant advantage in using a larger structure.
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Table 4.1
No noise, no perturbation, 200 starts for each case.

Problem Structure Average Failures
Iters Evals Obj error Distance (major)

rosen SA 409 6696 0.2 0.4 9(9)
SB 59 1934 0.14 0.17 4(4)

camel SA 20 337 2.9e-06 0.078 0(0)
SB 20 682 5.2e-06 0.086 0(0)

ill3a SA 20 341 1.3e-06 0.00037 0(0)
SB 20 672 8.8e-06 0.00099 0(0)

ill3b SA 19 325 0.0053 0.015 6(4)
SB 22 725 0.015 0.048 20(10)

powell SA 62 2024 0.00051 0.14 0(0)
SB 46 3021 0.00013 0.094 0(0)

sincusp SA 43 1739 0.041 0.0012 0(0)
SB 40 3295 0.065 0.003 0(0)

smalla SA 45 1845 1.1e-06 0.001 0(0)
SB 40 3254 6.5e-06 0.0025 0(0)

quad6 SA 47 2293 2.7e-06 0.0012 0(0)
SB 46 4475 1.6e-05 0.003 0(0)

quad6bad SA 452 21888 0.00063 11 0(0)
SB 156 15091 0.00042 10 0(0)

quad10 SA 75 6064 1.2e-05 0.002 0(0)
SB 71 11433 7.3e-05 0.0049 0(0)

quad10bad SA 2346 188487 0.0011 15 0(0)
SB 710 113956 0.00084 14 1(0)

The next set of results relates to the performance of the algorithm with random
perturbations to the structure whenever a contraction is carried out. Thus, instead
of using the structures outlined above, we use the following for SA:

x0, x0 ± ξ(ei + pi1), x
0 ± 2ξ(ei + pi2), x

0 ± 3ξ(ei + pi3),

where each component of the perturbations pij are selected from a uniform distribution

on (−0.5, 0.5). SB is similar except that the points x0 ± 5ξ(ei + pi4) are added.
Whenever a contraction is carried out by the algorithm, the following steps are

performed:
1. Remove the current perturbation;
2. contract towards the pivot point;
3. add a new randomly generated perturbation.
Note that the perturbations may re-align the structure, and this can be advan-

tageous if it enables the structures to follow the geometry of the particular problem.
Table 4.2 was generated using precisely the same mechanism as outlined for Table 4.1,
except that random perturbations were incorporated.

The algorithm with perturbation often reaches a good solution more quickly than
when there is no perturbation. This happens in 8 out of the 11 problems considered
here. It is interesting that the speedup occurs on those problems where the algorithm
without perturbation takes a large number of iterations; however, there are insufficient
results here to draw strong statistical conclusions. Moreover, the solution quality with
perturbations is often a little worse, so the superiority of perturbation is not clearly
established. Just as in the case without perturbations, the advantage of using a larger
structure is not significant given the greater number of function evaluations required.
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Table 4.2
No noise, with perturbation, 200 starts for each case.

Problem Structure Average Failures
Iters Evals Obj error Distance (major)

rosen SA 46 770 0.065 0.2 14(7)
SB 38 1238 0.037 0.11 6(4)

camel SA 20 350 1.6e-06 0.085 0(0)
SB 20 671 1.4e-06 0.097 0(0)

ill3a SA 21 361 6.3e-07 0.00028 0(0)
SB 20 674 6.9e-07 0.00024 0(0)

ill3b SA 24 403 0.0039 0.011 4(2)
SB 24 800 0.0023 0.0076 4(1)

powell SA 48 1558 0.00057 0.12 0(0)
SB 38 2462 0.00013 0.079 0(0)

sincusp SA 31 1284 0.048 0.0018 0(0)
SB 29 2358 0.04 0.0012 0(0)

smalla SA 31 1259 2e-06 0.0013 0(0)
SB 28 2320 1.1e-06 0.00097 0(0)

quad6 SA 36 1754 1.1e-05 0.0024 0(0)
SB 32 3112 5e-06 0.0016 0(0)

quad6bad SA 57 2778 0.0011 12 1(0)
SB 74 7161 0.0011 12 4(0)

quad10 SA 52 4234 7.4e-05 0.005 0(0)
SB 44 7200 3.8e-05 0.0035 0(0)

quad10bad SA 137 11045 0.0057 20 27(0)
SB 204 32792 0.0038 18 13(0)

Tables 4.3 and 4.4 repeat Tables 4.1 and 4.2 in the presence of noise. We deal with
the case where the standard deviation of the noise is controlled. This is the situation
for which the convergence of the algorithm has been established theoretically. We set
k1 = 1 and k2 = 0.1 and hold other elements of the experiments as they were for
Tables 4.1 and 4.2. The mean error is calculated from the underlying function value
f at the final pivot point.

Observe that in Table 4.3 there are significant numbers of failures for quad6bad
and quad10bad, but the overall performance of the algorithm in Tables 4.3 and 4.4 is
reasonable. If Tables 4.3 and 4.4 are compared, one can see that, in almost all cases,
using perturbation produces better-quality solutions with fewer function evaluations.
For rosen the number of nonmajor failures is worse with perturbation. Nevertheless,
it seems that perturbation offers an overall advantage on this set of test problems. It
is possible that a similar perturbation approach could be beneficially applied to other
direct search algorithms.

Using a larger structure gives better results, but there is some penalty in func-
tion evaluations. With both perturbation and the larger structures there are only 4
major failures in the complete set of 2200 starts, and in this case the performance
of the algorithm is remarkably good. It is interesting that, with this setup, there
is remarkably little degradation in performance due to the introduction of noise, as
can be seen by a comparison of the relevant parts of Tables 4.2 and 4.4. Indeed, for
some problems there appears to be an improvement in performance. Observe that for
rosen there is one less major failure and smaller average errors than were achieved in
any of the noiseless cases, and there are also substantially fewer function evaluations
required for both quad6bad and quad10bad.
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Table 4.3
Controlled noise, no perturbation, 200 starts for each case.

Problem Structure Average Failures
Iters Evals Obj error Distance (major)

rosen SA 407 6658 0.2 0.43 11(10)
SB 62 2030 0.14 0.18 4(4)

camel SA 21 358 5.6e-06 0.074 0(0)
SB 22 723 5.1e-06 0.082 0(0)

ill3a SA 21 360 4.2e-06 0.00087 0(0)
SB 22 731 5.7e-06 0.00088 0(0)

ill3b SA 19 327 0.0053 0.015 6(4)
SB 22 730 0.016 0.051 21(11)

powell SA 60 1964 0.00075 0.16 0(0)
SB 44 2862 0.00026 0.11 0(0)

sincusp SA 42 1720 0.041 0.0012 0(0)
SB 40 3283 0.064 0.0029 0(0)

smalla SA 43 1766 4e-05 0.006 0(0)
SB 43 3459 1.6e-05 0.0037 0(0)

quad6 SA 46 2272 3.9e-05 0.0049 0(0)
SB 48 4699 2.1e-05 0.0035 0(0)

quad6bad SA 105 5105 0.028 12 167(0)
SB 53 5111 0.0042 12 14(0)

quad10 SA 76 6134 5.4e-05 0.0043 0(0)
SB 75 12077 5.6e-05 0.0043 0(0)

quad10bad SA 131 10554 0.037 17 198(2)
SB 63 10249 0.014 20 85(1)

Table 4.4
Controlled noise, with perturbation, 200 starts for each case.

Problem Structure Average Failures
Iters Evals Obj error Distance (major)

rosen SA 45 744 0.1 0.3 25(10)
SB 37 1225 0.018 0.073 6(3)

camel SA 21 356 5.4e-06 0.086 0(0)
SB 20 670 3.9e-06 0.096 0(0)

ill3a SA 21 365 4.3e-06 0.00079 0(0)
SB 20 677 2.8e-06 0.00061 0(0)

ill3b SA 24 402 0.0039 0.011 4(2)
SB 24 812 0.0018 0.006 3(1)

powell SA 47 1538 0.00074 0.13 0(0)
SB 37 2405 0.00017 0.088 0(0)

sincusp SA 32 1315 0.046 0.0017 0(0)
SB 29 2368 0.04 0.0012 0(0)

smalla SA 31 1293 1.5e-05 0.0037 0(0)
SB 29 2402 1e-05 0.003 0(0)

quad6 SA 36 1783 2.4e-05 0.0038 0(0)
SB 32 3134 1.5e-05 0.0029 0(0)

quad6bad SA 47 2277 0.0027 13 3(0)
SB 34 3357 0.0016 12 0(0)

quad10 SA 52 4221 8.3e-05 0.0054 0(0)
SB 45 7234 4.9e-05 0.0041 0(0)

quad10bad SA 71 5723 0.0074 17 43(0)
SB 53 8581 0.0075 17 40(0)
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Table 4.5
Uncontrolled noise, no perturbation, 200 starts for each case.

Problem Structure Average Failures
Iters Evals Obj error Distance (major)

rosen SA 20 342 2.7 2.5 190(140)
SB 20 682 1.9 2.1 192(124)

camel SA 21 362 0.04 0.13 156(15)
SB 21 710 0.038 0.13 161(8)

ill3a SA 21 363 0.05 0.086 161(25)
SB 21 705 0.049 0.084 151(17)

ill3b SA 20 350 0.08 0.047 31(9)
SB 22 743 0.082 0.093 51(21)

powell SA 29 974 0.13 0.44 192(83)
SB 29 1932 0.11 0.4 191(64)

sincusp SA 31 1267 0.7 0.41 200(169)
SB 30 2458 0.64 0.38 200(160)

smalla SA 31 1277 0.13 0.34 200(112)
SB 30 2444 0.12 0.33 200(103)

quad6 SA 33 1637 0.17 0.31 199(141)
SB 33 3221 0.16 0.3 200(146)

quad6bad SA 25 1223 0.2 13 194(114)
SB 24 2377 0.18 13 195(108)

quad10 SA 47 3834 0.32 0.33 200(193)
SB 47 7645 0.31 0.32 200(191)

quad10bad SA 27 2242 0.56 18 200(188)
SB 26 4256 0.37 17 200(177)

Table 4.6
Uncontrolled noise, with perturbation, 200 starts for each case.

Problem Structure Average Failures
Iters Evals Obj error Distance (major)

rosen SA 22 372 1.7 1.8 188(119)
SB 22 722 1.3 1.7 178(117)

camel SA 21 362 0.041 0.13 155(20)
SB 21 700 0.031 0.13 145(10)

ill3a SA 22 370 0.038 0.075 145(14)
SB 21 703 0.033 0.066 149(11)

ill3b SA 23 390 0.054 0.046 32(7)
SB 23 754 0.056 0.057 35(11)

powell SA 30 995 0.15 0.46 196(95)
SB 28 1827 0.075 0.33 180(43)

sincusp SA 28 1157 0.61 0.36 200(159)
SB 28 2282 0.46 0.2 199(106)

smalla SA 27 1108 0.11 0.31 198(92)
SB 27 2241 0.079 0.26 193(63)

quad6 SA 29 1451 0.13 0.27 198(108)
SB 28 2789 0.1 0.24 199(87)

quad6bad SA 24 1210 0.14 13 189(98)
SB 24 2331 0.13 13 186(80)

quad10 SA 38 3136 0.28 0.31 200(185)
SB 36 5869 0.19 0.26 200(172)

quad10bad SA 27 2190 0.32 18 200(159)
SB 25 4139 0.31 17 200(162)
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Finally, in Tables 4.5 and 4.6 a fixed standard deviation of the noise is used, with
σ set to 0.1 at all levels. As before, the initial value of the scaling parameter is set
to 1. These tables demonstrate how hard it is for direct search algorithms to perform
well in the presence of uncontrolled noise. There are large numbers of major failures
for all the functions tested.

5. Discussion and conclusions. We have presented an algorithm for the op-
timization of functions that are subject to stochastic error in their evaluations. The
algorithm is shown to have a cluster point that is a stationary point of the function
with probability 1. This is established using a novel proof technique.

The computational results show the method is effective in the presence of noise
if this is controlled in the appropriate way. Our proof of convergence holds in the
case where we allow a perturbation of the structure on contraction. Using this per-
turbation approach improves the computational performance of the algorithm on the
test set we have considered when there is controlled noise. It is possible that the
introduction of a perturbation of this kind could improve the performance of other
direct search methods. A significant contribution of this paper is the introduction of
this algorithmic innovation together with a proof that the method converges in this
case.

However, the convergence result we establish here is weaker than would be desir-
able. In effect, we have arranged the test for expansion to ensure that with probability
1 there are only a finite number of expansion steps, and then we established conver-
gence when no more expansions take place. Nevertheless there seems no good reason
to suppose that convergence will fail when there is an infinite number of expansion
steps, i.e., under conditions weaker than assumption A3. For example, we might allow
ηi to tend to zero but ask that

∑
ηi diverge. However, a result of this kind seems

hard to prove.
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Abstract. The convergence of direct search methods for unconstrained minimization is exam-
ined in the case where the underlying method can be interpreted as a grid or pattern search over
successively refined meshes. An important aspect of the main convergence result is that translation,
rotation, scaling, and shearing of the successive grids are allowed.
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1. Introduction. Recent survey papers [1], [7], [10] report on significant
renewed interest in algorithms for derivative-free unconstrained optimization. Much
of this recent interest has been provoked by new convergence results (see, for example,
[1], [6], [8], [9]). Most of the current derivative-free algorithms for which convergence
results have been established belong to one or more of three categories: line search
methods, trust region methods, or grid-based methods. In this paper, the conver-
gence of derivative-free methods for unconstrained minimization is examined in the
case where the underlying method can be interpreted as a grid or pattern search over
successively refined meshes. Therefore, the methods discussed here are similar to
those studied in [6], [8], [9], but permit greater freedom in the orientation and scaling
of successive grids. Alternative approaches based on trust regions or line searches can
be found in [1], [7], and the references therein.

The properties of grid-based methods are explored and it is shown that conver-
gence can be achieved for a quite general class of algorithm. An important aspect
of the main convergence result is that successive grids may be arbitrarily translated,
rotated, and sheared relative to one another, and each grid axis may be rescaled
independently of the others. This flexibility allows second-order information to be
incorporated into the shape of successive grids, for example, by aligning grid axes
along conjugate directions or the principal axes of an approximating quadratic. The
hope is to construct nonderivative algorithms that possess useful properties of con-
jugate direction or quasi-Newton algorithms, thus exploiting curvature information
without assuming the existence of second derivatives or the availability of first deriva-
tives.

We present two optimization frameworks for unconstrained optimization of con-
tinuously differentiable functions that are bounded below. For the first framework,
in which finite searches are conducted along grid directions of descent, we establish
convergence of a subsequence of iterates to a stationary point of the objective func-
tion. For the second framework, under the stronger assumption that the algorithm
searches the grid direction of locally greatest descent at every iterate, we show that
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the entire sequence of iterates converges to a stationary point.
The restrictions on the grids in our framework are much less severe than for

the pattern search methods of [6], [9], where a single set of grid axes is used, only
rational scalings of grids are permitted, and arbitrary translations are not allowed.
Furthermore, the methods of [6], [9] do not allow scalings and realignments to reflect
curvature information. A more complete discussion of differences from the pattern
search methods of [6], [9] appears in section 3.
The nonderivative method of [4] for bound-constrained optimization includes cur-

vature information through interpolating quadratics, but uses only nested grids that
are aligned with one another.
The great flexibility of the algorithm framework means that there is much work

to be done in determining the best algorithms which conform to this framework. Ex-
tensive results for a specific algorithm conforming to the framework are not presented
in this paper—to do so would shift the focus of the paper away from the framework
and onto that specific algorithm.
In the next section some properties of positive bases relevant to grid-based

methods are introduced and in section 3 an algorithmic framework for grid-based
methods is described which allows considerable flexibility in the design of algorithms
of this type. The main convergence results are established in section 4 with further
comments and discussion given in the final section.

2. Grid-based methods and positive bases. The algorithms under consid-
eration seek a minimizer of the objective function f : Rn → R by examining f on a
sequence of successively finer grids. Each grid G(m) is defined by a set of n linearly
independent basis vectors V(m), where

V(m) =
{
v
(m)
i ∈ Rn : i = 1, . . . , n

}
.

The points on the grid G(m) are

G(m) =

{
x ∈ Rn : x = x(m)

o + h(m)
n∑
i=1

ηiv
(m)
i

}
,

where h(m) is a positive scalar and each ηi is any integer. The parameter h
(m) is

referred to as the mesh size and is adjusted as m is increased in order to ensure that

the meshes become finer in a manner needed to establish convergence. The point x
(m)
o

allows the grids to be offset relative to one another. The basis vectors in V(m) are
parallel to the axes of the grid G(m).

The set V(m) is used to form a positive basis V(m)
+ . There are two requirements

for a set V+ to form a positive basis:
(i) Every vector in Rn can be written as a nonnegative linear combination of the
vectors in V+;

(ii) no member of V+ is expressible as a nonnegative linear combination of the
remaining members of V+.

It is shown in [3] that the cardinality p of any positive basis for Rn satisfies n+ 1 ≤
p ≤ 2n. For example, if {v1, v2, . . . , vn} is a basis for Rn, then{

v1, v2, . . . , vn,−
n∑
i=1

vi

}
(2.1)



GRID-BASED OPTIMIZATION METHODS 861

is a positive basis with n+ 1 elements. At the other extreme,

{v1, v2, . . . , vn,−v1,−v2, . . . ,−vn}(2.2)

is a positive basis with 2n elements.

Let p(m) denote the cardinality of V(m)
+ . We assume throughout that the first n

members of V(m)
+ are those of V(m) and that the remaining elements are given by an

integer linear combination of the members of V(m):

v
(m)
j =

n∑
i=1

ζ
(m)
ij v

(m)
i , j = n+ 1, . . . , p(m),(2.3)

where each ζ
(m)
ij must be an integer so that if x ∈ G(m) and v ∈ V(m)

+ , then x+h(m)v ∈
G(m). Equation (2.3) requires the members of V(m)

+ to assume a specific order, and
positive bases satisfying (2.3) will be called ordered positive bases.
Use of ordered positive bases permits the formation of termination conditions for

the search on each grid via the following theorem.
Theorem 2.1. If the set of vectors V+ is a positive basis, then

gT v ≥ 0 ∀v ∈ V+ ⇒ g = 0.

Proof. Let the members of V+ be vi for i = 1, . . . , |V+|. Then for any g ∈ Rn,

−g =
|V+|∑
i=1

ηivi, where ηi ≥ 0 ∀i.

Therefore, if vTi g ≥ 0, for i = 1, . . . , |V+|

0 ≥ (−g)T g =
|V+|∑
i=1

ηiv
T
i g ≥ 0.

The only possibility is g = 0.
This theorem motivates the following definition.
Definition 2.2. Grid local minimizer. A point x on the grid G(m) is defined as

a grid local minimizer with respect to the positive basis V(m)
+ if and only if

f(x+ h(m)vi) ≥ f(x) ∀vi ∈ V(m)
+ .

This definition is motivated by the fact that

vT∇f ≥ 0 ∀v ∈ V(m)
+ ⇒ ∇f = 0.

The conditions which define a grid local minimizer are a finite difference approxima-
tion to this.
In order to establish convergence, some restrictions must be imposed on the form

of the ordered positive bases used to define the grid local minimizers. The follow-
ing definition allows these restrictions to be simply expressed as linear relationships
between the members of each ordered positive basis.
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Definition 2.3. Structural equivalence. Two ordered positive bases {v1, . . . , vp}
and {w1, . . . , wp} are regarded as structurally equivalent if and only if

∀j > n, vj =

n∑
i=1

ζijvi ⇐⇒ wj =

n∑
i=1

ζijwi.

Structurally equivalent positive bases necessarily have the same cardinality. As a
simple example, the following two ordered positive bases for R3 are structurally equiv-
alent:

{e1, e2, e3,−e1,−2(e2 + e3)}, {e3, e1, e2,−e3,−2(e1 + e2)},

where ei is the ith unit coordinate vector.
An appropriate framework for optimization algorithms using ordered positive

bases is described and analyzed in the following two sections.

3. The algorithm framework. The basic structure of the framework (listed
immediately below) consists of two asynchronous loops. The outer loop (steps 1–3)
selects each grid and checks the stopping conditions. The inner loop (step 2) conducts

finite searches using each member of V(m)
+ in turn until p(m) consecutive searches fail

to make progress. When this occurs, a grid local minimizer has been found; the inner
loop then terminates and the outer loop selects the new grid.

Algorithm framework a.
Initialize m = 1, k = 1, and let x

(1)
o be the initial point x(1).

while (stopping conditions do not hold) do

1. Choose h(m) and V(m)
+ . Set i = 1 and r = 0. Set p(m) =

∣∣∣V(m)
+

∣∣∣.
2. while r < p(m) do
(a) Calculate f at a finite number of points on the grid G(m), including

x(k) + h(m)v
(m)
i . If any points lower than x(k) are found, set x(k+1)

equal to the lowest of these points, increment k, and let r = 0.
Otherwise increment r.

(b) Set i = i+ 1. If i > p(m), set i = 1.
end

3. Set x̂(m) = x(k). Execute any finite process, and let x
(m+1)
o be the lowest

known point. If this finite process yields descent, set x(k+1) = x
(m+1)
o

and increment k. Increment m.
end

In this framework, r is the number of consecutive failed finite searches using

the members of V(m)
+ . When r = p(m), a grid local minimizer x̂(m) has been found

and the algorithm terminates the search over the current grid G(m). The next grid

G(m+1) has its origin x
(m+1)
o positioned at the lowest known point. The algorithm

generates a new iterate x(k) only when a new lowest point (one with a strictly lower
function value) is found. In contrast, it generates a new grid local minimizer x̂(m)

every time step 2 is completed. The sequence {x(k)} may have finitely many members,
whereas the sequence {x̂(m)} will always have infinitely many members (ignoring stop-
ping conditions) and may contain repetitions of some members of {x(k)}. However,
every member of the sequence {x̂(m)} is also a member of the sequence of iterates
{x(k)}. If, for example, x(1) is a global minimizer of f , then the sequence of iterates



GRID-BASED OPTIMIZATION METHODS 863

is the singleton set {x(1)}, whereas the sequence of grid local minimizers is the set
{x(1), x(1), x(1), . . .}.
The finite process in step 3 is arbitrary. Many possible choices exist, including

a null process, or a finite ray search along an estimate of the direction of steepest
descent or along a quasi-Newton direction. In proving convergence, finiteness is the
only requirement for this process.
It is only necessary that the finite search in step 2(a) inspect one point, namely,

x(k)+h(m)v
(m)
i . No other point on G(m) need be examined; however, it would normally

be desirable to do so. For example, a search along the ray x(k) + αh(m)v
(m)
i , α >

0, could be implemented and the lowest grid point in that search taken as x(k+1),
provided descent is obtained. The option of examining a finite number of other grid
points in step 2(a) admits the possibility of an arbitrarily long step to a grid point
at each iteration of the inner while loop. For example, this could be exploited by
examining the grid point closest to a quasi-Newton step and accepting that grid point
if it is sufficiently low. The intent behind such an approach would be to reduce the
number of iterations of the while loop needed to locate a grid local minimum.
Framework A is not a special case of the analysis of pattern search methods

in [6], [9]. In their notation, at each iteration [6], [9] examine a pattern of points
x(k) + ∆kBCk, where ∆k is a scale factor, B is a fixed matrix independent of the
iteration number k, and Ck is an integer matrix. Three points should be noted:

(i) Because B is independent of k, all grids are aligned with one another, and the
grid alignment must be chosen at the start of optimization, before information
from function evaluations is available.

(ii) All grid axes at iteration k are scaled by the same factor ∆k, and ∆k+1 must
be a rational multiple of ∆k.

(iii) The only way to scale directions is through the matrix Ck. But since the
elements of Ck are integers, either the number of directions and scalings is
small or else the grid may need to be much finer than the step sizes consid-
ered. Furthermore, pattern search methods cannot reach an arbitrary point
or produce an arbitrary direction in a finite number of steps. For example,
if the initial pattern is aligned with the x1 and x2 axes in two dimensions
and ∆0 = 1, a pattern search method will require a very large number of
iterations to reach a small neighborhood of the point (0,

√
2), and it cannot

produce a direction at 30◦ to the x1 axis. Thus, pattern search methods
do not possess the property of finite termination on convex quadratics that
is standard with conjugate direction methods. By contrast, algorithms con-
forming to Framework A can possess this finite termination property; see [2]
for such a method.

The analogues of ∆k, B, and Ck in our framework are less restricted than in
pattern search methods. For example, h(k) can be irrational, unlike ∆k; the bases
V(m) can be chosen independently from time to time, whereas B is fixed; and the
ability to consider other grid points in step 2(a) of the framework offers the same
level of freedom given by the matrices Ck. The techniques of [6], [9] are more general
than Framework A in that they require Ck to contain only one of a finite number

of integer positive bases, whereas we use exclusively the positive ordered basis V(m)
+ .

Framework A could be modified to use ordered positive bases other than V(m)
+ to

explore the grid G(m), but the flexibility in step 2(a), the choice of successive grids,
and the arbitrary finite process in step 3 are likely to lessen the benefits of such an
approach.



864 I. D. COOPE AND C. J. PRICE

For Framework A, convergence can be shown only for subsequences of grid local
minimizers. This is because the finite searches in step 2(a) are opportunistic; the first

member encountered in V(m)
+ which gives descent leads to a new iterate. Convergence

of the full sequence of iterates can be shown for a more restricted framework, Frame-
work B (defined below), in which a thorough search is made along the member s(k)

of V(m)
+ giving the “best drop” at x(k). The best drop member s(k) of V(m)

+ satisfies

f
(
x(k) + h(m(k))s(k)

)
≤ f

(
x(k) + h(m(k))v

)
∀v ∈ V(m(k))

+ ,(3.1)

where m(k) is the number of the grid on which x(k) is placed. This determination of
s(k) requires p(m(k)) function evaluations. The search along each s(k) must evaluate f
at a sequence of points

x̃i = x
(k) + αih

(m(k))s(k), i = 0, . . . ,(3.2)

where α0 = 1 and the integer sequence {αi}, i ≥ 1, satisfies
αi−1 + 1 ≤ αi ≤ βαi−1 with β ≥ 2.

The search may terminate only when an integer � ≥ 0 is found such that
f(x̃	) ≤ f(x̃	+1).

Algorithm framework b.
Initialize m = 1, k = 1, and let x

(1)
o be the initial point x(1).

while (stopping conditions do not hold) do

1. Choose h(m) and V(m)
+ . Set i = 1 and r = 0. Set p(m) =

∣∣∣V(m)
+

∣∣∣.
2. while x(k) is not a grid local minimizer do
(a) Calculate the best drop direction, s(k), satisfying (3.1). If

f (k) ≤ f(x(k) + h(m)s(k)), then exit step 2, as x(k) is a grid local
minimizer.

(b) Starting with α0 = 1, choose successive integer values α1, α2, . . .
until

f
(
x(k) + α	+1h

(m)s(k)
)
≥ f

(
x(k) + α	h

(m)s(k)
)
,

where α	+1 ∈ [α	 + 1, βα	].
(c) Calculate f at a finite number of grid points, and choose x(k+1) to
be the lowest of these points and x(k) + α	h

(m)s(k). Increment k.
end

3. Set x̂(m) = x(k). Execute any finite process, and let x
(m+1)
o be the lowest

known point. If this finite process yields descent, set x(k+1) = x
(m+1)
o

and increment k. Increment m.
end

Framework B is a specialization of Framework A.

4. Convergence analysis. The convergence results for the methods discussed
in this paper are similar to those in [9], but the method of analysis is sufficiently
flexible to allow a myriad of other possibilities that may be more appropriate in
other cases. The first theorem proves convergence of the subsequence of grid local
minimizers for algorithms conforming to Framework A. This theorem is also applicable
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to Framework B because any algorithm conforming to Framework B also conforms to
Framework A.
For the purpose of establishing convergence, it is assumed in this section that the

stopping conditions are never invoked. This permits examination of the full sequence
of iterates and grid local minimizers and their asymptotic properties. From a practical
point of view, stopping conditions are essential which is why they are incorporated
into the general frameworks.

Theorem 4.1. For any optimization algorithm conforming to Framework A,
assume that

(a) the sequence of iterates {x(k)} is bounded;
(b) f is continuously differentiable;

(c) there exist positive constants K and κ such that |det(v(m)
1 , . . . , v

(m)
n )| ≥ κ and

‖v(m)
i ‖ ≤ K for all m and i;

(d) h(m) → 0 as m→∞; and
(e) there is a finite subset of B such that each member of B is structurally equiv-

alent to some member of this finite subset, where B denotes the sequence of

ordered positive bases {V(m)
+ }∞m=1.

Then the sequence {x̂(m)} of grid local minimizers has infinitely many members, and
each cluster point x̂(∞) of {x̂(m)} is a stationary point of f .

Proof. The proof is in two parts. The first part shows that step 2 terminates, and
consequently the sequence of grid local minimizers, {x̂(m)}, is infinite. The main part
of the theorem is then established.
First, by condition (a) of the theorem, there is a compact set F for which {x(k)} ⊂

F . Hence the set F ∩ G(m) is finite. The sequence of function values is strictly
decreasing so each iterate is distinct from all others, and so only a finite number of
iterates is generated using G(m). Hence the finiteness of step 2(a) means the algorithm
generates only a finite number of points using each grid. The only way the algorithm
can change from the grid G(m) is if the last iterate generated using the grid G(m) is a
grid local minimizer. Hence {x̂(m)} is infinite.
Next, choose a specific cluster point x̂(∞) of {x̂(m)} and choose some S ⊂ B such

that S is an infinite subsequence of structurally equivalent bases and the corresponding
subsequence of {x̂(m)} converges to x̂(∞). Condition (e) ensures that one or more
subsequences like S exist and that all but a finite number of members of B belong to a
subsequence like S. Now replace the sequence of iterates {x(k)} and all other sequences
with the infinite subsequences of themselves which correspond to the subsequence S.
It then follows that

f
(
x̂(m) + h(m)v

(m)
i

)
≥ f

(
x̂(m)

)
∀i ∈ 1, . . . , p,(4.1)

where p = p(m) for all m such that V(m)
+ ∈ S. Now

f
(
x̂(m) + h(m)v

(m)
i

)
= f

(
x̂(m)

)
+

∫ h(m)

t=0

[
g
(
x̂(m) + tv

(m)
i

)
− ĝ(m) + ĝ(m)

]T
v
(m)
i dt

= f
(
x̂(m)

)
+ h(m)

(
ĝ(m)

)T
v
(m)
i + E

(m)
i ,

where g(x) ≡ ∇f(x), where ĝ(m) = g(x̂(m)), and where

E
(m)
i =

∫ h(m)

t=0

[
g
(
x̂(m) + tv

(m)
i

)
− ĝ(m)

]T
v
(m)
i dt .
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The bound on ‖v(m)
i ‖ in (c) yields

∣∣∣E(m)
i

∣∣∣ ≤ ∫ h(m)

t=0

KM
(m)
i dt = h(m)KM

(m)
i ,

where

M
(m)
i = max

{∥∥∥g (x̂(m) + tv
(m)
i

)
− ĝ(m)

∥∥∥ : t ∈ [0, h(m)
]}
.

The continuity of g and the compactness of F imply that g is also uniformly continuous
on F . The bound on ‖v(m)

i ‖ in (c) then ensures that M (m)
i → 0 as m → ∞ by

condition (d).
Now x̂(∞) is a cluster point of the sequence {x̂(m)} of grid local minimizers, and

‖v(m)
i ‖ ≤ K for all m and i = 1, . . . , n, so there is a subsequence {x(m)} of {x̂(m)}

and corresponding subsequences {v(m)
i } of {v(m)

i } for i = 1, . . . , n which have unique
limits x̂(∞) and v

(∞)
i for i = 1, . . . , n. The structural equivalence of all members of S

implies that

lim
m→∞ v

(m)
i = v

(∞)
i ∀i = 1, . . . , p.(4.2)

Condition (c) implies that v
(∞)
1 , . . . , v

(∞)
n are linearly independent and v

(∞)
1 , . . . , v

(∞)
p

are bounded in norm byK. Hence, {v(∞)
1 , . . . , v

(∞)
p } is an ordered positive basis which

is structurally equivalent to all members of S.
Now (4.1) implies

h
(m)
(
g(m)

)T
v
(m)
i + h

(m)
KM

(m)

i ≥ 0 ∀i = 1, . . . , p.

In the limit as m→∞, condition (d) implies
(
ĝ(∞)

)T
v
(∞)
i ≥ 0 ∀i = 1, . . . , p,

and so ĝ(∞) = ∇f(x̂(∞)) = 0 by Theorem 2.1. The choices of S and of the clus-
ter point of the sequence of grid local minimizers were arbitrary, so every cluster
point of the sequence of grid local minimizers is a stationary point of the objective
function.
Theorem 4.1 makes very few assumptions about how the sequence of grid local

minimizers is generated; all that is required is that this sequence be bounded and
have infinitely many members. Assumption (a) on the full sequence of iterates is only
needed to establish these two properties. This assumption is automatically satisfied if,
for example, the level set {x : f(x) ≤ f(x(1))} is bounded, an assumption frequently
made in convergence analyses; however, it may also be valid under much less restrictive

conditions. Assumption (c) is easily satisfied by choosing each V(m)
+ appropriately.

A very simple way to satisfy (d) is to halve h every time a grid local minimizer is
found. An example of a more complex scheme is given in [2]. Assumption (e) is
one of practicality and is easily enforced. We expect that most useful algorithms will
use only one or two types of structurally equivalent bases (corresponding to ordered
positive bases such as (2.1) or (2.2)); the proof is valid, however, for any finite number.
Theorem 4.1 is, therefore, applicable to a wide range of algorithms.
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If stopping conditions are never invoked and the sequence of iterates x(k) has
finitely many members, then its last member is necessarily a stationary point of f . In
the more usual case, when an infinite sequence of iterates is generated, we now show
convergence of the full sequence of iterates under the stricter Framework B.

Theorem 4.2. If the conditions of Theorem 4.1 hold, then algorithms conform-
ing to Framework B generate sequences of iterates which converge to one or more
stationary points of f .

Proof. The proof is by contradiction. Let x(∞) be a cluster point of the sequence
{x(k)} for which g∞ = ∇f(x(∞)) is nonzero. Following the proof of Theorem 4.1,
replace {x(k)} by a subsequence of itself with x(∞) as its unique limit, for which
the corresponding subsequence of best drop directions {s(k)} (defined by (3.1)) has a
unique limit s(∞), and for which all ordered positive bases are structurally equivalent

and have a unique limit V(∞)
+ . The structural equivalence of these ordered positive

bases, condition (c) of Theorem 4.1, and (4.2) show that V(∞)
+ is also an ordered

positive basis.
First, it is shown that gT∞s

(∞) < 0. Now

∀k,∀vi ∈ V(m(k))
+ , f

(
x(k) + h(m(k))vi

)
− f (k) ≥ f

(
x(k) + h(m(k))s(k)

)
− f (k),

where m(k) is the number of the grid on which x(k) is placed. Taylor’s series expan-
sions on both sides yield

vTi g
(k) + Lk ≥

(
g(k)

)T
s(k) − Lk ∀vi ∈ V(m(k))

+ ,

where Lk is defined as

Lk = Kmax
{
‖g(x)− g(k)‖ : x ∈ F and ‖x− x(k)‖ ≤ Kh(m(k))

}
.

In the limit as k →∞, Lk → 0 by the uniform continuity of g on F . Hence

gT∞v
(∞)
i ≥ gT∞s(∞) ∀i = 1, . . . , p.(4.3)

However, g∞ �= 0 so there exists a v ∈ V(∞)
+ such that gT∞v < 0. Clearly, g

T
∞s

(∞) < 0
by inequality (4.3).
Next, define the closed ball Bε about x

(∞) via

Bε =
{
x : ‖x− x(∞)‖ ≤ ε

}

and similarly for Bδ, where δ < ε. The continuity of g(x) and the convergence of s
(k)

to s(∞) imply

∃N > 0, ∃ε > 0 such that ∀k > N, ∀x ∈ Bε,

gT (x)s(k) ≤ 1
2
gT∞s

(∞) < 0 and ‖s(k)‖ ≤ 2‖s(∞)‖.(4.4)

Now choose a specific k > N such that x(k) ∈ Bδ. The C1 continuity of f implies

f (k) ≤ f (∞) +Mδ,(4.5)
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where M is an upper bound for ‖g(x)‖ over Bε. The first inequality in (4.4) implies
that f is strictly descending along the line segment

x(k) + αh(m(k))s(k) for 0 ≤ α ≤ (ε− δ)
h(m(k))

∥∥s(k)∥∥ .
The restrictions on successive α values in the ray searches mean that the final α value
for the ray x(k) + αh(m(k))s(k), α > 0, is at least (ε− δ)/(βh(m(k))‖s(k)‖). Hence

f (k+1) = f (k) +

∫ α

t=0

h(m(k))
(
s(k)

)T
g
(
x(k) + th(m(k))s(k)

)
dt

≤ f (k) +
αh(m(k))

2
gT∞s

(∞)

≤ f (k) − ε− δ
2β
∥∥s(k)∥∥

∣∣∣gT∞s(∞)
∣∣∣ .

Then (4.5) and the last inequality in (4.4) imply

f (k+1) ≤ f (∞) +Mδ − ε− δ
4β
∥∥s(∞)

∥∥
∣∣∣gT∞s(∞)

∣∣∣ .
As k → ∞, δ can be made arbitrarily small, implying that f (k) < f (∞) for k large.
The continuity of f and the monotonicity of {f (k)} imply that x(∞) cannot be a
cluster point of the sequence of iterates.
An example of an existing method which conforms to Framework A is that of

Hooke and Jeeves [5]. Their method does not explicitly impose an upper bound on
the step length, which appears to be at odds with Theorem 4.1. The applicability
of Theorem 4.1 follows on noting that if condition (a) of the theorem holds (the
sequence of iterates is bounded), then the maximum step length must also be bounded.
Satisfaction of condition (a) of Theorem 4.1 is ensured if at least one iterate lies
within a bounded level set. Although the method of Hooke and Jeeves conforms to
Framework A, it makes little use of the flexibility afforded by that framework. An
algorithm that exploits the flexibility allowed by Framework A is presented in [2],
where numerical results are given for standard test functions; the authors expect
further improvements to follow with more research into algorithms conforming to this
framework.

5. Summary. We have presented two general algorithmic frameworks for uncon-
strained optimization methods based only on function values and have shown that,
under mild conditions, such algorithms generate sequences of grid local minimizers
that are guaranteed to converge to stationary points. There is much scope for improv-
ing efficiency within Framework A through the choice of the ordered positive basis

V(m)
+ and the finite process in step 3, which could, for example, allow a quasi-Newton
step or a step to the minimizer of an interpolating quadratic. An efficient algorithm
that uses this flexibility to align grid axes along conjugate directions is described in [2].
The authors believe that Theorem 4.1 is applicable to many effective grid search

methods, and much work remains to be done in examining the properties of these
algorithms.
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A SCALED GAUSS–NEWTON PRIMAL-DUAL SEARCH
DIRECTION FOR SEMIDEFINITE OPTIMIZATION∗
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Abstract. Interior point methods for semidefinite optimization (SDO) have recently been stud-
ied intensively, due to their polynomial complexity and practical efficiency. Most of these methods
are extensions of linear optimization (LO) algorithms. As opposed to the LO case, there are sev-
eral different ways of constructing primal-dual search directions in SDO. The usual scheme is to
apply linearization in conjunction with symmetrization to the perturbed optimality conditions of the
SDO problem. Symmetrization is necessary since the linearized system is overdetermined. A way
of avoiding symmetrization is to find a least squares solution of the overdetermined system. Such a
“Gauss–Newton” direction was investigated by Kruk et al. [The Gauss–Newton Direction in Semidef-
inite Programming, Research report CORR 98-16, University of Waterloo, Waterloo, Canada, 1998]
without giving any complexity analysis. In this paper we present a similar direction where a local
norm is used in the least squares formulation, and we give a polynomial complexity analysis and
computational evaluation of the resulting primal-dual algorithm.

Key words. semidefinite optimization, primal-dual search directions, interior point algorithms

AMS subject classification. 65K

PII. S1052623499352632

1. Introduction. Interior point methods for semidefinite optimization (SDO)
became a popular research area when it became clear that the algorithms for linear
optimization (LO) can often be extended to the more general SDO case. Following
the trend in LO, primal-dual algorithms soon enjoyed the most attention. Unlike
the LO-case, however, there are many ways to obtain primal-dual search directions.
Different directions arise when the perturbed optimality conditions are linearized and
subsequently symmetrized (see section 1); a quite comprehensive survey of the search
directions obtained this way may be found in [11]. The need for symmetrization
arises from the fact that the system of linearized perturbed optimality conditions is
overdetermined.

A recent idea by Kruk et al. [6] was to avoid symmetrization by solving a least
squares problem by the Gauss–Newton method (see section 1). The authors obtained
a numerically robust search direction in this way, but did not give convergence proofs
for their search direction. The work in our paper was inspired by their approach:
here we show that, by using scaling and a different (local) norm in the definition of
the least squares problem, a direction is obtained which allows a polynomial time
convergence analysis. We further show that the new direction is closely related to
the well-known (primal) H..K..M and dual H..K..M directions (see the definitions in
section 1); the primal part of the new direction coincides with the dual part of the
(primal) H..K..M direction, and the dual part of the new direction is simply the primal
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part of the dual H..K..M direction. Finally, we present some numerical experiments
with the new direction.

Preliminaries. We consider the SDO problem in the standard form. Thus the
primal problem (P) is given by

(P) p∗ = inf {TrCX : Tr (AiX) = bi (1 ≤ i ≤ m), X � 0}

and its dual problem (D) is

(D) d∗ = sup

{
bT y :

m∑
i=1

yiAi + S = C, S � 0

}
,

where C and the Ai’s are symmetric n × n matrices, b, y ∈ R
m, and X � 0 means

that X is symmetric positive semidefinite. The matrices Ai are further assumed to
be linearly independent. We will assume that a strictly feasible pair (X � 0, S � 0)
exists. This ensures the existence of an optimal primal-dual pair (X∗, S∗) with zero
duality gap (Tr (X∗S∗) = 0).

The optimality conditions for the pair of problems are

Tr (AiX) = bi, i = 1, . . . ,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = 0.

If these conditions are perturbed to

Tr (AiX) = bi, i = 1, . . . ,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = µI

for some µ > 0 where I denotes the identity matrix, then a unique solution of the
perturbed system exists. This solution is denoted by {X(µ), y(µ), S(µ)}. This solution
may be seen as a parameterized curve in the Cartesian product of the primal and dual
feasible regions,1 called the central path, which converges to the analytic center of the
optimal primal-dual set as µ → 0. The existence and uniqueness of the central path
follow from the fact that {X(µ), y(µ), S(µ)} corresponds to the unique minimum of
the strictly convex primal-dual barrier function

Φ(X,S, µ) =
1

µ
Tr (XS)− log det(XS)− n + n log(µ)

defined on the primal-dual feasible region. Because of the two different associations,
the parameter µ is called either the barrier parameter, or the centering parameter.

Primal-dual interior point methods solve the system of perturbed optimality con-
ditions approximately, followed by a reduction in µ. Ideally, the goal is to obtain pri-
mal and dual steps ∆X and ∆S, respectively, which satisfy X +∆X � 0, S +∆S � 0

1This Cartesian product of the primal and dual feasible sets will be called the primal-dual feasible
region.
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Table 1
Choices for the scaling matrix P .

P Reference Abbreviation[
X

1
2

(
X

1
2 SX

1
2

)− 1
2
X

1
2

]− 1
2

Nesterov and Todd [9] NT

X− 1
2 Monteiro [7], Kojima, Shindoh, and Hara [5]; DH..K..M

S
1
2 Monteiro [7], Helmberg et al. [3], Kojima, PH..K..M

Shindoh, and Hara [5];
I Alizadeh, Haeberly, and Overton [1] AHO

and

(X + ∆X) (S + ∆S) = µI,(1)

Tr (Ai∆X) = 0, i = 1, . . . ,m,(2)
m∑
i=1

∆yiAi + ∆S = 0,(3)

(∆X)
T

= ∆X, (∆S)
T

= ∆S.(4)

Note that the requirement ∆ST = ∆S in (4) is redundant, due to the fact that the
matrices Ai in (3) are symmetric. Furthermore, (1) is nonlinear, and primal-dual
methods differ with regard to how it is linearized. Care must be taken to ensure that
the resulting linear system is not overdetermined. Zhang [14] suggested discarding
the symmetry requirements (4) and replacing the nonlinear equation by

HP (XS + ∆XS + X∆S − µI) = 0,

where HP is the linear transformation given by

HP (M) :=
1

2

[
PMP−1 + P−TMTPT

]
for any matrix M and where the scaling matrix P determines the symmetrization
strategy. Some popular choices for P are listed in Table 1. The resulting linear
systems are now solvable (for the AHO direction (P = I) solvability is only guaranteed
if (X,S) lies in a certain neighborhood of the central path), and the solution matrices
∆Xand ∆S are symmetric.

In the recent paper by Kruk et al. [6], the symmetrization operator HP is not
used, and the following least squares problem is solved instead:

min ‖XS + ∆XS + X∆S − µI‖2(5)

subject to (s.t.)

Tr (Ai∆X) = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi + ∆S = 0,

∆X = ∆XT ,

where the norm is the Frobenius norm. Note that the symmetry of ∆X is forced. The
authors proved (among other things) the following about the resulting Gauss–Newton
(GN) direction:
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• its existence and uniqueness;
• it reduces to the familiar primal-dual direction in the special case of linear

optimization;
• it coincides with all the other primal-dual directions from Table 1 if the least

squares residual in (5) is zero at optimality.
The new direction we propose can be introduced in a similar way as the GN direction—
as will be shown in the next section—and it shares all the above-mentioned features
of the GN direction. Moreover, it allows a polynomial convergence analysis in the
usual primal-dual algorithmic framework, as will become clear in section 4.

2. The new search direction. Using the well-known NT-scaling (see Table 1),
we now reformulate the system (1)–(3). Defining

D = S− 1
2

(
S

1
2 XS

1
2

) 1
2

S− 1
2 = X

1
2

(
X

1
2 SX

1
2

)− 1
2

X
1
2 ,

one has D−1X = SD. Using this, we introduce

V := D− 1
2 XD− 1

2 = D
1
2 SD

1
2 .

The matrices D and V are symmetric positive definite. We also introduce the scaled
search directions D̂X and D̂S :

D̂X := D− 1
2 ∆XD− 1

2 , D̂S := D
1
2 ∆SD

1
2 .

Finally, scaling the data matrices Ai to

Ãi := D
1
2 AiD

1
2 , 1 ≤ i ≤ m,

the system (1)–(4) can be reformulated as follows:(
V + D̂X

)(
V + D̂S

)
= µI,(6)

Tr
(
ÃiD̂X

)
= 0, i = 1, . . . ,m,(7)

m∑
i=1

∆yiÃi + D̂S = 0,(8)

(
D̂X

)T
= D̂X .(9)

Equation (6) can be rewritten as

V 2 + V D̂S + D̂XV + D̂XD̂S − µI = 0.

Thus the desired scaled displacements are the (unique) solutions of the least squares
problem

min
∥∥∥V 2 + V D̂S + D̂XV + D̂XD̂S − µI

∥∥∥2

,

subject to the constraints (7)–(9), and the optimal value of this problem is zero. We
now omit the nonlinear term D̂XD̂S from the objective function of the least squares
problem. This omission makes it important to specify which norm is used, since the
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optimal solution to our new least squares problem will depend on the norm. The
norm which we choose is the norm induced by the inner product:

〈A,B〉 := Tr
(
V −1AV −1BT

) ∀A ∈ R
n×n, B ∈ R

n×n.

This can also be viewed as the local norm induced by the Hessian of the self-concordant
barrier

f(V ) = − log det(V ),

since the Hessian of f evaluated at V is the linear operator

∇2f(V ) : H �→ V −1HV −1.

Thus we obtain the least squares problem

min
∥∥∥V − 1

2

(
V 2 + V D̂S + D̂XV − µI

)
V − 1

2

∥∥∥2

,

subject to the constraints (7)–(9) and where the norm now indicates the Frobenius
norm. For convenience, we also introduce the notation

U :=
1√
µ
V, DX :=

1√
µ
D̂X , DS :=

1√
µ
D̂S , ∆ỹ :=

1√
µ

∆y.

Using this notation, we can reformulate the above least squares problem as follows:

(LQ)




min f (DX , DS) := 1
2

∥∥∥U + U
1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 − U−1

∥∥∥2

,

s.t. Tr
(
ÃiDX

)
= 0, i = 1 . . . ,m,

DX
T = DX ,

DS = −
m∑
i=1

∆ỹiÃi.

In what follows we will frequently use the notation

R := U + U
1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 − U−1.(10)

In other words, f (DX , DS) = 1
2‖R‖2 is the residual of the least squares problem

(LQ). Note that the derivatives of f with respect to DX and DS are, respectively,
given by

∇DX
f(DX , DS) = U− 1

2 RU
1
2 , ∇DS

f(DX , DS) = U
1
2 RU− 1

2 .(11)

Optimality conditions for the least squares problem. We can formulate the
optimality conditions for the least squares problem (LQ) by forming the Lagrangian:

L(DX , DS ,∆ỹ, λ,M1,M2) := f(DX , DS)−
m∑
i=1

λiTr
(
ÃiDX

)
+ Tr

((
DX −DT

X

)
M1

)

+Tr

(
M2

(
DS +

m∑
i=1

∆ỹiÃi

))
,
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where λ ∈ R
m, M1 ∈ R

n×n, and M2 ∈ R
n×n are Lagrange multipliers. Using the

expressions in (11), one can easily rewrite the optimality condition

∇L(DX , DS ,∆ỹ, λ,M1,M2) = 0

as

U− 1
2 RU

1
2 =

m∑
i=1

λiÃi + M,(12)

Tr
(
ÃiU

1
2 RU− 1

2

)
= 0, i = 1, . . . ,m,(13)

Tr
(
ÃiDX

)
= 0, i = 1, . . . ,m,(14)

DX −DT
X = 0,(15)

DS = −
m∑
i=1

∆ỹiÃi,(16)

where M = MT
1 −M1 is a skew-symmetric matrix.

Existence and uniqueness of the new direction. We now state an existence
and uniqueness result for the new search direction.

Theorem 2.1 (existence and uniqueness of the new direction). The problem
(LQ) determines the displacements DX , ∆ỹ, and DS uniquely. Furthermore, one
has DX = 0 and ∆ỹ = 0 (whence DS = 0), if and only if U = I or, equivalently,
XS = µI.

This result can be proved by using the optimality conditions of (LQ). We omit
such a proof here, since the theorem will follow from results in section 5, where we
will explore the relation between the new direction and directions from literature.

3. Estimating the least squares residual. In the analysis of the new search
direction it is essential to show that the residual of the least squares problem, ‖R‖, is
“small enough” at the optimal solution of (LQ) if the current iterate is close enough to
the central path. The residual can be bounded from above in terms of the proximity
to the target point µI, where the proximity is measured by

δ(X,S, µ) :=
1

2

∥∥U − U−1
∥∥ .(17)

Note that δ(X,S, µ) = 0 if and only if XS = µI. In what follows, we will use the
notation δ := δ(X,S, µ) if no confusion is possible.

Let us define DV := DX + DS and QV := DX −DS . Note that ‖DV ‖ = ‖QV ‖.
We can now decompose R := U−1 − U + U

1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 into a symmetric

and skew-symmetric component, say

R := Rsym + Rskew,

where

Rsym = U−1 − U +
1

2

(
U

1
2 DV U− 1

2 + U− 1
2 DV U

1
2

)
and

Rskew =
1

2

(
U− 1

2 QV U
1
2 − U

1
2 QV U− 1

2

)
.
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By construction, one has

‖R‖2 = ‖Rsym‖2 + ‖Rskew‖2.
The new direction DV ≡ DX + DS is chosen such that ‖R‖ is minimized. In order
to get an upper bound on the value ‖R‖ for the new direction, we can consider the

value of ‖R‖ for a class of search directions where U
1
2 DV U− 1

2 = DV . In this way we
obtain the bound

‖R‖2 ≤ 4δ2+2Tr
(
(U−1 − U)DV

)
+‖DV ‖2+

∥∥∥∥1

2

(
U− 1

2 QV U
1
2 − U

1
2 QV U− 1

2

)∥∥∥∥
2

,(18)

where we have used
∥∥U − U−1

∥∥2
= 4δ2. In order to get an upper bound on ‖Rskew‖2

(the last term in (18)) we use the following lemma.
Lemma 3.1. Suppose that the n× n matrix A is symmetric positive definite and

ξ(A) = Tr
(
A2
)− 2n + Tr

(
A−2

)
. Then for any symmetric matrix Ā, one has

‖AĀA−1 −A−1ĀA‖2 ≤ ξ(A2)

2
‖Ā‖2.

Proof. Since A is symmetric positive definite, we can assume in general that A is
a diagonal matrix with ai > 0 on the ith diagonal position, by taking an orthogonal
transformation if necessary. Denoting Â = AĀA−1 −A−1ĀA, one has

Âii = 0, Âij =

(
ai
aj
− aj

ai

)
Āij (i �= j).

The above relation means that

‖Â‖2≤ max
i,j

(
a2
i

a2
j

− 2 +
a2
j

a2
i

)
‖Ā‖2

≤ 1

2
max
i,j

(
a4
i + a4

j − 4 +
1

a4
i

+
1

a4
j

)
‖Ā‖2

≤ ξ(A2)

2
‖Ā‖2,

where the second inequality can easily be verified by calculus, and the third inequality
follows by noting that

ξ(A2) =

n∑
i=1

(
a4
i +

1

a4
i

− 2

)
.

The lemma implies that

‖Rskew‖2 ≡
∥∥∥∥1

2

(
U− 1

2 QV U
1
2 − U

1
2 QV U− 1

2

)∥∥∥∥
2

≤ 1

8
ξ
(
U−1

) ‖QV ‖2

=
1

2
δ2‖DV ‖2,
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where we have used ‖DV ‖ = ‖QV ‖ and ξ(U−1) = 4δ2. Substituting the bound for
‖Rskew‖ into (18) yields

‖R‖2 ≤ 4δ2 + 2Tr
(
DV (U−1 − U)

)
+

(
1 +

1

2
δ2

)
‖DV ‖2.(19)

The right-hand side is a convex quadratic function of DV and is minimized by

DNT
V = − 1

1 + 1
2δ

2

(
U−1 − U

)
,(20)

which happens to be a damped step along the Nesterov–Todd direction (see, e.g., de
Klerk [2]). Substituting (20) into (19) yields

‖R‖2 ≤ 4δ2 + 2Tr
(
DNT
V (U − U−1)

)
+

(
1 +

1

2
δ2

)
‖DNT

V ‖2

= 4δ2 − 2

1 + 1
2δ

2
(4δ2) +

1

1 + 1
2δ

2
(4δ2)

= 4δ2

(
δ2

2 + δ2

)
.(21)

Let us now suppose that DX , DS are the solutions of (LQ), and denote

RU := U
1
2 DSU

− 1
2 + U− 1

2 DXU
1
2 .

Our main result in this section can be stated as follows.
Lemma 3.2. Let δ be defined by (17). One has

2δ√
1 + 1

2δ
2
≤ ‖RU‖ ≤ 2δ.(22)

Proof. From the optimality conditions of (LQ) we immediately derive that

Tr
(
RTRU

)
= 0,

by noting that (12), (15), and (14) imply

Tr
(
RTU− 1

2 DXU
1
2

)
= 0

and (13) and (16) imply

Tr
(
RTU

1
2 DSU

− 1
2

)
= 0.

Since R = U−1 − U + RU and R and RU are orthogonal, we have

4δ2 ≡ ∥∥U−1 − U
∥∥2

= ‖R‖2 + ‖RU‖2 ≤ 4δ2

(
δ2

2 + δ2

)
+ ‖RU‖2 ,(23)

where the inequality follows from (21). The equations in (23) together with the
nonnegativity of ‖R‖ imply

4δ2 ≡ ∥∥U−1 − U
∥∥2 ≥ ‖RU‖2 ,



878 E. DE KLERK, J. PENG, C. ROOS, AND T. TERLAKY

and the inequality in (23) implies

‖RU‖2 ≥ 4δ2 − 4δ2

(
δ2

2 + δ2

)
= 4δ2

(
2

2 + δ2

)
.

Thus we have shown that

2δ ≥ ‖RU‖ ≥ 2δ√
1 + 1

2δ
2
.(24)

4. Complexity analysis of a primal-dual method. In the present section,
we will first propose a primal-dual path following method based on the new search
direction, and we will subsequently perform a complexity analysis of the algorithm.

Generic primal-dual path following algorithm.
Input

A strictly feasible starting pair (X0, S0), satisfying δ
(
X0, S0, µ0

) ≤ τ.
Parameters

A centering parameter τ > 0;
An accuracy parameter ε > 0;
An updating parameter θ < 1;
An initial centering parameter µ0 > 0.

X := X0; S := S0;
while Tr(XS) > ε do

if δ(X,S, µ) ≤ τ do (outer iteration)
µ := (1− θ)µ;

else if δ(X,S, µ) > τ do (inner iteration)
Compute ∆X,∆S by solving (LQ);
Find α such that Φ(X,S, µ)−Φ(X +α∆X,S +α∆S, µ) is sufficiently

large;
(A suitable default choice for α is given by (26).)
X := X + α∆X, S := S + α∆S;

end
end

Recall that

Φ(X,S, µ) =
Tr (XS)

µ
− n− log det(XS) + n log µ.

In the update of the iterate, we require that the step length α be chosen such that
the barrier function Φ(X,S, µ) decreases sufficiently. Lemma 4.2 will give a default
value for α.

It is easy to verify that the barrier function can also be rewritten as

f(U) = Φ(X,S, µ) = Tr
(
U2
)− n− log det

(
U2
)
.

Assuming that DX , DS are solutions of (LQ), we want to estimate the decreasing
value of the barrier function, given by

∆Φ(α)= f(U)− (Tr ((U + αDX)(U + αDS))− n− log det (U + αDX)(U + αDS))

= −αTr (UDS + DXU) + log det (I + αU− 1
2 DXU− 1

2 )(I + αU− 1
2 DSU

− 1
2 ),

where we have used the orthogonality of DX and DS . Now we have the following
general bound on the reduction ∆Φ(α) which holds for any search direction. (For a
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Fig. 1. The graph of ψ.

proof see, e.g., Jiang [4] and Roos, Terlaky, and Vial [10, Lemma II.69] for the linear
optimization case.)

Theorem 4.1. Let (X,S) be a strictly feasible pair and let (DX , DS) be any
feasible solution to problem (LQ); define DV := DX + DS. Then

∆Φ(α) ≥ −αTr (UDV ) + αTr
(
U−1DV

)− ψ(−αh),

where ψ(t) := t− log(1 + t) (see Figure 1), and

h2 = Tr
(
U−1DXU−1DX + U−1DSU

−1DS

)
.

Moreover any value of α satisfying α ≤ 1
h is a feasible step length.

Corollary 4.1. Let (DX , DS) denote the optimal solution of (LQ). One has

∆Φ(α) ≥ α‖RU‖2 − ψ(−αh).

Proof. Using the definition of R in (10) and Tr
(
RTRU

)
= 0 one has

−Tr (UDV )+Tr
(
U−1DV

)
= Tr

(
RT
U

(
U−1 − U

))
= Tr

(
RT
U (RU −R)

)
= ‖RU‖2 .

(25)
The required result now follows from Theorem 4.1.

All that remains is to give an upper bound for the term −ψ(−αh). This can be
done by using the following lemma.

Lemma 4.1. Let (DX , DS) denote the optimal solution of (LQ). One has

h ≤ ρ(δ)‖RU‖,
where ρ(δ) := δ +

√
1 + δ2.

Proof. By definition,

h2 = Tr
(
U−1DXU−1DX + U−1DSU

−1DS

)
= Tr

(
U−2

(
UDXU−1DX + UDSU

−1DS

))
≤ λmax

(
U−2

)
Tr
(
UDXU−1DX + UDSU

−1DS

)
≤ ρ2(δ)Tr

(
UDXU−1DX + UDSU

−1DS

)
= ρ2(δ)‖RU‖2,
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where the last inequality is a result by Jiang [4]. (See Roos, Terlaky, and Vial [10,
Lemma II.60] for the analogous result in the linear optimization case.)

Lemma 4.2. Let (DX , DS) denote the optimal solution of (LQ). One has

∆Φ(ᾱ) ≥ ψ

(‖RU‖
ρ(δ)

)
≥ ψ


 2δ

ρ(δ)
√

1 + 1
2δ

2


 ,

for

ᾱ :=
1

h
− 1

‖RU‖2 + h
.

Proof. From Corollary 4.1 we have

∆Φ(α) ≥ α‖RU‖2 − ψ(−αh)

≡ α‖RU‖2 + αh + log(1− αh).

The right-hand side of the inequality is maximized by

ᾱ =
1

h
− 1

‖RU‖2 + h
.(26)

This maximizer yields the bound

∆Φ(ᾱ) ≥ ψ

(‖RU‖2
h

)
,

which, by Lemma 4.1, implies

∆Φ(ᾱ) ≥ ψ

(‖RU‖
ρ(δ)

)
.

Finally we use Lemma 3.2 to complete the proof.

Now we show that δ is bounded in terms of the barrier function Φ, and vice versa.
To this end, we use the following lemma which was proved for linear optimization by
Roos, Terlaky, and Vial [10, Lemma II.67]. The extension of the proof to the SDO
case is mechanical and is therefore omitted.

Lemma 4.3. Let δ := δ(X,S;µ) and ρ(δ) := δ +
√

1 + δ2. Then

ψ

(−2δ

ρ(δ)

)
≤ Φ(X,S, µ) ≤ ψ (2δρ(δ)) .

The statement of the lemma is illustrated in Figure 2.

Small update methods. We are now in a position to perform the complexity
analysis for a small update version of the algorithm. To fix our ideas, we choose the
parameters

τ =
1

2
, θ =

1

10
√

n
.



A SCALED GAUSS–NEWTON DIRECTION FOR SDO 881

Fig. 2. Bounds for Φ(X,S, µ).

We assume that at the current iterates (X,S) the proximity measure satisfies δ(X,S, µ) ≤
τ = 1

2 . In this situation, we perform the update µ+ = (1−θ)µ (outer iteration). Anal-
ogously to the linear optimization case, one has (see Lemma IV. 36 in [10])

δ(X,S, µ+) ≤ 2δ + θ
√

n

2
√

1− θ
≤ 2τ +

√
nθ

2
√

1− θ
< 0.58.

This also means (by Lemma 4.3) that at the beginning of the inner iterative procedure,
one has

Φ(X,S, µ+) ≤ ψ(2δρ(δ)) ≤ 0.910.

This bound implies that the proximity δ(X,S, µ+) is also bounded from above by a
constant during all inner iterations, by Lemma 4.3 (see Figure 2):

δ ≤ 0.98.

At each inner iteration one has δ ≥ 1
2 , which implies

‖RU‖ ≥ 2δ√
1 + 1

2δ
2

=
1√

1.125
≥ 0.9428

by Lemma 3.2. Lemma 4.2 shows that the reduction of the barrier function is at least

ψ

(‖RU‖
ρ(δ)

)
≥ 0.062.(27)

In order to guarantee that δ(X,S, µ+) ≤ 1
2 at the end of the inner iteration phase,

one must reduce the value of Φ to below 0.344 (see Figure 2). The bound in (27)
implies that, after at most

�(0.910− 0.344)/0.062� = 10(28)

inner iterations, we have computed a pair (X,S) such that δ(X,S, µ+) ≤ 1
2 . Hence

we have the following complexity bound for the algorithm.
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Theorem 4.2. If τ = 1
2 and θ = 1

10
√
n
, the total number of iterations required by

the primal-dual path following algorithm is no more than⌈
100
√

n log
2.5nµ0

ε

⌉
.

Proof. It can easily be shown that after⌈
1

θ
log

nµ0

ε

⌉
(29)

barrier parameter updates (outer iterations) one has nµ ≤ ε (cf. Lemma II.17 in [10]).
At the end of the inner iterations with respect to µ one has computed a pair

(X,S) such that δ(X,S, µ) ≤ 1
2 . Using the definition of δ, it is trivial to show that

this implies

Tr (XS) ≤ 2.5nµ,

and consequently Tr (XS) ≤ 2.5ε.
Replacing ε by ε/2.5 and multiplying the number of outer iterations in (29) by

the bound (28) yields the theorem.
Remark 4.1. We have only analyzed one special small update algorithm, but one

can easily derive similar results for any fixed τ > 0 and θ of the order O( 1√
n

).

5. Relation to other search directions. In this section we show that the
scaled Gauss–Newton (SGN) direction introduced in this paper is closely related to
the primal and dual H..K..M directions (see Table 1). In particular, the ∆X part of
the SGN direction is simply the ∆X part of the dual H..K..M direction, while the ∆S
part of the SGN direction is the same as the ∆S part of the primal H..K..M direction.
Note that this relationship implies Theorem 2.1.

The key in proving this is to decompose problem (LQ) into two independent
subproblems. To this end, recall that for all feasible DX and DS , it holds that
Tr (DXDS) = 0. Using this fact, we can rewrite the objective of problem (LQ) as

∥∥∥U + U
1
2 DSU

− 1
2 − U−1

∥∥∥2

+
∥∥∥U + U− 1

2 DXU
1
2 − U−1

∥∥∥2

− ∥∥U − U−1
∥∥2

.(30)

Omitting the last (constant) term in the last expression, we can separate problem
(LQ) into two subproblems,

(SGN1) min
DX

∥∥∥U + U− 1
2 DXU

1
2 − U−1

∥∥∥2

,

Tr
(
ÃiDX

)
= 0, DX = DT

X ;

and

(SGN2) min
DS

∥∥∥U + U
1
2 DSU

− 1
2 − U−1

∥∥∥2

,

DS = −
m∑
i=1

∆yiÃi.
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To compute the SGN direction, one can solve the two independent subproblems
(SGN1) and (SGN2). Now let us recall the definition of the primal H..K..M direction.
As observed by Monteiro (see Lemma 2.1 in [7] and Kojima, Shindoh, and Hara [5]),
the primal H..K..M direction is the unique solution of the following linear system:

XS + X∆S + (∆X + W )S = µI,

Tr(Ai∆X) = 0; i = 1, . . . ,m,
m∑
i=1

∆yiAi + ∆S = 0, W + WT = 0, ∆X = ∆XT .

Premultiplying the first equation in the above system by D−1/2 and postmultiplying
by D1/2, and then dividing by µ, we can rewrite the above system in the scaled space
as

U2 + UDS + (DX + W̃ )U = I,

Tr
(
ÃiDX

)
= 0, i = 1, . . . ,m,(31)

m∑
i=1

∆ỹiÃi + DS = 0, W̃ + W̃T = 0, DX = DT
X ,(32)

where W̃ = 1
µD

− 1
2 WD− 1

2 is skew symmetric and ∆ỹi = 1
µ∆yi as before. Again by

pre- and postmultiplying the first equation by U−1/2 we obtain

U − U−1 + U
1
2 DSU

− 1
2 + U− 1

2 (DX + W̃ )U
1
2 = 0.(33)

Now we state our main result in this section.
Proposition 5.1. Suppose that ∆S∗ is the solution of the primal H..K..M di-

rection. Then D∗
S = 1

µD
1
2 ∆S∗D

1
2 is the unique solution of the problem (SGN2).

Proof. The KKT system for problem (SGN2) can easily be written in the form
(33), (31), and (32).

We can approach the solution of problem (SGN1) in exactly the same way, by
observing that the dual H..K..M direction is the unique solution of the following
problem (see [5]):

XS + X(∆S + W ) + ∆XS = µI,
Tr(Ai∆X) = 0, i = 1, . . . ,m,∑m

i=1 ∆yiAi + ∆S = 0,
∆X = ∆XT , W + WT = 0.

(34)

In the same way as before, one can now prove the following.
Proposition 5.2. Suppose that ∆X∗ is the solution of the dual H..K..M direc-

tions. Then

D∗
X =

1

µ
D− 1

2 ∆X∗D− 1
2

is the unique solution of the problem (SGN1).
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Table 2
Average number of iterations for the SDTP3 algorithm IPF using various search directions.

Test set AHO PH..K..M NT GT SGN DH..K..M
1: Random SDP
n = m = 50

16.2 19.3 17.7 16.6 17.9 16.8

2: Norm min. problem
n = 100,m = 26

18.9 21.3 20.4 19.9 21.1 19.5

3: Cheby. approx. in R
n×n

n = 100,m = 26
16.6 19.6 17.6 16.9 19.0 17.0

4: Max-cut
n = m = 50

15.4 17.7 16.1 16.0 18.4 15.7

5: ETP
n = 100,m = 50

29.5 34.0 31.2 30.7 32.1 30.4

6: Lovász θ function
n = 30,m = 220

20.2 23.1 21.5 20.8 22.7 21.8

7: Log. Cheby. prob.
n = 300,m = 51

21.5 22.7 22.6 21.1 23.8 21.2

8: Cheby. approx. on C 16.1 16.6 16.3 16.1 19.0 16.1

Remark 5.1. The relation between the SGN direction and the H..K..M directions
implies that the SGN direction shares the same scale-invariance properties as the
H..K..M directions; see, e.g., [11] for the definition of scale-invariance.

In the appendix to this paper we show how the SGN direction can be computed
via the solution of the primal and dual H..K..M directions. In particular, we show
there that the computational complexity of the SGN direction is upper bounded by

2mn3 + m2n2 +
2

3
m3 + O

(
n3 + mn2 + m2n

)
flops.2 In comparison, one has the bound

2

3
mn3 +

1

2
m2n2 +

1

3
m3 + O

(
n3 + mn2 + m2n

)
flops for the NT direction, and

3
2

3
mn3 + m2n2 +

2

3
m3 + O

(
n3 + mn2 + m2n

)
flops for the AHO direction [8].

6. Numerical results. We have implemented two algorithms based on the SGN
direction and the dual H..K..M direction by changing the main subroutine of SDPT3
(SDP.m in version 1.3) slightly to admit these two additional search directions. The
algorithm we tested is the infeasible path following algorithm without second-order
corrector (Algorithm IPF in [13]). Tables 2, 3, and 4 show the performance of this
algorithm for various search directions. The test problems are taken from [13], and
each test set consists of ten random instances generated by the subroutines in SDPT3.
The convergence criterion was to reduce the initial duality gap by a factor of 1010.

The tables show that the algorithm based on the SGN and the dual H..K..M
directions are comparable to other search directions with respect to the number of
iterations. As for the required CPU time, the SGN direction requires slightly less

2We follow the convention in, e.g., [8] that one flop is any floating point operation, i.e., addition
and multiplication of two floating point numbers both constitute one flop.
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Table 3
Average running time of the algorithms.

Test set AHO PH..K..M NT GT SGN DH..K..M
1 32.4 19.4 19.6 23.4 26.8 21.6
2 78.3 42.0 46.3 58.4 72.2 60.6
3 65.0 37.1 38.1 47.3 61.1 50.2
4 20.3 10.7 9.3 13.2 19.7 13.3
5 49.0 26.8 23.5 32.3 38.2 28.3
6 111.0 48.6 40.1 59.1 107.6 68.9
7 45.5 22.7 26.9 34.2 39.5 28.1
8 28.3 14.6 18.1 22.5 29.4 20.7

Table 4
Average absolute value of the logarithm of the duality gap at termination, i.e., | log10 Tr(XS)|

where (X,S) are the final iterates.

Test set AHO PH..K..M NT GT SGN DH..K..M
1 9.4 7.8 7.0 9.1 7.1 6.8
2 12.4 9.5 8.5 12.1 9.1 8.8
3 13.4 10.8 9.4 13.2 9.8 9.6
4 10.9 8.8 7.8 10.6 8.2 7.8
5 7.8 7.0 6.6 8.6 6.4 6.8
6 11.7 9.9 9.3 10.7 9.5 9.2
7 10.8 10.9 10.9 10.9 10.8 10.7
8 13.1 10.4 10.5 13.1 10.9 10.4

than the AHO direction and the dual H..K..M direction less than GT direction. As
for the accuracy, both methods are comparable to the primal H..K..M and NT direc-
tions. Overall, the performance of the SGN method is somewhat disappointing. In
particular, the method does not require fewer iterations than the related primal or
dual H..K..M directions in general, even though it is more expensive to compute.

Note, however, that we used the default setting for all parameters in the SDPT3
algorithm IPF; it is reasonable to expect that the iteration count of the algorithms
based on the SGN and dual H..K..M directions can be improved by implementing a
different line search strategy. Also, the test problems used here are of moderate size.
These computational results are therefore of a preliminary nature.

7. Conclusions. We have presented a primal-dual SGN direction for semidef-
inite optimization which allows polynomial worst-case iteration complexity analysis.
This analysis was inspired by the Gauss–Newton direction of Kruk et al. [6], but the
new direction seems much more amenable to complexity analysis, due to the use of
scaling and a local norm in the definition of the least squares problem. In particu-
lar, the usual O(

√
n) iteration complexity was derived in this paper for the standard

small update (short step) primal-dual path following algorithm. The complexity for
methods using larger updates remains a topic for future research.

The new direction is closely related to the primal and dual H..K..M directions—
it uses the ∆X part of the dual H..K..M direction and the ∆S part of the primal
H..K..M direction. As a by-product, we have shown how the dual H..K..M direction
can be computed at a cost of at most

2mn3 +
1

2
m2n2 +

1

3
m3 + O

(
n3 + mn2 + m2n

)
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flops, and the SGN direction can subsequently be computed at a total cost of at most

2mn3 + m2n2 +
2

3
m3 + O

(
n3 + mn2 + m2n

)
flops.

A preliminary numerical evaluation of the performance of the SGN search direc-
tion is somewhat disappointing. The implementation was done using the infeasible
path following algorithm in the Matlab code SDPT3. Since we used the default pa-
rameter settings for the step lengths and barrier parameter updates in SDTP3, we
hope that these results can be improved by finding more suitable (dynamic) parameter
settings for the new direction. This is a subject for future research.

Appendix. Computation of the SGN direction. In this appendix, we con-
sider how to compute the SGN direction by first computing the dual H..K..M direction.
To this end, we rewrite the linear system (34) (which yields the dual H..K..M direc-
tion) by using the Cholesky decompositions X = LTXLX and S = LTSLS as follows:

LXLTS + LX(∆S + W )L−1
S + L−T

X ∆XLTS = µL−T
X L−1

S ,

Tr(Ai∆X) = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi + ∆S = 0,

∆X = ∆XT , W + WT = 0.

We wish to solve problem SGN1 which is equivalent to solving

min
∆X

∥∥LXLTS + L−T
X ∆XLTS − µL−T

X L−1
S

∥∥2
(35)

subject to

Tr(Ai∆X) = 0, i = 1, . . . ,m, ∆X = ∆XT .

We now perform a singular value decomposition of LXLTS or an eigenvalue decompo-
sition of LXSLTX to obtain

QTLXSLTXQ = Λ,

where Λ is a positive definite diagonal matrix and Q an orthonormal matrix. By
defining

∆X̄ = QTL−T
X ∆XL−1

X Q, Āi = QTLXAiL
T
XQ, i = 1, . . . ,m,

we can rewrite problem (35) as{
min∆X̄

∥∥Λ1/2 + ∆X̄Λ1/2 − µΛ−1/2
∥∥2

,
Tr
(
Āi∆X̄

)
= 0, i = 1, . . . ,m, ∆X̄ = ∆X̄T ,

(36)

which is the same as{
min∆X̄

1
2

∥∥Λ1/2 + ∆X̄Λ1/2 − µΛ−1/2
∥∥2

+ 1
2

∥∥Λ1/2 + Λ1/2∆X̄ − µΛ−1/2
∥∥2

,

Tr
(
Āi∆X̄

)
= 0, i = 1, . . . ,m, ∆X̄ = ∆X̄T .

(37)

since ‖A‖ =
∥∥AT∥∥.

In what follows, we will use this notation:
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• svec (X) :=
(
X11,

√
2X12, . . .

√
2X1n, X22,

√
2X23, . . . , Xnn

)T ∀ X =
XT ;

• The symmetric Kronecker productG⊗sK of G,K ∈ R
n×n is implicitly defined

by

(G⊗s K) svec (H) :=
1

2
svec

(
KHGT + GHKT

) ∀ H = HT .

Now let

GT = (svec
(
Ā1

)
, . . . , svec

(
Ām
)
), dx = svec

(
∆X̄

)
.

(38)

The KKT system of (37) takes the form{ Edx + GT v = −svec (Λ− µIn) ,
Gdx = 0,

(39)

where E = Λ ⊗s In and v is a variable vector in the suitable space. Premultiplying
the first equation in (39) by GE−1, we obtain a linear system in R

m such that

GE−1GT v = −GE−1svec (Λ− µIn) .(40)

Note that E = Λ⊗s In is a diagonal matrix (see, e.g., the appendix in [12]).
To compute the dual H..K..M direction, we therefore need only solve the system

(40) first and then compute ∆X,∆S subsequently. In particular, ∆y of the dual
H..K..M direction is immediately available from the solution of (40).

Proposition 7.1. Suppose that ∆X,∆S are solutions of the dual H..K..M.
direction and that

∆S = −
m∑
i=1

∆yiAi.

Then ∆y = −v where v is the solution of the problem (40).
The proof of this proposition is straightforward and therefore omitted.
We can summarize the sequence of steps for the computation of the dual H..K..M

direction as follows:
1. Compute G by computing Āi for i = 1, . . . ,m. Since all Āi are symmetric,

the computation of all Āi requires at most 2mn3 + O
(
n3
)

flops (see Lemma
A.10 in [8]);

2. compute E−1GT at a cost of O(mn2) flops;
3. form the Schur matrix GE−1GT ( 1

2m
2n2 flops);

4. solve the linear system (40) ( 1
3m

3 flops).
Hence the total computation complexity for the dual H..K..M direction is upper
bounded by 2mn3 + 1

2m
2n2 + 1

3m
3 + O

(
n3 + n2m + nm2

)
flops.

Now recall that the SGN direction uses the ∆S part of the primal H..K..M
direction. It is easy to show that the Schur matrix for the primal H..K..M di-
rection has entries Tr

(
ĀiΛ

−1Āj
)

(i, j = 1, . . . ,m). We can therefore utilize the
fact that G had already been computed when we formed the primal H..K..M Schur
matrix. In other words, we only have to perform the analogous steps to steps 3
and 4 above. Hence, the total computational complexity for the SGN direction is
2mn3 + m2n2 + 2

3m
3 + O

(
n3 + n2m + nm2

)
flops.
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NONMONOTONE TRUST-REGION METHODS FOR
BOUND-CONSTRAINED SEMISMOOTH EQUATIONS WITH

APPLICATIONS TO NONLINEAR MIXED COMPLEMENTARITY
PROBLEMS∗
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Abstract. We develop and analyze a class of trust-region methods for bound-constrained semi-
smooth systems of equations. The algorithm is based on a simply constrained differentiable min-
imization reformulation. Our global convergence results are developed in a very general setting
that allows for nonmonotonicity of the function values at subsequent iterates. We propose a way
of computing trial steps by a semismooth Newton-like method that is augmented by a projection
onto the feasible set. Under a Dennis–Moré-type condition we prove that close to a regular solution
the trust-region algorithm turns into this projected Newton method, which is shown to converge
locally q-superlinearly or quadratically, respectively, depending on the quality of the approximate
subdifferentials used.

As an important application we discuss how the developed algorithm can be used to solve non-
linear mixed complementarity problems (MCPs). Hereby, the MCP is converted into a bound-
constrained semismooth equation by means of an NCP-function. The efficiency of our algorithm is
documented by numerical results for a subset of the MCPLIB problem collection.

Key words. semismooth equation, nonmonotone trust region method, nonlinear mixed com-
plementarity problem, nonsmooth Newton method, global convergence, superlinear and quadratic
convergence

AMS subject classifications. 90C30, 90C33, 49J40, 65H10, 65K05, 49M37

PII. S1052623499356344

1. Introduction. In this paper we propose and analyze a class of trust-region
methods for the solution of a simply constrained system of nonlinear nonsmooth
equations

H(x) = 0, x ∈ X.(1.1)

Hereby, the function H : R
n ⊃ U → R

n is defined on the open set U containing the
feasible setX

def
= [l, u] = {x ∈ R

n ; li ≤ xi ≤ ui, 1 ≤ i ≤ n}. The bounds li ∈ R∪{−∞}
and ui ∈ R∪{+∞} are assumed to satisfy li < ui, 1 ≤ i ≤ n. (Otherwise the variable
xi = li = ui could be eliminated.)

We require that (with the definition of semismoothness to follow)

(A1) the function H is semismooth or, stronger, p-order semismooth, 0 < p ≤ 1;
(A2) each component functionHi ofH is continuously differentiable on U \H−1

i (0).

The locally q-superlinear/quadratic convergence of the algorithm to BD-regular (where
“BD” stands for Bouligand differential) solutions of (1.1) will be achieved by a Newton-
type method that is augmented by a projection onto X to maintain feasibility. Lo-
cal convergence results for Newton’s method without projection were established in
[39, 40, 43]. Similar to [39], our local convergence results hold under a Dennis–Moré-
type condition, thus allowing for inexactness in the computation of B-subdifferentials
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Technische Universität München, D-80290 München, Germany (mulbrich@ma.tum.de).

889



890 MICHAEL ULBRICH

(where “B” stands for Bouligand) and in the solution of linear systems. We safeguard
this locally convergent iteration by a nonmonotone trust-region globalization that is
based on the minimization reformulation

minimize h(x) subject to x ∈ X,(1.2)

where h : U → R, h(x)
def
= ‖H(x)‖2/2. Here and throughout the paper, ‖ · ‖ denotes

the Euclidean norm. Obviously, (1.1) and (1.2) are equivalent if (1.1) possesses a
solution. As will be shown in Lemma 4.2, our assumptions on H imply that h is
continuously differentiable on U . This enables us to invoke smooth proof techniques
for the trust-region algorithm. We stress that our analysis is not based directly on
(A2) but on the—in connection with (A1)—weaker assumption

(A2′) The function h : U → R, h(x) = ‖H(x)‖2/2 is continuously differentiable.

We believe, however, that (A2) is more concrete and easier to verify than (A2′) and
thus decide to choose (A1) and (A2) as our working assumptions. An assumption of
the form (A2′) was also used in [26]. Furthermore, the investigation of pseudosmooth
equations in the recent work [42] are based on an assumption similar to (A2).

The need for efficient algorithms for the solution of (1.1) comes from the fact that
very general classes of problems can be converted to this form. Of particular impor-
tance are semismooth reformulations of nonlinear mixed complementarity problems
(MCPs). For the definition of the general MCP, which is a bound-constrained vari-
ational inequality problem, we refer to [12, 16] and section 8. To avoid notational
overhead, we focus here on the following class of MCPs.

Find x ∈ R
n such that

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0, i = 1, . . . ,m,

Fi(x) = 0, i = m+ 1, . . . , n,
(1.3)

where the function F : U → R
n is defined on the open set U containing X =

[0,∞)m × R
n−m, and 0 ≤ m ≤ n. In the case m = n the MCP (1.3) reduces to

a nonlinear complementarity problem, whereas for m = 0 we obtain a system of
nonlinear equations. MCPs arise in a variety of areas, including computer sciences,
economics, engineering, operations research, and mathematics. For a comprehen-
sive discussion of applications, see [16]. Further applications can be derived from the
fact that the Karush–Kuhn–Tucker (KKT) conditions of mathematical programs and,
more general, of variational inequality problems are MCPs.

In order to apply our algorithm, we will reformulate the MCP (1.3) equivalently
in the form (1.1), where li = 0 and ui = +∞ for 1 ≤ i ≤ m, li = −∞ and ui = +∞
for m < i ≤ n, and H : U → R

n is defined by

Hi(x)
def
= φ(xi, Fi(x)), i = 1, . . . ,m,

Hi(x)
def
= Fi(x), i = m+ 1, . . . , n.

(1.4)

Hereby, the function φ : R
2 → R is an NCP-function, i.e., it satisfies

φ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.(1.5)

Probably the most popular NCP-function is the Fischer–Burmeister function [17]

φFB(a, b)
def
= a+ b−

√
a2 + b2,
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which is 1-order semismooth. We will show in section 7 that under mild assumptions
on F and φ the function H defined in (1.4) satisfies (A1) and (A2) with p = 1. In
particular, these assumptions hold if F is Lipschitz continuously differentiable and if
φ = φFB is chosen. For details on the variety of available NCP-functions, the reader
is referred to [5, 46]. See also sections 7 and 8.

Most of the available literature on algorithms for problems of the form (1.1)
focuses on special cases like nonsmooth reformulations of NCPs. Line search methods
for problems (1.1) arising from reformulated NCPs and KKT-systems of variational
inequality problems (VIPs) were analyzed in, e.g., [10, 15, 27]. Since x is a zero of the
function H defined in (1.4) if and only if x solves the MCP (1.3), it is possible to omit
the box-constraints in (1.1). Below, we discuss this approach and mention some of its
potential drawbacks. Line search methods for these unconstrained reformulations are
investigated by several authors; see [10, 13, 25, 50, 51].

For unconstrained semismooth equations arising from reformulations of NCPs,
trust-region algorithms were analyzed in [24, 28]. A trust-region method for a box-
constrained reformulation without NCP-function was investigated in [35] under a
strict complementarity condition. This assumption is not needed for our analysis.
Moreover, we stress that the results in [24, 28, 35] are established for monotone trust-
region methods only. Other approaches for the solution of the NCP, MCP, or VIP can
be found in [1, 3, 11, 37, 38]. For a survey, see [2, 14]. Algorithms for more general
classes of nonsmooth equations are investigated in [20, 22, 39, 40, 41, 43, 50, 51].

Among the methods cited above, the trust-region algorithms in [24, 28] are prob-
ably the ones closest related to the class of methods proposed in this work. However,
there are several important differences. In particular, we deal with a more general
class of nonsmooth equations. Moreover, we allow for box-constraints and our algo-
rithm generates feasible iterates with respect to these constraints. Numerical studies
[5, 21, 48, 28] have shown that the performance of optimization methods for the so-
lution of minimization problems can be significantly improved by using nonmonotone
line search- or trust-region techniques. Especially for problems with least-squares
objective functions like (1.2), nonmonotonicity helps to prevent convergence to local–
nonglobal solutions of (1.2). In this paper we introduce a new nonmonotone trust-
region technique and develop a global convergence theory that covers essentially all
results that are known for monotone trust-region algorithms. These results appear
to be new also for the special case of smooth problems (1.1). For other approaches
to nonmonotone line search- and trust-region techniques we refer to [21, 48] and the
references therein. Concerning literature on monotone trust-region methods for op-
timization problems with simple (or, more generally, convex) constraints we refer to
[4, 7, 8, 19, 31, 47, 49].

Especially for problems (1.1) obtained from reformulating the MCP on the basis
of (1.4) one might ask why we keep the box constraint although H(x) �= 0 holds by
definition for all x /∈ X. More generally, if x̄ is a solution to (1.1), then, obviously, it
also solves the unconstrained semismooth equation

H(x) = 0.(1.6)

The corresponding unconstrained counterpart to (1.2) is

minimize h(x).(1.7)

We stress, however, that (1.6) and (1.7) contain the implicit constraint x ∈ U , which
can be quite unstructured and complicated. There are good reasons to prefer the
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constrained formulations (1.1), (1.2) to the unconstrained ones (1.6), (1.7). For in-
stance, there might exist solutions to (1.6) that do not solve (1.1) since they are not
feasible with respect to X. This cannot occur if H(x) �= 0 for all x /∈ X; cf. (1.4).
Sometimes H is known to have nice properties on X (like, e.g., positive definiteness
of the Jacobian H ′(x)), but not outside of X. When working with (1.2) instead of
(1.7) this can help to reduce the risk of finding a local but nonglobal solution of the
minimization problem only. Furthermore, in many applications the domain U of H is
only implicitly available in the sense that H is numerically implemented as an oracle
that returns the value H(x) if x ∈ U and an error message, otherwise. Therefore, al-
gorithms for the solution of problem (1.7) can run into trouble by accidentally coming
too close to the boundary of U . On the other hand, if a feasible point algorithm is
applied to the reformulation (1.2), then it will never interfere with the boundary of
U , since X ⊂ U and U is open.

From the above discussion we conclude that algorithms that are based on the
simply constrained problems (1.1) and (1.2) can, in fact, be more robust and efficient
than those derived from the easier looking problems (1.6) and (1.7). This is confirmed
by the numerical experiments in section 8.

The rest of this paper is organized in seven sections. In section 2 we collect im-
portant results of nonsmooth analysis needed for our investigations. The trust-region
algorithm is developed in section 3. Hereby, we begin in section 3.1 with the un-
derlying Newton-type method, which we augment by a projection to obtain feasible
iterates. Then, in section 3.2 this iteration is embedded into a globally convergent
nonmonotone trust-region method. We proceed in section 4 by proving the global
convergence of this algorithm. In section 5, the locally q-superlinear convergence and
convergence of q-order 1+p, respectively, are established. A concrete implementation
of the decrease condition by means of a Cauchy step is discussed in section 6. Section
7 is devoted to the application of the developed method to the nonlinear comple-
mentarity problem. Numerical results for a subset of the MCPLIB test set [12] are
reported in section 8.

Notations. The �2-norm on R
n is denoted by ‖ · ‖. Given a set M ⊂ R

n and
a point x ∈ R

n, we set M − x def
= {y ; x+ y ∈M}. S0(U,Rn) denotes the set of

all semismooth functions f : R
n ⊃ U → R

n. Sp(U,Rn), 0 < p ≤ 1, is the set of
all p-order semismooth functions. We write f ′(x, ·) : R

n → R
m for the directional

derivative, f ′(x) ∈ R
m×n for the Jacobian, ∂Bf(x) ⊂ R

m×n for the B-subdifferential,
and ∂f(x) ∈ R

m×n for Clarke’s generalized Jacobian of the function f : R
n ⊃ U → R

m

at the point x ∈ U (in case the respective objects exist). ∇f(x) = f ′(x)T denotes the
gradient of the differentiable, real-valued function f at x.

2. Some notions of nonsmooth analysis. For convenience, we collect here
all facts about nonsmooth analysis that are required for our investigations. Readers
familiar with these concepts might want to skip this section.

Throughout, let f : U → R
m be locally Lipschitz continuous on the nonempty

open set U ⊂ R
n. By Df we denote the set of all x ∈ U where f admits a (Fréchet)

derivative f ′(x) ∈ R
m×n. According to Rademacher’s theorem [52], U \ Df has

Lebesgue measure zero. Hence, the following constructions make sense.
Definition 2.1 (see [6, 39, 43]). The set

∂Bf(x)
def
=
{
V ∈ R

m×n ; ∃(xk) ⊂ Df : xk → x, f ′(xk)→ V
}

is called B-subdifferential of f at x ∈ U . Moreover, Clarke’s generalized Jacobian of
f at x is the set ∂f(x)

def
= conv(∂Bf(x)).
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We collect some properties of ∂Bf and ∂f .
Proposition 2.2 (see [6, Prop. 2.6.2]). For all x ∈ U the following holds:
(a) ∂Bf(x) is nonempty and compact.
(b) ∂f(x) is nonempty, compact, and convex.
(c) The set-valued mappings ∂Bf and ∂f , respectively, are locally bounded and

upper semicontinuous.
Next, we recall the directional derivative and define semismoothness.
Definition 2.3 (see [34, 39, 43]).
(a) f is directionally differentiable at x ∈ U if the directional derivative

f ′(x, s) def
= lim

τ→0+

f(x+ τs)− f(x)

τ

exists for all s ∈ R
n.

(b) f is semismooth at x ∈ U if it is locally Lipschitzian at x and the following
limit exists for all s ∈ R

n:

lim
V ∈∂f(x+τd)

d→s, τ→0+

V d.

(c) By S0(U,Rm) we denote the set of all functions f : U → R
m that are semi-

smooth on U .
Note that f ′(x, ·) is positive homogeneous. The following proposition gives an

alternative definition of semismoothness.
Proposition 2.4 (see [43, Thm. 2.3]). For x ∈ U the following statements are

equivalent:
(a) f is semismooth at x,
(b) f ′(x, ·) exists, and

sup
V ∈∂f(x+s)

‖V s− f ′(x, s)‖ = o(‖s‖) as s→ 0.

Corollary 2.5. If f is semismooth at x, then for all s ∈ R
n

f ′(x, s) = lim
V ∈∂f(x+τs)

τ→0+

V s.

Based on Proposition 2.4 (b), a semismooth relaxation of Hölder-continuous dif-
ferentiability can be established.

Definition 2.6 (see [43]). Let 0 < p ≤ 1. The function f is called p-order
semismooth at x ∈ U if f is locally Lipschitz at x, f ′(x, ·) exists, and

sup
V ∈∂f(x+s)

‖V s− f ′(x, s)‖ = O(‖s‖1+p
) as s→ 0.

By Sp(U,Rm) we denote the set of all functions f : U → R
m that are p-order semi-

smooth on U .
Proposition 2.7 (see [43]). If f is semismooth at x ∈ U , then

‖f(x+ s)− f(x)− f ′(x, s)‖ = o(‖s‖) as s→ 0.

If 0 < p ≤ 1 and f is p-order semismooth at x ∈ U , then

‖f(x+ s)− f(x)− f ′(x, s)‖ = O(‖s‖1+p
) as s→ 0.
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Proposition 2.8 (see [18, Lem. 18 and Thm. 21]). Let U1 ⊂ R
n and U2 ⊂ R

l

be open sets and f1 : U1 → U2, f2 : U2 → R
m be locally Lipschitz mappings. Then,

if f1 is (p-order, 0 < p ≤ 1) semismooth at x ∈ U1 and f2 is (p-order) semismooth
at f1(x), the composite map f

def
= f2 ◦ f1 : U1 → R

m is (p-order) semismooth at x.
Moreover,

f ′(x, ·) = f ′2(f1(x), f ′1(x, ·)).
The following is obvious.
Proposition 2.9. If f is continuously differentiable in a neighborhood of x ∈ U

(with p-Hölder continuous derivative, 0 < p ≤ 1), then f is (p-order) semismooth at
x and ∂f(x) = ∂Bf(x) = {f ′(x)}.

The following regularity property is essential for fast local convergence of Newton-
like methods.

Definition 2.10 (see [39]). The point x ∈ U is called BD-regular for f if all
elements in ∂Bf(x) are nonsingular.

Proposition 2.11 (see [39, Prop. 3]). Let x ∈ U be a BD-regular for f . Then
there exist ε > 0 and C > 0 such that all V ∈ ∂Bf(y), ‖y − x‖ ≤ ε are nonsingular
with ‖V −1‖ ≤ C. If, in addition, f is semismooth at x, then there exist δ > 0 and
ζ > 0 such that

‖f(y)− f(x)‖ ≥ ζ‖y − x‖
for all y ∈ R

n, ‖y − x‖ ≤ δ.
3. Development of the algorithm. As motivated above, our algorithm for

the solution of (1.1) will be based on the reformulation

minimize h(x) subject to l ≤ x ≤ u.
Basically, the concept of trust-region methods is to make Newton’s method globally
convergent while maintaining its excellent local convergence behavior. Therefore,
we begin the description of our algorithm with its core, the underlying Newton-like
iteration.

3.1. A Newton-like method with projection. In order to generate feasible
iterates for (1.1) we introduce a Newton-like method that is augmented by the pro-
jection onto X = [l, u]. In what follows, given a nonempty closed convex set C ⊂ R

n,
the mapping PC : R

n → C

PC(x)
def
= argmin

y∈C
‖y − x‖

denotes the projection onto C. Since X = [l, u] is a box, PX can be easily computed:

PX(x) = max{l,min{x, u}} (componentwise).

We now can formulate the algorithm.
Algorithm 3.1 (Newton-like iteration with projection).
1. Choose x0 and set k := 0.
2. If H(xk) = 0, then STOP.
3. Choose a nonsingular matrix Mk ∈ R

n×n and compute the Newton-like step
sNk by solving

Mks
N

k = −H(xk).
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4. Compute the projection of sNk onto X − xk:

sPN

k := PX(xk + sNk)− xk.

5. Set xk+1 := xk + sPN

k , k := k + 1, and go to Step 2.
Since x0 ∈ X andM0 is invertible, the steps sN0 and sPN

0 are well defined. Moreover,
x1 = PX(x0 + sN0 ) ∈ X. By iterating this argument we obtain the well-definedness of
Algorithm 3.1 and the feasibility of the iterates xk with respect to X.

Without the augmentation by a projection the local convergence properties of
Newton-like iterations for semismooth equations were investigated in, e.g., [39, 40, 43].
Newton methods for nonsmooth equations are also discussed in [29, 30, 36, 37, 45].
The additional projection does not affect the convergence speed since it is Lipschitzian
of rank 1 [23, p. 118]. We will give a full proof of the local convergence result for
Algorithm 3.1 since it is instructive to see how semismoothness, BD-regularity, and
other concepts come into play, and, more importantly, because we will need all the
estimates established in this proof for the more involved global-to-local analysis in
Theorem 5.1.

Theorem 3.2. Assume that H : U → R
n is locally Lipschitz continuous. Let

x̄ ∈ X be a BD-regular zero of H at which H is semismooth. Let ‖x0 − x̄‖ and δ > 0
be sufficiently small. Assume that Algorithm 3.1 generates infinitely many iterates,
and that for all k holds

µk
def
= min

V ∈∂BH(xk)
‖(Mk − V )sNk‖ ≤ δ‖sNk‖.(3.1)

Then (xk) converges to x̄.
If in addition

lim
k→∞

µk

‖sNk‖
= 0,(3.2)

then the sequence (xk) converges q-superlinearly to x̄.
If H is p-order semismooth at x̄, 0 < p ≤ 1, and

lim sup
k→∞

µk

‖sNk‖1+p <∞,(3.3)

then (xk) converges with q-order 1 + p to x̄.
Proof. By the local Lipschitz continuity, the BD-regularity of x̄ and Proposition

2.11, there exist ε > 0, L > 0, and C > 0 such that H is Lipschitz continuous on
Bε(x̄)

def
= {x ∈ R

n ; ‖x− x̄‖ ≤ ε} of rank L, and

‖V −1‖ ≤ C ∀ V ∈ ∂BH(x) ∀ x ∈ Bε(x̄).(3.4)

Throughout the proof let xk ∈ Bε(x̄) be arbitrary and let Vk ∈ ∂BH(xk) be such that
µk = ‖(Mk − Vk)sNk‖. We define

dk
def
= xk − x̄, ek

def
= xk + sNk − x̄.

If δ ≤ 1/(2C), then

‖sNk‖ ≤ ‖Vk
−1‖ (‖Mks

N

k‖ + ‖(Vk −Mk)sNk‖) ≤ C‖H(xk)‖ + Cµk

≤ C‖H(xk)‖ + Cδ‖sNk‖ ≤ C‖H(xk)‖ +
1

2
‖sNk‖.
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In particular,

‖sNk‖ ≤ 2C‖H(xk)‖ ≤ 2CL‖dk‖.(3.5)

Further,

Vkek = Vks
N

k + Vkdk = Mks
N

k + (Vk −Mk)sNk + Vkdk

= −H(xk) + Vkdk + (Vk −Mk)sNk

= (Vkdk −H ′(x̄, dk)) + (−H(xk) +H(x̄) +H ′(x̄, dk))

+ (Vk −Mk)sNk .

(3.6)

If δ and ε are sufficiently small, we obtain from (3.4), Proposition 2.4(b), Proposition
2.7, (3.1), and (3.5) that

‖ek‖ ≤ 1

2
‖dk‖.

Since x̄ ∈ X and PX is Lipschitz continuous of rank 1, we thus have

‖dk+1‖ = ‖PX(xk + sNk)− x̄‖ = ‖PX(xk + sNk)− PX(x̄)‖
≤ ‖xk + sNk − x̄‖ = ‖ek‖ ≤ 1

2
‖dk‖.

(3.7)

Therefore, it follows inductively that the sequence (xk) converges to x̄ if δ > 0 and
‖x0 − x̄‖ are sufficiently small.

If (3.2) holds, we see from (3.5), Proposition 2.4(b), and Proposition 2.7, that
the right-hand side of (3.6), and thus, by (3.4), also ek is of the order o(‖dk‖). The
q-superlinear convergence now follows from (3.7).

If H is p-order semismooth at x̄ and if (3.3) holds, then the right-hand side of

(3.6) is obviously of the order O(‖dk‖1+p
). The proof is completed as before.

3.2. The trust-region algorithm. We now wrap Algorithm 3.1 into a globally
convergent trust-region method for problem (1.2). For the time being, let us take
the continuous differentiability of the merit function h for granted. We return to this
issue in Lemma 4.2. This amounts to us building the quadratic model

qk(s) = gT
k s+

1

2
‖Mks‖2

around the current iterate xk, where gk
def
= ∇h(xk). qk is an at least first-order accurate

approximation of h(xk + s) − h(xk). The matrices Mk ∈ R
n×n are the same as in

Theorem 3.2. We stress, however, that the proposed trust-region method is globally
convergent for much more general choices of Mk. Note hereby that, as we will show in
Lemma 4.2 below, the computation of the gradient gk = ∇h(xk) = V T

k H(xk) requires
us only to compute the action of V T

k onto the vector H(xk), where Vk ∈ ∂BH(xk)
is arbitrary. This is usually much cheaper than the computation of the full matrix
Vk. In the case of reformulations of MCPs with the Fischer–Burmeister function (or
other suitable NCP-functions), it can be seen from the structure of ∂BH(xk) (see [10])
that only F ′(xk)T vk, where the vector vk is easily obtained from F (xk), has to be
computed for the gradient. This can be done efficiently by, e.g., the reverse mode of
automatic differentiation. Therefore, we will carry out our global analysis for general
matrices Mk to allow the use of quasi-Newton or other approximations.
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In each iteration of the trust-region algorithm, a trial step sk is computed as
approximate solution of the trust-region subproblem

minimize qk(s) subject to l ≤ xk + s ≤ u, ‖s‖∞ ≤ ∆k.(3.8)

This is a convex box-constrained quadratic program (QP) with feasible set

Xk
def
= [l − xk, u− xk] ∩ [−∆k,∆k]n.

We will assume that the trial steps meet the following two requirements:
feasibility condition

l ≤ xk + sk ≤ u and ‖sk‖∞ ≤ β1∆k, and(3.9)

reduction condition

predk(sk)
def
= − qk(sk) ≥ β2χ(xk)min{1,∆k, χ(xk)}(3.10)

with constants β1 ≥ 1 and β2 > 0 independent of k. Hereby, χ is a suitably chosen
criticality measure:

χ : X → R+ is continuous,

χ(x) = 0 if and only if x is a KKT-point of problem (1.2).
(3.11)

A well-known criticality measure is the norm of the projected gradient

χ(x) = ‖x− PX(x−∇h(x))‖.
We recall that PX(x) = max{l,min{x, u}} denotes the projection onto X. Usually,
the update of the trust-region radius ∆k is controlled by the ratio of actual reduction

aredk(s)
def
= h(xk)− h(xk + s)

and predicted reduction predk
def
= − qk(s).

It has been observed [5, 21, 28, 48] that the performance of nonlinear programming
algorithms can be significantly improved by using nonmonotone line search- or trust-
region techniques. Hereby, in contrast to the traditional approach, the monotonicity
h(xk+1) ≤ h(xk) of the function values is not enforced in every iteration. We introduce
a new nonmonotone trust-region technique for which all global convergence results
for monotone methods remain valid. Hereby, the decrease requirement is significantly
relaxed. Before we describe this approach and the corresponding reduction ratio ρk(s)
in detail, we first state the basic trust-region algorithm.

Algorithm 3.3 (trust-region algorithm).
1. Initialization: Choose η1 ∈ (0, 1), ∆min ≥ 0, and a criticality measure χ.

Choose x0 ∈ X, ∆0 > ∆min, and a nonsingular matrix M0 ∈ R
n×n. Choose

an integer m ≥ 1 and fix λ ∈ (0, 1/m] for the computation of ρk. Set k := 0
and i := −1.

2. Compute χk := χ(xk). If χk = 0, then STOP.
3. Compute a trial step sk satisfying the conditions (3.9) and (3.10).
4. Compute the reduction ratio ρk := ρk(sk).
5. Compute the new trust-region radius ∆k+1 by invoking Algorithm 3.4.
6. If ρk ≤ η1, then reject the step sk, i.e., set xk+1 := xk, Mk+1 := Mk,

increment k by 1, and go to Step 3.
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7. Accept the step: Set xk+1 := xk+sk and choose a nonsingular matrixMk+1 ∈
R

n×n. Set ji+1 := k, increment k and i by 1 and go to Step 2.
The increasing sequence (ji)i≥0 enumerates all indices of accepted steps. More-

over,

xk = xji ∀ ji−1 < k ≤ ji ∀ i ≥ 1.(3.12)

Conversely, if k �= ji for all i, then sk was rejected. In the following we denote the set
of all these “successful” indices ji by S:

S def
= {ji ; i ≥ 0} = {k ; trial step sk is accepted} .

Sometimes, accepted steps will also be called successful. We will repeatedly use the
fact that

{xk ; k ≥ 0} = {xk ; k ∈ S} .
The trust-region updates are implemented as usual. We deal with two different flavors
of update rules simultaneously by introducing a nonnegative parameter ∆min. We
require that after successful steps ∆k+1 ≥ ∆min. If ∆min = 0 is chosen, this holds
automatically. For ∆min > 0, however, it is an additional feature that allows for
special proof techniques.

Algorithm 3.4 (update of the trust-region radius).
Input: ∆k, ρk. Output: ∆k+1.
∆min ≥ 0 and η1 ∈ (0, 1) are the constants defined in Step 1 of Algorithm 3.3.
Let η1 < η2 < 1, and 0 ≤ γ0 < γ1 < 1 < γ2 be fixed.
1. If ρk ≤ η1, then choose

∆k+1 ∈ (γ0∆k, γ1∆k].
2. If ρk ∈ (η1, η2), then choose

∆k+1 ∈ [γ1∆k,max{∆min,∆k}] ∩ [∆min,∞).
3. If ρk ≥ η2, then choose

∆k+1 ∈ (∆k,max{∆min, γ2∆k}] ∩ [∆min,∞).
We still have to describe how the reduction ratios ρk(s) are defined. Here is a

detailed description of Step 4:
4.1. Compute mk := min{i+ 1,m} and choose scalars

λkr ≥ λ, r = 0, . . . ,mk − 1,

mk−1∑
r=0

λkr = 1.

4.2. Compute the relaxed actual reduction raredk := raredk(sk), where

raredk(s)
def
= max

{
h(xk),

mk−1∑
r=0

λkrh(xji−r
)

}
− h(xk + s).(3.13)

4.3. Compute the reduction ratio ρk := ρk(sk) according to

ρk(s)
def
=

raredk(s)

predk(s)
.

Remark 3.5. At the very beginning of the iteration, Step 4 is encountered with
i = −1. In this case the sum in (3.13) is empty and thus

raredk(s) = max {h(xk), 0} − h(xk + s) = h(xk)− h(xk + s) = aredk(s).
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The idea behind the above update rule is the following: Instead of requiring that
h(xk + sk) be smaller than h(xk), it is only required that h(xk + sk) is either less
than h(xk) or less than the weighted mean of the function values at the last mk =
min{i+ 1,m} successful iterates. Of course, if m = 1, then raredk(s) = aredk(s) and
the usual reduction ratio is recovered. Our approach is a slightly stronger requirement
than the straightforward idea to replace aredk with

rared∞
k (s) = max

0≤r<mk

h(xji−r )− h(xk + s).

Unfortunately, for this latter choice it does not seem to be possible to establish all
the global convergence results that are available for the monotone case. For our
approach, however, this is possible without making the theory substantially more
difficult. Moreover, we can approximate rared∞

k arbitrarily accurately by raredk if we
choose λ sufficiently small, in each iteration select 0 ≤ rk < mk satisfying h(xji−rk

) =
max

0≤r<mk

h(xji−r ), and set

λkr = λ if r �= rk, λkrk = 1− (mk − 1)λ.(3.14)

To obtain a globally and locally fast convergent algorithm, we will embed the
Newton-like Algorithm 3.1 into the trust-region Algorithm 3.3 by using it to compute
trial steps sPk. Since we need trial steps that satisfy the feasibility condition (3.9),
we compute sPk slightly different than sPN

k . Whereas sPN

k is the projection of sNk =
−M−1

k H(xk) onto X − xk, we obtain sPk by projection onto the feasible set Xk of the
trust-region subproblem (3.8):

sPk := PXk
(sNk).

Since we will show that sPk = sPN

k finally holds, this modification does not change the
local convergence behavior. If sPk satisfies the decrease condition (3.10), we choose
sk = sPk as trial step. Otherwise, a different trial step verifying (3.9) and (3.10) must
be computed. In section 6 we propose a general way to do this. We thus arrive at the
final version of the algorithm.

Algorithm 3.6 (trust-region projected-Newton algorithm).
As Algorithm 3.3, but with Step 3 implemented as follows:
3.1. If coming from Step 6, then set sNk := sNk−1. Otherwise compute the Newton-

like step sNk by solving Mks
N

k = −H(xk).
3.2. Compute the projected Newton step sPk := PXk

(sNk).
3.3. If sk = sPk satisfies the decrease condition (3.10), then set sk := sPk. Otherwise,

compute a step sk satisfying (3.9) and (3.10).

4. Global convergence. We first establish the continuous differentiability of
the merit function h. The proof is based on the following lemma. A similar result
can be found in [42, Proof of Thm. 3.1 (iii)].

Lemma 4.1. Let f : U → R be locally Lipschitz continuous on the nonempty open
set U ⊂ R

n. Assume that f is continuously differentiable on U \ f−1(0). Then the
function f2 is continuously differentiable on U . Moreover, ∇f2(x) = 2f(x)vT for all
v ∈ ∂f(x) and all x ∈ U .

Proof. By assumption, f is continuously differentiable on the open set U \f−1(0).
Therefore, f2 is C1 on U \ f−1(0) with gradient ∇f2(x) = 2f(x)∇f(x). Moreover,
we have ∂f(x) = {∇f(x)T }. Further, it follows immediately from the local Lipschitz
continuity of f that at all x ∈ f−1(0) the function f2 is differentiable with ∇f2(x) =
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0 = 2f(x)vT for all v ∈ ∂f(x). To prove the continuity of ∇f2 at x ∈ f−1(0), note
that the local boundedness of ∂f implies ∇f2(y) = 2f(y)v(y)T → 0 as y → x, where
v(y) ∈ ∂f(y).

Lemma 4.2. Under the assumptions (A1) and (A2) on the mapping H, the

function h(x) = ‖H(x)‖2/2 is continuously differentiable on U with gradient ∇h(x) =
V TH(x), where V ∈ ∂H(x) is arbitrary. In particular, (A1) and (A2) imply (A2′).

Proof. For 1 ≤ i ≤ n, the component function Hi of H is semismooth and thus
locally Lipschitz continuous on U . Moreover, it is C1 on U \ H−1

i (0). Therefore,
H2

i is C1 on U by Lemma 4.1. The same then holds true for h(x) = 1
2

∑
H2

i (x).
Furthermore, for all V = (v1, . . . , vn)T ∈ ∂H(x) holds vi ∈ ∂Hi(x), 1 ≤ i ≤ n (see [6,
Prop. 2.6.2.(e)]) and thus by Lemma 4.1

∇h(x) =

n∑
i=1

∇H2
i (x) =

n∑
i=1

Hi(x)vi = V TH(x).

In the next lemma an important decrease property of the function values h(xk)
is established.

Lemma 4.3. Let xk, sk, ∆k, ji, etc., be generated by Algorithm 3.3. Then for all
computed indices i ≥ 1 holds

h(xji) < h(x0)− η1λ
i−2∑
r=0

predjr (sjr )− η1predji−1
(sji−1).(4.1)

Proof. We will use the short notations aredk = aredk(sk), raredk = raredk(sk),
and predk = predk(sk). First, let us note that (3.10) implies predk > 0.

The rest of the proof is by induction. For i = 1 we have by (3.12) and using
ρj0(sj0) > η1

h(xj1) = h(xj0+1) = h(xj0)− aredj0 < h(xj0)− η1predj0 = h(x0)− η1predj0 .

Now assume that (4.1) holds for 1, . . . , i.

If raredji = aredji then, using (4.1) and λ ≤ 1,

h(xji+1) = h(xji+1) = h(xji)− aredji = h(xji)− raredji

< h(x0)− η1λ
i−2∑
r=0

predjr − η1predji−1
− η1predji

≤ h(x0)− η1λ
i−1∑
r=0

predjr − η1predji .

If raredji �= aredji then raredji > aredji , and with q = min{i,m− 1} we obtain

h(xji+1
) = h(xji+1) =

q∑
p=0

λjiph(xji−p
)− raredji

<

q∑
p=0

λjip

(
h(x0)− η1λ

i−p−2∑
r=0

predjr − η1predji−p−1

)
− η1predji .
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Using {0, . . . , q} × {0, . . . , i− q − 2} ⊂ {(p, r) ; 0 ≤ p ≤ q, 0 ≤ r ≤ i− p− 2}, λji0 +
· · ·+ λjiq = 1, and λjip ≥ λ, we can proceed as follows:

h(xji+1) < h(x0)− η1λ
i−q−2∑
r=0

(
q∑

p=0

λjip

)
predjr − η1λ

q∑
p=0

predji−p−1
− η1predji

≤ h(x0)− η1λ
i−q−2∑
r=0

predjr − η1λ
i−1∑

r=i−q−1

predjr − η1predji

= h(x0)− η1λ
i−1∑
r=0

predjr − η1predji .

Lemma 4.4. Let xk, sk, ∆k, etc., be generated by Algorithm 3.3. Then for
arbitrary x ∈ X with χ(x) �= 0 and 0 < η < 1 there exist ∆ > 0 and δ > 0 such that

ρk ≥ η

holds whenever ‖xk − x‖ ≤ δ and ∆k ≤ ∆ is satisfied.
Proof. Since χ(x) �= 0, by continuity there exist δ > 0 and ε > 0 such that

χ(xk) ≥ ε for all k with ‖xk − x‖ ≤ δ. Now, for 0 < ∆ ≤ min{1, ε} and any k with
‖xk − x‖ ≤ δ and 0 < ∆k ≤ ∆, we obtain from the decrease condition (3.10)

predk(sk) = −qk(sk) ≥ β2χ(xk)min {1,∆k, χ(xk)} ≥ β2ε∆k.

In particular, by (3.9)

‖sk‖∞ ≤ β1∆k ≤ β1

β2ε
predk(sk).(4.2)

Further, with appropriate τk ∈ [0, 1]

aredk(sk) = h(xk)− h(xk + sk) = −∇h(xk + τksk)T sk

= −qk(s) + (gk −∇h(xk + τksk))T sk +
1

2
‖Mksk‖2

≥ predk(sk) + (gk −∇h(xk + τksk))T sk.

Since ∇h is continuous, there exists δ′ > 0 such that

‖∇h(x′)−∇h(x)‖1 ≤ (1− η)β2ε

2β1

for all x′ ∈ X with ‖x′ − x‖ < δ′. By reducing ∆ and δ, if necessary, such that
δ +
√
nβ1∆ < δ′ we achieve, using (3.9), that for all k with ‖xk − x‖ ≤ δ and

0 < ∆k ≤ ∆

‖xk + τksk − x‖ ≤ ‖xk − x‖ + τk‖sk‖ ≤ δ +
√
nβ1∆ < δ′, ‖xk − x‖ ≤ δ < δ′.

Hence, for all these indices k,

‖gk −∇h(xk + τksk)‖1 ≤ ‖gk −∇h(x)‖1 + ‖∇h(x)−∇h(xk + τksk)‖1 ≤ (1− η)β2ε

β1
,
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and thus by (4.2)

|(gk −∇h(xk + τksk))T sk| ≤ (1− η)β2ε

β1
‖sk‖∞ ≤ (1− η)predk(sk).

This implies that for all these k there holds

raredk(sk) ≥ aredk(sk) ≥ predk(sk)− |(gk −∇h(xk + τksk))T sk| ≥ ηpredk(sk).

The proof is complete.
Lemma 4.5. Algorithm 3.3 either terminates after finitely many steps with a

KKT-point xk of (1.2) or generates an infinite sequence (sji) of accepted steps.
Proof. Assume that Algorithm 3.3 neither terminates nor generates an infinite

sequence (sji) of accepted steps. Then there exists a smallest index k0 such that all
steps sk are rejected for k ≥ k0. In particular, xk = xk0 , k ≥ k0, and the sequence of
trust-region radii ∆k tends to zero as k →∞, because

∆k0+j ≤ γj
1∆k0 .

Since the algorithm does not terminate, we know that χ(xk0) �= 0. But now Lemma
4.4 with x = xk0 yields that sk is accepted as soon as ∆k becomes sufficiently small.
This contradicts our assumption. Therefore, the assertion of the lemma is true.

Lemma 4.6. Assume that Algorithm 3.3 generates infinitely many successful steps
sji and that there exists S ′ ⊂ S with∑

k∈S′
∆k =∞.(4.3)

Then lim infS′�k→∞ χ(xk) = 0.
Proof. Let the assumptions of the lemma hold and assume that the assertion is

wrong. Then there exists ε > 0 such that χ(xk) ≥ ε for all k ∈ S ′ ⊂ S. From (4.3)
follows that S ′ is not finite. For all k ∈ S ′

predk(sk) ≥ β2χ(xk)min {1,∆k, χ(xk)} ≥ β2εmin {1,∆k, ε}
holds by (3.10). From this estimate, the nonnegativity of h, and Lemma 4.3 we obtain
for all j ∈ S ′, using λ ≤ 1

h(x0) ≥ h(x0)− h(xj) > η1λ
∑
k∈S
k<j

predk(sk) ≥ η1λ
∑
k∈S′
k<j

predk(sk)

≥ η1λβ2ε
∑
k∈S′
k<j

min {1,∆k, ε} → ∞ (as j →∞).

This is a contradiction. Therefore, the assumption was wrong and the lemma is
proved.

We now have everything at hand that we need to establish our first global conver-
gence result. It is applicable in the case γ0 > 0, ∆min > 0 and says that accumulation
points are KKT-points of (1.2).

Theorem 4.7. Let γ0 > 0 and ∆min > 0. Assume that Algorithm 3.3 does not
terminate after finitely many steps with a KKT-point xk of (1.2). Then the algorithm
generates infinitely many accepted steps (sji). Moreover, every accumulation point of
(xk) is a KKT-point of (1.2).
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Proof. Suppose that Algorithm 3.3 does not terminate after a finite number
of steps. Then according to Lemma 4.5 infinitely many successful steps (sji) are
generated. Assume that x̄ is an accumulation point of (xk) that is not a KKT-point
of (1.2). Since χ(x̄) �= 0, invoking Lemma 4.4 with x = x̄ yields ∆ > 0 and δ > 0 such
that k ∈ S holds for all k with ‖xk − x̄‖ ≤ δ and ∆k ≤ ∆. Since x̄ is an accumulation
point, there exists an infinite increasing sequence j′i ∈ S, i ≥ 0, of indices such that
‖xj′i − x̄‖ ≤ δ and xj′i → x̄.

If (j′i−1) ∈ S, then ∆j′i ≥ ∆min. Otherwise, sj′i−1 was rejected, which, since then
xj′i−1 = xj′i , is only possible if ∆j′i−1 > ∆, and therefore ∆j′i ≥ γ0∆j′i−1 > γ0∆. We
conclude that for all i holds ∆j′i ≥ min{∆min, γ0∆}. Now Lemma 4.6 is applicable
with S ′ = {j′i ; i ≥ 0} and yields

0 �= χ(x̄) = lim
i→∞

χ(xj′i) = lim inf
i→∞

χ(xj′i) = 0,

where we have used the continuity of χ. This is a contradiction. Therefore, the
assumption χ(x̄) �= 0 was wrong.

Next, we prove a result that holds also for ∆min = 0. Moreover, the existence of
accumulation points is not required.

Theorem 4.8. Let γ0 > 0 or ∆min = 0 hold. Assume that Algorithm 3.3 does not
terminate after finitely many steps with a KKT-point xk of (1.2). Then the algorithm
generates infinitely many accepted steps (sji). Moreover,

lim inf
k→∞

χ(xk) = 0.(4.4)

In particular, if xk converges to x̄, then x̄ is a KKT-point of (1.2).
Proof. By Lemma 4.5, infinitely many successful steps (sji) are generated.
Now assume that (4.4) is wrong, i.e.,

lim inf
k→∞

χ(xk) > 0.(4.5)

Then we obtain from Lemma 4.6 that∑
k∈S

∆k <∞.(4.6)

In particular, (xji) is a Cauchy sequence by (3.9). Therefore, (xk) converges to some
limit x̄, at which according to (4.5) and the continuity of χ holds χ(x̄) �= 0.

Case 1. ∆min > 0.
Then by assumption also γ0 > 0, and Theorem 4.7 yields χ(x̄) = 0, which is a

contradiction.
Case 2. ∆min = 0.
Lemma 4.4 with x = x̄ and η = η2 yields ∆ > 0 and δ > 0 such that k ∈ S and

∆k+1 ≥ ∆k holds for all k with ‖xk − x̄‖ ≤ δ and ∆k ≤ ∆. Since xk → x̄, there
exists k′ ≥ 0 with ‖xk − x̄‖ ≤ δ for all k ≥ k′.

Case 2.1. There exists k′′ ≥ k′ with ∆k ≤ ∆ for all k ≥ k′′.
Then k ∈ S and (inductively) ∆k ≥ ∆k′′ for all k ≥ k′′. This contradicts (4.6).
Case 2.2. For infinitely many k holds ∆k > ∆.
By (4.6) there exists k′′ ≥ k′ with ∆ji ≤ ∆ for all ji ≥ k′′. Now, for each

ji ≥ k′′, there exists an index ki ≥ ji such that ∆k ≤ ∆, ji ≤ k < ki, and ∆ki > ∆.
If ki ∈ S, set j′i = ki, thus obtaining j′i ∈ S with ∆j′i > ∆. If ki /∈ S, we have
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j′i
def
= ki − 1 ≥ ji ≥ k′, and thus j′i ∈ S, since by construction ∆j′i ≤ ∆. Moreover,

∆ < ∆ki ≤ γ2∆j′i (here ∆min = 0 is used) implies that ∆j′i > ∆/γ2. By this
construction, we obtain an infinitely increasing sequence (j′i) ⊂ S with ∆j′i > ∆/γ2.
Again, this yields a contradiction to (4.6).

Therefore, in all cases we obtain a contradiction. Thus, the assumption was wrong
and the proof of (4.4) is complete.

Finally, if xk → x̄, the continuity of χ and (4.4) imply χ(x̄) = 0. Therefore, x̄ is
a KKT-point of (1.2).

The next result shows that under appropriate assumptions the lim inf in (4.4) can
be replaced by lim.

Theorem 4.9. Let γ0 > 0 or ∆min = 0 hold. Assume that Algorithm 3.3 does not
terminate after finitely many steps with a KKT-point xk of (1.2). Then the algorithm
generates infinitely many accepted steps (sji). Moreover, if there exists a set Ω that
contains (xk) and on which χ is uniformly continuous and bounded, then

lim
k→∞

χ(xk) = 0.(4.7)

Proof. In view of Theorem 4.8 we have only to prove (4.7). Thus, let us assume
that (4.7) is not true. Then there exists ε > 0 such that χ(xk) ≥ 2ε for infinitely
many k ∈ S. Since (4.4) holds, we thus can find increasing sequences (j′i)i≥0 and
(k′i)i≥0 with j′i < k

′
i < j

′
i+1 and

χ(xj′i) ≥ 2ε, χ(xk) > ε ∀ k ∈ S with j′i < k < k
′
i, χ(xk′

i
) ≤ ε.

Setting S ′ =
⋃∞

i=0 S ′i with S ′i = {k ∈ S ; j′i ≤ k < k′i}, we have

lim inf
S′�k→∞

χ(xk) ≥ ε.

Therefore, with Lemma 4.6 ∑
k∈S′

∆k <∞.

In particular,
∑

k∈S′
i
∆k → 0 as i→∞, and thus, using (3.9),

‖xk′
i
− xj′i‖∞ ≤

∑
k∈S′

i

‖sk‖∞ ≤ β1

∑
k∈S′

i

∆k → 0 (as i→∞).

This is a contradiction to the uniform continuity of χ, since

lim
i→∞

(xk′
i
− xj′i) = 0, but |χ(xk′

i
)− χ(xj′i)| ≥ ε ∀ i ≥ 0.

Therefore, the assumption was wrong and the assertion is proved.
The above results establish global convergence to a KKT-point x̄ of the minimiza-

tion reformulation (1.2). Of course, it may happen that x̄ fails to be a global solution,
i.e., fails to satisfy H(x̄) = 0 if (1.1) possesses a solution. However, as can be seen
from our numerical results in section 8, our nonmonotone trust-region approach very
successfully avoids convergence to local–nonglobal solutions. Moreover, in the context
of semismooth reformulations of MCPs, conditions can be stated under which a local
solution to (1.2) is a global solution. See [15, Thm. 2].
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5. Local convergence. In this section we will prove under relatively weak as-
sumptions that Algorithm 3.6 turns into Algorithm 3.1 as soon as xk comes sufficiently
close to a BD-regular solution x̄ of (1.1). Of course, we have to take care that close
to x̄ the projected Newton step is used as trial step which requires (3.10) to hold.
Note that (3.9) is automatically satisfied since sPk ∈ Xk. We will see that it suffices
to require that the following implication holds:

‖xk − x̄‖ < β3, predk(sPk) ≥ β4h(xk)

=⇒ (3.10) is satisfied for sk = sPk,
(5.1)

where β3 > 0 and 0 < β4 < 1 are constants independent of k. Since h(x̄) = 0, this
means that for xk close to x̄ the step sk = sPk satisfies (3.10) if the predicted decrease
is at least a fraction of the maximum possible actual decrease h(xk)− h(x̄) = h(xk).
Therefore, (5.1) is certainly a reasonable requirement, which in section 6 will be shown
to hold for decrease conditions that are implemented by means of a Cauchy step.

Theorem 5.1. Let the assumptions (A1) and (A2) hold. Assume ∆min > 0 and
that Algorithm 3.6 generates infinitely many iterates. Let x̄ ∈ X be a BD-regular
zero of H and let (5.1) be satisfied. Then there exist δ > 0 and ε > 0 such that the
following holds:

If the index k′ satisfies (k′ − 1) ∈ S, ‖xk′ − x̄‖ ≤ ε, and if (3.1) holds for all
k ≥ k′, then

(a) for all k ≥ k′ the step sPk satisfies sPk = sPN

k = PX(xk + sN)− xk, is chosen as
trial step, i.e., sk = sPk, and is accepted, i.e., k ∈ S;

(b) the sequence (xk) converges to x̄;
(c) if (3.2) holds for all k ≥ k′, then (xk) converges q-superlinearly to x̄, and

moreover,

lim
k→∞

qk(sPk)

h(xk)
= lim

k→∞
qk(sNk)

h(xk)
= −1;(5.2)

(d) if p > 0 and (3.3) holds for all k ≥ k′, then (xk) converges with q-order 1 + p
to x̄ and (5.2) holds.

Proof. Assume that

δ > 0 and ε > 0 are chosen sufficiently small(5.3)

with ε < β3, the constant in (5.1). Then Proposition 2.11 yields a constant ζ > 0
such that

‖H(x)‖ ≥ ζ‖x− x̄‖ ∀ Bε(x̄)
def
= {x ; ‖x− x̄‖ ≤ ε} .(5.4)

Now let k be arbitrary such that (k − 1) ∈ S, xk ∈ Bε(x̄), and such that (3.1) is
satisfied.

Let dk
def
= xk−x̄, ek

def
= xk+sNk−x̄, and Vk ∈ ∂BH(xk) such that µk = ‖(Mk − Vk)sNk‖.

We begin by copying the proof of Theorem 3.2 to derive the equations (3.4)–(3.6).
From (3.5) and the fact that (k− 1) ∈ S and ∆min > 0 we conclude, using (5.3), that

‖sNk‖ ≤ 2C‖H(xk)‖ = 2C‖H(xk)−H(x̄)‖ ≤ 2CLε ≤ ∆min ≤ ∆k.(5.5)

In particular,

sPk = PXk
(sNk) = PX−xk

(sNk) = PX(xk + sNk)− xk = sPN

k .
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Since xk ∈ X and PX is Lipschitz continuous of rank 1 it follows that

‖sPk‖ = ‖PX(xk + sNk)− PX(xk)‖ ≤ ‖sNk‖.(5.6)

Now, using gk = V T
k H(xk), (3.1), (3.5), and (5.5)

|qk(sNk) + h(xk)| =

∣∣∣∣gT
k s

N

k +
1

2
‖Mks

N

k‖2 + h(xk)

∣∣∣∣ =
∣∣H(xk)TVks

N

k + 2h(xk)
∣∣

≤ ∣∣H(xk)TMks
N

k + 2h(xk)
∣∣ + ‖H(xk)‖µk = ‖H(xk)‖µk

≤ δ‖H(xk)‖‖sNk‖ ≤ 4Cδh(xk).

(5.7)

This shows

−(1 + 4Cδ)h(xk) ≤ qk(sNk) ≤ −(1− 4Cδ)h(xk).(5.8)

Furthermore, since x̄ ∈ X, the properties of the projection PX yield

‖sPk − sNk‖ = ‖PX(xk + sNk)− (xk + sNk)‖ ≤ ‖x̄− (xk + sNk)‖ = ‖ek‖.(5.9)

Thus by (5.6), (5.9), and (3.5)

|qk(sPk)− qk(sNk)| =

∣∣∣∣gT
k (sPk − sNk) +

1

2
(sPk + sNk)TMT

k Mk(sPk − sNk)

∣∣∣∣
≤
(
‖Vk‖‖H(xk)‖ + ‖Mk‖2‖sNk‖

)
‖sPk − sNk‖

≤
(
‖Vk‖ + 2C‖Mk‖2

)
‖H(xk)‖‖ek‖.

(5.10)

From (3.6) and (5.4) we conclude as in the proof of Theorem 3.2 that

‖ek‖
‖H(xk)‖ ≤

1

ζ

‖ek‖
‖dk‖ → 0 (as (δ, ε)→ 0).(5.11)

Now let θ ∈ (0, 1) be arbitrary. Due to the upper semicontinuity of ∂BH, cf. Propo-
sition 2.2, the boundedness of (‖Mk‖), and (5.11), we achieve by invoking (5.3) that

2
(
‖Vk‖ + 2C‖Mk‖2

) ‖ek‖
‖H(xk)‖ + 4Cδ ≤ θ.

This in combination with (5.8) and (5.10) shows that

−(1 + θ)h(xk) ≤ qk(sPk) ≤ −(1− θ)h(xk).(5.12)

If θ was chosen ≤ 1− β4, then

predk(sPk) = −qk(sPk) ≥ (1− θ)h(xk) ≥ β4h(xk).

Therefore, (5.1) implies that sk = sPk = sPN

k . As in (3.7) we obtain

‖xk + sPk − x̄‖ ≤ ‖ek‖,(5.13)

and thus

‖H(xk + sk)‖ = ‖H(xk + sPk)‖ ≤ L‖xk + sPk − x̄‖ ≤ L‖ek‖,(5.14)
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where L denotes the Lipschitz constant of H on Bε(x̄). By (5.3), (5.11), and (5.14)
we thus may assume that

raredk(sk) ≥ h(xk)− h(xk + sk) ≥ h(xk)− L
2

2
‖ek‖2 ≥ (1− θ)h(xk).(5.15)

If θ was chosen < (1− η1)/(1 + η1), then by (5.12) and (5.15)

ρk(sk) =
raredk(sk)

predk(sk)
≥ (1− θ)h(xk)

(1 + θ)h(xk)
> η1.

Consequently, sk = sPk is accepted. Moreover, by (5.11), (5.13) and again invoking
(5.3) we get xk+1 ∈ Bε(x̄).

We briefly resume what we have shown so far.
If δ > 0 and ε > 0 are sufficiently small and k is such that (k−1) ∈ S, xk ∈ Bε(x̄),

and (3.1) holds, then sk = sPk = sPN

k is chosen as trial step and this step is accepted,
i.e., k ∈ S. Moreover, we have xk+1 ∈ Bε(x̄).

Consequently, (k + 1) satisfies again the requirements and we obtain inductively
that assertion (a) holds.

Since by (a) we know that for k ≥ k′ Algorithm 3.6 turns into Algorithm 3.1,
the assertions (b)–(d), with the exception of (5.2), follow directly from Theorem 3.2.
Finally, to prove (5.2) we observe that, if (3.2) holds, we can strengthen (5.7):

|qk(sNk) + h(xk)| ≤ ‖H(xk)‖µk = o(h(xk)),(5.16)

where we have used (3.2) and (5.5). From (5.10) and (5.11) we conclude

|qk(sPk)− qk(sNk)| = O(‖H(xk)‖‖ek‖) = o(h(xk)).

This and (5.16) imply (5.2).

6. An implementable decrease condition. Our convergence analysis was
carried out on the basis of the abstract condition (3.10) involving a criticality measure
χ. For fast local convergence we also required (5.1). In this section we describe
a concrete implementation of these conditions by means of a Cauchy step that is
defined using an affinely scaled gradient. Similar approaches can be found in [7, 49].

We define the Cauchy step sCk as the solution of

minimize qk(s) subject to s = −tD(xk)2γgk, t ≥ 0, s ∈ Xk.

Hereby, γ ≥ 1 is fixed and the diagonal affine-scaling matrix D(x) ∈ R
n×n is defined

by

D(x)ii
def
=




min{κD, xi − li} if (∇h(x))i > 0,
min{κD, ui − xi} if (∇h(x))i < 0,
min{κD, xi − li, ui − xi} if (∇h(x))i = 0,

where κD > 0 is a constant.
The following condition will replace the abstract condition (3.10).
Fraction of Cauchy decrease condition.

qk(sk) ≤ αqk(sCk),(6.1)

where α ∈ (0, 1) is a constant.
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Let χ denote any criticality measure such that

β5χ(x) ≤ χAS(x)
def
= ‖D(x)γ∇h(x)‖(6.2)

holds on X for some β5 > 0. We will show that there exists β2 > 0 such that the
validity of (6.1) implies (3.10). Certainly, a natural choice for χ satisfying (6.2) is
χ = χAS/β5. Therefore, we first show that χAS is a criticality measure.

Lemma 6.1. The function χAS defined in (6.2) is a criticality measure, i.e.,
satisfies (3.11).

Proof. It is easily seen that for x ∈ X D(x)γ∇h(x) = 0 holds if and only if

(∇h(x))i



≥ 0 if xi = li,
≤ 0 if xi = ui,
= 0 if li < xi < ui,

which are the KKT-conditions of (1.2).
We still have to prove the continuity of χAS. Let x ∈ X be arbitrary and set I+ =

{i ; (∇h(x))i > 0}, I− = {i ; (∇h(x))i < 0}. Since ∇h is continuous, there exists
δ > 0 such that for all y ∈ X, ‖y − x‖ ≤ δ, and all i ∈ I+ ∪ I− (∇h(x))i(∇h(y))i > 0
holds. Now let y ∈ X, ‖y − x‖ ≤ δ, be arbitrary and set r(x, y) = D(y)γ∇h(y) −
D(x)γ∇h(x). For all i ∈ I+
|r(x, y)i| ≤ (∇h(x))i|(D(y)γ −D(x)γ)ii|+D(y)γ

ii|(∇h(y)−∇h(x))i|
≤ (∇h(x))i|min{κD, yi − li}γ −min{κD, xi − li}γ |+ κγ

D|(∇h(y)−∇h(x))i|
holds. The same calculation yields for i ∈ I−
|r(x, y)i| ≤ |(∇h(x))i||min{κD, ui − yi}γ −min{κD, ui − xi}γ |+ κγ

D|(∇h(y)−∇h(x))i|.
For all i /∈ I+ ∪ I−, (∇h(x))i = 0 holds and thus

|r(x, y)i| = D(y)γ
ii|(∇h(y)−∇h(x))i| ≤ κγ

D|(∇h(y)−∇h(x))i|.
In all three cases we see that |r(x, y)i| → 0 as y → x. Hence, χAS is continuous.

The next lemma gives a sufficient condition for χAS to be uniformly continuous.
This is needed for Theorem 4.9.

Lemma 6.2. The criticality measure χAS defined in (6.2) is uniformly continuous
on Ω ⊂ U if ∇h is bounded and uniformly continuous on Ω.

Proof. Under the assumptions on ∇h it follows easily from the estimates of
|r(x, y)i| in the proof of Lemma 6.1 that χAS is uniformly continuous on Ω.

Remark 6.3. The assumptions of Lemma 6.2 are met if Ω is compact and h is
continuously differentiable. According to Lemma 4.2, the latter is ensured by the
assumptions (A1) and (A2).

We have the following relation between (3.10) and (6.1).
Lemma 6.4. Let the criticality measure χ satisfy (6.2). Assume that the sequence

(‖Mk‖) is bounded above by a constant CM . Then there exists a constant β2 > 0 that
only depends on α, β5, γ, κD, and CM such that the following holds: If χ(xk) �= 0
and if the trial step sk satisfies the fraction of Cauchy decrease condition (6.1), then
(3.10) also holds.

Proof. Set Dk = D(xk), dk = −D2γ
k gk, and ĝk = Dγ

kgk. We will derive an
upper bound for qk(sCk) = qk(t∗dk) = min {qk(tdk) ; t ≥ 0, tdk ∈ Xk}, and then apply
qk(sk) ≤ αqk(t∗dk).
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First, observe that dk is a descent direction of qk at 0, since by (6.2)

∇qk(0)T dk = gk
T dk = −χAS(xk)2 ≤ −β2

5χ(xk)2 < 0.

The maximum stepsize allowed by the trust region constraint is

t1 = min

{
∆k

|(dk)i| ; (dk)i �= 0

}
=

∆k

(Dk)γ
ii|(ĝk)i| ≥

∆k

κγ
DχAS(xk)

.(6.3)

The maximum stepsize t2 admitted by the lower bounds of the set X − xk is

t2 = min

{
(xk − l)i

|(dk)i| ; (dk)i < 0

}
= min

{
(xk − l)i

(Dk)γ
ii(ĝk)i

; (gk)i > 0, (xk)i > li

}

≥ min

{
(xk − l)i

min{κD, (xk − l)i}γχAS(xk)
; (gk)i > 0, (xk)i > li

}
≥ κ1−γ

D

χAS(xk)
.

(6.4)

In the same way, the stepsize t3 admitted by the upper bounds of the set X − xk can
be estimated:

t3 = min

{
(u− xk)i

(dk)i
; (dk)i > 0

}
≥ κ1−γ

D

χAS(xk)
.

In the case Mkdk = 0 we set t4 = +∞. Otherwise, the function qk(tdk), t ≥ 0, attains
its global minimum at t = t4, where

t4 =
−gT

k dk

‖Mkdk‖2
=
‖ĝk‖2
‖Mkdk‖2

≥ ‖ĝk‖2
‖Mk‖2‖Dγ

k‖2‖ĝk‖2
=

1

‖Mk‖2‖Dγ
k‖2
≥ 1

C2
Mκ

2γ
D

.(6.5)

We have t∗ = min {t1, t2, t3, t4}. If t∗ < t4, then ‖ĝk‖2 > t∗‖Mkdk‖2 and

qk(t∗dk) = −t∗‖ĝk‖2 +
1

2
(t∗)2‖Mkdk‖2 < − t

∗

2
χAS(xk)2

= −min {t1, t2, t3}
2

χAS(xk)2.

(6.6)

If, on the other hand, t∗ = t4, then

qk(t∗dk) = − t4
2
χAS(xk)2.(6.7)

The proof is completed by combining (6.2) and the estimates (6.3)–(6.7).
Therefore, for any criticality measure satisfying (6.2), we can replace the decrease

condition (3.10) by (6.1). Moreover, the Cauchy step sCk , which is easy to compute as
could be seen in the proof of Lemma 6.4, is always an admissible trial step. Also, the
optimal solution of the trust-region subproblem satisfies (6.1). Therefore, the global
convergence theory of section 4 is applicable. Conditions that imply the uniform
continuity of χ = χAS needed in Theorem 4.9 were established in Lemma 6.1.

On the basis of χAS and the fraction of Cauchy decrease condition (6.1) it is
possible to state implementations for Step 3.3 of Algorithm 3.6 such that (a) the
reduction condition (3.10) is easy to check, and (b) condition (5.1) is satisfied.

There are several ways to do this.
(I) We begin with a universally applicable approach. Certainly, the function

χI(x) = min{χAS(x), (β4h(x))1/2}
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with β4 ∈ (0, 1) is a criticality measure. Now let χ be any criticality measure verifying

β5χ(x) ≤ χI(x), x ∈ X,(6.8)

for some β5 > 0. Then (6.2) holds. Let Step 3.3 of Algorithm 3.6 be implemented as
follows:

3.3. If sk = sPk satisfies

qk(sk) ≤ max{αqk(sCk),−β4h(xk)},(6.9)

then set sk := sPk. Otherwise, compute a step sk satisfying (3.9) and (6.9).
Note that condition (6.9) is a relaxation of (6.1). Obviously, (5.1) holds for arbitrary
β3 > 0. Furthermore, under the assumptions of Lemma 6.4 there is β2 > 0 such that
all computed steps sk satisfy (3.10). In fact, if qk(sk) ≤ −β4h(xk), (3.10) immediately
holds for any β2 ≤ 1. On the other hand, if qk(sk) ≤ −αqk(sCk), then Lemma 6.4 is
applicable. Finally, it is easily seen that the particular choice χ = χI is uniformly
continuous if both χAS and H are uniformly continuous on Ω. Lemma 6.2 provides a
sufficient condition for the uniform continuity of χAS.

(II) We now discuss a situation in which it suffices for χ to obey (6.2). Assume
that minV ∈∂BH(x) ‖V ‖ ≤ CV <∞ on X. Then with V (x) = argminV ∈∂BH(x) ‖V ‖

χAS(x) = ‖D(x)γ∇h(x)‖ ≤ κγ
D‖V (x)‖‖H(x)‖ ≤ κγ

DCV ‖H(x)‖
holds. Therefore, if β4 ∈ (0, 1) is fixed and the criticality measure χ satisfies (6.2)
with β5 replaced by β′5, then (6.8) holds for 0 < β5 ≤ β′5 min{1, (β4/2)1/2/(κγ

DCV )}.
Therefore, (I) applies. We stress that in this scenario we can choose χ = χAS.

(III) Finally, we state conditions under which we can implement Step 3.3 of Al-
gorithm 3.6 by means of the fraction of Cauchy decrease condition:

3.3. If sk = sPk satisfies (6.1) then set sk := sPk. Otherwise, compute a step sk
satisfying (3.9) and (6.1).

Let the criticality measure χ satisfy (6.2). Assume that the sequences (‖Mk‖) and
(‖M−1

k ‖) are bounded and that

‖MT
k H(xk)− gk‖ = o(‖H(xk)‖) (as k →∞).

Note that this holds true if, e.g., Mk ∈ ∂H(xk). By Lemma 6.4 there is β2 > 0 such
that (3.10) holds for all computed steps. Under the above assumptions we obtain

qk(sCk) ≥ qk(−(MT
k Mk)−1gk) = −1

2
gT

k (MT
k Mk)−1gk

= −h(xk) +
1

2
(MT

k H(xk)− gk)T (MT
k Mk)−1(MT

k H(xk) + gk)

= −h(xk)− 1

2
(MT

k H(xk)− gk)T (MT
k Mk)−1

(
(MT

k H(xk)− gk)− 2MT
k H(xk)

)
= −h(xk) + o(‖H(xk)‖2) = −h(xk) + o(h(xk)).

Therefore, for arbitrary β4 ∈ (α, 1) we can find β3 > 0 such that for all k satisfying
the left-hand side of (5.1) holds

qk(sPk) = −predk(sPk) ≤ −β4h(xk) ≤ αqk(sCk),

which implies that condition (5.1) is satisfied.
In all three scenarios the implementation of Step 3.3 yields a special case of

Algorithm 3.6. Moreover, all global and local convergence results are applicable.
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7. Application to nonlinear MCPs. In the introduction we showed how the
nonlinear MCP (1.3) can be converted to an equivalent problem having the form
(1.1). The reformulation is obtained by applying an NCP-function φ : R

2 → R, i.e.,
a function satisfying (1.5), to the pairs of components xi and Fi(x), 1 ≤ i ≤ m, to
obtain the operator H as defined in (1.4).

We will assume the following.
(A3) The function F : R

n ⊃ U → R
n is Lipschitz continuously differentiable.

(A4) φ is an NCP-function, i.e., satisfies (1.5), and is continuously differentiable
on R

2 \ φ−1(0). Moreover, φ ∈ S1(R2,R). For all a, b ∈ R with φ(a, b) = 0
and all v ∈ ∂φ(a, b) holds:

v ≥ 0, v �= 0,

v1 = 0 if a > 0 and b = 0,

v2 = 0 if a = 0 and b > 0.

Assumption (A4) holds, e.g., for the Fischer–Burmeister function and for the penalized
Fischer–Burmeister function, which is used in our numerical tests in section 8.

Lemma 7.1. Let the assumptions (A3) and (A4) hold. Then the function H
defined in (1.4) satisfies (A1) with p = 1 and (A2). Moreover, for all x ∈ U and all
V ∈ ∂H(x) holds with appropriate diagonal matrices Da, Db ∈ R

n×n:

V = Da +DbF
′(x),

where (Da)ii = 0 and (Db)ii = 1 for i = m+ 1, . . . , n.
If x solves the MCP (1.3), then Da+Db is positive definite and for all i = 1, . . . ,m

holds

(Da)ii = 0 if xi > 0 and Fi(x) = 0,

(Db)ii = 0 if xi = 0 and Fi(x) > 0.

Proof. The functions φ and F are 1-order semismooth by (A3) and (A4). There-
fore, H is a composite of 1-order semismooth functions and thus, by Proposition 2.8,
is 1-order semismooth itself. Thus, (A1) holds with p = 1.

The assertions on the lower n − m rows of Da, Db, and V , respectively, are
obvious. Now let 1 ≤ i ≤ m be fixed and x ∈ U be arbitrary such that Hi(x) �= 0.
Then of course φ(xi, Fi(x)) �= 0 and thus, by (A4), φ is continuously differentiable in
a neighborhood of (xi, Fi(x)). Therefore, using (A4), Hi is C1 in a neighborhood of
x. This implies (A2).

Now let x ∈ U be arbitrary. By [6, Prop. 2.6.2.(e)] holds

∂H(x) ⊂ ∂H1(x)× · · · × ∂Hn(x).

Furthermore, setting fi(x) = (xi, Fi(x))T , we have by [6, Thm. 2.6.6]

∂Hi(x) = conv (∂φ(fi(x))∂fi(x)) = ∂φ(fi(x))∇fi(x)T

=
{
v1e

T
i + v2∇Fi(x)T ; v ∈ ∂φ(xi, Fi(x))

}
.

If x is a solution of the MCP, then φ(xi, Fi(x)) = 0 for all i ≤ m. Now the remaining
assertions follow from (A4).

We now introduce the notion of strong regularity. It plays an important role
in the stability analysis of solutions to the MCP. For a comprehensive discussion of
strong regularity see [32, 44].
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Definition 7.2 (see [44]). A solution x̄ of the MCP (1.3) is called strongly
regular if there exist neighborhoods Ux of x̄ and Uy ⊂ R

n of 0 such that for all
y ∈ Uy the perturbed linearized MCP obtained by replacing F in by (1.3) by F y(x) =
F (x̄) + F ′(x̄)(x− x̄) + y, admits exactly one solution x(y) satisfying x(y) ∈ Ux, and,
moreover, the function x(y) is Lipschitz continuous on Uy.

The following lemma gives an equivalent algebraic definition of strong regularity.
Lemma 7.3 (see [13, Thm. 3.4]). The solution x̄ of the MCP (1.3) is strongly

regular if and only if the submatrix F ′(x̄)Ī Ī = (∂Fi

∂xj
(x̄))

i,j∈Ī
is nonsingular and the

Schur-complement

F ′(x̄)N̄N̄ − F ′(x̄)N̄ ĪF
′(x̄)−1

Ī Ī
F ′(x̄)ĪN̄

is a P-matrix, where Ī
def
= {i ; i > m or x̄i > 0} and N̄

def
= {i ≤ m ; x̄i = 0, Fi(x̄) = 0}.

Using the Lemmas 7.1 and 7.3, the proof of [15, Thm. 1] can be easily modified
to show the following result.

Theorem 7.4. If x̄ is a strongly regular solution of the MCP (1.3), then all
elements of ∂H(x̄) are nonsingular. In particular, x̄ is BD-regular for H.

8. Numerical results. In this section we present numerical results for Algo-
rithm 3.6. As test problems we use a subset of the MCPLIB [12] collection of
mixed complementarity problems. The problems in MCPLIB are represented as box-
constrained variational inequality problems VIP(F,X), X = [l, u].

Find x ∈ X such that

F (x)T (y − x) ≥ 0 ∀y ∈ X
with F : U → R

n defined on U ⊃ X, and bounds li ∈ R∪{−∞}, ui ∈ R∪{+∞}. Note
that the MCP in the form (1.3) is equivalent to VIP(F,X) with X = [0,∞)m×R

n−m.
We selected all MCPs of size n ≤ 150 that are accessible from within MATLAB

(some of the problems are available only as GAMS files) and that have at most one
bound per variable, i.e., ui − li = +∞ for all i. It is obvious that these problems can
be expressed in the form (1.3). The algorithm is applied to the reformulation (1.4) of
the MCP. For the sake of comparison, test versions of four different algorithms were
implemented in MATLAB. The difference between these methods consists of the choice
of the NCP-function and the choice of the reformulation (constrained/unconstrained).
As NCP-function we use the penalized Fischer–Burmeister function

φν(a, b)
def
= νφFB(a, b) + (1− ν)a+b+,

where 0 < ν < 1 and t+
def
= max{0, t}. This function was recently introduced by

Chen, Chen, and Kanzow [5]. Numerical tests indicate that the penalized Fischer–
Burmeister function usually leads to better performance than the Fischer–Burmeister
function [5]. The four algorithms are as follows:

[ALG1:] Algorithm 3.6 applied to (1.1) with H as in (1.4) and φ = φν with
ν = 0.7.

[ALG2:] The function H is the same as in ALG1. However, we apply Algorithm
3.6 to the unconstrained reformulation (1.6).

[ALG3:] As ALG1, but with ν = 0.95.
[ALG4:] The function H is the same as in ALG3. However, we apply Algorithm

3.6 to the unconstrained reformulation (1.6).
The MATLAB interface to MCPLIB provides an initialization routine that returns an
initial point x0. Moreover, functions for the computation of F and its Jacobian F ′ are
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available. Therefore, it is easy to compute exact (up to roundoff errors) elements of
the B-subdifferential of H; cf. [10]. Hence, we may assume that the matrices Mk are
elements of ∂BH(xk) up to machine accuracy. If Mk is too ill-conditioned, we add a
small multiple of the identity to MT

k Mk. We implemented Algorithm 3.6 on the basis
of the fraction of Cauchy decrease condition (6.1) with Step 3.3 as described in (III)
at the end of section 6. If sk = sPk fails to satisfy (6.1), we compute sk by solving the
trust-region subproblem (3.8) exactly. Hereby, the QP-solver BPMPD [33] is used.
The parameters in Algorithm 3.6 were chosen as follows:

• Termination criterion:
Successful termination if

max
(
{min{xi, Fi(x)}| ; 1 ≤ i ≤ m} ∪ {|Fi(x)| ; m < i ≤ n}

)
≤ 10−6.

Note that the left-hand side vanishes if and only if x solves the MCP (1.3).
Unsuccessful termination if ∆k ≤ 10−10 or k ≥ 200.

• Trust-region parameters: ∆min = 1, ∆0 = 100, η1 = 10−4, η2 = 0.75, γ1 =
1/2, γ2 = 2,

∆k+1 =



γ1∆k if ρk ≤ η1,
max{∆min,∆k} if η1 < ρk < η2,
max{∆min, γ2∆k} if ρk ≥ η2.

• Nonmonotonicity parameters: m = 4, λ = 0.01, and λkr as in (3.14).
• Affine-scaling parameter: γ = 1, κD = 1.
• Initial point: For the initial point computation we tried two variants. For

each class of algorithms (constrained/unconstrained) we chose the one that
yields the best overall results. The first variant projects x̂0, the initial point
returned by the initialization routine, onto X to obtain x0. The second vari-
ant chooses x0 = P[l+0.1,u−0.1](x̂0). (Note that we consider only problems
with at most one bound per variable.) It turns out that the first choice is
advantageous for the unconstrained versions (especially for ALG4, ALG2 be-
haves well for both variants), whereas the second choice is the preferable one
for the constrained methods ALG1/ALG3. We think that interior starting
points enable the constrained algorithms to identify the correct active con-
straints more efficiently than starting points close to the boundary. We stress,
however, that the improvements achieved by the interior point modification
are not significant.

The numerical results are shown in Table 8.1. For each of the four algorithms
the number of major iterations (Maj. it), i.e., the value of (i + 1) at termination,
the number of iterations (It), i.e., the value of k at successful termination, and the
number of QP-subproblems that had to be solved (QPs) are reported. Note that the
number of evaluations of F equals (It + 1) and that the Jacobian of F is evaluated
once per major iteration. The entry “−” is used to indicate that the algorithm
terminated unsuccessfully. At the bottom we display the sum (Σ) over all column
entries corresponding to problems that were successfully solved by all four methods.
Moreover, we give an overall ranking of the algorithms for each of the three categories
“Maj. It,” “It,” and “QPs.” Hereby, in every category and for every problem we
compute for each algorithm a rank between 1 and 5 as follows.
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Table 8.1
Numerical results.

Maj. it It QPs

ALG: 1 2 3 4 1 2 3 4 1 2 3 4

badfree 4 5 4 5 4 5 4 5 0 0 0 0
bertsekas 19 19 20 20 43 48 40 39 27 31 21 23
billups − − − − − − − − − − − −
colvdual 9 12 21 12 9 12 30 14 0 0 9 0
colvnlp 8 12 11 12 8 12 12 14 0 0 0 0
cycle 5 5 7 7 5 5 7 7 0 0 0 0
degen 4 5 4 5 4 5 4 5 0 0 0 0
duopoly 11 − 12 − 11 − 12 − 9 − 10 −
ehl k40 11 11 24 − 11 11 45 − 0 0 5 −
ehl k60 11 13 32 31 11 13 57 65 2 0 8 12
ehl k80 12 12 25 − 12 12 46 − 1 0 4 −
ehl kost 12 13 − − 31 13 − − 22 0 − −
freebert 8 10 12 22 8 17 23 83 0 0 0 66
games 12 − − 20 22 − − 40 13 − − 21
hanskoop 9 10 11 10 24 19 31 19 6 2 9 2
hydroc06 12 12 7 7 22 19 7 7 8 5 1 1
hydroc20 12 12 11 11 13 15 12 12 1 2 0 0
jel 6 6 7 7 6 6 7 7 0 0 0 0
josephy 5 5 6 7 5 11 6 7 1 0 1 0
kojshin 6 6 7 6 12 12 7 11 0 0 0 0
mathinum 7 7 8 4 14 14 18 4 0 0 1 0
mathisum 5 6 5 5 5 6 12 12 0 0 0 0
methan08 4 4 4 4 4 4 4 4 0 0 0 0
nash 8 8 8 8 8 8 8 8 0 0 0 0
ne-hard − − − − − − − − − − − −
pgvon105 − − − − − − − − − − − −
pgvon106 − − − − − − − − − − − −
powell 7 9 7 9 7 16 7 16 0 0 0 0
powell mcp 6 6 6 6 6 6 6 6 0 0 0 0
qp 4 5 3 5 4 5 3 5 0 0 0 0
scarfanum 9 12 9 11 9 12 15 19 2 0 1 1
scarfasum 8 9 7 7 8 9 18 18 1 0 0 0
scarfbnum 12 15 18 20 12 21 18 31 1 3 1 5
scarfbsum 11 15 14 14 11 22 14 24 4 8 4 7
shubik 16 25 25 32 31 62 69 82 23 51 59 70
simple-ex − − − − − − − − − − − −
simple-red 11 11 10 10 11 11 10 10 0 0 0 0
sppe 8 9 8 8 8 9 8 8 0 0 0 0
tinloi 9 7 8 7 9 7 27 7 0 0 3 0
tobin 8 10 11 14 11 16 15 17 0 0 3 0

Σ 251 290 311 326 332 427 499 566 76 102 121 187

Rank 1 28 11 14 12 25 10 12 11 25 27 21 23
Rank 2 2 9 4 4 3 9 7 2 3 1 2 3
Rank 3 4 8 10 10 6 10 10 10 4 2 5 1
Rank 4 1 5 5 5 1 4 4 8 3 3 5 4
Rank 5 (fails) 5 7 7 9 5 7 7 9 5 7 7 9

Let cat denote the category, prob the problem, and ik the entries for ALGk,
k = 1, . . . , 4, where ik = +∞ for “−”-entries. We define the rank achieved by
algorithm ALGk in category cat for problem prob by

rank(ALGk,cat,prob)
def
=

{| {j ; ij < ik} |+ 1 if ik < +∞,
5 if ik = +∞.

For example, in the category “Maj.It” and for problem “ehl k40” we have (i1, . . . , i4) =
(11, 11, 24,+∞) and thus rank(ALGk,Maj.It,ehl k40)1≤k≤4 = (1, 1, 3, 5).

We make a number of observations.
• Apparently, the algorithms ALG1 and ALG3, which use the proposed box-

constrained reformulations (1.1) and (1.2), are more robust than their counter-
parts ALG2 and ALG4, which are based on the unconstrained reformulations
(1.6) and (1.7).
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• Comparing ALG1 with ALG3 and ALG2 with ALG4 shows that the usage
of the parameter value ν = 0.7 instead of ν = 0.95 in the penalized Fischer–
Burmeister function leads to an improvement in all three categories (major
iterations, iterations, number of QPs). We leave the reasons for the positive
effect of a stronger weighting of the term a+b+ as a topic for future research.

• ALG1, which combines the proposed Algorithm 3.6, the constrained refor-
mulation, and the penalized Fischer–Burmeister function with the, compared
to the choice ν = 0.95 in [5], reduced value of ν = 0.7 is the most robust
and efficient method in the test. It fails to solve only 5 problems, followed
by ALG2, ALG3, and ALG4 with 7, 7, and 9 fails. In addition, it needs less
iterations—and thus function evaluations—and significantly less calls of the
QP solver than the other three algorithms.
• To demonstrate the importance of nonmonotone trust-region techniques in

this context, we ran a monotone version of our algorithm on the test set. If in
algorithm ALG1 we set m = 1, i.e., raredk(s) = aredk(s), then the resulting
algorithm fails for 9 problems compared to only 5 fails with m = 4. This
shows that the proposed nonmonotonicity technique increases the robustness
of the algorithm considerably.

Overall, our numerical tests prove the viability and efficiency of the presented
trust-region approach. In particular, we see that the constrained method, which is
advantageous in its own right because it generates feasible iterates, not only performs
comparably to the unconstrained method but even appears to be superior.

9. Conclusions. We have introduced a class of nonmonotone trust region meth-
ods for box-constrained semismooth equations. For these algorithms a comprehensive
global convergence theory was established. The method remains feasible with respect
to the box-constraints and is based on a reformulation as a simply constrained smooth
minimization problem. A Newton-like method with projection was proposed for the
computation of trial steps that converges under a Dennis–Moré-type condition locally
q-superlinearly/quadratically to a BD-regular solution. We showed that close to the
solution the trust-region algorithm turns into this Newton-like method. The conver-
gence analysis was carried out on the general basis of a criticality measure and a
sufficient decrease condition. As a concrete implementation we discussed a fraction
of Cauchy decrease condition in which the negative affinely scaled gradient is used as
Cauchy direction.

The developed algorithm was applied to the solution of the nonlinear mixed com-
plementarity problem. To this end, an NCP-function was used to convert the MCP
into an equivalent bound-constrained semismooth equation. Under appropriate as-
sumptions on the NCP-function the resulting equation is 1-order semismooth and all
strongly regular solutions are BD-regular. Therefore, the global and local convergence
results for the developed algorithm are applicable for this broad class of problems.
The numerical results presented for a subset of the MCPLIB test set show that—even
in the case where H does not have a zero outside of X—incorporating the a priori
knowledge x ∈ X into the algorithm leads to more robustness and efficiency. This
confirms the relevance of the problem class (1.1) and the need of algorithms for its
solution together with the corresponding theory.
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Abstract. We study the convergence behavior of a sequence of stationary points of a para-
metric NLP which regularizes a mathematical program with equilibrium constraints (MPEC) in the
form of complementarity conditions. Accumulation points are feasible points of the MPEC; they are
C-stationary if the MPEC linear independence constraint qualification holds; they are M-stationary
if, in addition, an approaching subsequence satisfies second order necessary conditions, and they
are B-stationary if, in addition, an upper level strict complementarity condition holds. These re-
sults complement recent results of Fukushima and Pang [Convergence of a smoothing continuation
method for mathematical programs with equilibrium constraints, in Ill-posed Variational Problems
and Regularization Techniques, Springer-Verlag, New York, 1999]. We further show that every local
minimizer of the MPEC which satisfies the linear independence, upper level strict complementarity,
and a second order optimality condition can be embedded into a locally unique piecewise smooth
curve of local minimizers of the parametric NLP.
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1. Introduction. We consider parametric nonlinear programs NLP(t) of the
form

min
z

f(z)

subject to (s.t.) g(z) ≤ 0,
h(z) = 0,
G(z) ≥ 0,
H(z) ≥ 0,
Gi(z)Hi(z) ≤ t, i = 1, . . . ,m,

(1)

with twice continuously differentiable data (f, g, h,G,H) : R
n → R

1+p+q+m+m. Our
aim is to find a local minimizer of NLP(0) which is a mathematical program with equi-
librium constraints (MPEC) in complementarity form [10, 11]. A direct application of
a standard NLP code to NLP(0) is problematic since NLP(0) is inherently ill-posed.
The main difficulty is that no feasible point satisfies the inequalities strictly. This
implies that the Mangasarian–Fromovitz constraint qualification, a vital condition for
the stability of the feasible set, is violated at every feasible point of NLP(0). As a
consequence, NLP codes may have difficulties in finding a feasible or nearly feasible
point. Moreover, if the iterates of an SQP method are feasible for NLP(0), then the
QP subproblems are degenerate, too, in the sense that their feasible set has no strictly
feasible point. This degeneracy or near degeneracy as the iterates approach a feasible
point may cause problems for QP solvers; cf., e.g., [4]. Finally, even if an NLP code
produces a feasible point, at present we do not know anything about its stationarity
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properties since the standard NLP convergence analyses rely on conditions at limit
points which comprise the Mangasarian–Fromovitz condition.

The situation is more favorable if the regularization parameter t is positive. Typ-
ically, the relaxed programs NLP(t) satisfy constraint qualifications and should there-
fore be easier to solve, in particular if care is taken to ensure that the inequalities
Gi(z) ≥ 0 and Hi(z) ≥ 0 are treated as inactive whenever Hi(z)Gi(z) ≤ t is consid-
ered active and that the gradients of active functions Gi(z)Hi(z) are properly scaled
in subproblems if Gi and Hi are both close to zero. An immediate question is whether
solutions of NLP(t) for small positive t approximate solutions of NLP(0). To inves-
tigate this problem we consider a sequence of positive numbers tn converging to zero
and a corresponding sequence of stationary points zn of NLP(tn). While every accu-
mulation point of the sequence is obviously feasible for NLP(0), it not clear if it is
stationary for NLP(0) in one sense or another. The aim of this paper is to charac-
terize conditions which guarantee that accumulation points of the sequence {zn} are
B-stationary points of NLP(0) as defined in [14]. This complements results obtained
recently by Fukushima and Pang [5] for a related smoothing method. Our conver-
gence assumptions are similar but our approach comprises a discussion of situations
where some of the assumptions for convergence to B-stationary points fail. We further
provide conditions which guarantee that a local minimizer of NLP(0) is a limit point
of a curve of stationary points of the programs NLP(t) as t tends to zero.

Before we present the technical analysis, we provide some intuition for our line
of arguments by discussing the simple problem of minimizing the Euclidean distance
from a point (a, b) ∈ R

2 to the boundary of the positive orthant. The corresponding
parametric program NLP(t) is of the form

min 1
2 [(x− a)2 + (y − b)2]

s.t. x ≥ 0,
y ≥ 0,
xy ≤ t.

(2)

If a ≤ 0 or b ≤ 0, then the unique solution for every t ≥ 0 is the Euclidean projection
of (a, b) onto the positive orthant. There are no other local minimizers or station-
ary points. If (a, b) > 0, then there are two local minimizers, (a, 0) and (0, b), of
NLP(0) which are both B-stationary points in the sense of [14]. NLP(t), however, has
three stationary points on the curve xy = t for every sufficiently small t, two local
minima and between them a stationary point with a second order descent direction
tangential to the manifold xy = t. If, e.g., (a, b) = (1, 1), then the two local minima
are (1/2, 1/2)± (

√
1/4− t)(−1, 1) and the other stationary point is (

√
t,
√
t). While

the two local minima converge to the minima of the MPEC, the other stationary
point converges to the origin which is not a B-stationary point since there are two
feasible first order descent directions (1, 0) and (0, 1). The geometry suggests that
failing B-stationarity of a limit point may be connected to failing second order nec-
essary conditions along an approaching path of stationary points z(t) for NLP(t) as
observed by Fukushima and Pang [5]. Indeed, the second derivative of the constraint
function (x, y)→ xy is negative definite on the tangent spaces of the equation xy = t
and appears, weighted with the unbounded multiplier δ(t) = (1 − √t)/√t, in the
Hessian of the Lagrangian. However, care must be taken since the tangent spaces
may approach the x- or y-axis where the second derivative of the constraint function
vanishes. Elementary geometric insight shows that this will only be the case if either
a = 0 or b = 0. Hence, if (a, b) > (0, 0) and the solutions (x(t), y(t)) are guaranteed to
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satisfy second order necessary conditions for NLP(t), then every accumulation point
of a solution curve as t → 0 is a B-stationary point which is equivalent to a local
minimizer in this example.

2. Preliminaries: Linear independence, stationarity, and upper level
strict complementarity. In this preliminary section we recall some notions from
MPEC theory which we will use later in the text. For convenience we define the index
sets

Ig(z) = {i | gi(z) = 0},
Ih(z) = {j | hj(z) = 0},
IG(z) = {k | Gk(z) = 0},
IH(z) = {l | Hl(z) = 0},

IGH(z, t) = {m | Gm(z)Hm(z) = t}.

(3)

Throughout the paper we denote by ∇f the m × n Jacobian matrix of a smooth
function f : R

n → R
m. In particular, gradients of real-valued functions are row

vectors. We will make use of the following linear independence constraint qualification
for MPECs.

MPEC linear independence constraint qualification (MPEC-LICQ).
The MPEC-LICQ is said to hold at a feasible point z̄ of the MPEC NLP(0) if the
gradients

∇gi(z̄), i ∈ Ig(z̄),
∇hj(z̄), j ∈ Ih(z̄),
∇Gk(z̄), k ∈ IG(z̄),
∇Hl(z̄), l ∈ IH(z̄),

(4)

are linearly independent.
Notice that this definition differs from the standard definition of the linear in-

dependence constraint qualification in nonlinear programming (NLP-LICQ) since it
discards the gradients of the constraints Gi(z)Hi(z) ≤ 0 which, in the MPEC setting,
merely serve a combinatorial purpose. Indeed, NLP(0) does not satisfy NLP-LICQ at
any feasible point. The severity of the MPEC-LICQ condition has been investigated
in [16], where it is argued that for a typical MPEC the condition is satisfied at every
feasible point.

The following elementary lemma is crucial for our analysis. It states that the
MPEC-LICQ condition carries over to the NLP-LICQ condition for the relaxed prob-
lems NLP(t) if t > 0 is sufficiently small. A similar result can be found in [5] in the
context of a smoothing method.

Lemma 2.1. If MPEC-LICQ holds at the feasible point z̄ of the MPEC NLP(0),
then there exists a neighborhood U of z̄ and a scalar t̄ > 0 such that for every t ∈ (0, t̄)
NLP-LICQ holds at every feasible point z ∈ U of NLP(t).

Proof. The lemma is an immediate consequence of the relations

Ig(z) ⊆ Ig(z̄),
Ih(z) ⊆ Ih(z̄),

IG(z) ∪ IH(z) ∪ IGH(z, t) ⊆ IG(z̄) ∪ IH(z̄),
IG(z) ∩ IGH(z, t) = ∅,
IH(z) ∩ IGH(z, t) = ∅

(5)

which hold for all z in a sufficiently small neighborhood U of z̄ and all t ∈ (0, t̄) for
sufficiently small t̄ > 0. Indeed, for such t, the active gradients of NLP(t) at a feasible
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point z ∈ U are

∇gi(z), i ∈ Ig(z),
∇hj(z), j ∈ Ih(z),
∇Gk(z), k ∈ IG(z),
∇Hl(z), l ∈ IH(z),

Gm(z)∇Hm(z) + Hm(z)∇Gm(z), m ∈ IGH(z, t).

In view of the MPEC-LICQ assumption and (5), the equation∑
i∈Ig(z)

λi∇gi(z) +
∑

j∈Ih(z)

µj∇hj(z) +
∑

k∈IG(z)

γk∇Gk(z)

+
∑

l∈IH(z)

νl∇Hl(z) +
∑

m∈IGH(z,t)

(δmGm(z)∇Hm(z) + δmHm(z)∇Gm(z)) = 0

implies that λi = µj = γk = νl = δmGm(z) = δmHm(z) = 0. This proves the lemma
since Gm(z) > 0 for every m ∈ IGH(z, t) and therefore δmGm(z) = 0 implies δm
= 0.

We will use the standard definition of stationarity for NLP(t) if t > 0, i.e., z is a
stationary point of NLP(t) if there exist NLP multipliers λi, µj , γk, νl, and δm such
that

∇f(z) +
∑

i∈Ig(z)

λi∇gi(z) +
∑

j∈Ih(z)

µj∇hj(z)−
∑

k∈IG(z)

γk∇Gk(z)

−
∑

l∈IH(z)

νl∇Hl(z) +
∑

m∈IGH(z,t)

δm[Hm(z)∇Gm(z) + Gm(z)∇Hm(z)] = 0,

λi, γk, νl, δm ≥ 0.

(6)

We will find it convenient to distinguish various degrees of stationarity for t = 0.
Following [14], a feasible point z̄ of the MPEC NLP(0) is called weakly stationary if
there exist MPEC multipliers λ̄i ≥ 0, µ̄j , γ̄k, ν̄l satisfying

∇f(z̄)+
∑

i∈Ig(z̄)
λ̄i∇gi(z̄)+

∑
j∈Ih(z̄)

µ̄j∇hj(z̄)−
∑

k∈IG(z̄)

γ̄k∇Gk(z̄)−
∑

l∈IH (z̄)

ν̄l∇Hl(z̄) = 0.(7)

We will use three stationarity concepts of increasing strength which we define by
imposing additional sign constraints on the multipliers corresponding to the comple-
mentarity terms:

C-stationarity: γ̄mν̄m ≥ 0 for all m ∈ IG(z̄) ∩ IH(z̄).
M-stationarity: for all m ∈ IG(z̄) ∩ IH(z̄), either γ̄m, ν̄m > 0 or γ̄mν̄m = 0.
Strong stationarity: γ̄m, ν̄m ≥ 0 for all m ∈ IG(z̄) ∩ IH(z̄).
The first two concepts arise from nonsmooth reformulations of MPECs. C-

stationarity relates to Clark’s calculus as explained in [14], while M-stationarity is
derived from Morukhovich’s calculus; cf., e.g., [12]. The strongest of these station-
arity concepts, strong stationarity, is equivalent to stationarity of z̄ in the standard
sense for the following relaxed NLP:

min f(z)
s.t. g(z) ≤ 0,

h(z) = 0,
Gi(z) = 0, i �∈ IH(z̄),
Hj(z) = 0, j �∈ IG(z̄),
Gk(z) ≥ 0, k ∈ IG(z̄) ∩ IH(z̄),
Hk(z) ≥ 0, k ∈ IG(z̄) ∩ IH(z̄).

(8)
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It implies B-stationarity in the sense of [14] and is, in fact, equivalent to B-stationarity
in the presence of MPEC-LICQ; see also [10]. Strong stationarity is sufficient for local
optimality, without constraint qualification, provided f and all component functions
of g are convex and h,G,H are affine mappings. We will not distinguish between B-
stationarity and strong stationarity in what follows as we will assume MPEC-LICQ
throughout. The reason for considering the weaker stationarity concepts is that such
points are potential attractors of methods based on (7) or variants thereof. We will
see that this is indeed the case for our regularization method.

At places we will use the upper level strict complementarity condition which was
used in [14] in the context of sensitivity analysis for MPECs.

Upper level strict complementarity (ULSC). A weakly stationary point z̄
is said to satisfy ULSC if there exists MPEC multipliers satisfying (7) with γ̄mν̄m �=
0 for all m ∈ IG(z̄) ∩ IH(z̄).

ULSC holds in particular if lower level strict complementarity holds, i.e., if G(z̄)+
H(z̄) > 0, but is considerably weaker than the latter. In problem (2) lower level strict
complementarity is violated at a local minimizer if and only if (a, b) ≤ 0, while ULSC
is violated if and only if (a, b) ≤ 0 and ab = 0. In fact, ULSC is close in spirit to strict
complementarity in the standard NLP sense, in particular in connection with strong
stationarity. Indeed, as mentioned above, a feasible point z̄ of NLP(0) is strongly
stationary if and only if it is stationary in the standard sense for the relaxed NLP
(8). If, in addition, strict complementarity in the standard sense holds for (8), then
ULSC holds at z̄.

3. Convergence results. Our first result relates MPEC multipliers at z̄ to the
NLP multipliers of an approaching sequence of stationary points of NLP(tn). This
allows us to characterize B-stationarity of limit points in the presence of MPEC-LICQ.

Theorem 3.1. Let {tn} be a sequence of positive scalars tending to zero, let zn
be a stationary point of NLP(tn) tending to z̄ and suppose MPEC-LICQ holds at z̄.
Let

I0 = {m | m ∈ IGH(zn, tn) for infinitely many n}.

Then the following statements hold:

1. For every sufficiently large n NLP(tn) has unique multipliers λi,n, µj,n, γk,n, νl,n,
δm,n at zn (see (6)).

2. The point z̄ is a C-stationary point of NLP(0) with unique multipliers λ̄, µ̄, γ̄, ν̄
which satisfy

λ̄i = lim
n→∞λi,n ≥ 0,

µ̄j = lim
n→∞µj,n,

γ̄k = lim
n→∞ γk,n ≥ 0, k �∈ I0,

ν̄k = lim
n→∞ νk,n ≥ 0, k �∈ I0,

γ̄m = − lim
n→∞ δm,nHm(zn) ≤ 0, m ∈ I0,

ν̄m = − lim
n→∞ δm,nGm(zn) ≤ 0, m ∈ I0.

3. The point z̄ is B-stationary if and only if γ̄m = ν̄m = 0 for all m ∈ IG(z̄) ∩
IH(z̄) ∩ I0.
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Proof. The first statement is an immediate consequence of Lemma 2.1. To see
the second statement, note that the stationarity conditions (6) for NLP(tn) at zn can
be rewritten as

−∇f(zn) =
∑

i∈Ig(zn)

λi,n∇gi(zn) +
∑

j∈Ih(zn)

µj,n∇hj(zn)

−
∑

k∈IG(zn)

γk,n∇Gk(zn)−
∑

l∈IH(zn)

νl,n∇Hl(zn)

−
∑

m∈IGH (zn,tn)

m�∈IG(z̄)

νm,n

[
∇Hm(zn) +

Hm(zn)

Gm(zn)
∇Gm(zn)

]

−
∑

m∈IGH (zn,tn)

m�∈IH (z̄)

γm,n

[
∇Gm(zn) +

Gm(zn)

Hm(zn)
∇Hm(zn)

]

−
∑

m∈IGH (zn,tn)

m∈IG(z̄)∩IH (z̄)

[γm,n∇Gm(zn) + νm,n∇Hm(zn)]

with

γm,n = −δm,nHm(zn), νm,n = −δm,nGm(zn)

for m ∈ IGH(zn, tn). For sufficiently large n we construct a matrix A(zn) from the
matrix with rows

∇gi(zn), i ∈ Ig(z̄),
∇hj(zn), j ∈ Ih(z̄),
−∇Gk(zn), k ∈ IG(z̄),
−∇Hl(zn), l ∈ IH(z̄),

by replacing the row −∇Gm(zn) by −∇Gm(zn)− Gm(zn)
Hm(zn)∇Hm(zn) if m ∈ IGH(zn, tn)

and m �∈ IH(z̄) and replacing the row −∇Hm(zn) by −∇Hm(zn)− Hm(zn)
Gm(zn)∇Gm(zn)

if m ∈ IGH(zn, tn) and m �∈ IG(z̄). The above system is of the form A(zn)�xn =
−∇f(zn) with some components of the multiplier vector xn set to zero. The matrix
A(zn) converges to the matrix A(z̄) with rows

∇gi(z̄), i ∈ Ig(z̄),
∇hj(z̄), j ∈ Ih(z̄),
−∇Gk(z̄), k ∈ IG(z̄),
−∇Hl(z̄), l ∈ IH(z̄),

which has full row rank by assumption. It follows that the multipliers λn, µn, γn, νn
converge to the unique MPEC multipliers λ̄, µ̄, γ̄, ν̄ at z̄ and that the limiting ex-
pressions hold. The last statement follows immediately from the limiting expressions
and the fact that B-stationarity is equivalent to strong stationarity in the presence of
MPEC-LICQ; cf., e.g., [14].

Notice that the characteristic condition for B-stationarity given in the theorem is
obviously satisfied if z̄ is nondegenerate on the lower level, i.e., G(z̄) + H(z̄) > 0, or
if the multiplier sequences δm,n are bounded for all m ∈ IG(z̄) ∩ IH(z̄) ∩ I0.

The following corollary is an immediate consequence of Theorem 3.1.
Corollary 3.2. If, in the setting of Theorem 3.1, n is sufficiently large, then
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1. Gk(zn) = 0 for all k with γ̄k > 0;
2. Hk(zn) = 0 for all k with ν̄k > 0;
3. Gk(zn)Hk(zn) = tn for all k with γ̄k + ν̄k < 0.

We next analyze to what extent the statement of Theorem 3.1 can be improved
if, in addition to MPEC-LICQ at z̄, second order necessary conditions hold at each
zn, i.e., the Hessian with respect to z of the Lagrangian

Ltn(z, λ, µ, γ, ν, δ)

= f(z) + λ�g(z) + µ�h(z)− γ�G(z)− ν�H(z) +
∑

δi(Gi(z)Hi(z)− tn)

is positive semidefinite on the cone of critical directions at zn; cf. Theorem 9.3.1 of
[3].

Theorem 3.3. If, in addition to the assumptions of Theorem 3.1, second order
necessary optimality conditions hold at each zn, then z̄ is M-stationary.

Proof. Suppose z̄ is not M-stationary. Then, by Theorem 3.1, there exists an
index m ∈ IG(z̄) ∩ IH(z̄) ∩ I0 such that

γ̄m = − limn→∞ δm,nHm(zn) < 0,
ν̄m = − limn→∞ δm,nGm(zn) < 0.

Since m ∈ I0 we may assume, by passing to a subsequence, that Hm(zn)Gm(zn) = tn
for every sufficiently large n. Hence the Hessian of φm(z) = Gm(z)Hm(z) appears
weighted with the corresponding multiplier δm,n in the Hessian of the Lagrangian for
every sufficiently large n. Notice that gradient and Hessian of φm(z) are of the form

∇φm(zn) = Gm(z)∇Hm(zn) + Hm(z)∇Gm(zn),

∇2φm(zn) = ∇Gm(zn)�∇Hm(zn) +∇Hm(zn)�∇Gm(zn)

+Gm(zn)∇2Hm(zn) + Hm(zn)∇2Gm(zn).

Because of the MPEC-LICQ assumption we can thus choose, for sufficiently large n,
a sequence of directions dn with

∇gi(zn)dn = 0, i : gi(z̄) = 0,

∇h(zn)dn = 0,

∇Gi(zn)dn = 0, i : Gi(z̄) = 0, i �= m,

∇Hi(zn)dn = 0, i : Hi(z̄) = 0, i �= m,

∇Gm(zn)dn = 1,

∇Hm(zn)dn = −Hm(zn)/Gm(zn).

We may assume that the sequence {dn} is bounded since Hm(zn)/Gm(zn) converges
to γ̄m/ν̄m. Notice that ∇φm(zn)dn = 0 and that dn is a critical direction of NLP(tn)
at zn for every sufficiently large n. Moreover,

δm,nd
�
n∇2φm(zn)dn

= δm,nHm(zn)d�n∇2Gm(zn)dn + δm,nGm(zn)d�n∇2Hm(zn)dn − δm,nHm(zn)
2

Gm(zn)
,

which tends to −∞ since the first two terms are bounded and δm,nHm(zn) tends to
−γ̄m > 0 while Gm(zn) is a positive null-sequence. Since all other terms in

d�n∇2
zLtn(zn, λn, µn, γn, νn, δn)dn
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are bounded, second order necessary optimality conditions fail for sufficiently
large n.

The foregoing theorem complements a recent result of Fukushima and Pang
[5], who proved convergence of a smoothing procedure to B-stationary points under
MPEC-LICQ, second order necessary optimality conditions, and an asymptotic weak
nondegeneracy assumption. We obtain this result in our setting with the asymptotic
weak nondegeneracy assumption replaced by ULSC.

Corollary 3.4. Let {tn} be a positive null-sequence, {zn} be a sequence of
feasible points of NLP(tn) satisfying second order necessary conditions, and z̄ be an
accumulation point of {zn}. If MPEC-LICQ and ULSC are satisfied at z̄, then z̄ is
B-stationary.

4. Characterization of attractors. In this section we study the question
whether a local minimizer of an MPEC is a limit of a sequence of stationary points
of the regularized programs. This is not necessarily the case. Consider the example

min −x
s.t. xy ≤ t,

x, y ≥ 0.

Every point on the positive y-axis is a local minimizer of NLP(0) but the regularized
program NLP(t), t > 0, has no local minimizers nor stationary points. If the objective
function is replaced by x(1−y2), then the set of local, and global, minimizers of NLP(0)
is the nonnegative y-axis. The relaxed problem, however, has no local minimizers at
all. This shows that further conditions, in addition to MPEC-LICQ, are necessary to
guarantee that a local minimizer is a limit point of a sequence of local minimizers zn
of NLP(tn) with tn tending to zero. To this end, we use the following second order
condition based on the MPEC-Lagrangian:

L(z, λ, µ, γ, ν) = f(z) + g(z)�λ + h(z)�µ−G(z)�γ −H(z)�ν

of NLP(0); cf. [14].
Strong second order sufficient condition (SSOSC). Let z̄ be a B-stationary

point of NLP(0). Suppose MPEC-LICQ holds and (λ̄, µ̄, γ̄, ν̄) are the unique MPEC
multipliers at z̄. We say that the strong second order sufficient condition holds at z̄ if

d�∇2
zL(z̄, λ̄, µ̄, γ̄, ν̄)d > 0

for every nonvanishing d with

∇gi(z̄)d = 0, i : λ̄i > 0,

∇h(z̄)d = 0,

∇Gj(z̄)d = 0, j : γ̄j �= 0,

∇Hk(z̄)d = 0, k : ν̄k �= 0.

The following theorem follows from Corollary 3.2 through an application of stan-
dard NLP stability theory. We confine ourselves to a sketch of the proof.

Theorem 4.1. Suppose
1. z̄ is a B-stationary point of NLP(0) and MPEC-LICQ as well as SSOSC hold

at z̄;
2. γ̄i �= 0 if Gi(z̄) = 0, and ν̄i �= 0 if Hi(z̄) = 0 for every i = 1, . . . ,m.
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Then there exists an open neighborhood U of z̄, a scalar t̄ > 0, and a piecewise smooth
function z : (−t̄, t̄) → U such that z(t) is the unique stationary point of NLP(t) for
every 0 < t < t̄. Moreover, z(t) satisfies second order sufficient optimality conditions.

Proof. Consider the parametric nonlinear program P(t) defined by

min f(z)
s.t. g(z) ≤ 0,

h(z) = 0,
Gi(z) ≥ 0 if γ̄i > 0,
Hj(z) ≥ 0 if ν̄j > 0,
Gk(z)Hk(z) ≤ t if γ̄k < 0,
Gl(z)Hl(z) ≤ t if ν̄l < 0.

(9)

Let us denote the multipliers of (9) by λ̃, µ̃, γ̃i, ν̃j , δ̃k, and δ̃l. B-stationarity and the
MPEC-LICQ assumption imply that NLP-LICQ holds at the feasible point z̄ of P(0)
and that z̄ is a stationary point of P(0) with unique multipliers

λ̃ = λ̄, µ̃ = µ̄, γ̃i = γ̄i, ν̃j = ν̄j , δ̃k = −γ̄k/Hk(z̄), δ̃l = −ν̄l/Gl(z̄).

SSOSC ensures that the program P(0) is stable in the sense of Kojima [9] and Robin-
son [13]. Hence there exist a locally unique and piecewise smooth stationary point
function z(t) and a unique and piecewise smooth multiplier function (λ̃, µ̃, γ̃i, ν̃j , δ̃k, δ̃l)(t).
Moreover, z(t) satisfies second order sufficient conditions for P(t) for sufficiently
small t. Since the feasible region of NLP(t) is contained in the feasible region of
P(t), it only remains to be shown that the minimizer is feasible for NLP(t). If
γ̄i > 0 or ν̄j > 0, then, by continuity of the multipliers, the respective inequali-
ties Gi(z) ≥ 0 or Hj(z) ≥ 0 remain active for sufficiently small t > 0 and there-
fore Hi(z(t))Gi(z(t)) = Hj(z(t))Gj(z(t)) = 0 < t. If γ̄k < 0, then the inequality
Gk(z)Hk(z) ≤ t will be active for small t > 0 since the multiplier function is continu-
ous. Moreover, γ̄k < 0 implies Hk(z̄) > 0, in view of the equivalence of B-stationarity
and strong stationarity under MPEC-LICQ; therefore Gk(z(t)) > 0 for sufficiently
small t > 0. The same argument shows that Hl(z(t)) > 0 for sufficiently small t > 0
if ν̄l < 0. We conclude that, for sufficiently small t > 0, z(t) is a local minimizer of
NLP(t) which satisfies second order sufficient conditions since it satisfies these condi-
tions for P(t) which is obtained from NLP(t) by deleting some constraints. Corollary
3.2 implies that z(t) is the unique B-stationary point of NLP(t) in a neighborhood of
z̄.

Notice that the strict complementarity assumption of the latter theorem is stronger
than ULSC as it requires all multipliers corresponding to vanishing components of
(G,H) to be nonvanishing, not just the ones corresponding to components with
Gk(z̄) = Hk(z̄) = 0. The curve z(t) is smooth in a neighborhood of t = 0 if, in
addition to the assumptions of the theorem, strict complementarity holds with re-
spect to the remaining inequalities g(z) ≤ 0, i.e., λ̄ > g(z̄).
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5. Extensions.

5.1. An alternative regularization. The last m inequalities in problem (1)
can be replaced by a single inequality G(z)�H(z) ≤ t, resulting in the program

min f(z)
s.t. g(z) ≤ 0,

h(z) = 0,
G(z) ≥ 0,
H(z) ≥ 0,
G(z)�H(z) ≤ t.

(10)

This alternative is certainly appealing from a numerical point of view since this NLP
has fewer inequality constraints. We show in the appendix that the convergence results
of section 3 remain valid for this regularization. Hu [6] has announced an example
which shows that the attractor results of section 4 do not hold in this case.

5.2. Mixed complementarity constraints. The suggested regularization
scheme extends to mixed complementarity constraints. In a general framework, mixed
complementarity constraints involve three mappings F,G,H and are naturally em-
bedded in a parametric system of the form

F (z) ≥ 0, G(z) ≥ 0, Fi(z)Hi(z) ≥ −t, Gi(z)Hi(z) ≤ t,(11)

where t is a nonnegative regularization parameter which has to be set to zero to obtain
the original mixed complementarity constraints. If z = (x, y), F (x, y) = b − y, and
G(x, y) = y − a where a ≤ b, then the constraints (11) correspond to a parametric
variational inequality induced by a parametric vector field H(x, .) over the box a ≤
y ≤ b. Notice that we recover the standard complementarity constraints if we set
F (z) = H(z) and treat the third inequality in (11) as redundant. An alternative is to
allow components of F (z) or G(z) to have infinite values in which case Gi(z)Hi(z) ≤ t
is interpreted as Hi(z) ≤ 0 if Gi(z) = ∞, while Fi(z)Hi(z) ≥ −t means Hi(z) ≥ 0 if
Fi(z) =∞. We can recover standard complementarity constraints by setting Fi(z) =
∞ for all i.

The convergence results given in the foregoing sections extend, mutatis mutandis,
to programs NLP(t) of the form

min f(z)
s.t. g(z) ≤ 0,

h(z) = 0,
F (z) ≥ 0,
G(z) ≥ 0,
Gi(z)Hi(z) ≤ t for all i,
Fi(z)Hi(z) ≥ −t for all i,

provided F (z̄) + G(z̄) > 0, which is obviously the case if Fi(z) = ∞ for all i or if
a < b in the above formulation of the box constrained variational inequality. To see
this, suppose Fi(z̄) > 0. Then the constraint Fi(z) ≥ 0 is locally inactive and the
perturbed mixed complementarity constraint

Fi(z) ≥ 0, Gi(z) ≥ 0, Fi(z)Hi(z) ≥ −t, Gi(z)Hi(z) ≤ t
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turns locally into the perturbed standard complementarity constraint

Gi(z) ≥ 0, Hi(z) + t/Fi(z) ≥ 0, Gi(z)Hi(z) ≤ t.

Notice that for ρi(z) = Hi(z) + t/Fi(z) we have

∇ρi(z) = ∇Hi(z)− (t/Fi(z)2)∇Fi(z),

∇2ρi(z) = ∇2Hi(z) + (2t/Fi(z)3)∇Fi(z)�∇Fi(z)− (t/Fi(z)2)∇2Fi(z)

which tend to ∇Hi(z) and ∇2Hi(z), respectively, uniformly in a neighborhood of z̄ if
Fi(z̄) > 0. Since similar approximations hold with suitable sign changes for the case
Gi(z̄) > 0, the first and second order arguments that we used in the case of standard
complementarity constraints carry through for mixed complementarity constraints if
F (z̄) + G(z̄) > 0.

6. Preliminary numerical experience. The proposed scheme is only concep-
tual since it assumes nonlinear programs to be solved in each iteration. It is therefore
not sensible to make extensive numerical tests. Nevertheless, the approach was tested
in an ad hoc way on a variety of small and medium-size problems and the implemented
method showed a credible performance.

We used the MATLAB 5.3 built-in solver function fmincon with gradient eval-
uations and otherwise default settings to solve the nonlinear programs for positive
t-values. It is generally acknowledged that this solver is inferior with regard to ro-
bustness to some other available NLP codes. For our purpose, this deficiency is quite
desirable since our approach is meant to enhance the robustness of an NLP solver
when applied to MPECs.

The tests were run on randomly generated problems with convex quadratic ob-
jective and linear constraint functions. The parametric NLPs are thus of the form

min 1
2z

�Qz + q�z
s.t. Az ≤ a,

Cz ≥ c,
Dz ≥ d,
(Cz − c)i(Dz − d)i ≤ t, i = 1, . . . ,m.

We chose d = 0 and D = [I, 0], where I is a unit matrix and 0 is a zero matrix
of appropriate size, so that the complementarity constraint for t = 0 is a standard
parametrized linear complementarity constraint. The objective function was chosen to
be of the form 0.5z�z+q�z; i.e., we tried to find the feasible point that is closest to the
vector −q. The remaining data was randomly generated in the sequence A, a,C,−c
using the MATLAB rand function. First we attempted to solve the problem for
t = 10−16. We then started with t = 1 and performed 17 iterations where t was
reduced after each iteration to t/10 so that the t-value in the final iteration was again
t = 10−16. If at the end of an iteration the exit flag of the MATLAB fmincon function
indicated that a stationary point was found, then this stationary point was used as
the starting point for the next iteration.

For illustration we report the results of a typical test run of 100 random problems
with 50 variables, where the matrices C and D had 25 rows, the matrix A had 50
rows, and q was chosen to be the vector of all −1’s. For this run, we used the vector
of all 1’s as the starting point and seeded the rand function at 1. For fixed t = 10−16

the solver was able to solve all but one of the problems and needed on average 8.2
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QP iterations with a standard deviation of 1.8 iterations. The regularization method
with decreasing t-values, starting at t = 1 and iterating down to t = 10−16, solved all
problems for all t-values. The method found an initial stationary point for t = 1 for
all problems after two QP iterations and very few QP iterations were needed to solve
the NLPs in each of the following iterations. Table 1 shows the average number of
QP iterations for each t-value.

Table 1
Number of QP iterations of the regularization method.

t 1 10−2 10−4 10−6 10−8 10−10 10−12 10−14 10−16

Mean 2 1 5.6 2.5 1.9 1 1 1 1
Stdev 0 0 2.2 0.9 0.3 0 0 0 0

On average, 32% of the complementarity constraints were both active at the
optimal solution.

For comparison we changed the inequalities (Ciz− ci)(Diz− d) ≤ t to equations,
which is geometrically equivalent to a smoothing of the feasible set as discussed in
[2, 5, 8]. The iterative approach with t decreased from t = 1 down to t = 10−16

worked for 85% of the problems in the sense that the solver produced a solution for
the final value t = 10−16. Problems were, however, often encountered along the way
for some larger values of t for which the solver reported that it could not find a feasible
solution or that the maximum number of function evaluations was exceeded. Indeed,
the solver produced solutions for all t for only 34 of the 100 problems. Interestingly,
the smoothing approach was not only less robust but also less efficient on our set of
test problems. Even for the 34 successful problems the smoothing approach needed
significantly more QP iterations per NLP iteration, as indicated in Table 2.

Table 2
Number of QP iterations of the smoothing method for successful problems.

t 1 10−2 10−4 10−6 10−8 10−10 10−12 10−14 10−16

Mean 34 25 22.9 23.3 22.1 15.1 4.8 1.9 1
Stdev 11.2 8.2 3.5 7.2 5.9 8.6 2.6 0.8 0

The path-following property, characterized by a single QP per NLP iteration,
appeared typically only for very small t-values in the smoothing approach. Starting
at small t-values, however, often resulted in failures.

It is interesting to compare the quality of the local solutions produced by the two
methods. In our tests we found that the regularization method often produced lower
objective function values if the two methods produced different local solutions. For
the particular test run discussed here, both approaches produced the same solution for
47 of the 85 problems on which the smoothing approach was eventually successful. For
two of these problems the smoothing approach produced a solution that improved on
the objective function produced by the regularization approach, albeit by not more
than 0.6%. For the remaining 36 problems the regularization approach produced
better local solutions. For 7 problems the improvement was more than 5% with a
maximal improvement of 12%.

Our numerical experiments are insufficient to claim that one of the approaches is
superior to the other. They do indicate, however, that the perturbation approach is
a sensible way of stabilizing a standard NLP code for the MPEC NLP(0) if the code
struggles to produce a solution if applied to the MPEC directly. Tests based on the
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alternative regularization (10) showed a similar performance to the regularization (1)
for the small and medium-size problems that we solved.

The smoothing approach we used for our numerical comparison is based directly
on constraints of the form Gi(z) ≥ 0, Hi(z) ≥ 0, Gi(z)Hi(z) = t. Facchinei, Jiang,
and Qi [2], Fukushima and Pang [5], and Jiang and Ralph [8] allow for alternative
algebraic descriptions of these constraints, such as

1

2

[
Gi(z) + Hi(z)−

√
(Gi(z)−Hi(z))2 + 4t

]
= 0

or

Hi(z) + Gi(z)−
√
Gi(z)2 + Hi(z)2 + 2t = 0.

It is possible that such alternative representations improve the performance of
the smoothing approach. However, one advantage of the regularization approach
(Gi(z)Hi(z) ≤ t) over the smoothing approach (Gi(z)Hi(z) = t) or its alternatives is
that the former encompasses the feasible region of the MPEC NLP(0) and may there-
fore identify active parts of the complementarity constraints early on. For example, if
we choose (a, b) = (−1,−1) in problem (2), then the regularized problem identifies the
correct solution for any t > 0, while the smoothed problem gives estimates (

√
t,
√
t)

and needs t to converge to zero to produce the solution. The regularization approach
can also be more robust if constraint qualifications are violated as illustrated by the
example

min 1
2 [(x− 1)2 + (y − 2)2 + (z + 1)2]

s.t. x, y, z ≥ 0,
xz = 0,
yz = 0.

Notice that a sequence of points with x, y, z > 0 and xz = t yz = t for t > 0
can only converge to a point on either the nonnegative z-axis or the diagonal in the
nonnegative orthant of the (x, y) plane. Hence the smoothing method cannot detect
the minimizer (1, 2, 0). The reason is that MPEC-LICQ is violated at every feasible
point in the (x, y) plane. Nevertheless, the minimizer will be obtained for any t > 0
as a solution of the regularized program and these programs satisfy NLP-LICQ.

7. Conclusions. We have studied a regularization scheme for MPECs with
complementarity constraints. Accumulation points of a regularization sequence were
shown to be B-stationary points of the MPEC, provided the iterates satisfy second
order necessary conditions and linear independence and upper level strict comple-
mentarity conditions hold at the accumulation point. This complements results of
Fukushima and Pang [5] for a smoothing scheme. Hu [7] has recently derived similar
convergence properties for a penalty method. In addition to the convergence results,
we have shown that local minimizers of the MPEC can be embedded into a smooth
curve of locally unique local minimizers of the regularized program, provided linear
independence and suitable second order sufficient conditions hold, and all MPEC mul-
tipliers corresponding to vanishing components of constraint functions gi, Gk, Hk are
nonvanishing.

The proposed scheme is only conceptual since it assumes nonlinear programs to
be solved in each iteration. Nevertheless, the latter mentioned embedding result gives
rise to the hope that a practical method can be devised which eventually follows the
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smooth path of local minimizers of the regularized program if iterates approach a well-
behaved local minimizer. At this stage, however, the suggested approach cannot yet
be compared with alternative methods [10, 11, 15]. At present, the most satisfying
theoretical convergence results seem to be available for the MPEC modification of
the trust region SL1QP method of Fletcher [3] which is based on exact penalization
and sequential quadratic programming. The method has been introduced in [15]
and is further modified and analyzed in [1, 17]. It converges globally and locally
superlinearly to B-stationary points of complementarity constrained MPECs under
assumptions similar to those for standard nonlinear programs.

8. Appendix: An alternative regularization. In this appendix we show that
the results of section 3 remain true if (1) is replaced by the parametric problem

min f(z)
s.t. g(z) ≤ 0,

h(z) = 0,
G(z) ≥ 0,
H(z) ≥ 0,
G(z)�H(z) ≤ t

(12)

which has fewer inequalities. In this appendix, NLP(t) refers to (12). We first show
that, in analogy to Lemma 2.1, the linear independence condition is passed on to the
regularized programs.

Lemma 8.1. If MPEC-LICQ holds at the feasible point z̄ of the MPEC NLP(0),
then there exists a neighborhood U of z̄ and a scalar t̄ > 0 such that for every t ∈ (0, t̄)
NLP-LICQ holds at every feasible point z ∈ U of NLP(t).

Proof. Renumbering components if necessary, we may assume that

G1(z̄) > 0, G2(z̄) = 0, G3(z̄) = 0,
H1(z̄) = 0, H2(z̄) > 0, H3(z̄) = 0.

If we assume that g1 contains the components of g that vanish at z̄, then the assump-
tion is that the matrix with row blocks

∇g1(z̄),∇h(z̄),∇G2(z̄),∇G3(z̄),∇H1(z̄),∇H3(z̄)

has full row rank. Now let us assume that the assertion of the lemma does not hold.
Then there exists a positive sequence tn → 0 and a sequence zn → z̄ such that zn
is feasible for NLP(tn) and NLP-LICQ does not hold at zn. Since zn → z̄ we have
G1(zn) > 0 and H2(zn) > 0 for sufficiently large n and we may partition Gi and Hi

further into Gij and Hij , respectively, such that

G11(zn) > 0, G12(zn) > 0, G21(zn) > 0, G22(zn) = 0,
H11(zn) > 0, H12(zn) = 0, H21(zn) > 0, H22(zn) > 0,
G31(zn) > 0, G32(zn) > 0, G33(zn) = 0, G34(zn) = 0,
H31(zn) = 0, H32(zn) > 0, H33(zn) > 0, H34(zn) = 0.

(13)

This partitioning may depend on n for a general sequence zn but, passing to a sub-
sequence if necessary, we may assume that it is constant for all n since there are
only finitely many such partitions. We may also assume that G(zn)�H(zn) = t > 0
for otherwise the assertion of the lemma holds trivially. It suffices to show that the
matrix with row blocks

∇g1(zn),∇h(zn),∇G22(zn),∇G33(zn),∇G34(zn),
∇H12(zn),∇H31(zn),∇H34(zn), H(zn)�∇G(zn) + G(zn)�∇H(zn)
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has full row rank. The MPEC-LICQ assumption implies that, for sufficiently large n,
the matrix turns into a matrix with full row rank if the last row is removed. Hence the
full matrix fails to have full row rank if and only if there are multipliers λn, µn, γn, νn
such that

∇G(zn)�H(zn) +∇H(zn)�G(zn)

= ∇g1(zn)�λ1,n +∇h(zn)�µn
+∇G22(zn)�γ22,n +∇G33(zn)�γ33,n +∇G34(zn)�γ34,n

+∇H12(zn)�ν12,n +∇H31(zn)�ν31,n +∇H34(zn)�ν34,n.

Rearranging terms in the equation yields

∇G11(zn)�H11(zn) +∇H21(zn)�G21(zn)

= ∇g1(zn)�λ1,n +∇h(zn)�µn
−∇G21(zn)�H21(zn) +∇G22(zn)�(γ22,n −H22(zn))−∇G32(zn)�H32(zn)

+∇G33(zn)�(γ33,n −H33(zn)) +∇G34(zn)�γ34,n

−∇H11(zn)G11(zn) +∇H12(zn)�(ν12 −G12(z)) +∇H31(z)�(ν31,n −G31(zn))

−∇H32(zn)�G32(zn) +∇H34(zn)�ν34,n.

In view of the MPEC-LICQ assumption the gradients on the right-hand side are lin-
early independent for sufficiently large n. Moreover, the left-hand side of the equation
tends to zeros as n tends to ∞. Therefore, if n is large, the augmented multipliers on
the right-hand side must be arbitrarily close to zero. In particular G11(zn), H21(zn)
must be close to zero which contradicts the assumptions G11(z̄) > 0 and H21(z̄) > 0.
Therefore we can simplify (13) to

G1(zn) > 0, G2(zn) = 0, G31(zn) > 0, G32(zn) > 0, G33(zn) = 0, G34(zn) = 0,
H1(zn) = 0, H2(zn) > 0, H31(zn) = 0, H32(zn) > 0, H33(zn) > 0, H34(zn) = 0.

This implies that the left-hand side of the above equation vanishes and therefore that
H32(zn) = 0 and G32(zn) = 0. However, if this is the case, then G(zn)�H(zn) = 0
which contradicts our assumption that G(zn)�H(zn) = t > 0.

The next result is analogous to Theorem 3.1 and relates MPEC multipliers at z̄
to the NLP multipliers of an approaching sequence of stationary points of NLP(tn).

Theorem 8.2. Let {tn} be a sequence of positive scalars tending to zero, let zn be
a stationary point of NLP(tn) tending to z̄ and suppose MPEC-LICQ holds at z̄. Then
for every sufficiently large n NLP(tn) has unique multipliers (6) λi,n, µj,n, γk,n, νl,n, δn
at zn. Moreover, the point z̄ is a C-stationary point of NLP(0) with unique multipliers
λ̄, µ̄, γ̄, ν̄ which satisfy

λ̄i = lim
n→∞λi,n ≥ 0,

µ̄j = lim
n→∞µj,n,

γ̄k = lim
n→∞(γk,n − δnHk(zn)),

ν̄k = lim
n→∞(νk,n − δnGk(zn)).

The point z̄ is B-stationary for NLP(0) if and only if γ̄k ≥ 0 and ν̄k ≥ 0 for every k
with Gk(z̄) = Hk(z̄) = 0.



CONVERGENCE OF A REGULARIZATION SCHEME 933

Proof. Renumbering components if necessary, we may assume that

G1(z̄) > 0, G2(z̄) = 0, G3(z̄) = 0,
H1(z̄) = 0, H2(z̄) > 0, H3(z̄) = 0.

We further assume that g1 contains the components of g that vanish at z̄. The
stationarity conditions for NLP(t) consist of the Lagrangian equation which, after a
suitable rearrangement of terms, is of the form

−∇f(z)� − δ(∇G1(z)�H1(z) +∇H2(z)�G2(z)) = ∇g1(z)�λ1 +∇h(z)�µ
−∇G2(z)�(γ2 − δH2(z))

−∇G3(z)�(γ3 − δH3(z))

−∇H1(z)�(ν1 − δG1(z))

−∇H3(z)�(ν3 − δG3(z)),

the sign constraints

λ1, γ2, γ3, ν1, ν3, δ ≥ 0,

and the complementarity conditions

0 = g1(z)�λ1 = Gi(z)�γi = Hj(z)�νj = δ(G(z)�H(z)− t),

i = 2, 3, j = 1, 3. Notice that, in view of the MPEC-LICQ assumption, the gradi-
ents on the right-hand side of the Lagrangian equation are linearly independent for
sufficiently small t and z close to z̄. If, on the one hand, δ is bounded as t tends
to zero then the left-hand side of the equation tends to −∇f(z̄)� and therefore the
augmented multipliers converge to multipliers for the MPEC NLP(0) as indicated in
the statement of the theorem. If, on the other hand, δ is unbounded then we can find
a subsequence such that the left-hand side of the equation, after division by δ, tends
to zero. Hence, due to the linear independence of the gradients, the correspondingly
scaled multipliers on the right-hand side tend to zero as well. If Hi(zn) > 0 for an
infinite subsequence, then νi,n/δ = 0 since the corresponding inequality is inactive
and therefore Gi(zn) tends to zero. We thus conclude that Hi(zn) = 0 for every
sufficiently large n and every i with Gi(z̄) > 0 and, by symmetry, Gj(zn) = 0 for
all sufficiently large n and all j such that Hj(z̄) > 0. This implies, however, that
the term ∇G1(z)�H1(z) + ∇H2(z)�G2(z) vanishes eventually and the Lagrangian
equation simplifies to

−∇f(z)� = ∇g1(z)�λ1 +∇h(z)�µ
−∇G2(z)�(γ2 − δH2(z))

−∇G3(z)�(γ3 − δH3(z))

−∇H1(z)�(ν1 − δG1(z))

−∇H3(z)�(ν3 − δG3(z)).

Using again the fact that the gradients on the right-hand side are linearly independent
for z close to z̄, we conclude that the limiting expressions for the multipliers also hold
in the case of unbounded δ. The inequality γ̄kν̄k ≥ 0 for every k with Gk(z̄) =
Hk(z̄) = 0 is a direct consequence of the complementarity conditions Hk(zn)νk,n =
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Gk(zn)γk,n = 0 because γ̄kν̄k is the limit of

(γk,n − δnHk(zn))(νk,n − δnGk(zn)) = γk,nνk,n − δn(Hk(zn)νk,n + Gk(zn)γk,n)
+δ2nHk(zn)Gk(zn)

= γk,nνk,n + δ2nHk(zn)Gk(zn) ≥ 0.

The final statement is a direct consequence of the limiting expressions and the fact
that B-stationarity is equivalent to strong stationarity under MPEC-LICQ.

Notice that the characteristic condition for B-stationarity given in the theorem is
obviously satisfied if z̄ is nondegenerate on the lower level, i.e., G(z̄) + H(z̄) > 0, or
if the multiplier sequence δn is bounded.

The following identification result is analogous to Corollary 3.2.

Corollary 8.3. If, in the setting of Theorem 8.2, n is sufficiently large, then

1. Gk(zn) = 0 for all k with γ̄k > 0;
2. Hk(zn) = 0 for all k with ν̄k > 0.

Proof. If Gk(zn) > 0 for an infinite subsequence, then γk,n = 0 due to comple-
mentarity and thus γ̄k ≤ 0 since Hk(zn), δn ≥ 0. The same argument proves the
second statement.

We finally give the analogous result to Theorem 3.3 which implies B-stationarity
of the limit points under MPEC-LICQ, ULSC and second order necessary optimality
conditions at zn.

Theorem 8.4. If, in addition to the assumptions of Theorem 8.2, second order
necessary optimality conditions hold at each zn, then z̄ is M-stationary.

Proof. Suppose z̄ is not M-stationary. Since, by Theorem 8.2, z̄ is C-stationary
this implies that there exists an index k such that Gk(z̄) = Hk(z̄) = 0 and

γ̄k = limn→∞(γk,n − δnHk(zn)) < 0,
ν̄k = limn→∞(νk,n − δnGk(zn)) < 0.

(14)

Hence for sufficiently large n

δnHk(zn) > γk,n ≥ 0,

δnGk(zn) > νk,n ≥ 0.

Therefore δn, Hk(zn) and Gk(zn) are positive and thus νk,n = γk,n = 0 for all suffi-
ciently large n. The relations (14) therefore simplify to

γ̄k = − limn→∞ δnHk(zn) < 0,
ν̄k = − limn→∞ δnGk(zn) < 0.

(15)

Let us now focus our attention to the Hessian of the term φk(z) = Hk(z)Gk(z) at zn,
which is of the form

∇2φk(zn) = ∇Gk(zn)�∇Hk(zn) +∇Hk(zn)�∇Gk(zn)

+Gk(zn)∇2Hk(zn) + Hk(zn)∇2Gk(zn)

and appears weighted with the multiplier δn in the Hessian of the Lagrangian

Ltn(z, λ, µ, γ, ν, δ) = f(z)+g(z)�λ+h(z)�µ−G(z)�γ−H(z)�ν+δ(G(z)�H(z)− tn)
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at zn. Because of the MPEC-LICQ assumption we can choose, for sufficiently large
n, a sequence of directions dn with

∇gi(zn)dn = 0, i : gi(z̄) = 0,

∇h(zn)dn = 0,

∇Gi(zn)dn = 0, i : Gi(z̄) = 0, i �= k,

∇Hi(zn)dn = 0, i : Hi(z̄) = 0, i �= k,

∇Gk(zn)dn = 1,

∇Hk(zn)dn = −Hk(zn)/Gk(zn).

We may assume that the sequence {dn} is bounded since, in view of (15), Hk(zn)/Gk(zn)
converges to γ̄k/ν̄k. Notice that

∇φk(zn)dn = Gk(zn)∇Hk(zn)dn + Hk(zn)∇Gk(zn)dn = 0.

Hence dn is a critical direction of NLP(tn) at zn for every sufficiently large n. More-
over,

δnd
�
n∇2φk(zn)dn

= δnHk(zn)d�n∇2Gk(zn)dn + δnGk(zn)d�n∇2Hk(zn)dn − 2δnHk(zn)

Gk(zn)
,

which tends to −∞ since the first two terms are bounded and δnHk(zn) tends to
−γ̄k > 0, while Gk(zn) is a positive null-sequence. Since all other terms in

d�n∇2
zLtn(zn, λn, µn, γn, νn, δn)dn

are bounded, second order necessary optimality conditions fail for sufficiently
large n.
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ularization Techniques, M. Théra and R. Tichatschke, eds., Springer-Verlag, New York,
1999, pp. 99–110.

[6] X. Hu, private communication, 2000.
[7] X. Hu, A Penalty Method for Mathematical Programs with Complementarity Constraints,

Department of Mathematics and Statistics, University of Melbourne, Australia, 2000.
[8] H. Jiang and D. Ralph, Smooth SQP methods for mathematical programs with nonlinear

complementarity constraints, SIAM J. Optim., 10 (2000), pp. 779–808.



936 STEFAN SCHOLTES

[9] M. Kojima, Strongly stable stationary solutions in nonlinear programming, in Analysis and
Computation of Fixed Points, S. M. Robinson, ed., Academic Press, New York, 1980, pp.
93–138.

[10] Z. Q. Luo, J. S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints,
Cambridge University Press, Cambridge, UK, 1996.

[11] J. Outrata, M. Kocvara, and J. Zowe, Nonsmooth Approach to Optimization Problems with
Equilibrium Constraints: Theory, Applications and Numerical Results, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1998.

[12] J. Outrata, Optimality conditions for a class of mathematical programs with equilibrium
constraints, Math. Oper. Res., 24 (1999), pp. 627–644.

[13] S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[14] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Sta-

tionarity, optimality, and sensitivity, Math. Oper. Res., 25 (2000), pp. 1–22.
[15] S. Scholtes and M. Stöhr, Exact penalization of mathematical programs with equilibrium

constraints, SIAM J. Control Optim., 37 (1999), pp. 617–652.
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Abstract. We present two second-order algorithms, one for solving a class of finite generalized
min-max problems and one for solving semi-infinite generalized min-max problems. Our algorithms
make use of optimality functions based on second-order approximations to the cost function and of
corresponding search direction functions. Under reasonable assumptions we prove that both of these
algorithms converge Q-superlinearly, with rate at least 3/2.

This paper is a continuation of [E. Polak, L. Qi, and D. Sun, Comput. Optim. Appl., 13 (1999),
pp. 137–161].

Key words. generalized min-max problems, consistent approximations, optimality functions,
second-order methods, superlinear convergence
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1. Introduction. As is also the case with ordinary min-max problems, general-
ized min-max problems can be either finite or semi-infinite. Both are of the form

P min
x∈�n

f0(x),(1.1)

where

f0(x) = F (ψ(x)) ,(1.2)

with F : �m → � is a smooth function and ψ : �n → �m is a nonsmooth, vector-
valued function. In the case of generalized finite min-max problems, the components
of ψ(·) are of the form1

ψj(x) = max
k∈qj

f j,k(x) ,(1.3)

where the functions f j,k : �n → �, j ∈m and k ∈ qj, are continuously differentiable
and the sets qj := {1, 2, ..., qj} are of finite cardinality.2

In semi-infinite generalized min-max problems the components of ψ(·) are of the
form

ψj(x) = max
yj∈Yj

φj(x, yj) ,(1.4)
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where the functions φj : �n ×�mj → �, j ∈m, and Yj ⊂ �mj , j ∈m.

Finite generalized min-max problems are obviously a special case of semi-infinite
generalized min-max problems, since when the sets

Yj = {yj,k}k∈qj
,(1.5)

we can define the functions f j,k(x) by

f j,k(x) := φj(x, yj,k) .(1.6)

The best known generalized min-max problem occurs when an optimization prob-
lem with a max function cost and equality and inequality constraints is set up for so-
lution using exact penalty functions, which results in an unconstrained optimization
problem with f0(x) in (1.1) of the form

f0(x) = max
i∈p

ci(x) + πe

q∑
j=1

|gj(x)|+ πi

r∑
k=1

max{0, fk(x)} ,(1.7)

where πe and πi are two positive penalty parameters.

Another simple example occurs in a least squares problem involving max func-
tions, in which case

f0(x) =

q∑
j=1

ψj(x)2 ,(1.8)

where each ψj(x) is as in (1.3).

As a last example, in trying to approximate a structural optimization problem,
the aim of which was to minimize the sum of the probability of failure3 plus the cost
of the steel in the structure, using linearizations of a state-limit function, we obtained
a cost function of the form

f0(x) = F (−a/(ψ(x) + b)),(1.9)

where F ′(y) > 0, a > 0,

ψ(x) = max
u∈Bρ

g(x, u) ,(1.10)

Bρ is a ball of radius ρ, centered at the origin in the space of the random variables
u, and g(x, u) is a smooth state-limit function which defined the boundary between
outcomes that result in structural failure from those that do not [4].

Functions of the form f0(x) = F (ψ(x)), with ψ(·) as in (1.4), are the best known
examples of quasi-differentiable functions and are treated in depth in [3]. Hence
generalized min-max problems can be solved using algorithms developed for quasi-
differentiable functions; see, e.g., [3, 6, 7, 8]. Under the additional assumption that
∂F (y)/∂yj > 0 for all y ∈ �m and j = 1, . . . ,m, finite generalized min-max problems

3The probability of failure was given by
∫
g(x,u)≥0

φ(u)du, with φ(·) the normal probability

density function.
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can be solved using transformations4 into a smooth, constrained nonlinear program-
ming problem (see, e.g., [1, 5, 9]). Direct methods that depend on the assumption
that ∂F (y)/∂yj > 0 for all y ∈ �m and j = 1, . . . ,m can be found, for example, in
[6, 8] and in [17].

We will consider semi-infinite generalized min-max problems under the following
hypotheses.
Assumption 1.1. We will assume that
(a) the functions F (·) and φj(·, y), j ∈ m, y ∈ Yj , are at least once continuously

differentiable;
(b) there exists a positive number cF > 0 such that ∂F (y)/∂yj ≥ cF for all

y ∈ �m and j ∈m;
(c) the sets Yj are either compact sets of infinite cardinality, or sets of finite

cardinality, of the form given in (1.5).
Parts (a) and (b) of Assumption 1.1 ensure that when both the F (·) and the ψj(·)

are convex, the function f0(·) is also convex. In addition, as we will see, when all
parts of Assumption 1.1 hold, the function f0(·) has a subgradient. In [17], this fact
was used in defining an optimality function and an associated descent direction for the
problem P and in extending the Pshenichnyi–Pironneau–Polak (PPP) Algorithm 4.1
in [13] (see also [18, 10, 11]) to finite generalized min-max problems and the Polak–He
PPP Rate-Preserving Algorithm 3.4.9 in [13] (see also [14]) to semi-infinite generalized
min-max problems.

In this paper we make use of the following observations, described in section 3.3
of [13] and also used in [15] and [16], for constructing Q-superlinearly converging
algorithms for solving finite and semi-infinite min-max problems, of the form (1.1)
and (1.2).

First, suppose that the sets Yj , j ∈ m, are as in (1.5), i.e., they are of finite
cardinality; that the cost function f0(·) is strongly convex at the minimizer x̂, i.e.,
there exist α <∞ such that

f0(xi)− f0(x̂) ≥ α‖xi − x̂‖2 ;(1.11)

and that we have a local model f̂0(xi, x − xi) for the cost function at xi, with the
property that for some κ <∞,

|f0(x)− f̂0(xi, x− xi)| ≤ κ‖x− xi‖3 .(1.12)

Then, a local algorithm of the form

xi+1 ∈ arg min
x∈�n

f̂0(xi, x− xi)(1.13)

converges superlinearly, and, in particular, there exists a κ′ <∞ such that

‖xi+1 − x̂‖ ≤ κ′‖xi − x̂‖3/2 .(1.14)

4These transformations result in a smooth problem with more variables than in the nonsmooth
problem. There is a fair bit of anecdotal evidence that they can induce considerable ill-conditioning
in the smooth problem because they introduce arbitrary scaling. In particular, all methods based
on the smooth transformations require the linear independent constraint qualification (LICQ) to be
satisfied, which is unlikely to be true for the problem considered here, and some of these methods also
require the strict complementarity condition to hold. Instead of using smooth transformations, we
directly exploit the problem structure to avoid assuming either LICQ or the strict complementarity
condition. However, we do need to solve a slightly more complicated subproblem at each iteration
than methods based on smooth transformations.
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Next, consider a problem P, with a unique solution x̂, and a sequence of approx-
imating problems PN , with unique solutions x̂N , such that x̂N → x̂, as N → ∞.
Suppose we have an algorithm for solving the problems PN such that the iterates
that it constructs satisfy the relation

‖xi+1 − x̂N‖ ≤ γ‖xi − x̂N‖τ(1.15)

for some γ <∞ and τ > 1. If we choose N at each iteration so that

‖x̂N − x̂‖ ≤ γ′‖xi − x̂N‖σ(1.16)

for some γ′ <∞ and any 1 < τ < σ, then there exists a γ′′ such that

‖xi+1 − x̂‖ ≤ γ′′‖xi − x̂‖τ .(1.17)

Note that our convergence analysis is heavily dependent on Assumption 2.4, to
be introduced in section 2, and hence our results are valid only for convex problems.

In section 2, we present a continuous optimality function and its associated search
direction function which, together with a backstepping rule, constitute the backbone of
our algorithms. In section 3, we extend the Polak–Mayne–Higgins Newton’s method
[15], for solving finite min-max problems, to generalized finite min-max problems.
We prove the Q-superlinear convergence of this extension in section 4. In section 5,
we make use of the theory of consistent approximations developed in [13] and the
algorithm presented in section 3 to develop an algorithm for solving generalized semi-
infinite min-max problems and prove its convergence and Q-superlinear convergence.
Section 6 is devoted to some numerical results to demonstrate the behavior of the
proposed algorithms. We sum up in the concluding section 7.

2. Optimality conditions. We will now present optimality conditions for the
semi-infinite generalized min-max problem, defined in (1.1), (1.2), (1.4), both in “clas-
sical” form and in terms of an optimality function which leads to a superlinearly
converging second-order algorithm.

Lemma 2.1 (see [17]). Suppose that F : �m → � is continuously differentiable
and that ψ : �n → �m is a locally Lipschitz continuous function that has directional
derivatives at every x ∈ �n. Let f0 : �n → � be defined by

f0(x) = F (ψ(x)) .(2.1)

Then, given any x ∈ �n, and any direction vector h ∈ �n, the function f0(·) has a
directional derivative df0(x;h) which is given by

df0(x;h) = 〈∇F (ψ(x)), dψ(x;h)〉 .(2.2)

Suppose that Assumption 1.1 is satisfied. Then it follows from Lemma 2.1 that the
directional derivative of f0(·), at a point x ∈ �n in the direction h, is given by



df0(x;h) =
∑
j∈m

∂F

∂yj
(ψ(x))dψj(x;h)

=
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Ŷj(x)
〈∇xφ

j(x, yj), h〉,
(2.3)



SECOND-ORDER ALGORITHMS 941

where

Ŷj(x) := {yj ∈ Yj | φj(x, yj) = ψj(x)}.(2.4)

When all the sets Yj are as in (1.5), (2.3) assumes the form

df0(x;h) =
∑
j∈m

∂F

∂yj
(ψ(x)) max

k∈q̂j(x)
〈∇f j,k(x), h〉 ,(2.5)

where the functions f j,k(·) are defined by

f j,k(x) := φj(x, yj,k), k ∈ qj,(2.6)

and the sets q̂j(x) by

q̂j(x) := {k ∈ qj | f j,k(x) = ψj(x)} .(2.7)

Hence the following result is obvious.
Theorem 2.2. Suppose that x̂ is a local minimizer for the problem (1.1), (1.2),

(1.4). Then for all h ∈ �n,


df0(x̂;h) =
∑
j∈m

∂F

∂yj
(ψ(x̂))dψj(x̂;h)

=
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

yj∈Ŷj(x̂)
〈∇xφ

j(x̂, yj), h〉 ≥ 0 .

(2.8)

Furthermore, (2.8) holds if and only if 0 ∈ ∂f0(x̂), where the subgradient ∂f0(x̂) is
given by

∂f0(x̂) =
∑
j∈m

{
convyj∈Ŷj(x̂)

{
∂F

∂yj
(ψ(x̂))∇xφ

j(x̂, yj)

}}
.(2.9)

Since (2.8) is a necessary condition of optimality, any point x̂ ∈ �n that satisfies
(2.8) will be called stationary.

When all the sets Yj are of the form (1.5), the expressions (2.8) and (2.9) assume
the following form:

df0(x̂;h) =
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

k∈q̂j(x̂)
〈∇f j,k(x̂), h〉 ≥ 0 ∀ h ∈ �n,(2.10)

∂f0(x̂) =
∑
j∈m

convk∈q̂j(x̂)

{
∂F

∂yj
(ψ(x̂))∇f j,k(x̂)

}
.(2.11)

Definition 2.3. We will say that θ : �n → � is an optimality function for
problem (1.1), (1.2), (1.4) if

(a) θ(·) is upper semicontinuous,
(b) θ(x) ≤ 0 for all x ∈ �n, and
(c) for any x̂ ∈ �n, (2.8) holds if and only if θ(x̂) = 0.
Assumption 2.4. We will assume that
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(a) the functions φj(·, yj), j ∈ m, yj ∈ Yj , and F (·), in (1.1), (1.2), (1.4), are
twice Lipschitz continuously differentiable on bounded sets,

(b) the functions φj(·, yj), ∇xφ
j(·, yj), and ∇2

xφ
j(·, yj) are locally Lipschitz con-

tinuous, j ∈m, yj ∈ Yj , and
(c) there exist constants 0 < c ≤ C <∞, such that for all j ∈m, yj ∈ Yj , x ∈ �n,

h ∈ �n, and w ∈ �m,

c‖h‖2 ≤ 〈h,∇2
xφ

j(x, yj)h〉 ≤ C‖h‖2(2.12)

and

0 ≤ 〈w,∇2F (ψ(x))w〉 ≤ C‖w‖2.(2.13)

For the sake of convenience, for any x, h ∈ �n and w ∈ �m, we define

u(x, h, w) := 〈∇F (ψ(x)), ψ̂(x, h)− ψ(x) + w〉(2.14)

and

v(x, h, w) := 1
2 〈ψ̂(x, h)− ψ(x) + w,∇2F (ψ(x))(ψ̂(x, h)− ψ(x) + w)〉,(2.15)

where ψ̂(x, h) = (ψ̂1(x, h), . . . , ψ̂m(x, h)), and

ψ̂j(x, h) := max
yj∈Yj

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇2
xφ

j(x, yj)h〉}.(2.16)

The reason for the introduction of the artificial variable w is as follows. The
function

f̃0(x, h) := F (ψ(x)) + u(x, h, 0) + v(x, h, 0)(2.17)

is a perfectly good second-order approximation to F (ψ(x+h)), but unfortunately, it is
not always convex and hence leads to problems in developing an algorithm for solving
semi-infinite generalized min-max problems. By introducing the artificial variable w,
we can define the function

f̂0(x, h) := min
w∈�m

+

{F (ψ(x)) + u(x, h, w) + v(x, h, w)}(2.18)

which, as we will later see, is a convex second-order approximation to F (ψ(x + h))
and hence much more useful in algorithm construction.

We define the function θ : �n → � and the associated search direction function
H : �n → �n by

θ(x) := min
h∈�n

{ min
w∈�m

+

[u(x, h, w) + v(x, h, w)]}(2.19)

and

H(x) := arg min
h∈�n

{ min
w∈�m

+

[u(x, h, w) + v(x, h, w)]} .(2.20)

Note that

θ(x) = min
h∈�n

{f̂0(x, h)− f0(x)}.(2.21)
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We will shortly see that the function θ(·) is an optimality function for the problem
(1.1), (1.2), (1.4). For any y, δy ∈ �m, let

F̂ (y, δy) := min
w∈�m

+

{F (y) + 〈∇F (y), δy + w〉+ 1
2 〈δy + w,∇2F (y)(δy + w)〉}.(2.22)

Lemma 2.5. Suppose that Assumptions 1.1 and 2.4 are satisfied. For any y, δy ∈
�m, let Ω∗(y, δy) ⊂ �m

+ be the solution set of (2.22). Then Ω∗(y, δy) is nonempty and
compact and for any w∗ ∈ Ω∗(y, δy), we have

∇F (y) +∇2F (y)δy +∇2F (y)w∗ ≥ 0.(2.23)

Proof. Since ∇F (y) > 0 and ∇2F (y) is positive semidefinite, for any w ∈ �m
+

and ‖w‖ → ∞ we have

F (y) + 〈∇F (y), δy + w〉+ 1
2 〈δy + w,∇2F (y)(δy + w)〉 → +∞.(2.24)

Thus, Ω∗(y, δy) is nonempty and compact.
Suppose that w∗ ∈ Ω∗(y, δy). Then w∗ satisfies the following first-order optimality

conditions which follow directly from (and are equivalent to) the KKT conditions:

∇F (y) +∇2F (y)(δy + w∗)− λ∗ = 0,

w∗ ≥ 0, λ∗ ≥ 0, 〈w∗, λ∗〉 = 0,
(2.25)

i.e., 


∇F (y) +∇2F (y)(δy + w∗) ≥ 0,

w∗ ≥ 0,

〈w∗,∇F (y) +∇2F (y)(δy + w∗)〉 = 0.

(2.26)

Clearly, (2.26) implies that for any w∗ ∈ Ω∗(y, δy), we have

∇F (y) +∇2F (y)δy +∇2F (y)w∗ ≥ 0.(2.27)

Lemma 2.6. Suppose that Assumptions 1.1 and 2.4 are satisfied. Then for any
z ∈ �n there exists an ε > 0 such that for all h ∈ �n with ‖h‖ ≤ ε and for all x ∈ �n

with ‖x− z‖ ≤ ε we have

f̂0(x, h) = F (ψ(x)) + u(x, h, 0) + v(x, h, 0),(2.28)

i.e.,

f̂0(x, h) = f̃0(x, h),(2.29)

where f̃0(·, ·) is defined by (2.17).
Proof. Since F (ψ(x)) + u(x, h, ·) + v(x, h, ·) is a convex quadratic function, any

w ∈ �m satisfying the first-order conditions


w ≥ 0,

∇F (ψ(x)) +∇2F (ψ(x))(ψ̂(x, h)− ψ(x) + w) ≥ 0,

〈w,∇F (ψ(x)) +∇2F (ψ(x))(ψ̂(x, h)− ψ(x) + w)〉 = 0

(2.30)
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is a solution of (2.18). Then, because ∂F (y)/∂yj ≥ cF , for every j ∈m and y ∈ �m,

and ψ̂(·, ·) is uniformly continuous on any compact set and ψ̂(x, 0) = ψ(x), we see
that for any z ∈ �n there exists an ε > 0 such that for all h ∈ �n with ‖h‖ ≤ ε and
for all x ∈ �n with ‖x− z‖ ≤ ε, w = 0 satisfies (2.30). This implies that for all those
h and x, we have

f̂0(x, h) = F (ψ(x)) + u(x, h, 0) + v(x, h, 0) = f̃0(x, h).(2.31)

Hence our proof is complete.
The above lemma shows that f̂0(x, h) is identical to f̃0(x, h) for all h sufficiently

small. This fact will be used in proving our superlinear convergence results.
In general, f̃0(x, h) is not convex in h. We will now show that f̂0(x, h) is convex

in h.
Lemma 2.7. Suppose that Assumptions 1.1 and 2.4 are satisfied. Then for any

fixed x ∈ �n, f̂0(x, ·) is a convex function. Moreover, f̂0(·, ·) is continuous.
Proof. First we will show that f̂0(x, ·) is a convex function. For any y ∈ �m and

δy ∈ �m, we have

F̂ (y, δy) = F (y) + 〈∇F (y), δy〉+ 1
2 〈δy,∇2F (y)δy〉+ S(δy),(2.32)

where

S(δy) = min
w∈�m

+

〈∇F (y) +∇2F (y)δy, w〉+ 1
2 〈w,∇2F (y)w〉 .(2.33)

It is easy to verify that S(δy) is a concave function and that its subgradient is given
by

∂S(δy) = conv{∇2F (y)w∗ : w∗ ∈ Ω∗(y, δy)},(2.34)

where Ω∗(y, δy) ⊂ �m
+ is the solution set of (2.33). It now follows from (2.32) that for

any y ∈ �m, F̂ (y, ·) is locally Lipschitz continuous and that its generalized gradient
at δy in the sense of Clarke [2] is given by

∂δyF̂ (y, δy) = conv{∇F (y) +∇2F (y)δy +∇2F (y)w∗ : w∗ ∈ Ω∗(y, δy)}.(2.35)

Since, by Lemma 2.5, for any w∗ ∈ Ω∗(y, δy),

∇F (y) +∇2F (y)δy +∇2F (y)w∗ ≥ 0,(2.36)

we conclude that s ≥ 0 for any s ∈ ∂δyF̂ (y, δy). Hence, since ψ̂j(x, ·) is convex for

every j ∈ {1, . . . ,m}, it follows that f̂0(x, h) = F̂ (ψ(x), ψ̂(x, h) − ψ(x)) is convex in
h ∈ �n (because it is the composition of a convex function with positive elements in
the generalized gradient and a vector function whose components are convex).

Next, we will prove that f̂0(x, h) is continuous. First, since ∂F (y)/∂yj ≥ cF > 0
and ∇2F (y) is positive semidefinite for all j ∈ {1, . . . ,m} and y ∈ �m, it follows
from (2.22) that Ω∗(y, δy) is uniformly bounded in a neighborhood of given point
(z, δz) ∈ �m×�m. It now follows from Corollary 5.4.2 in [13] that F̂ (·, ·) is continuous.
Hence

F̂ (y, δy)→ F̂ (z, δz) as y → z, δy → δz ,(2.37)
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which implies that f̂0(x, h) is continuous on �n ×�n because

f̂0(x, h) = F̂ (ψ(x), ψ̂(x, h)− ψ(x))(2.38)

with y := ψ(x) and δy := ψ̂(x, h)− ψ(x).
The following theorem shows that θ(·) is indeed an optimality function for the

problem (1.1), (1.2), (1.4) and that the set-valued function H(·) is a descent direction
function for f0(·).

Theorem 2.8. Suppose that Assumptions 1.1 and 2.4 are satisfied. Consider the
functions θ(·) and H(·) defined by (2.19) and (2.20), respectively. Then the following
hold:

(i) For all x ∈ �n,

θ(x) ≤ 0 .(2.39)

(ii) For all x ∈ �n,

df0(x;h) ≤ θ(x)− γ‖h‖2 ∀ h ∈ H(x),(2.40)

where df0(x;h) is the directional derivative of f0 at x in the direction h and γ =
1
2mcF c.

(iii) For any x ∈ �n, 0 ∈ ∂f0(x) if and only if θ(x) = 0, where ∂f0(x) is the
subgradient of f0(·) at x, defined in (2.9). Moreover, for any x ∈ �n such that
θ(x) = 0 we have H(x) = {0}.

(iv) The set-valued map H(·) is (a) bounded on bounded sets, (b) compact valued,
and (c) outer-semicontinuous, i.e., for any x ∈ �n, H(x) is closed and, for every
compact set S such that H(x) ∩ S = ∅, there exists a ρ > 0 such that H(z) ∩ S = ∅
for all z ∈ B(x, ρ) := {y ∈ �n|‖y − x‖ ≤ ρ}.

(v) The function θ(·) is continuous.
Proof. (i) Since h = 0 is admissible in (2.19) that θ(x) ≤ 0 for all x ∈ �n.
(ii) Since Ŷj(x) ⊂ Yj , it follows directly from the definition of θ(x) in (2.19) that

for any h ∈ H(x),


θ(x) ≥ min
w∈�m

+

〈∇F (ψ(x)), ψ̂(x, h)− ψ(x) + w〉

= 〈∇F (ψ(x)), ψ̂(x, h)− ψ(x)〉

≥
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Ŷj(x)
{φj(x, yj)− ψj(x)

+〈∇xφ
j(x, yj), h〉+ 1

2c‖h‖2}

≥ df0(x, h) + 1
2mcF c‖h‖2.

(2.41)

Thus we have shown that (2.40) holds.
(iii) For any x ∈ �n, let

η(x) := min
h∈�n

min
w∈�m

+

u(x, h, w) = min
h∈�n

u(x, h, 0) .(2.42)

We will first prove that

θ(x) = 0⇐⇒ η(x) = 0.(2.43)
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It is easy to see that η(x) = 0⇒ θ(x) = 0 because θ(x) ≥ η(x) and θ(x) ≤ 0. Hence
we only need to show that θ(x) = 0⇒ η(x) = 0.

Suppose that θ(x) = 0 but η(x) < 0. Then, there exists an h′ ∈ �n such that
η(x) = u(x, h′, 0) < 0.

For any j ∈ {1, . . . ,m}, we have


ψ̂j(x, h)− ψj(x)

= max
yj∈Yj

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉} − ψj(x)

≤ max
yj∈Yj

{〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉}

(2.44)

and 


ψ̂j(x, h)− ψj(x)

≥ max
yj∈Ŷj(x)

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉} − ψj(x)

= max
yj∈Ŷj(x)

{〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉}

≥ min
yj∈Yj

{〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉} .

(2.45)

Thus, there exists a constant C0 such that

‖ψ̂(x, h)− ψ(x)‖ ≤ C0 max{‖h‖, ‖h‖2} ∀ h ∈ �n,(2.46)

which further implies that there exists a constant C1 such that

0 ≤ v(x, h, 0) ≤ C1 max{‖h‖2, ‖h‖4} ∀ h ∈ �n.(2.47)

Since u(x, ·, 0) is a convex function and u(x, 0, 0) = 0, for λ > 0 sufficiently small we
have 



u(x, λh′, 0) + v(x, λh′, 0) ≤ λu(x, h′, 0) + λ2C1‖h′‖2

= λη(x) + λ2C1‖h′‖2

< 0,

(2.48)

which contradicts that θ(x) = 0. Hence θ(x) = 0⇒ η(x) = 0.
Next, with ∂f0(x) the subgradient of f0(·) at x, defined in (2.9), by emulating

the proof of Lemma 2.5.5 in [13], we can prove that for any x ∈ �n, 0 ∈ ∂f0(x) if and
only if η(x) = 0, and therefore if and only if θ(x) = 0.

Finally we will show that for any x ∈ �n such that θ(x) = 0 we have H(x) = {0}.
For the sake of contradiction, suppose that there exists an x ∈ �n such that θ(x) = 0
but H(x) �= {0}. Then there exist 0 �= h ∈ �n and w ∈ �m

+ such that

u(x, h, w) + v(x, h, w) = θ(x) = 0,(2.49)
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which, together with the fact that v(x, h, w) ≥ 0 implies that u(x, h, w) ≤ 0. Hence
we conclude that both u(x, h, w) = 0 and w = 0 because otherwise η(x) ≤ u(x, h, 0) ≤
u(x, h, w) < 0, which contradicts (2.43). However, η(x) = u(x, h, 0) = 0 implies that
h = 0 because u(x, h, 0) is strongly convex in h and u(x, 0, 0) = 0.

(iv) According to our definition, for each h ∈ �n there exists a w(h) ∈ �m
+ such

that

f̂0(x, h) = F (ψ(x)) + u(x, h, w(h)) + v(x, h, w(h)),(2.50)

which, together with the fact that ∇F (y) > 0, y ∈ �m and v(x, h, w(h)) ≥ 0, implies
that

f̂0(x, h) ≥ F (ψ(x)) + u(x, h, w(h)) ≥ F (ψ(x)) + u(x, h, 0).(2.51)

Since for each j ∈ {1, . . . ,m} and h ∈ �n,

ψ̂j(x, h) ≥ max
yj∈Yj

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2c〈h, h〉} ,(2.52)

it follows from (2.51) that for all s in any bounded neighborhood of x,

f̂0(s, h)→∞ as ‖h‖ → ∞.(2.53)

Consequently, for any x ∈ �n, H(x) is nonempty and bounded and H(·) is bounded
on bounded sets. Since f̂0(x, h) is continuous (Lemma 2.7), it follows that H(x) is
closed. Next we will prove that for every x ∈ �n and every compact set S such that
H(x)∩S = ∅, there exists a ρ > 0 such that H(z)∩S = ∅ for all z ∈ B(x, ρ). Suppose
not; then there exists an x ∈ �n and a compact set S such that H(x) ∩ S = ∅ and a
sequence {xi} converging to x such that H(xi)∩S �= ∅. Hence there exists a sequence
{hi} such that hi ∈ H(xi) ∩ S. Since S is a compact set, without loss of generality,
we can assume that

hi → h̄ ∈ S.(2.54)

By definition of H(xi),

f̂0(xi, hi) ≤ f̂0(xi, h) ∀ h ∈ �n.(2.55)

Since f̂0(·, ·) is continuous, it follows from (2.55) that

f̂0(x, h̄) ≤ f̂0(x, h) ∀ h ∈ �n,(2.56)

which implies that h̄ ∈ H(x). This contradicts that H(x) ∩ S = ∅. Thus, we have
shown that H(·) is outer-semicontinuous.

(v) Finally, it follows from Corollary 5.4.2 in Polak [13] that θ is
continuous.

By introducing an additional variable, we can rewrite the expression for θ(x),
defined in (2.19), as follows:{

θ(x) = min
(p,h)

{〈∇F (ψ(x)), p〉+ 1
2 〈p,∇2F (ψ(x))p〉}

s.t. p− ψ̂(x, h) + ψ(x) ≥ 0.
(2.57)
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The constraints in (2.57) involve maximum functions, and hence (2.57) appears to
be a nonsmooth problem. However, (2.57) can be reformulated as a smooth problem
with quadratic cost and quadratic constraints, as follows:


θ(x) = min
(p,h)

{〈∇F (ψ(x)), p〉+ 1
2 〈p,∇2F (ψ(x))p〉}

s.t. pj − φj(x, yj)− 〈∇xφ
j(x, yj), h〉 − 1

2 〈h,∇2
xφ

j(x, yj)h〉+ ψj(x) ≥ 0,
j ∈m, yj ∈ Yj .

(2.58)
Under the assumptions in this paper, (2.58) is convex, and hence can be solved using
the smoothing Newton method in [19] (see [19, 21] for the details of the implemen-
tation of the smoothing Newton method as well as section 6 for numerical results).
Alternatively, one can use primal-dual interior point methods, described in [20] and
references therein.

Theorem 2.9. Suppose that Assumptions 1.1 and 2.4 are satisfied and the sets
Yj are as in (1.5). For any x ∈ �n, let Γ(x) be the solution set of (2.57), i.e., any
(p, h) ∈ Γ(x) solves (2.57). Then

(i) problem (2.57) is a convex quadratic problem with convex quadratic constraints;
(ii) for x ∈ �n, Γ(x) is nonempty and compact and Γ(·) is outer-semicontinuous

and bounded on bounded sets;
(iii) if z ∈ �n is such that θ(z) = 0, then Γ(z) = {(0, 0)} and there exist a

neighborhood N(z) of z and an ε > 0 such that for any (p, h) ∈ Γ(x), x ∈ N(z), we
have

θ(x) ≤ −ε‖h‖2.(2.59)

Proof. (i) Under the conditions of Assumptions 1.1 and 2.4, ∇2F (ψ(x)) is positive

semidefinite and for each j ∈ {1, 2, . . . ,m}, ψ̂j(x, ·) is strongly convex. Hence (2.57)
is a convex quadratic problem with convex quadratic constraints.

(ii) Since for all z in a bounded neighborhood N(x) of x and j ∈ {1, 2, . . . ,m},

ψ̂j(z, h)− ψj(z)→ +∞ as ‖h‖ → ∞,(2.60)

it follows that for all z ∈ N(x) and (p, h) ∈ �m ×�n satisfying

p ≥ ψ̂(z, h)− ψ(z),(2.61)

we have

〈∇F (ψ(z)), p〉+ 1
2 〈p,∇2F (ψ(z))p〉 ≥ cF

∑
j∈m

pj →∞ as ‖(p, h)‖ → ∞.(2.62)

Hence, for all x ∈ �n, Γ(x) is nonempty and compact, and Γ(·) is bounded on bounded
sets.

The outer-semicontinuity of Γ(·) follows from the fact that θ(·) is continuous and
the constraint set in (2.57) is outer-semicontinuous.

(iii) Since z ∈ �n is such that θ(z) = 0, (0, 0) ∈ Γ(z). For any x ∈ �n, the KKT
conditions for (2.57) are


∇F (ψ(x)) +∇2F (ψ(x))p = λ,

0 ∈
∑
j∈m

λj∂hψ̂
j(x, h),

λ ≥ 0, p− ψ̂(x, h) + ψ(x) ≥ 0, λT (p− ψ̂(x, h) + ψ(x)) = 0,

(2.63)
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where ∂hψ̂
j(x, h) is the subgradient of ψ̂j(x, h) with respect to h.

Suppose that (p, h) ∈ Γ(z). By (iii) of Theorem 2.8, we have h = 0. Hence it

follows from (2.63) and the fact that ψ̂(z, 0) = ψ(z) that

〈p,∇F (ψ(z))〉+ 〈p,∇2F (ψ(z))p〉 = 0,(2.64)

which implies that p = 0 because p ≥ 0, ∇F (ψ(z)) > 0 and ∇2F (ψ(z)) is positive
semidefinite. Thus, we have proved that Γ(z) = {(0, 0)}. Hence, since Γ(·) is outer-
semicontinuous, it follows that if x→ z and (p, h) ∈ Γ(x), then

(p, h)→ (0, 0) .(2.65)

It now follows from (2.63), (2.65), and the fact that for any y ∈ �m, ∂F (y)/∂yj ≥
cF > 0 for j ∈ {1, 2, . . . ,m} that there exists a neighborhood N(z) of z such that for
all x ∈ N(z), the multiplier λ in the KKT (2.63) must have all components positive
and hence for all x ∈ N(z), the KKT conditions for (2.57) become



∇F (ψ(x)) +∇2F (ψ(x))p = λ,

0 ∈
∑
j∈m

λj∂hψ̂
j(x, h),

λ > 0, p− ψ̂(x, h) + ψ(x) = 0.

(2.66)

Thus, for any x ∈ N(z) and j ∈ {1, 2, . . . ,m}, there exist nonnegative numbers
µj,k ∈ [0, 1] satisfying

∑
k∈qj

µj,k = 1 such that for any (p, h) ∈ Γ(x)

∑
j∈m

λj
∑
k∈qj

µj,k(∇f j,k(x) +∇2f j,k(x)h) = 0,(2.67)

where

λ = ∇F (ψ(x)) +∇2F (ψ(x))p > 0,(2.68)

and for any k ∈ qj such that

ψ̂j(x, h) > f j,k(x) + 〈∇f j,k(x), h〉+ 1
2 〈h,∇2f j,k(x)h〉,(2.69)

we have

µj,k = 0.(2.70)
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We conclude from (2.66), (2.67), and (2.68) that for all x ∈ N(z) and (p, h) ∈ Γ(x),


θ(x) = 〈∇F (ψ(x)), p〉+ 1
2 〈p,∇2F (ψ(x))p〉

= 〈λ, p〉 − 1
2 〈p,∇2F (ψ(x))p〉

≤ 〈λ, p〉

= 〈λ, ψ̂(x, h)− ψ(x)〉

=
∑
j∈m

λj
∑
k∈qj

µj,k[(f j,k(x)− ψj(x)) + 〈∇f j,k(x), h〉+ 1
2 〈h,∇2f j,k(x)h〉]

=
∑
j∈m

λj
∑
k∈qj

µj,k[(f j,k(x)− ψj(x))− 1
2 〈h,∇2f j,k(x)h〉]

≤
∑
j∈m

λj
∑
k∈qj

µj,k[(f j,k(x)− ψj(x))− 1
2c〈h, h〉]

≤ −1
2c‖h‖2

∑
j∈m

λj ,

(2.71)
where the last inequality follows from the fact that f j,k(x) ≤ ψj(x) for all k ∈ qj

and j ∈ m. By shrinking N(z) if necessary, we conclude from (2.68), (2.71), and
Assumptions 1.1 and 2.4 that there exists a positive number ε > 0 such that for all
x ∈ N(z) and (p, h) ∈ Γ(x), θ(x) ≤ −ε‖h‖2.

3. An algorithm for solving generalized finite min-max problems. An
algorithm for solving generalized finite min-max problems is obviously of interest in
its own right. However, we will also need it as a subroutine for our algorithms for
solving generalized semi-infinite min-max problems. Hence, for the time being, we
will assume that the sets Yj are of the form (1.5) and that the functions f j,k(·) are as
in (2.6). As a result, our generalized finite min-max problem assumes the form (1.1),
(1.2), (1.4), with 



min
x∈�n

f0(x)

f0(x) = F (ψ(x)),

ψ(x) = (ψ1(x), . . . , ψm(x)),

ψj(x) = max
k∈qj

f j,k(x), j ∈m ,

(3.1)

where, in view of Assumption 1.1, the functions F (·) and f j,k(·), j ∈ m, k ∈ qj are
all continuously differentiable, where f j,k(·) are defined by (2.6).

We are now ready to state an algorithm for solving generalized finite min-max
problems. This algorithm is a generalization of the Polak–Mayne–Higgins Newton’s
algorithm for solving finite min-max problems [15].

Algorithm 3.1 (solves problem (3.1)).
Parameters. α ∈ (0, 1), β ∈ (0, 1), and δ > 0.
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Data. x0 ∈ �n.
Step 0. Set i = 0.
Step 1. Compute the optimality function value θi := θ(xi) and a search direction
hi ∈ H(xi) according to the formulae (2.19) and (2.20).
Step 2. If θi = 0, stop. Else, compute the step-size

λi = λ(xi) := max
k∈N
{βk| f0(xi + βkhi)− f0(xi)− βkαθi ≤ 0},(3.2)

where N := {0, 1, 2, . . .}.
Step 3. Set

xi+1 = xi + λihi,(3.3)

replace i by i+ 1, and go to Step 1.
Lemma 3.2 (see [17]). Suppose that Assumption 1.1 holds. Then for any y, y′ ∈

�m such that y′ ≥ y,

F (y′)− F (y) ≥ cF
∑
j∈m

(y′j − yj).(3.4)

Lemma 3.3 (see [17]). Suppose that Assumptions 1.1 and 2.4 are satisfied. Then
there exists a constant τ > 0 such that for all x, x′ ∈ �n and λ ∈ [0, 1],

f0(λx+ (1− λ)x′) ≤ λf0(x) + (1− λ)f0(x′)− 1
2τλ(1− λ)‖x− x′‖2.(3.5)

Theorem 3.4. Suppose that Assumptions 1.1 and 2.4 are satisfied and that all
the Yj, j ∈ m, are of the form (1.5), so that problem (1.1), (1.2), (1.4) reduces to
problem (3.1). If {xi}∞i=0 is an infinite sequence generated by Algorithm 3.1 and x∗ is
the unique solution of (3.1), then {xi}∞i=0 converges to x

∗.
Proof. Suppose that {xi}∞i=0 is an infinite sequence generated by Algorithm 3.1.

Since f(·) is strongly convex by Lemma 3.3, the sequence {xi}∞i=0 is bounded. Suppose
that x̂ is an accumulation point of this sequence. Since the cost function f0(·) is
continuous, f0(x̂) is an accumulation point of the cost sequence. Hence, since, by
construction, the cost sequence {f0(xi)}∞i=0 is monotone decreasing, it follows that
f0(xi)→ f0(x̂), as i→∞.

Now, for the sake of contradiction, suppose that θ(x̂) < 0. Since for any x ∈ �n,
H(x) is compact, and H(·) is bounded on bounded sets and is outer-semicontinuous
((iv) of Theorem 2.8), it follows from Theorem 5.3.7 (b) in Polak [13] that there

exists a subsequence {ji}∞i=0 of the integers such that xji → x̂ and hji → ĥ ∈ H(x̂),

as i→∞. It follows from (ii) and (iii) of Theorem 2.8 that ĥ �= 0 and

df0(x̂; ĥ) ≤ θ(x̂)− γ‖ĥ‖2.(3.6)

Let ε > 0 be such that 0 < α − ε < 1. Then it follows from the definition of the
directional derivative of f0(·) that there exists a kε ∈ N such that


f0(x̂+ βkε ĥ)− f0(x̂) ≤ βkε(α− ε)df0(x̂; ĥ)

≤ βkε(α− ε)[θ(x̂)− γ‖ĥ‖2].
(3.7)
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Hence,

f0(x̂+ βkε ĥ)− f0(x̂)− βkεαθ(x̂) ≤ −βkε [εθ(x̂) + (α− ε)γ‖ĥ‖2].(3.8)

Now,

εθ(x̂) + (α− ε)γ‖ĥ‖2 > 0(3.9)

for all ε > 0 such that

ε < ε′ :=
αγ‖ĥ‖2

−θ(x̂) + γ‖ĥ‖2 .(3.10)

Let ε̂ := 1
2ε

′. Then, since f0(·) and θ(·) are continuous and hji → ĥ, as i→∞, there
exists a ρ > 0 such that for all xji ∈ B(x̂; ρ),

f0(xji + βkε̂hji)− f0(xji)− βkε̂αθ(xji) < 0,(3.11)

which shows that for all xji ∈ B(x̂; ρ), λ(xji) ≥ βkε̂ . Next, since θ(·) is continuous,
there exists ρ̂ ∈ (0, ρ) such that for all xji ∈ B(x̂; ρ̂), θ(xji) ≤ 1

2θ(x̂). It therefore
follows from the step-size rule (3.2) that for all xji ∈ B(x̂; ρ̂),

f0(xji+1)− f0(xji) ≤ βkε̂αθ(xji) ≤ 1
2β

kε̂αθ(x̂) .(3.12)

Since {f0(xi)}∞i=0 is monotone decreasing, (3.12) implies that f0(xi) → −∞, as i →
∞, contradicting the fact that f0(xi) → f0(x̂), as i → ∞. Hence we conclude that
θ(x̂) = 0, and therefore that x̂ = x∗. Since by Lemma 3.3, f0(·) is strongly convex,
the whole sequence {xi} converges to x∗.

4. Rate of convergence of Algorithm 3.1. We will now show that (1.11)–
(1.13) hold for Algorithm 3.1.

Proposition 4.1. Suppose that Assumptions 1.1 and 2.4 are satisfied and that
x̂ is the unique minimizer of f0(·). Then for all x ∈ �n,

f0(x)− f0(x̂) ≥ 1
2ccFm‖x− x̂‖2.(4.1)

Proof. By Lemma 3.3, f0(·) is a strongly convex function. Hence, for any x ∈ �n

we have 


F (ψ(x))− F (ψ(x̂))

≥
∑
j∈m

∂F

∂yj
(ψ(x̂))(ψj(x)− ψj(x̂))

≥
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

k∈qj(x)
{f j,k(x̂)− ψj(x̂)

+〈∇f j,k(x̂), x− x̂〉+ c
2‖x− x̂‖2}

≥
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

k∈q̂j(x)
{〈∇f j,k(x̂), x− x̂〉+ c

2‖x− x̂‖2},

(4.2)
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where q̂j(x) is defined by (2.7). It now follows from (2.5) and (4.2) that

F (ψ(x))− F (ψ(x̂)) ≥ df0(x̂, x− x̂) +
mcF c

2
‖x− x̂‖2,(4.3)

Since df0(x̂, x− x̂) ≥ 0, (4.1) follows.
Proposition 4.2. Suppose that Assumptions 1.1 and 2.4 are satisfied. Then for

any compact convex set S there exists a κ > 0 such that for any x, z ∈ S,
|f0(x)− f̃0(z, x− z)| ≤ κ‖x− z‖3,(4.4)

where f̃0(z, x− z) was defined in (2.17).
Proof. First, it follows from Polak [13, Lemma 2.5.4] or [15] that there exists a

constant L1 <∞ such that for any x, z ∈ �n,

|ψj(x)− ψ̂j(z, x− z)| ≤ L1

6
‖x− z‖3, j ∈m.(4.5)

Let S ⊂ �n be a compact set, and let L2(≥ C) < ∞ be a constant associated with
S, such that for any z ∈ S,

‖∇F (ψ(z))‖ ≤ L2.(4.6)

Then for all x, z ∈ S, by the mean-value theorem, it holds that


f0(x) = F (ψ(x))

= F (ψ(z)) + 〈∇F (ψ(z)), ψ(x)− ψ(z)〉

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ(z))〉

+

∫ 1

0

t

∫ 1

0

〈ψ(x)− ψ(z), [∇2F (ψ(z) + st(ψ(x)− ψ(z)))

−∇2F (ψ(z))](ψ(x)− ψ(z))〉dsdt

≤ F (ψ(z)) + 〈∇F (ψ(z)), ψ(x)− ψ(z)〉

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ(z))〉+ L2

6 ‖ψ(x)− ψ(z)‖3

= f̃0(z, x− z) + 〈∇F (ψ(z)), ψ(x)− ψ̂(z, x− z)〉

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ(z))〉

− 1
2 〈ψ̂(z, x− z)− ψ(z),∇2F (ψ(z))(ψ̂(z, x− z)− ψ(z))〉

+L2

6 ‖ψ(x)− ψ(z)‖3 .

(4.7)

Thus, according to (4.5) and (4.7), we have


f0(x) ≤ f̃0(z, x− z) + L3‖x− z‖3 + L2

6 ‖ψ(x)− ψ(z)‖3

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ̂(z, x− z))〉

+ 1
2 〈ψ(x)− ψ̂(z, x− z),∇2F (ψ(z))(ψ̂(z, x− z)− ψ(z))〉,

(4.8)
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where L3 := mL2L1/6. For x, z ∈ S and j ∈ m, by the definition of ψ̂j(·, ·) (see
(2.16)), it holds that

ψ̂j(z, x− z)− ψj(z)

= max
k∈qj

{f j,k(z) + 〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

≤ max
k∈qj

f j,k(z) + max
k∈qj

{〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

= max
k∈qj

{〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉}

and, on the other hand,

ψ̂j(z, x− z)− ψj(z)

= max
k∈qj

{f j,k(z) + 〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

≥ max
k∈q̂j(z)

f j,k(z) + 〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

= max
k∈q̂j(z)

{〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} ,

where the definition of q̂j(z) can be found in (2.7). Thus, since S is compact, there
exists a positive number L4 such that for all x, z ∈ S,

‖ψ̂(z, x− z)− ψ(z)‖ ≤ L4‖x− z‖.(4.9)

By the Lipschitzian property of ψ and (4.5) it follows that there exists a positive
number L5(≥ L4) such that for all x, z ∈ S,

‖ψ(x)− ψ(z)‖ ≤ L5‖x− z‖(4.10)

and

‖ψ(x)− ψ̂(z, x− z)‖ ≤ L5‖x− z‖2.(4.11)

Hence for all x, z ∈ S,
f0(x)− f̃0(z, x− z) ≤ κ‖x− z‖3(4.12)

with

κ := L3 +
L2L5

6
+ L2L

2
5.(4.13)

The other half of the inequality of (4.4) follows similarly (with κ as defined in
(4.13)).

Theorem 4.3. Suppose that Assumptions 1.1 and 2.4 are satisfied, that all the
Yj, j ∈m are of the form (1.5), so that problem (1.1), (1.2), (1.4) reduces to problem
(3.1). If {xi}∞i=0 is a sequence constructed by Algorithm 3.1, in solving problem (3.1),
then, {xi}∞i=0 converges superlinearly with Q-order at least 3/2.
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Proof. First we will prove that after a finite number of iterations, the step-size λi

stabilizes to 1, so that eventually xi+1 = xi + hi holds for the sequence {xi}∞i=0. We
will then complete our proof by making use of results in [13, Corollary 2.5.8].

It follows from Theorem 3.4 that the sequence {xi}∞i=0 converges to the unique
minimizer x̂ of f0(·). Hence we conclude from Theorem 2.8 that

hi → 0 as i→∞.(4.14)

In view of this, we conclude from Lemma 2.6 that there exist a positive number ε > 0
and a nonnegative integer i0 such that for all i ≥ i0,

f̂0(xi, hi) = u(xi, hi, 0) + v(xi, hi, 0) = f̃0(xi, hi) = min
h∈�n,‖h‖≤ε

f̃0(xi, h).(4.15)

Suppose that i0 is sufficiently large to ensure that for all i ≥ i0,

‖hi‖ ≤ ε, ‖xi − x̂‖ ≤ ε .(4.16)

Then, making use of (4.1), we find that, for i = i0, i0 + 1, i0 + 2, . . . ,


1
2ccFm‖xi + hi − x̂‖2

≤ f0(xi + hi)− f0(x̂)

= f0(xi + hi)− f̃0(xi, hi) + f̃0(xi, hi)− f0(x̂)

≤ f0(xi + hi)− f̃0(xi, hi) + f̃0(xi, x̂− xi)− f0(x̂),

(4.17)

because f̃0(xi, hi) ≤ f̃0(xi, x̂ − xi), by (4.15). It now follows from Proposition 4.2
that there exists a κ > 0 such that for all i ≥ i0,



1
2ccFm‖xi + hi − x̂‖2

≤ κ(‖xi + hi − xi‖3 + ‖xi − x̂‖3)

≤ κ[(‖xi + hi − x̂‖+ ‖xi − x̂‖)3 + ‖xi − x̂‖3].

(4.18)

Now, by Theorem 2.9, there exist a positive integer i1 ≥ i0 and an ε1 > 0 such
that for all i ≥ i1,

θ(xi) ≤ −ε1‖hi‖2.(4.19)

Next, Proposition 4.2 and (4.15) imply that for all i ≥ i1,


θ(xi) = f̂0(xi, hi)− f0(x)

= f̃0(xi, hi)− f0(x)

= f̃0(xi, hi)− f0(xi + hi) + f0(xi + hi)− f0(xi)

≥ −κ‖hi‖3 + f0(xi + hi)− f0(xi).

(4.20)
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Hence, from (4.20) and (4.19), we have


f0(xi + hi)− f0(xi)− αθ(xi) ≤ (1− α)θ(xi) + κ‖hi‖3

≤ −(1− α)ε1‖hi‖2 + κ‖hi‖3.
(4.21)

It now follows from (4.21) and the fact that hi → 0 as i→∞ that for all i sufficiently
large,

xi+1 = xi + hi.(4.22)

We therefore conclude from [13, Corollary 2.5.8] or [15], (4.18), and (4.19) that {xi}∞i=0

converges to x̂ superlinearly with Q-order at least 3/2.

5. An algorithm for solving generalized semi-infinite min-max prob-
lems. We are now ready to tackle the generalized semi-infinite min-max problems
defined in (1.1), (1.2), (1.4). Such problems can be solved only by discretization tech-
niques. We will use discretizations that result in consistent approximations (as defined
in section 3.3 of [13]) and use them in conjunction with a master algorithm that calls
Algorithm 3.1 as a subroutine. We will see that under a reasonable assumption, the
resulting algorithm retains the rate of convergence of Algorithm 3.1.

5.1. Consistent approximations. Let N0 be a strictly positive integer, and,
for N ∈ N0 := {N0, N0 + 1, N0 + 2, . . .}, let Yj,N be finite cardinality subsets of Yj ,
j ∈ m, such that Yj,N ⊂ Yj,N+1 for all N and the closure of the set limYj,N is equal
to Yj , j ∈m. Then we define the family of approximating problems PN, N ∈ N0, as
follows:

PN min
x∈�n

f0
N (x),(5.1)

where

f0
N (x) := F (ψN (x)),(5.2)

ψN (x) = (ψ1
N (x), . . . , ψm

N (x)), and for j ∈m,

ψj
N (x) = max

yj∈Yj,N

φj(x, yj) .(5.3)

It should be clear that the approximating problems PN are of the form (3.1) and
that one can define optimality functions θN (·) for them of the form (2.19). We will
refer to the original problem (1.1), (1.2), (1.4) as P.

Definition 5.1 (see [13]). We will say that the pairs (PN, θN) in the sequence
{(PN, θN)}N∈N0 are consistent approximations to the pair (P, θ) if the problems PN

epi-converge to P (i.e., the epigraphs of the f0
N (·) converge to the epigraph of f0(·) in

the sense defined in Definition 5.3.6 in [13]) and for any infinite sequence {xN}N∈K ,
K ⊂ N0, such that xN →K x, limN∈KθN (xN ) ≤ θ(x).
Assumption 5.2. We will assume as follows:
(a) For every N ∈ N0, the problem (5.1) has a solution.
(b) There exists a strictly positive valued, strictly monotone decreasing function

∆ : N → �, such that ∆(N) → 0, as N → ∞, and a L < ∞, such that for every
N ≥ N0, j ∈m, and y ∈ Yj , there exists a y′ ∈ Yj,N such that

‖y − y′‖ ≤ L∆(N).(5.4)
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For example, if for all j ∈ m, Yj is the unit cube in �mj , i.e., Yj = Imj , with
I := [0, 1], then we can define Yj,N = I

mj

N , where

IN = {0, 1/a(N), 2/a(N), . . . , (a(N)− 1)/a(N), 1},
with a(N) := 2N−N0 . In this case it is easy to see that ∆(N) = 1/a(N) and L =
1
2 maxj∈m

{
mj

(1/mj)
}
. Similar constructions can be obtained for other polyhedral

sets.
For any x, h ∈ �n and w ∈ �m, we define

uN (x, h, w) := 〈∇F (ψN (x)), ψ̂N (x, h)− ψN (x) + w〉(5.5)

and 


vN (x, h, w)

= 1
2 〈ψ̂N (x, h)− ψN (x) + w,∇2F (ψN (x))(ψ̂N (x, h)− ψN (x) + w)〉,

(5.6)

where

ψ̂N (x, h) = (ψ̂1
N (x, h), . . . , ψ̂m

N (x, h))(5.7)

and

ψ̂j
N (x, h) = max

yj∈Yj,N

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇2
xφ

j(x, yj)h〉} .(5.8)

We infer from (2.19) that the optimality functions θN (·), for the problems PN

have the following form:

θN (x) := min
h∈�n

{ min
w∈�m

+

(uN (x, h, w) + vN (x, h, w))}.(5.9)

Since the cardinality of the sets Yj,N is finite, it is obvious that the θN (x) can be
evaluated.

As was also done in the Polak–Mayne–Higgins rate-preserving method [16] (see
also [17]), we use an alternative optimality function for the problems PN for precision
adjustment in our algorithm. This optimality function is defined by

θ̄N (x) := min
h∈�n

f̄0
N (x, h)−

∑
j∈m

∂F

∂yj
(ψN (x))ψj

N (x),(5.10)

where 


f̄0
N (x, h)

=
∑
j∈m

∂F

∂yj
(ψN (x)) max

yj∈Yj,N

[φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2δ‖h‖2],
(5.11)

with δ > 0, a constant.
Similarly (as in [17]), we define an alternative optimality function for the problem

P by

θ̄(x) := min
h∈�n

f̄0(x, h)−
∑
j∈m

∂F

∂yj
(ψ(x))ψj(x),(5.12)
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where

f̄0(x, h) =
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Yj

[φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2δ‖h‖2],(5.13)

with δ > 0 the same constant as in (5.11).
Proposition 5.3 (see [17]). Suppose that Assumptions 1.1 and 5.2 are satisfied

and that for all N ∈ N0, f
0
N (·) is defined by (5.2) and θ̄N (·) by (5.10). Let S ⊂ �n be

a bounded subset and let L <∞ be a Lipschitz constant valid for the functions φj(·, ·)
and ∇xφ

j(·, ·) on S × Yj, j ∈ q. Then there exists a constant CS < ∞ such that for
all x ∈ S,N ∈ N0,

|f0
N (x)− f0(x)| ≤ CS∆(N),(5.14)

and

|θ̄N (x)− θ̄(x)| ≤ CS∆(N).(5.15)

5.2. The superlinear rate-preserving algorithm.
Algorithm 5.4 (solves problem (1.1), (1.2), (1.4)).

Parameters. α, β ∈ (0, 1), δ > 0, D > 0, σ ≥ 3.
Data. x0 ∈ �n, N0 ∈ N .
Step 0. Set i = 0, N = N0.
Step 1. Compute the optimality function value θ̄N (xi) according to (5.10) and (5.11).
Step 2. If

D∆(N) ≤ |θ̄N (xi)|σ,(5.16)

go to Step 3. Else, replace N by N + 1, and go to Step 1.
Step 3. Compute the second optimality function value θN (xi) according to (5.9), i.e.,

θN (xi) = min
h∈�n

{ min
w∈�m

+

(uN (xi, h, w) + vN (xi, h, w))}(5.17)

and the corresponding search direction hi according to

hi ∈ arg min
h∈�n

{ min
w∈�m

+

(uN (xi, h, w) + vN (xi, h, w))}.(5.18)

Step 4. Compute the step-size

λi = max
k∈N
{βk| f0

N (xi + βkhi)− f0
N (xi)− βkαθN (xi) ≤ 0},(5.19)

and go to Step 5.
Step 5. Set

xi+1 = xi + λihi.(5.20)

Set Ni = N , replace i by i+ 1, and go to Step 1.
Remark.
(a) It follows from Proposition 5.3 that θ̄N (xi) → θ̄(xi), as N → ∞. Hence,

whenever θ̄(xi) �= 0, the loop consisting of Step 1 and Step 2 of Algorithm 5.4 yields



SECOND-ORDER ALGORITHMS 959

a finite discretization parameter Ni. For simplicity, we will assume that Algorithm
5.4 does not produce an iterate xi such that θ̄(xi) = 0.

(b) Note that the work needed to compute xi by Algorithm 5.4 increases with the
iteration number i.

The purpose of the following results is to show that the relations (1.15)–(1.17)
hold for Algorithm (5.4)

Lemma 5.5. Suppose that Assumptions 1.1, 2.4, and 5.2 are satisfied and that
Algorithm 5.4 has constructed a sequence {xi}∞i=0 together with the corresponding se-
quence of discretization parameters {Ni}∞i=0. If the sequence {xi}∞i=0 has at least one
accumulation point, then Ni →∞ as i→∞.
Proof. For the sake of contradiction, suppose that the sequence {xi}∞i=0 has an

accumulation point x̂ and that the sequence {Ni}∞i=0 is bounded. Then, because
{Ni}∞i=0 is a monotonically increasing sequence of integers, there exists an i0 ∈ N ,
such that for all i ≥ i0, Ni = Ni0 =: N∗. Hence for i ≥ i0, the construction of
the sequence {xi}∞i=0 is carried out by Algorithm 3.1 applied to problem (5.1) with
N = N∗. Furthermore, it follows from (5.16) that there exists an ε > 0, such that
θ̄i = θ̄N∗(xi) ≤ −ε for all i ≥ i0. However, it follows from Theorem 3.4 that θN∗(x̂) =
0. Thus, by (iii) of Theorem 2.8, 0 ∈ ∂f0

N∗(xi). By [17, Theorem 2], 0 ∈ ∂f0
N∗(xi)

implies θ̄N∗(xi) = 0. Then, from the continuity of θ̄N∗(·) [17, Theorem 2], it holds
that θ̄N∗(xi)→ θ̄N∗(x̂) = 0 as i→∞, i ∈ K, where the infinite subsequence {xi}i∈K ,
K ⊂ N , converges to x̂, which contradicts the previous finding, and hence completes
our proof.

Theorem 5.6. Suppose that Assumptions 1.1, 2.4, and 5.2 are satisfied and that
Algorithm 5.4 has constructed a bounded sequence {xi}∞i=0. Then every accumulation
point x̂ of {xi}∞i=0 satisfies θ̄(x̂) = 0.

Proof. By applying Theorem 3.3.23 of [13] or theorems in section 5 of [12] and
Lemma 5.5 to Algorithm 5.4, we obtain the desired result.

Theorem 5.7. Suppose that Assumptions 1.1, 2.4, and 5.2 are satisfied and that
Algorithm 5.4 has constructed a bounded sequence {xi}∞i=0. Then {xi} converges to
the unique minimizer x̂ of f0(·) with Q-order 3/2.
Proof. First, by Theorem 5.6 and the fact that f0(·) has a unique minimizer x̂,

the whole sequence {xi} converges to x̂. Hence one can deduce from Theorem 4.3 and
the proof of [13, Theorem 3.4.20], that {xi} converges to x̂ with Q-order 3/2. Since
the derivation is straightforward, we omit the details here.

6. Some numerical results. We now present some numerical results that illus-
trate the behavior of the algorithm proposed in section 5 for generalized semi-infinite
programming problems. The algorithm was implemented in Matlab. Throughout the
computational experiments, the parameters used in the algorithm were α = 0.05, β =
0.5, δ = 1.0, D = 10−10, and σ = 3.1. For both examples, we used the starting point
(1, 1). The iteration of the algorithm is stopped at xi if for some N the meshsize
∆(N) < 0.005 and |θN (xi)| ≤ 10−8. A Matlab code developed in [21], which was
based on a smoothing Newton method [19] for variational inequalities, was used to
solve our search direction finding subproblem (2.57).

Example 1. In this case, f0(x) = F (ψ1(x), ψ2(x)), with x = (x1, x2) ∈ �2,
F (z) = z1 + z2, with z = (z1, z2) ∈ �2, and

ψ1(x) = max
t∈Y1

{t2 − (tx1 + etx2) + (x1 + x2)2 + (x1)2 + (x2)2 + e(x
1+x2)}
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Table 6.1
Numerical results for Example 1.

Iteration i 0 1 2 3 4
||xi − x̂‖ 1.6× 100 5.7× 10−1 5.1× 10−2 2.9× 10−4 0.0
Discretization level 1 1 1 1 9

Table 6.2
Numerical results for Example 2.

Iteration i 0 1 2 3 4
||xi − x̂‖ 1.7× 100 6.4× 10−1 5.0× 10−2 1.9× 10−4 0.0
Discretization level 1 1 1 1 9

and

ψ2(x) = max
t∈Y2

{(t− 1)2 + 0.5(x1 + x2)2 − 2t(x1 + x2) + 0.5[(x1)2 + (x2)2]},

where Y1 = [0, 1] and Y2 = [−1, 0].
Example 2. In this case, the functions f0(·), ψ1(·), and ψ2(·) are also defined as

in Example 1, but F (·) is defined by

F (z) = 0.5(z1 +
√
(z1)2 + 4) + ln(1 + ez

2

) + 0.5((z1)2 + (z2)2), z = (z1, z2) ∈ �2.

The numerical results are summarized in Table 6.1 and Table 6.2. In these two
tables the first row represents the iteration number, the second row is the residue
||xi − x̂|| (we used the last iterate as a substitute for x̂) and the third row shows
the discretization level (the meshsize at the present level is decreased to half of the
previous one) refined by the master algorithm at the i-th step. It is clear from the
numerical results that the rate of convergence is superlinear.

7. Conclusion. We have presented two superlinearly converging algorithms, one
for solving finite generalized min-max problems of the form (1.1), (1.2), (1.3) and
one for solving generalized semi-infinite min-max problems of the form (1.1), (1.2),
(1.4). These algorithms were obtained by making use of the concepts underlying
the construction of the Polak–Mayne–Higgins Newton’s method [15] and the Polak–
Mayne–Higgins rate-preserving method [16], respectively. The construction of the
algorithms depends on the cost function having a subgradient and their rate of con-
vergence depends on convexity and second order smoothness, and hence Assumption
2.4 is essential.

Our numerical results are consistent with our theoretical prediction that the al-
gorithms converge Q-superlinearly.
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Abstract. We prove sufficient conditions for the monotonicity and the strong monotonicity of
fixed point and normal maps associated with variational inequality problems over a general closed
convex set. Sufficient conditions for the strong monotonicity of their perturbed versions are also
shown. These results include some well known in the literature as particular instances. Inspired
by these results, we propose a modified Solodov and Svaiter iterative algorithm for the variational
inequality problem whose fixed point map or normal map is monotone.

Key words. variational inequalities, cocoercive maps, (strongly) monotone maps, fixed point
and normal maps, iterative algorithm
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1. Introduction. Given a continuous function f : Rn → Rn and a closed convex
set K in Rn, the well-known finite-dimensional variational inequality, denoted by
VI(K, f), is to find an element x∗ ∈ K such that

(x− x∗)T f(x∗) ≥ 0 for all x ∈ K.

It is well known that the above problem can be reformulated as nonsmooth equations
such as the fixed point and normal equations (see, e.g., [9, 18]). The fixed point
equation is defined by

πα(x) = x−ΠK(x− αf(x)) = 0,(1)

and the normal equation is defined by

Φα(x) = f(ΠK(x)) + α(x−ΠK(x)) = 0,(2)

where α > 0 is a positive scalar and ΠK(·) denotes the projection operator on the
convex set K, i.e.,

ΠK(x) = argmin{‖z − x‖ : z ∈ K}.

Throughout the paper, ‖ ·‖ denotes the 2-norm (Euclidean norm) of the vector in Rn.
It turns out that x∗ solves VI(K, f) if and only if πα(x

∗) = 0 and that if x∗ solves
VI(K, f), then x∗− 1

αf(x
∗) is a solution to Φα(x) = 0; conversely, if Φα(u

∗) = 0, then
ΠK(u∗) is a solution to VI(K, f).

Recently, several authors studied the P0 property of fixed point and normal maps
when K is a rectangular box in Rn, i.e., the Cartesian product of n one-dimensional
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intervals. For such a K, Ravindran and Gowda [17] (respectively, Gowda and Tawhid
[8]) showed that πα(x) (respectively, Φα(x)) is a P0-function if f is. Notice that the
monotone maps are very important special cases of the class of P0-functions. It is
worth considering the problem:

(P) When are the mappings πα(x) and Φα(x) monotone if K is a general closed
convex set?

Intuitively, we may conjecture that the fixed point map and the normal map
are monotone if f is. However, this conjecture is not true. The following example
shows that for a given α > 0 the monotonicity of f , in general, does not imply the
monotonicity of the fixed point map πα(x) and the normal map Φα(x).

Example 1.1. Let K be a closed convex set given by

K = {x ∈ R2 : x1 ≥ 0, x2 = 0}

and

f(x) =

(
0 −1
1 0

)(
x1

x2

)
=

( −x2

x1

)
.

For any x, y ∈ R2, we have that (x − y)T (f(x) − f(y)) = 0. Hence the function f is
monotone on R2. We now show that for an arbitrary scalar α > 0 the fixed point
mapping πα(x) = x−ΠK(x−αf(x)) is not monotone inR2. Indeed, let u = (0, 0)T and
y = (1, α/2)T . It is easy to verify that πα(u) = (0, 0)T and πα(y) = (−α2/2, α/2)T .
Thus, we have

(u− y)T (πα(u)− πα(y)) = −α2/2 < 0,

which implies that πα(·) is not monotone on Rn.
Example 1.2. Let K be a closed convex set given by

K = {x ∈ R2 : x1 ≤ 0, x2 = 0}

and f(x) : R2 → R2 be given as in Example 1.1. We now show that for an arbitrary
α > 0 the normal mapping Φα(x) = f(ΠK(x)) + α(x − ΠK(x)) is not monotone in
R2. Indeed, let u = (0, 0)T and y = (−2α2, α)T . We have that Φα(u) = (0, 0)T and
Φα(y) = (0,−α2)T . Thus, we have

(u− y)T (Φα(u)− Φα(y)) = −α3 < 0,

which implies that Φα(·) is not monotone on Rn.
From the above examples, we conclude that a certain condition stronger than the

monotonicity of f is required to guarantee the monotonicity of πα(x) and Φα(x). One
such condition is the so-called cocoercivity condition. We recall that f is said to be
cocoercive with modulus β > 0 on a set S ⊂ Rn if there exists a constant β > 0 such
that

(x− y)T (f(x)− f(y)) ≥ β‖f(x)− f(y)‖2 for all x, y ∈ S.

The cocoercivity condition was used in several works, such as Bruck [1], Gabay [7] (in
which this condition is used implicitly), Tseng [25], Marcotte and Wu [15], Magnanti
and Perakis [13, 14], and Zhu and Marcotte [29, 30]. It is also used to study the
strict feasibility of complementarity problems [27]. It is interesting to note that in an
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affine case the cocoercivity has a close relation to the property of positive semidefinite
(psd)-plus matrices [12, 30]. A special case of the cocoercive map is the strongly
monotone and Lipschitzian map. We recall that a mapping f is said to be strongly
monotone with modulus c > 0 on the set S if there is a scalar c > 0 such that

(x− y)T (f(x)− f(y)) ≥ c‖x− y‖2 for all x, y ∈ S.
It is evident that any cocoercive map on the set S must be monotone and Lipschitz
continuous (with constant L = 1/β), but not necessarily strongly monotone (for
instance, the constant mapping) on the same set.

In fact, the aforementioned problem (P) is not completely unknown. By using the
cocoercivity condition implicitly and using properties of nonexpansive maps, Gabay
[7] actually showed (but did not explicitly state) that πα(x) and Φ1/α(x) are monotone
if the scalar α is chosen such that the map I − αf is nonexpansive. Furthermore, for
strongly monotone and Lipschitzian map f , Gabay [7] and Sibony [20] actually showed
that πα(x) and Φ1/α(x) are strongly monotone if the scalar α is chosen such that the
map I − αf is contractive. Throughout this paper, we use the standard concept
“nonexpansive” map and “contractive” map in the literature to mean a Lipschitzian
map with constant L = 1 and L < 1, respectively.

However, it is easy to give an example to show that πα(x) and Φα(x) are still
monotone (strongly monotone) even when α is chosen such that I − αf is not non-
expansive (contractive). For instance, let K = Rn+ and f(x) = x. We see that the
function f is cocoercive with modulus β = 1. While I − αf is not nonexpansive for
α > 2, the map πα(x) remains monotone. As a result, the main purpose of this paper
is to expand the results of Sibony [20] and Gabay [7]. We show that if f is cocoercive
(strongly monotone and Lipschitz continuous, respectively), the monotonicity (strong
monotonicity, respectively) of the maps πα(x) and Φα(x) can be ensured when α lies
in a larger interval in which the map I − αf may not be nonexpansive (contractive,
respectively). The results derived in this paper are not obtainable by the proof based
on the nonexpansiveness and contractiveness of maps.

The other purpose of the paper is to introduce an application of the monotonicity
of πα(x) and Φα(x). This application (see section 3) is motivated by the globally
convergent inexact Newton method for the system of monotone equations proposed
by Solodov and Svaiter [21]. See also [22, 23, 24]. We propose a modified Solodov
and Svaiter method to solve the monotone equations πα(x) = 0 or Φα(x) = 0. This
modified algorithm requires no projection operations in the line-search step.

2. Monotonicity of πα(x) and Φα(x). It is known (see Sibony [20] and Gabay
[7]) that if f is strongly monotone with modulus c > 0 and Lipschitz continuous
with constant L > 0, then I − αf is contractive when 0 < α < 2c/L2. Since ΠK is
nonexpansive, this in turn implies that πα(x) and Φ1/α(x) are both strongly monotone
for 0 < α < 2c/L2. Similarly, it follows from Gabay [7] (see Theorem 6.1 therein) that
if f is cocoercive with modulus β > 0, then I − αf is nonexpansive for 0 < α ≤ 2β,
and thus we can easily verify that πα(x) and Φ1/α(x) are monotone for 0 < α ≤ 2β.

In this section, we prove an improved version of the above-mentioned results. We
prove that (i) when α lies outside of the interval (0, 2c/L2), for instance, 2c/L2 ≤ α ≤
4c/L2, πα(x) and Φ1/α(x) are still strongly monotone although I−αf , in this case, is
not contractive, and (ii) when α lies outside of the interval (0, 2β], for instance, 2β <
α ≤ 4β, πα(x) and Φ1/α(x) remain monotone although I − αf is not nonexpansive.
This new result on monotonicity (strong monotonicity) of πα(x) and Φ1/α(x) for α >
2β (α ≥ 2c/L2) is not obtainable by using the nonexpansive (contractive) property
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of I − αf. The reason is as follows: Let f be cocoercive with modulus β > 0 on the
set S ⊆ Rn, where

β = sup{γ > 0 : (x− y)T (f(x)− f(y)) ≥ γ‖f(x)− f(y)‖2 for all x, y ∈ S}.
Clearly, such a scalar β is unique and 0 < β < ∞ provided that f is not a constant
mapping. We now verify that I − αf is nonexpansive on S if and only if 0 < α ≤ 2β.
It is sufficient to show that if α > 0 is chosen such that I − αf is nonexpansive on S,
then we must have α ≤ 2β. In fact, if I − αf is nonexpansive, then for any x, y in S
we have

‖x− y‖2 ≥ ‖(I − αf)(x)− (I − αf)(y)‖2
= ‖x− y‖2 − 2α(x− y)T (f(x)− f(y)) + α2‖f(x)− f(y)‖2,

which implies that

(x− y)T (f(x)− f(y)) ≥ (α/2)‖f(x)− f(y)‖2.
By the definition of β, we deduce that α/2 ≤ β, the desired consequence. Similarly, let
f be strongly monotone with modulus c > 0 and Lipschitz continuous with constant
L > 0 on the set S, where

c = sup{γ > 0 : (x− y)T (f(x)− f(y)) ≥ γ‖x− y‖2 for all x, y ∈ S}
and

L = inf{γ > 0 : ‖f(x)− f(y)‖ ≤ γ‖x− y‖ for all x, y ∈ S}.
We can easily see that 0 < c <∞ and L > 0 provided that S is not a single point set.
It is also easy to show that I − αf is contractive if and only if 0 < α < 2c/L2.

Since the map I−αf is not contractive (nonexpansive, respectively) for α ≥ 2c/L2

( α > 2β, respectively), our result established in this section cannot follow directly
from the proof of Sibony [20] and Gabay [7].

We also study the strong monotonicity of the perturbed fixed point and normal
maps defined by

πα,ε(x) := x−ΠK(x− α(f(x) + εx)),

and

Φα,ε(x) := f(ΠK(x)) + εΠK(x) + α(x−ΠK(x)),

respectively. This is motivated by the well-known Tikhonov regularization method for
complementarity problems and variational inequalities. See, for example, Isac [10, 11],
Venkateswaran [26], Facchinei [3], Facchinei and Kanzow [4], Facchinei and Pang [5],
Gowda and Tawhid [8], Qi [16], Ravindran and Gowda [17], Zhao and Li [28], etc. It is
worth mentioning that Gowda and Tawhid [8] showed that when α = 1 the perturbed
mapping Φ1,ε(x) is a P-function if f is a P0-function and K is a rectangular set. We
show in this paper a sufficient condition for the strong monotonicity of πα,ε(x) and
Φα,ε(x). The following lemma is helpful.

Lemma 2.1. (i) Denote

uz = z −ΠK(z) for all z ∈ Rn.(3)
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Then

(z − w)T (uz − uw) ≥ ‖uz − uw‖2.
(ii) For any α > 0 and vector b ∈ Rn, the following inequality holds for all v ∈ Rn:

α‖v‖2 + vT b ≥ −‖b‖
2

4α
.

Proof. By the property of projection operator, we have

(ΠK(z)−ΠK(w))T (ΠK(w))− w) ≥ 0 for all z, w ∈ Rn,

(ΠK(w)−ΠK(z))T (ΠK(z))− z) ≥ 0 for all z, w ∈ Rn.
Adding the above two inequalities leads to

(ΠK(z)−ΠK(w))T (z −ΠK(z)− (w −ΠK(w))) ≥ 0 for all z, w ∈ Rn,
i.e.,

[z − uz − (w − uw)]T (uz − uw) ≥ 0 for all z, w ∈ Rn.
This proves the result (i).

Given α > 0 and b ∈ Rn, it is easy to check that the minimum value of α‖v‖2+vT b
is −‖b‖2/(4α). This proves the result (ii).

We are ready to prove the main result in this section.
Theorem 2.1. Let K be an arbitrary closed convex set in Rn and K ⊆ S ⊆ Rn.

Let f : Rn → Rn be a function.
(i) If f is cocoercive with modulus β > 0 on the set S, then for any fixed scalar α

satisfying 0 < α ≤ 4β, the fixed point map πα(x) defined by (1) is monotone on the
set S.

(ii) If f is strongly monotone with modulus c > 0 on the set S, and f is Lipschitz
continuous with constant L > 0 on S, then for any fixed scalar α satisfying 0 < α <
4c/L2, the fixed point map πα(x) is strongly monotone on the set S.

(iii) If f is cocoercive with modulus β > 0 on the set S, then for any 0 < α < 4β
and 0 < ε ≤ 2( 1

α − 1
4β ) the perturbed map πα,ε(x) is strongly monotone in x on the

set S.
Proof. Let α > 0 and 0 ≤ ε ≤ 2/α be two scalars. For any vector x, y in S, denote

z = x− α(f(x) + εx), w = y − α(f(y) + εy).

By using the notation of (3) and Lemma 2.1, we have

(x− y)T (πα,ε(x)− πα,ε(y))
= (x− y)T [(z −ΠK(z)− (w −ΠK(w)) + α(f(x) + εx)

− α(f(y) + εy))]

= (x− y)T (uz − uw) + αε‖x− y‖2 + α(x− y)T (f(x)− f(y))
= [z + α(f(x) + εx)− (w + α(f(y) + εy))]T (uz − uw)

+ αε‖x− y‖2 + α(x− y)T (f(x)− f(y))
= (z − w)T (uz − uw) + α[f(x) + εx− (f(y) + εy)]T (uz − uw)
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+ αε‖x− y‖2 + α(x− y)T (f(x)− f(y))
≥ ‖uz − uw‖2 + α[f(x) + εx− (f(y) + εy)]T (uz − uw)

+ αε‖x− y‖2 + α(x− y)T (f(x)− f(y))
≥ −(α2/4)‖f(x) + εx− (f(y) + εy)‖2 + αε‖x− y‖2

+ α(x− y)T (f(x)− f(y))
=
(
αε− α2ε2/4

) ‖x− y‖2 − (α2/4)‖f(x)− f(y)‖2
+ (α− α2ε/2)(x− y)T (f(x)− f(y)).(4)

If f is cocoercive with modulus β > 0, using ε ≤ 2/α we see from the above that

(x− y)T (πα,ε(x)− πα,ε(y))
≥ (αε− α2ε2/4

) ‖x− y‖2 − (α2/4)‖f(x)− f(y)‖2
+ (α− α2ε/2)β‖f(x)− f(y)‖2

= αε(1− αε/4)‖x− y‖2 + α2β

(
1

α
− 1

4β
− ε

2

)
‖f(x)− f(y)‖2.

Setting ε = 0 in the above inequality, we see that for 0 < α ≤ 4β the right-hand side
is nonnegative, showing that πα is monotone on the set S. This proves the result (i).
Also, if α < 4β and 0 < ε ≤ 2( 1

α − 1
4β ), the right-hand side of the above inequality is

greater than or equal to r‖x− y‖2, where r = αε(1− αε/4) > 0, showing that πα,ε is
strongly monotone on the set S. The proof of the result (iii) is complete.

Assume that f is strongly monotone with modulus c > 0 and Lipschitz continuous
with constant L > 0. We now prove the result (ii). For this case, setting ε = 0 in (4),
we have that

(x− y)T (πα(x)− πα(y))
≥ −(α2/4)‖f(x)− f(y)‖2 + α(x− y)T (f(x)− f(y))
≥ −(α2L2/4)‖x− y‖2 + αc‖x− y‖2
= (αc− α2L2/4)‖x− y‖2.

For α < 4c/L2, it is evident that the scalar

r = αc− α2L2

4
=
αL2

4

(
4c

L2
− α

)
> 0.

Result (ii) is proved.
Similarly, we have the following result for Φα(x).
Theorem 2.2. Let f be a function from Rn into itself and K be a closed convex

set and K ⊆ S ⊆ Rn.
(i) If f is cocoercive with modulus β > 0 on the set S, then for any constant α

such that α > 1/(4β), the normal map Φα(x) given by (2) is monotone on the set S.
(ii) If f is strongly monotone with modulus c > 0 and Lipschitz continuous with

constant L > 0 on the set S, then for any α satisfying α > L2/(4c), the normal map
Φα(x) given by (2) is strongly monotone on the set S.

(iii) If f is cocoercive with modulus β > 0 on the set S, then for any constant
α > 1/(4β), the perturbed normal map Φα,ε(x), where 0 < ε < α, is strongly monotone
in x on the set S.
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Proof. Let α, ε, r be given such that α > ε ≥ r ≥ 0. For any vector x, y in S, let
ux and uy be defined by (3) with z = x and z = y, respectively. Then, by Lemma 2.1
we have

(α− r)‖ux − uy‖2 + (ux − uy)T (f(ΠK(x))− f(ΠK(y)))

≥ − 1

4(α− r)‖f(ΠK(x))− f(ΠK(y))‖2(5)

and

(x− y)T (ux − uy) ≥ ‖ux − uy‖2,(6)

which further implies

‖x− y‖ ≥ ‖ux − uy‖.
By using the above three inequalities, we have

(x− y)T (Φα,ε(x)− Φα,ε(y))− r‖x− y‖2
= (x− y)T [f(ΠK(x)) + εΠK(x) + αux − f(ΠK(y))− εΠK(y)− αuy]
−r‖x− y‖2

= α(x− y)T (ux − uy) + ε(x− y)T (ΠK(x)−ΠK(y))− r‖x− y‖2
+ (x− y)T (f(ΠK(x))− f(ΠK(y)))

= (α− ε)(x− y)T (ux − uy) + (ε− r)‖x− y‖2
+ (x− y)T (f(ΠK(x))− f(ΠK(y)))(7)

= (α− ε)(x− y)T (ux − uy) + (ε− r)‖x− y‖2 + (ux − uy)T (f(ΠK(x))

−f(ΠK(y))) + (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥ (α− ε)‖ux − uy‖2 + (ε− r)‖ux − uy‖2 + (ux − uy)T (f(ΠK(x))

−f(ΠK(y))) + (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

= (α− r)‖ux − uy‖2 + (ux − uy)T (f(ΠK(x))− f(ΠK(y)))

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥ − 1

4(α− r)‖f(ΠK(x))− f(ΠK(y))‖2

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y))).(8)

Let f be cocoercive with modulus β > 0 on the set S. Setting ε = r = 0 in the above
inequality, and using the cocoercivity of f , we have

(x− y)T (Φα(x)− Φα(y)) ≥ − 1

4α
‖f(ΠK(x))− f(ΠK(y))‖2 +

(ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥
(
β − 1

4α

)
‖f(ΠK(x))− f(ΠK(y))‖2.

For α > 1/(4β), the right-hand side is nonnegative, and hence the map Φα is monotone
on the set S. This proves the result (i).

Let α > 1/(4β), 0 < ε < α, and 0 < r < min{ε, α− 1/(4β)}. By the cocoercivity
of f , the inequality (8) can be further written as

(x− y)T (Φα,ε(x)− Φα,ε(y))− r‖x− y‖2

≥
(
β − 1

4(α− r)
)
‖f(ΠK(x))− f(ΠK(y)‖2.
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Since 0 < r < α − 1/(4β), the right-hand side of the above is nonnegative, and thus
the map Φα,ε is strongly monotone on the set S. Result (iii) is proved.

Finally, we prove result (ii). Assume that f is strongly monotone with modulus
c > 0 and Lipschitz continuous with constant L > 0. For any vector x, y in S, we note
that (7) holds for any α > 0, ε ≥ 0 and r ≥ 0. Setting ε = 0, (7) reduces to

(x− y)T (Φα(x)− Φα(y))− r‖x− y‖2
= α(x− y)T (ux − uy)− r‖x− y‖2

+ (x− y)T (f(ΠK(x))− f(ΠK(y))).(9)

Given α > L2/(4c), let r be a scalar such that 0 < r < α/2 and 2r + L2

4(α−2r) < c.

Notice that

‖x− y‖2 = ‖ΠK(x)−ΠK(y) + ux − uy‖2
≤ 2(‖ΠK(x)−ΠK(y)‖2 + ‖ux − uy‖2).

Substituting the above into (9) and using inequalities (5) and (6), we have

(x− y)T (Φα(x)− Φα(y))− r‖x− y‖2
≥ α‖ux − uy‖2 − 2r(‖ΠK(x)−ΠK(y)‖2 + ‖ux − uy‖2)

+ (x− y)T (f(ΠK(x))− f(ΠK(y))

= (α− 2r)‖ux − uy‖2 + (ux − uy)T (f(ΠK(x))− f(ΠK(y)))

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))− 2r‖ΠK(x)−ΠK(y)‖2

≥ − 1

4(α− 2r)
‖f(ΠK(x))− f(ΠK(y))‖2 − 2r‖ΠK(x)−ΠK(y)‖2

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥
(
− L2

4(α− 2r)
− 2r + c

)
‖ΠK(x)−ΠK(y)‖2,

where the last inequality follows from the Lipschitz continuity and strong monotonicity
of f. The right-hand side of the above is nonnegative. Thus, the map Φα is strongly
monotone on the set S. This proves result (ii).

The following result is an immediate consequence of Theorems 2.1 and 2.2.
Corollary 2.1. Assume that f is monotone and Lipschitz continuous with

constant L > 0 on a set S ⊇ K.
(i) If 0 < ε <∞ and 0 < α < 4ε

(L+ε)2 , then the perturbed map πα,ε(x) is strongly

monotone in x on the set S.
(ii) If 0 < ε < ∞ and α > (L+ε)2

4ε , then the perturbed normal map Φα,ε(x) is
strongly monotone in x on the set S.

Proof. Let ε ∈ (0,∞) be a fixed scalar. It is evident that under the condition
of the corollary, the function F (x) = f(x) + εx is strongly monotone with modulus
ε > 0 and Lipschitz continuous with constant L+ ε. Therefore, from Theorem 2.1(ii)
we deduce that if 0 < α < 4ε/(L + ε)2, the map πα,ε(x) is strongly monotone on S.
Similarly, the strong monotonicity of Φα,ε(x) follows from Theorem 2.2(ii).

Items (iii) in both Theorem 2.1 and Theorem 2.2 show that for any sufficiently
small parameter ε, the perturbed fixed point and normal maps are strongly monotone.
This result is quite different from Corollary 2.1. When α is a fixed constant, Corollary
2.1 does not cover the case where ε can be sufficiently small. Indeed, for a fixed α > 0,

the inequalities 0 < α < 4ε
(L+ε)2 and α > (L+ε)2

4ε fail to hold when ε→ 0.
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Up to now, we have shown that the fixed point map πα(x) (respectively, the
normal map Φα(x)) is monotone if f is cocoercive with modulus β > 0 and α ∈ (0, 4β]
(respectively, α ∈ (1/(4β),∞)). This result includes those known from Sibony [20] and
Gabay [7] as special cases. Under the same assumption on f and α, we deduce from
items (iii) of Theorems 2.1 and 2.2 that the perturbed forms πα,ε and Φα,ε are strongly
monotone provided that the scalar ε is sufficiently small. In the succeeding sections,
we will introduce an application of the above results on globally convergent iterative
algorithms for VI(K, f) whose fixed point map or normal map is monotone.

3. Application: Iterative algorithm for VI(K, f). Since πα(x) and Φα(x)
are monotone if the function f is cocoercive and α lies in a certain interval, we can
solve the cocoercive variational inequity problems via solving the system of monotone
equation πα(x) = 0 or Φα(x) = 0. Recently, Solodov and Svaiter [21] (see also [22, 23,
24]) proposed a class of inexact Newton methods for monotone equations. Let F(x)
be a monotone mapping from Rn into Rn. The Solodov and Svaiter algorithm for the
equation F(x) = 0 proceeds as follows.

Algorithm SS (see [21]). Choose any x0 ∈ Rn, t ∈ (0, 1), and λ ∈ (0, 1). Set
k := 0.

Inexact Newton step. Choose a psd matrix Gk. Choose µk > 0 and γk ∈ [0, 1).
Compute dk ∈ Rn such that

0 = F(xk) + (Gk + µkI)d
k + ek,

where ‖ek‖ ≤ γkµk‖dk‖. Stop if dk = 0. Otherwise,
Line-search step. Find yk = xk + αkd

k, where αk = tmk with mk being the
smallest nonnegative integer m such that

−F(xk + tmdk)T dk ≥ λ(1− γk)µk‖dk‖2.
Projection step. Compute

xk+1 = xk − F(y
k)T (xk − yk)
‖F(yk)‖2 F(yk).

Set k := k + 1, and repeat.
As pointed out in [21], the above inexact Newton step is motivated by the idea

of the proximal point algorithm [2, 6, 19]. Algorithm SS has an advantage over other
Newton methods in that the whole iteration sequence is globally convergent to a
solution of the system of equations, provided a solution exists, under no assumption
on F other than continuity and monotonicity. Setting F(x) = πα(x) or Φα(x), from
Theorems 2.1 and 2.2 in this paper and Theorem 2.1 in [21], we have the following
result.

Theorem 3.1. Let f be a cocoercive map with constant β > 0. Substitute F(x)
in Algorithm SS by πα(x) (respectively, Φα(x)) where 0 < α ≤ 4β (respectively,
α > 1/4β). If µk is chosen such that C2 ≥ µk ≥ C1‖F(xk)‖, where C1 and C2 are
two constants, then Algorithm SS converges to a solution of the variational inequality
provided that a solution exists.

While Algorithm SS can be used to solve the monotone equations πα(x) = 0
and Φα(x) = 0, each line-search step needs to compute the values of πα(x

k + βmdk)
and Φα(x

k + βmdk), which represents a major cost of the algorithm in calculating
projection operations. Hence, in general cases, Algorithm SS has high computational
cost per iteration when applied to solve Φα(x) = 0 or πα(x) = 0. To reduce this major
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computational burden, we propose the following algorithm which needs no projection
operations other than the evaluation of the function f in line-search steps.

Algorithm 3.1. Choose x0 ∈ Rn, t ∈ (0, 1), and γ ∈ [0, 1). Set k := 0.
Inexact Newton Step: Choose a positive semidefinite matrix Gk. Choose µk > 0.

Compute dk ∈ Rn such that

0 = πα(x
k) + (Gk + µkI)d

k + ek,(10)

where ‖ek‖ ≤ γµk‖dk‖. Stop if dk = 0. Otherwise,
Line-search step. Find yk = xk+skd

k, where sk = tmk withmk being the smallest
nonnegative integer m such that

‖f(xk + tmdk)− f(xk)‖ < (1− γ)µk − 4tm

2α
‖dk‖.(11)

Projection step. Compute

xk+1 = xk − πα(y
k)T (xk − yk)
‖πα(yk)‖2 πα(y

k).

Set k := k + 1. Return.
The above algorithm has the following property.
Lemma 3.1. Let πα(x) be given as (1). At kth iteration, if mk is the smallest

nonnegative integer such that (11) holds, then yk = xk + tmkdk satisfies the following
estimation:

−πα(yk)T dk ≥ 1

2
(1− γ)µk‖dk‖2.

Proof. By the definition of πα(x), the nonexpansiveness of the projection operator,
and (11), we have

‖πα(xk + tmkdk)− πα(xk)‖
= ‖xk + tmkdk −ΠK(xk + tmkdk − αf(xk + tmkdk))

−(xk −ΠK(xk − αf(xk)))‖
≤ tmk‖dk‖+ ‖ΠK(xk + tmkdk − αf(xk + tmkdk))

−ΠK(xk − αf(xk))‖
≤ tmk‖dk‖+ ‖xk + tmkdk − αf(xk + tmkdk)

−(xk − αf(xk))‖
≤ 2tmk‖dk‖+ α‖f(xk + tmkdk)− f(xk)‖
≤ 1

2
(1− γ)µk‖dk‖.(12)

Also,

−πα(xk + tmkdk)T dk

= −[πα(xk + tmkdk)− πα(xk)]T dk − πα(xk)T dk
≥ −‖πα(xk + tmkdk)− πα(xk)‖‖dk‖ − πα(xk)T dk.(13)

By (10) and positive semidefiniteness of Gk, we have

−πα(xk)T dk = (dk)T (Gk + µkI)d
k + (ek)T dk

≥ µk‖dk‖2 − γµk‖dk‖2
= (1− γ)µk‖dk‖2.(14)
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Combining (12), (13), and (14) yields

−πα(xk + tmkdk)T dk ≥ 1

2
(1− γ)µk‖dk‖2.

The proof is complete.

Using Lemma 3.1 and following the line of the proof of Theorem 2.1 in [21], it is
not difficult to prove the following convergence result.

Theorem 3.2. Let f : Rn → Rn be a continuous function such that there exists
a constant α > 0 such that πα(x) defined by (1) is monotone. Choose Gk and µk
such that ‖Gk‖ ≤ C ′ and µk = C‖πα(xk)‖p, where C ′, C and p are three fixed positive
numbers and p ∈ (0, 1]. Then the sequence {xk} generated by Algorithm 3.1 converges
to a solution of the variational inequality provided that a solution exists.

Algorithm 3.1 can solve the variational inequality whose fixed point mapping
πα(x) is monotone for some α > 0. Since the cocoercivity of f implies the monotonic-
ity of the functions πα(x) and Φα(x) for suitable choices of the value of α, Algorithm
3.1 can locate a solution of any solvable cocoercive variational inequality problem.
This algorithm has an advantage over Algorithm SS in that it does not carry out
any projection operation in the line-search step and hence the computational cost is
significantly reduced.

4. Conclusions. In this paper, we show some sufficient conditions for the mono-
tonicity (strong monotonicity) of the fixed point and normal maps associated with
the variational inequality problem. The results proved in the paper encompass some
known results as particular cases. Based on these results, an iterative algorithm for
a class of variational inequalities is proposed. This algorithm can be viewed as a
modification of Solodov and Svaiter’s method but has lower computational cost than
the latter.
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1. Introduction. In this paper, we aim to provide insight on the local behavior
of a class of primal-dual interior point algorithms. The class of algorithms is intended
to solve nonconvex nonlinear programs that involve linear equality and nonlinear
inequality constraints using a barrier-type method. More specifically, we consider the
following problem:

NLP ≡


min f(x)
s.t. Ax = b,

c(x) ≥ 0,
(1.1)

where f : R
n → R and c : R

n → R
p are assumed to be twice continuously differen-

tiable, the matrix A ∈ R
m×n (m ≤ n) has full rank and b ∈ R

m. The method starts
with a strictly feasible initial point, and, rather than solving NLP directly, instead
approximately solves a sequence of barrier subproblems of the form

BS(µ) ≡
{
min φ(x, µ)
s.t. Ax = b

(1.2)
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for a decreasing sequence {µk} of positive barrier parameters. Here the barrier func-
tion is

φ(x, µ)
def
= f(x)− µ

p∑
i=1

log ci(x),(1.3)

where the functions ci(·) are the components of the vector function c(·). Once an
(approximate) solution xk+1 of BS(µk) is found, the parameter µk is updated and
attention turns to the next barrier subproblem (see, for instance, [6, 16, 18] for a
general survey and [19] for the linear case). Under reasonable conditions [2, 6, 16], it
can be shown that the sequence {xk} converges to a stationary point x∗ of NLP. A
typical stopping criterion for the solution of BS(µ) is

‖PN (A)(∇xφ(x, µ))‖ ≤ ϑ(µ),(1.4)

where PN (A) is the orthogonal projection onto the nullspace of A, ‖ · ‖ is some norm
defined on R

n, and the continuous function ϑ : R+ → R+ is a forcing function, that
is, ϑ(µ) = 0 if and only if µ = 0.

The most intensive part of the solution procedure is in the approximate solution
of successive barrier subproblems BS(µ) (the inner minimizations), whose difficulty
depends on the chosen starting point. An obvious idea is to start the solution of
BS(µk+1) from xk+1. However, in the primal case, for both linear and nonlinear
programming, it has been shown that the unit Newton step for a barrier subproblem
is likely not to be accepted as a first step if the minimization process is started from
xk+1, even if xk+1 is close to a solution of NLP [17]. The determination of better initial
points in interior methods has recently been examined by several authors, both for
primal [3, 12] and primal-dual barrier methods [1, 22, 23], as well as for exterior penalty
methods (see [10], whose results were the inspiration for [5]). In particular, Dussault
[5] expands the primal central path about the current iterate. In this paper, we
apply a similar analysis in the more general primal-dual framework. This framework
offers the advantage of keeping the radius of the “sphere of convergence” of Newton’s
method away from zero (under nondegeneracy assumptions), whereas this radius is
proportional to the barrier parameter in a purely primal scheme, as is shown in [14]
for the case of linear programming and in [15] for nonlinear programming.

In this paper, we intend to determine conditions under which, asymptotically, a
single Newton step is strictly feasible (in contrast with the purely primal case), and
results in a point that satisfies suitable barrier subproblem termination rules, after
every reduction of the barrier parameter (see, for instance, [1, 3, 4] for previous work
on the subject). This is shown to imply a componentwise Q-superlinear rate of con-
vergence, a stronger result than simply Q-superlinear convergence of the vector of
variables and Lagrange multipliers. Furthermore, this rate of convergence may be
made arbitrarily close to quadratic. The results we present hold independently of
the particular algorithm used for the inner minimization. They may thus be inter-
preted as giving conditions on the inner minimization stopping criterion to ensure fast
convergence, in a manner similar to that studied by [13] for linear complementarity
problems.

The motivation for the results presented in this paper is that they cover the gen-
eral algorithm of [2], as will be discussed below. This algorithm has been implemented
as HSL VE12 in the Harwell Subroutine Library for the special case of quadratic pro-
gramming problems. We refer the reader to [2] for further motivation and details,
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along with the results of tests performed on a number of large convex and nonconvex
quadratic examples.

The paper is organized as follows. Section 2 describes the notation and assump-
tions used throughout the paper, and section 3 provides useful preliminary results.
In section 4, we state the class of algorithms that will be analyzed; in section 5 we
describe an extrapolation of the central path that provides a point which turns out
to be a very good estimate of the solution of the next subproblem. We subsequently
present the local convergence properties of the algorithm when using the aforemen-
tioned extrapolation in section 6. In section 7, we review the link between our class of
algorithms and the method of [2]; we also briefly discuss the connections with other
proposals. We conclude and give some comments in section 8.

2. Notation and assumptions. In this section, we present our notation and
outline the required assumptions for the algorithm to converge superlinearly.

2.1. Notation. The following notation will be used throughout the paper. For
related positive quantities α and β, we write α = O(β) if there is a constant κ > 0
such that α ≤ κβ for all β sufficiently small. We write α = o(β) if α/β → 0 as β → 0.
We also write α = Ω(β) if β = O(α), and write α = Θ(β) if α = O(β) and β = O(α).

If x is any vector in R
n, the corresponding capital letterX will denote the diagonal

matrix diag(x). The components of x will be denoted by [x]1, . . . , [x]n. We shall
sometimes define a vector w ∈ R

n+m+p from x ∈ R
n, y ∈ R

m, and z ∈ R
p by

w = (x, y, z). For such a vector, we shall use the notation [w]x, [w]y, and [w]z to refer
respectively to its x, y, and z components.

In the remainder of the paper, the statement “µ small enough” is to be understood
as “µ is positive and close enough to zero,” and the notation a ↘ b as “a decreases
monotonically and converges to b.” By “global convergence” we shall mean “conver-
gence to a local solution, whatever the point from which the process was started.”
By “local convergence” we mean “convergence to a local solution when the process is
started in the vicinity of that solution.”

2.1.1. Optimality conditions. The Lagrangian function for NLP is

L(w) = L(x, y, z) = f(x) + (Ax− b)T y − cT (x)z,(2.1)

where the Lagrange multipliers y ∈ R
m correspond to the equality constraints and

z ∈ R
p
+ to inequalities. We shall conveniently express the optimality conditions and

the local analysis developments of sections 5 and 6 in terms of the following family of
functions, parameterized by a scalar µ ≥ 0:

Ψ(w;µ)
def
=


 ∇xL(w)

Ax− b
C(x)z − µe


 .(2.2)

Here∇xL(w) = ∇xf(x)+A
T y−JT (x)z, the matrix J(x) denotes the Jacobian matrix

of c at x, that is the p by n matrix whose ith row is (∇xci(x))
T , and e is the vector

of all ones. If w∗ def
= (x∗, y∗, z∗) is a first-order critical point for NLP, it must satisfy

the first-order Karush–Kuhn–Tucker (KKT) conditions, which are that

Ψ(w∗; 0) =


 0
0
0


(2.3)
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and

(c(x∗), z∗) ≥ 0.(2.4)

When solving problem BS(µ), we seek x(µ) and y(µ) such that

∇xf(x(µ)) +AT y(µ)− µJT (x(µ))C−1(x(µ))e = 0,(2.5)

Ax(µ) = b,(2.6)

c(x(µ)) > 0.(2.7)

Solving this system corresponds to using a primal approach. Let x(µ) and y(µ) be
solutions of (2.5)–(2.7). In this case, the set

{x(µ) | µ > 0}(2.8)

is said to define a (local) primal central path. Under second-order sufficiency as-
sumptions, a linear independence constraint qualification and a strict complementary
slackness condition, the primal central path leads to a solution x∗ of NLP and y(µ)
converges to a corresponding vector of Lagrange multipliers y∗ (see [6]) as µ decreases
to zero. Crucially, (2.5)–(2.7) is equivalent to the system

Ψ(w(µ);µ) =


 0
0
0


 , (c(x(µ)), z(µ)) > 0,(2.9)

in the sense that if (x(µ), y(µ)) solves (2.5)–(2.7), the vector (x(µ), y(µ), z(µ)) with
z(µ) = µC−1(x(µ))e solves (2.9), while if (x(µ), y(µ), z(µ)) solves (2.9), (x(µ), y(µ))
solves (2.5)–(2.7) and we have z(µ) = µC−1(x(µ))e. Treating z(µ) as an independent
variable when iteratively solving (2.9) is a primal-dual approach and is the one we
adopt in this paper. As µ↘ 0, the solution w(µ) of (2.9) then converges to a solution
w∗ of (2.3) under the aforementioned conditions.

In accordance with the primal-dual theory for linear and convex programming,
we use here the following terminology. The term primal variables refers to the x
variables, Lagrange multipliers to y, and dual variables to z, although the variables z
are Lagrange multipliers, too. When solving a primal-dual system, the set

C def
= {w(µ) = (x(µ), y(µ), z(µ)) | µ > 0}(2.10)

is said to define a (local) primal-dual central path.
Note that for any µ ≥ 0, Ψ(w;µ) and Ψ(w; 0) satisfy the fundamental relationship

Ψ(w;µ) = Ψ(w; 0)−

 0
0
µe


 .

This implies that the Jacobian matrices∇wΨ(w;µ) and∇wΨ(w; 0) are equal for every
w in the domain of interest and satisfy

∇wΨ(w;µ) = ∇wΨ(w; 0) =


 ∇xxL(w) AT −JT (x)

A 0 0
ZJ(x) 0 C(x)


 .(2.11)

Moreover, ∇µΨ(w;µ) = [0 0 − eT ]T .
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2.1.2. Norms. We use the symbol ‖ · ‖ to represent the Euclidean �2-norm,
unless otherwise specified. We thus have

‖X‖ = ‖x‖∞ ≤ ‖x‖(2.12)

for any vector x. If S is a symmetric positive definite matrix, the S-norm of x, ‖x‖S ,
is defined as usual by ‖x‖2S def

= xTSx.
We let the columns of the n by n−m matrix N be an orthonormal basis for the

nullspace of A. We denote the smallest and largest eigenvalues of any n×n symmetric
matrixM by λmin[M ] and λmax[M ]. Such a matrix is said to be second-order sufficient
(with respect to A) if and only if the reduced matrix

R[M ] = NTMN

is positive definite (see, for instance, [9]).
In the context of our algorithm, we shall choose to measure gradients and related

quantities in a seminorm induced by a second-order sufficient iteration-dependent
preconditioner Mk, where k is the index of the current iteration.

1 We define the
k-seminorm of a vector g, ‖g‖[k], by

‖g‖2[k] def
= qT g,(2.13)

where q solves the system [
Mk AT

A 0

](
q
r

)
=

(
g
0

)
.

This is actually a norm if g lies in the nullspace of A. In particular,

‖g‖[k] = 0 if and only if ‖NT g‖ = 0.

A simple calculation (see, for example, [8, section 5.4.1]) reveals that (2.13) may be
expressed as

‖g‖2[k] = gTNR−1[Mk]N
T g = ‖NT g‖2R−1[Mk] = ‖R− 1

2 [Mk]N
T g‖2.(2.14)

The simplest choice Mk = I, for which R[I] = I, simply measures the size of the
projection of g into the nullspace of A. Note that the k-seminorm is invariant for
displacements in the range space of AT , i.e.,

‖g +AT g‖[k] = ‖g‖[k](2.15)

for any g ∈ R
n and any g ∈ R

m.
In addition, because gradients can be interpreted as linear forms on the space

of the problem variables, it is natural to measure quantities directly involving these
variables, such as the distance between iterates, in a seminorm corresponding to the
dual of ‖ · ‖[k]. It is easy to verify that such a seminorm is given by

‖s‖k def
= ‖NT s‖R[Mk](2.16)

1Strictly, this seminorm also depends on A, but we hide this dependence since A is fixed through-
out this paper.



FAST CONVERGENCE OF PRIMAL-DUAL BARRIER METHODS 979

and is, in fact, a norm in the nullspace of A. As a consequence, for all v, s ∈ R
n such

that As = 0, i.e., such that s = NNT s, we have that

|vT s| = |vTN(NTMkN)
− 1

2 (NTMkN)
1
2NT s| ≤ ‖v‖[k]‖s‖k,(2.17)

because of the Cauchy–Schwarz inequality. We stress that there is no need for Mk

itself to be positive definite, merely that NTMkN has to be.
If U is any symmetric matrix, we also define the reduced matrix

R[U,Mk]
def
= (NTMkN)

− 1
2NTUN(NTMkN)

− 1
2 ;(2.18)

we denote its smallest and largest eigenvalues by λmin

Mk
[U ] = λmin [R[U,Mk]] and

λmax

Mk
[U ] = λmax [R[U,Mk]]. We also note that the inertia of R[U,Mk] and R[U, I] ≡

NTUN are the same. In particular, we have that

λmin

Mk
[U ] ≥ 0 is equivalent to λmin

I [U ] ≥ 0.(2.19)

We write ‖v‖� def
= ‖NT v‖ = ‖NNT v‖, the Euclidean norm of the projection of v

onto the nullspace of A, and observe that ‖ · ‖� is a self-dual norm in this nullspace,
and that the k-seminorm and ‖ · ‖� are equivalent if Mk = I. Moreover, we have

‖g +AT g‖� = ‖g‖�(2.20)

for any g ∈ R
n and any g ∈ R

m, which parallels (2.15).
We also notice the equivalence

PN (A)(∇xφ(x, µ)) = 0⇐⇒ NT∇xφ(x, µ) = 0,(2.21)

which in turn is equivalent to

‖∇xφ(x, µ)‖� = 0 and to ‖∇xφ(x, µ)‖[k] = 0(2.22)

for any second-order sufficient matrix Mk. For future reference, we state the expres-
sions of the first and second derivatives of the barrier function φ(x, µ) with respect to
x:

∇xφ(x, µ) = ∇xf(x)−
p∑
i=1

µ

ci(x)
∇xci(x),(2.23)

∇xxφ(x, µ) = ∇xxf(x) +

p∑
i=1

µ

c2i (x)
∇xci(x)(∇xci(x))

T −
p∑
i=1

µ

ci(x)
∇xxci(x).(2.24)

2.2. Assumptions. Let I = {x | c(x) ≥ 0} be the set of points satisfying the
inequalities, E = {x | Ax = b} be the set of points satisfying the equality constraints,
and the intersection F def

= I ∩ E be the set of feasible points for NLP. We assume the
following.
AS1. There exists x0 such that Ax0 = b and c(x0) > 0.
AS2. The functions f(·) and ci(·) are twice continuously differentiable over an open

set containing F .
Furthermore, if w∗ is a solution of (2.3)–(2.4), if we let A def

= {i | ci(x∗) = 0} be the
set of indices pertaining to the active inequality constraints at x∗, and if a(j) denotes
the jth column of AT , we then assume the following.
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AS3. The vectors {∇xci(x
∗)}i∈A and {a(j)}mj=1 form a linearly independent set in

R
n.

AS4. The strong second-order sufficiency condition is satisfied at w∗: vT∇xxL(w∗)v >
0 for any vector v �= 0, v ∈ N (A) such that ∇xci(x

∗)T v = 0 for every i ∈ A.
AS5. Strict complementary slackness holds, that is [z∗]i + ci(x

∗) > 0 for all i =
1, . . . , p.

Note that AS3 implies that the Lagrange multipliers y∗ and the dual variables z∗

are unique and that the matrix A has full rank, which is not restrictive since it can
always be satisfied by preprocessing the linear system Ax = b. Under AS3, AS4, and
AS5, x∗ is an isolated (and thus strict) local solution of NLP. Throughout the paper,
the dependence of A on x∗ will remain hidden as only one local solution of NLP is
considered.

3. Preliminary results. In this section, we state some results about central
paths which will be useful later.

It is shown in [6, 16] that under AS3, AS4, and AS5, ∇wΨ(w
∗; 0) is nonsingular,

and a continuity argument yields that it remains nonsingular in a small neighborhood
of w∗. In the following technical lemma, which is a simple extension of that proved
in [20] to the case of linear equality constraints, we now verify that the central path
is well-defined in the intersection of this neighborhood and E and show that it has
useful continuity properties.

Lemma 3.1. Under AS2–AS5, let the vector

w(l, r, ζ) = (x(l, r, ζ), y(l, r, ζ), z(l, r, ζ))

be defined implicitly as the solution of the following nonlinear system:

Ψ(w; 0) =


 NNT l

r
ζ


(3.1)

for given l ∈ R
n, r ∈ R

m, and ζ ∈ R
p, with Ψ defined as in (2.2) and where the

columns of N form an orthonormal basis for the nullspace of A. Then there exist
constants ε > 0 and κ > 0 for which the following statements hold.

(i) w(l, r, ζ) is a continuously differentiable function of (l, r, ζ) in the neighbor-
hood

N (ε) def
= {(l, r, ζ) | ‖l‖� + ‖r‖+ ‖ζ‖ ≤ ε}.

(ii) For ζ > 0 and (l, r, ζ) ∈ N (ε), we have [z(l, r, ζ)]i > 0 and ci(x(l, r, ζ)) > 0
for all i = 1, . . . , p.

(iii) Let (l1, r1, ζ1), (l2, r2, ζ2) ∈ N (ε) and w1 and w2 be the corresponding solu-
tions of (3.1). We then have

w2 − w1 = (∇wΨ(w1; 0))
−1


 NNT (l1 − l2)

r1 − r2
ζ1 − ζ2


+ ρ,(3.2)

where ρ ∈ R
n+m+p and ‖ρ‖ ≤ κ (‖l1 − l2‖� + ‖r1 − r2‖+ ‖ζ1 − ζ2‖)2, i.e., ρ = O(ε2).

Proof. To prove (i), we note that since ∇wΨ(w
∗; 0) is nonsingular, Ψ(w∗; 0) = 0

and Ψ(·; 0) is continuously differentiable in a neighborhood of w∗, the implicit function
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theorem implies that there exists ε > 0 such that the implicitly defined function
w(l, r, ζ) is continuously differentiable in (l, r, ζ) over the neighborhood N (ε).

For (ii), let (l, r, ζ) ∈ N (ε) with ζ > 0. Taking a smaller ε if necessary, note that
ci(x(l, r, ζ)) > 0 for all i �∈ A and that AS5 yields [z(l, r, ζ)]i > 0 for all i ∈ A. On
the other hand, since [z(l, r, ζ)]ici(x(l, r, ζ)) = ζi for all i = 1, . . . , p, we also obtain
[z(l, r, ζ)]i > 0 for all i �∈ A and ci(x(l, r, ζ)) > 0 for all i ∈ A.

Finally, (iii) is shown noting that, by the implicit function theorem, the Jacobian
of the function found in (i) is −(∇wΨ(w; 0))

−1, from which the result follows, using
a first-order Taylor expansion.

We may now apply Lemma 3.1 to obtain a fundamental result relating the optimal
w∗ to w(µ). We first observe that, because of Lemma 3.1 (i), when µ is sufficiently
small, w(0, 0, µe) is unique and is therefore equal to w(µ), since w(µ) solves this
system by definition. Moreover, because of AS2, ∇wΨ(·; 0) is uniformly nonsingular
in a neighborhood of w∗, and the left-hand side of (3.2) is dominated by the first term
in its right-hand side for small enough ε. Consequently,

‖w1 − w2‖ = Θ(‖l1 − l2‖� + ‖r1 − r2‖+ ‖ζ1 − ζ2‖) .(3.3)

Substituting (l1, r1, ζ1) = (0, 0, µe) and (l2, r2, ζ2) = (0, 0, 0) in (3.3) and using the
equivalence of w(0, 0, µe) and w(µ), we obtain the important result

‖w(µ)− w∗‖ = Θ(µ)(3.4)

for all sufficiently small µ.
We now show a property of the behavior of the path x(µ) when it approaches its

limit x∗. We know from (2.2) and (2.9) that

Ψ(w(µ);µ) =


 ∇xL(w(µ))

Ax(µ)− b
C(x(µ))z(µ)− µe


 =


 0
0
0


 .(3.5)

Differentiating system (3.5) with respect to µ and rearranging give

∇wΨ(w(µ);µ)


 ẋ(µ)
ẏ(µ)
ż(µ)


 =


 0
0
e


(3.6)

for any nonnegative µ. At µ = 0, taking only active constraints into account, the
third equation of (3.6) together with (2.11) shows that ẋ(0) �= 0 and

(∇xci(x
∗))T ẋ(0) =

1

[z∗]i
for all i ∈ A.(3.7)

Equation (3.7) means that the trajectory x(µ) does not skirt the active constraints
to reach x∗; that is, its approach is nontangential. Note that this is a consequence of
the strict complementarity assumption AS5 (see [21] for details).

Remark 3.1

4. The algorithm. We now state our class of algorithms. Let us first define,
for every strictly feasible (x, z),

B(x, z)
def
= JT (x)C−1(x)ZJ(x),(4.1)
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the Lagrangian

L(x, z)
def
= f(x)− cT (x)z,(4.2)

and finally

V (x, z)
def
= ∇xxL(x, z) +B(x, z).(4.3)

Note that for any strictly feasible (x, z) and for any y ∈ R
m

∇xxL(x, z) = ∇xxL(w) = ∇xxf(x)−
p∑
i=1

[z]i∇xxci(x).(4.4)

Note also that V (x, z) is the same as the Hessian of the barrier function (2.24) in the
special case where the dual variables z = µC−1(x)e.

To distinguish the overall algorithm from the inner minimization, that is the
approximate solution of the barrier subproblem, we call the former the “outer mini-
mization.” Our outer minimization may be formally stated as Algorithm 4.1.

Algorithm 4.1 [outer minimization]
Initialization. An initial barrier parameter µ0 > 0 and the forcing functions

εC(µ) and εD(µ) are given. Set k = 0.
Inner minimization. Approximately minimize the log-barrier function

φ(x, µk). Stop this inner algorithm as soon as an inner iterate
(xk+1, zk+1) is found such that

Axk+1 = b,(4.5)

(c(xk+1), zk+1) > 0,(4.6)

‖C(xk+1)zk+1 − µke‖ ≤ εC(µk), and(4.7)

‖∇xf(xk+1)− JT (xk+1)zk+1‖[k+1] ≤ εD(µk),(4.8)

where the norm ‖ · ‖[k+1] is defined with respect to some second-order
sufficient preconditioning matrix Mk+1. Choose µk+1 < µk, increment k
by one, and perform next inner minimization.

A crucial feature of Algorithm 4.1 is that at every stage it generates iterates lying
in the constraint manifold Ax = b. This allows us to concentrate on the natural
curvature of the problem. It also has the important consequence that the Lagrange
multipliers y neither appear nor are used anywhere in the algorithm. However, for
the needs of the local analysis of section 6, let us define the Lagrange multipliers yk+1

by

AT yk+1 = NNT
[∇xf(xk+1)− JT (xk+1)zk+1

]
− (∇xf(xk+1)− JT (xk+1)zk+1

)
(4.9)

with xk+1 and zk+1 as given by Algorithm 4.1. Note that the system (4.9) uniquely
determines yk+1 because the matrix A has full rank. It is easy to check that under
our assumptions, as xk+1 → x∗ and zk+1 → z∗, we have yk+1 → y∗. Moreover, the



FAST CONVERGENCE OF PRIMAL-DUAL BARRIER METHODS 983

definition (4.9) implies

∇xf(xk+1) +AT yk+1 − JT (xk+1)zk+1

= NNT
[∇xf(xk+1)− JT (xk+1)zk+1

]
= NNT

[∇xf(xk+1) +AT yk+1 − JT (xk+1)zk+1

]
,(4.10)

or in other words, if we let wk+1 = (xk+1, yk+1, zk+1), we have

∇xL(wk+1) = NNT∇xL(wk+1).(4.11)

Note that conditions (4.7)–(4.8) are relaxations of a part of the optimality system
(2.9), and that the stopping condition (4.8) is equivalent to

‖∇xL(wk+1)‖[k+1] ≤ εD(µk),

using the identity (2.15).
We do not describe an inner minimization algorithm here (we will return to this

question in section 7), but focus on the choice of the preconditioning matrices Mk.
Since this preconditioning aims to locally represent the geometry of the log-barrier
function, it is natural to assume that Mk is chosen as

Mk =Wk +B(xk, zk),(4.12)

where the matrix Wk is chosen so that Mk is second-order sufficient, and might,
for example, be a suitable approximation of the natural choice ∇xxL(xk, zk). A
discussion of the possible practical choices for Wk is out of the scope of this work and
we refer the interested reader to [2] for theoretical arguments and results of a practical
implementation. Our assumption on Mk is the following.
AS6. There exist εM ∈ (0, 1) and κW > 0 such that, for all k, the preconditioner

Mk =Wk +B(xk, zk) and its component Wk satisfy

λmin[NTMkN ] ≥ εM(4.13)

and

‖NTWkN‖ ≤ κW.(4.14)

AS6 allows us to analyze the interrelationship of the preconditioners, in that we
can deduce an important relation between the norm ‖ · ‖� and the seminorms (2.13)–
(2.14). It is worth emphasizing that this relation does not enforce uniform equivalence
between those norms, as it only gives one of the two inequalities required for such an
equivalence.

Lemma 4.1. Suppose AS6 is satisfied and that there exists a constant κJ > 0
such that, for all k,

‖J(xk)‖ ≤ κJ .(4.15)

Then, for any vector v ∈ R
n and for all k,

‖v‖k ≥ ε
1/2
M ‖v‖�(4.16)

and

‖v‖[k] ≤ ε
−1/2
M ‖v‖�.(4.17)
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Moreover if there exists κ(c) > 0 such that

lim
µ→0

εC(µ)

µ
≤ κ(c),(4.18)

then there exists κ� > 0 such that for all k

‖v‖[k] ≥ κ�min
[
mini ci(xk)√

µk−1
, 1

]
‖v‖�.(4.19)

Proof. The following proof is inspired by [2, Lemma 4.2 and Theorem 4.12].
Inequalities (4.16) and (4.17) clearly hold for any v orthogonal to N (A). Using

the identity (2.16), the positive definiteness of NTMkN and AS6, we have for all v
such that NT v �= 0,

‖v‖2�
‖v‖2k

=
‖NT v‖2

‖NT v‖2R[Mk]

=
‖(NTMkN)

− 1
2 (NTMkN)

1
2NT v‖2

‖(NTMkN)
1
2NT v‖2

≤ ‖(NTMkN)
−1‖

≤ ε−1
M ,

which proves (4.16). The proof of (4.17) is similar.
To prove (4.19), first observe that AS6, (2.12), and (4.15) imply that for all k

‖NTMkN‖ ≤ ‖NTWkN‖+ ‖NTB(xk, zk)N‖ ≤ κW + κ2
J max

i

[zk]i
ci(xk)

.(4.20)

If r denotes the vector NT v, we have ‖r‖ = ‖v‖�. Consider first the case where there
exists κ∞ > 0 such that for all i = 1, . . . , p,

lim sup
k→∞

[zk]i
ci(xk)

≤ κ∞ < +∞.

Inequality (4.20) then becomes

‖NTMkN‖ ≤ κW + κ2
Jκ∞,

and we have from the positive definiteness of NTMkN

‖v‖[k] = ‖(NTMkN)
− 1

2 r‖ ≥ (κW + κ2
Jκ∞)

−1/2‖r‖.(4.21)

Now consider the other possibility, namely that

lim sup
k→∞

[zk]i0
ci0(xk)

= +∞

for some index i0. Then, using (4.7) and (4.18), we have for all i and for sufficiently
large k

[zk]i
ci(xk)

≤ µk−1

ci(xk)2
+
|ci(xk)[zk]i − µk−1|

ci(xk)2
≤ µk−1

ci(xk)2
+
εC(µk−1)

ci(xk)2
≤ (1 + 2κ(c))

µk−1

ci(xk)2
.

We thus obtain from (4.20) that for large enough k

‖NTMkN‖ ≤ κW + κ2
J max

i

[zk]i
ci(xk)

≤ 2κ2
J(1 + 2κ

(c))
µk−1

mini ci(xk)2
,
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so that

‖v‖[k] = ‖(NTMkN)
− 1

2 r‖ ≥ (2κ2
J(1 + 2κ

(c)))−
1
2
mini ci(xk)√

µk−1
‖r‖.(4.22)

Putting (4.21) and (4.22) together yields (4.19) with

κ�
def
= min

[
(2κ2

J(1 + 2κ
(c)))−

1
2 , (κW + κ2

Jκ∞)
−1/2

]
.

5. Choosing the starting point for the inner minimization. As stated
in the introduction, a computationally critical part of the algorithm is the choice of
the starting point for the inner minimization and we already indicated that choosing
xk+1 to start the solution of BS(µk+1) is likely to be inefficient. The purpose of
this section is to examine alternative choices from the point of view of improving the
local convergence rate. Of course, this rate of convergence depends on the particular
choice of the functions εC(µ) and εD(µ). We therefore start by considering appropriate
choices for these functions.

5.1. Stopping tolerances. Formally, we shall suppose that the inner iteration,
which is the approximate minimization of BS(µk), starts from the (as yet, undefined)
primal-dual point (xk,0, zk,0), generates a sequence of iterates {(xk,j , zk,j)}j≥0, and
terminates at the point (xk,jk , zk,jk) ≡ (xk+1, zk+1) at which (4.5)–(4.8) are satisfied
for some appropriate second-order sufficient matrixMk+1. Let us define the Lagrange
multipliers yk+1 according to (4.9) and let wk+1 = (xk+1, yk+1, zk+1). We assume from
now on that the tolerances εC(µk) and ε

D(µk) asymptotically have the particular form
given in Figure 5.1. Observe that (4.7) and (5.1) imply that ci(xk+1)[zk+1]i − µk =
O(µk) for all i = 1, . . . , p.

Stopping tolerances:
We assume that there exist constants 0 < κC

µ ≤ κC

µ < 1 and 0 < κD
µ ≤ κD

µ such
that, for sufficiently large values of k,

κC

µµk ≤ εC(µk) ≤ κC

µµk(5.1)

and

κD

µµ
γk+1
k ≤ εD(µk) ≤ κD

µµ
γk+1
k ,(5.2)

where

0 < γk < 1.(5.3)

Fig. 5.1. Stopping tolerances for Algorithm 4.1.

In the context of our local analysis, we now assume that the vector w∗, a solution
of (2.3)–(2.4), is a limit point of the sequence {wk+1}, satisfying (4.5)–(4.8), with
yk+1 defined by (4.9), as µk ↘ 0. More specifically, we assume that there exists an
infinite index set K such that wk+1 → w∗ as k → ∞, k ∈ K. The subsequence of
{wk+1} indexed by K is denoted by {wk+1}K and we write {wk+1}K → w∗. In what
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follows, we consider only k ∈ K. In addition, AS2 implies that, for all i = 1, . . . , p
and all x sufficiently close to x∗

‖∇xf(x)‖ ≤ κg, ‖∇xxf(x)‖ ≤ κH, ‖∇xci(x)‖ ≤ κγ and ‖∇xxci(x)‖ ≤ κΓ(5.4)

for some κg, κH, κγ , κΓ > 0. The third of these bounds and the fact that we restrict
our attention to K imply that (4.15) holds for k sufficiently large, and Lemma 4.1 can
thus be applied asymptotically within K.

The next theorem provides bounds on the active and inactive quantities involved
in Algorithm 4.1 that result from our choice of stopping tolerances.

Theorem 5.1. Assume w∗ is a solution of NLP and {wk+1}K → w∗, where
{wk+1} is a sequence of iterates generated by Algorithm 4.1 with yk+1 defined by
(4.9). Under AS1–AS6 and (5.1), we have that for sufficiently large k ∈ K,

(i) for all i ∈ A, there exist κz ≥ κz > 0 such that

1

κz
(1− κC

µ)µk ≤ ci(xk+1) ≤ 1

κz
(1 + κC

µ)µk,(5.5)

κz ≤ [zk+1]i ≤ κz;(5.6)

(ii) for all i �∈ A, there exist κc ≥ κc > 0 such that

1

κc
(1− κC

µ)µk ≤ [zk+1]i ≤ 1

κc
(1 + κC

µ)µk,(5.7)

κc ≤ ci(xk+1) ≤ κc,(5.8)

where κC

µ is defined in (5.1).
Proof. The strict complementarity assumption AS5 implies that for i ∈ A, we

have for sufficiently large k ∈ K

0 < 1
2 [z

∗]i ≤ [zk+1]i ≤ 2[z∗]i.(5.9)

Relation (5.6) then follows with κz = 1
2 mini∈A[z∗]i and κz = 2maxi∈A[z∗]i.

On the other hand, stopping condition (4.7) yields that for all i = 1, . . . , p,

−εC(µk) ≤ ci(xk+1)[zk+1]i − µk ≤ εC(µk).(5.10)

Using the rightmost inequality in (5.1), (5.6), and (5.10) yields (5.5).
Observe that if i �∈ A, then for sufficiently large k ∈ K

0 < 1
2ci(x

∗) ≤ ci(xk+1) ≤ 2ci(x∗).(5.11)

Relation (5.8) then follows with κc = 1
2 mini ∈A ci(x

∗) and κz = 2maxi ∈A ci(x
∗). The

proof of (5.7) is similar to that of (5.5) using (5.8) and (5.10).
We now show that a termination criterion such as (4.7)–(4.8) coupled with (5.1)

and (5.2) guarantees that wk+1 lies within a constant factor of (µ
γk+ 1

2

k + µk) from an
exact solution w(µk) of BS(µk) and from w∗ in the usual, Euclidean norm.

Theorem 5.2. Suppose that AS1–AS6, (5.1), and (5.2) are satisfied, with γk
as specified in (5.3). Assume furthermore that w∗ is a solution of NLP and that
{wk+1}K → w∗, where {wk+1} is a sequence of iterates generated by Algorithm 4.1



FAST CONVERGENCE OF PRIMAL-DUAL BARRIER METHODS 987

with yk+1 defined by (4.9). Then, we have that, for sufficiently large k ∈ K, there
exist constants κdst, κ

∗
dst > 0 such that

‖wk+1 − w(µk)‖ ≤ κdst (µ
γk+ 1

2

k + µk)(5.12)

and

‖wk+1 − w∗‖ ≤ κ∗dst (µ
γk+ 1

2

k + µk).(5.13)

Proof. Observe that, under the stated assumptions, we may apply (4.19) which,
together with the relations (2.20), (4.8), and (5.2), yields

‖∇xL(wk+1)‖� ≤ κ−1
� max

[
εD(µk)

√
µk

mini ci(xk+1)
, εD(µk)

]
(5.14)

≤ κ−1
� κD

µmax

[
µ
γk+3/2
k

mini ci(xk+1)
, µγk+1
k

]
.(5.15)

First consider the case where the active set A is nonempty. In view of (5.5) and
(5.8), the index i that realizes the minimum in (5.15) certainly asymptotically satisfies
(5.5), which implies

min
i
ci(xk+1) = min

i∈A
ci(xk+1) ≥ 1

κz
(1− κC

µ)µk.(5.16)

Combining (5.15) and (5.16), we obtain

‖∇xL(wk+1)‖� ≤ κLmax
[

κz

1− κC

µ

µ
γk+ 1

2

k , µγk+1
k

]
= κL

κz

1− κC

µ

µ
γk+ 1

2

k(5.17)

for sufficiently large k ∈ K, where we have set κL = κ−1
� κD

µ.
Consider now the case where there are no active constraints. This time, the index

i that realizes the minimum in (5.15) satisfies (5.8) and we have mini ci(xk+1) ≥ κc.
Thus, (5.15) gives that for sufficiently large k ∈ K

‖∇xL(wk+1)‖� ≤ κ−1
� κD

µmax
[
κ−1
c µ

γk+3/2
k , µγk+1

k

]
= κLµ

γk+1
k .(5.18)

From the definition (4.9) of yk+1, (4.11) together with (4.5) guarantees that we
have wk+1 = w(∇xL(wk+1), 0, C(xk+1)zk+1) in Lemma 3.1. Moreover, (4.7), (5.1),
(5.17), and (5.18) guarantee that ‖∇xL(wk+1)‖�+‖C(xk+1)zk+1‖ is smaller than the
threshold ε defined in Lemma 3.1 for sufficiently large k ∈ K. Invoking (3.3) with the
parameters (∇xL(wk+1), 0, C(xk+1)zk+1) and (0, 0, µke) thus gives

‖wk+1 − w(µk)‖ = Θ(‖∇xL(wk+1)‖� + ‖C(xk+1)zk+1 − µke‖)(5.19)

= O(‖∇xL(wk+1)‖� + εC(µk))(5.20)

= O(‖∇xL(wk+1)‖� + µk),(5.21)

where we have used (4.7) and (5.1).
When A is nonempty, we obtain from (5.17) and (5.21) that, for sufficiently large

k ∈ K

‖wk+1 − w(µk)‖ = O(µγk+ 1
2

k + µk),(5.22)
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while if A is empty, (5.18) and (5.21) yield

‖wk+1 − w(µk)‖ = O(µγk+1
k + µk)(5.23)

= O(µγk+ 1
2

k + µk)(5.24)

because of (5.3). Putting (5.22) and (5.24) together proves (5.12).
Using the triangle inequality, (3.4), (5.3), and (5.12), there exists a constant

κ∗ > 0 such that

‖wk+1 − w∗‖ ≤ ‖wk+1 − w(µk)‖+ ‖w(µk)− w∗‖(5.25)

≤ κdst(µ
γk+ 1

2

k + µk) + κ∗µk,(5.26)

≤ (κdst + κ∗)(µγk+ 1
2

k + µk),(5.27)

which proves (5.13) with κ∗dst = κdst + κ∗.
Remark 5.1. In condition (5.14), the minimum is certainly asymptotically attained

for an active index, if any. In that case, if AS5 is satisfied, this minimum is of the order

of µk (and of the order of µ
1/2
k if AS5 fails to be satisfied)—see, for instance, [11, 21].

In our case, in order for the sequence {‖∇xL(wk+1)‖�} to converge to zero, we thus
require that εD(µk) converges to zero faster than µ

1/2
k (as guaranteed by (5.2)), which

is usually sufficient in practice to ensure convergence of the outer minimization.
Examining (4.19), we see that in the nondegenerate case, and when there are

active constraints, we asymptotically have ‖v‖[k] ≥ κnd
�
√
µk‖v‖� for some constant

κnd
� > 0. Hence, conditions (4.8) and (5.2) amount to ‖∇xL(wk+1)‖� = O(µγk+ 1

2

k )
which may be weaker than the usual stopping criterion ‖∇xL(wk+1)‖� = O(µk) when-
ever γk < 1

2 . In this case, the right-hand sides of (5.12) and (5.13) are O(µγk+ 1
2

k ),
which is weaker than the usual bound O(µk). If γk > 1

2 , the stopping criterion is
tightened but the right-hand sides of (5.12) and (5.13) are required to take the tra-
ditional form O(µk). Finally, if γk = 1

2 , the stopping criterion (4.8) and the bounds
(5.12) and (5.13) coincide with the traditional ones.

In the degenerate case, (4.19) becomes ‖v‖[k] ≥ κd
�‖v‖� for some constant κd

� > 0,
and shows, together with (4.17), that the norms ‖ · ‖[k] and ‖ · ‖� are equivalent in
the nullspace of A. Using (5.2), condition (4.8) then amounts to ‖∇xL(wk+1)‖� =
O(µγk+1

k ) and shows that we are more restrictive in this case for any γk > 0.

5.2. Simple choices for the starting point. In the unpreconditioned primal
case, it has previously been suggested [3] that the tolerance εD(µ) be set to O(µ). In
that case, inequality (4.8) and the boundedness of µk+1 imply that

‖∇xL(wP

k+1)‖ = O(µk) = O
(

µk
µk+1

)
(5.28)

for the primal choice wP

k+1 = (xk+1, yk+1, µk+1C
−1(xk+1)e). This observation paral-

lels [5, Lemma 1] and reinforces the results in [17] by suggesting that if the parameter
µk is reduced too fast (i.e., µk+1 � µk), it is unlikely that w

P

k+1 will be an accurate
estimate of the solution w(µk+1) for the forthcoming outer iteration.

By contrast, [3] suggests that, letting xO

k+1 = xk+1 and zO

k+1 = µkC
−1(xk+1)e

(as opposed to the value µk+1C
−1(xk+1)e which would have been used in a purely

primal context without extrapolation), a good initial point for BS(µk+1) might be
wk+1,0 = wO

k+1 + dN

k+1 = (xk+1,0, yk+1,0, zk+1,0), where d
N

k+1 is the full Newton step
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taken from wO

k+1 = (xO

k+1, y
O

k+1, z
O

k+1) (for some y
O

k+1). Simply restating a few vital
steps from [3], it can be shown that dN

k+1 is asymptotically feasible and

‖∇xL(wk+1,0)‖ = O(µ2
k),

‖C(xk+1,0)zk+1,0 − µk+1e‖ = O(µ2
k),

which would be accepted by any primal-dual stopping rule for which εC(µ) = εD(µ) =
O(µ) provided that µk+1 = Ω(µ2

k). Continuing in this vein, we would subsequently
have

zk+1,0 = µk+1C
−1(xk+1,0)e+O

(
µ2
k

µk+1

)
,

which then provides the bound

∥∥∇xf(xk+1,0)− µk+1J
T (xk+1,0)C

−1(xk+1,0)e
∥∥ = O

(
µ2
k

µk+1

)
.

Hence, if the inner minimization corresponding to µk+1 is started with xk+1,0 =
xO

k+1 + [d
N

k+1]x and zk+1,0 = zO

k+1 + [d
N

k+1]z, and assuming a subsequent Newton step
is acceptable to the inner minimization method (this can be shown to be the case),
the size of ∇xL(w) at the resulting iterate will be O(µ4

k/µ
2
k+1). Consequently, if we

wish the resulting iterate to satisfy a primal stopping rule of the form εD(µ) = O(µ),
this requires that

µk+1 = Ω(µ
4/3
k ),(5.29)

which suggests a superlinear rate of convergence in µ is possible.

5.3. An alternative choice based on extrapolating the central path. We
now intend to parallel the approach of section 5.2 in the primal-dual case, with the
hope of improving the bound (5.28). Assume we update the barrier parameter from
µk to µk+1. In order to solve problem BS(µk+1) efficiently, it is natural to aim to
choose a starting point which is as close as possible to a stationary point w(µk+1) of
this problem. We thus wish to (approximately) solve the system

Ψ(w;µk+1) = 0.(5.30)

An attractive possibility is therefore to choose the starting point for the inner mini-
mization as the result of a single Newton iteration for this system. This point, which
we denote wPD

k+1, is obtained from the solution of the linearized version of (5.30), that
is,

∇wΨ(wk+1;µk+1)(w
PD

k+1 − wk+1) = −

 ∇xL(wk+1)

0
C(xk+1)zk+1 − µk+1e


 ,(5.31)

where ∇wΨ(w;µ) is given by (2.11). If we let

dk+1 = ([dk+1]x, [dk+1]y, [dk+1]z) = wPD

k+1 − wk+1,(5.32)

we may eliminate [dk+1]z, use the first identity of (4.4) together with (4.3), the fact
that ∇xL(wk+1) = ∇xf(xk+1) + AT yk+1 − JT (xk+1)zk+1, rearrange and obtain the
reduced system[

V (xk+1, zk+1) AT

A 0

] [
[dk+1]x
[wPD

k+1]y

]
= −

[ ∇xφ(xk+1, µk+1)
0

]
(5.33)
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from which we may recover

[dk+1]z = −zk+1 + µk+1C
−1(xk+1)e− C−1(xk+1)Zk+1J(xk+1)[dk+1]x.

Note that the right-hand side of (5.33) is independent of zk+1. This system entirely
determines [dk+1]x and [w

PD

k+1]y provided that the matrix V (xk+1, zk+1) is positive
definite on the nullspace of A and A has full rank. This is equivalent to requiring that
the matrix V (xk+1, zk+1) is second-order sufficient (see section 2.1.2).

Before studying the implications of this step in terms of local convergence rate,
we first give an alternative geometrical interpretation of the step dk+1, in the spirit
of [5], arising from the implicit function theorem.

From the point wk+1 and with the barrier parameter µk, assume we wish to find
an estimate wEX

k+1 to an exact solution w+ of

Ψ(w;µk+1) = Ψ(wk+1;µk),(5.34)

since we know from (4.7) and (4.8) that the right-hand side of (5.34) is “small.”
Notice that if we compute w+ as the solution of (5.34), the equality constraints remain
satisfied.

Let us consider the system

Ψ(w;µ) = Ψ(wk+1;µk)(5.35)

and think of its solution in the variable w as a function of the barrier parameter µ, say
w = ϕ(µ), where the (implicit) function ϕ(µ) is defined in a small neighborhood of µk,
and where wk+1 = ϕ(µk). As already mentioned in section 3, for small enough values
of µk, the Jacobian ∇wΨ(wk+1;µk) = ∇wΨ(wk+1; 0) is nonsingular and therefore
the implicit function theorem yields that, in a small vicinity of µk, the function ϕ is
well-defined and differentiable. In particular, if we let w′

k+1 = ϕ′(µk), we have

w′
k+1 = − (∇wΨ(wk+1;µk))

−1∇µΨ(wk+1;µk) = (∇wΨ(wk+1;µk))
−1


 0
0
e


 .(5.36)

The estimate wEX

k+1 is computed as the following first-order Taylor expansion of ϕ(µ)
about µk, which represents an extrapolation from the parameters (µk,Ψ(wk+1;µk))
to (µk+1,Ψ(wk+1;µk)) and defines the step:

wEX

k+1 = ϕ(µk) + ϕ′(µk)(µk+1 − µk) = wk+1 + w′
k+1(µk+1 − µk).(5.37)

Assuming all the functions of interest are three times continuously differentiable, so
that ϕ is twice continuously differentiable, we have by Taylor’s theorem that the point
wEX

k+1 is within O((µk+1 − µk)
2) of w+ = ϕ(µk+1); see [5].

Since the matrix ∇wΨ(wk+1;µk) used in (5.36) is the same as the one needed to
compute a Newton step from wk+1 (see (2.11)), it is now possible to take, from wEX

k+1,
the Newton step we would have taken had we stayed at wk+1, which then defines the
step

dNW

k+1 = − (∇wΨ(wk+1;µk))
−1
Ψ(wk+1;µk),

and thereby define our composite extrapolation step

wPD

k+1
def
= wEX

k+1 + dNW

k+1
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Fig. 5.2. The above picture simplifies the situation as the x-space only is considered. The
infeasible region is the “outer” part of the picture. Constraints i and j are active at the local
constrained minimizer x∗. The exact solution of the current barrier subproblem, x(µk), lies exactly
on the primal-dual central path C. The second path C′ that is pictured is defined implicitly by
Ψ(w;µ) = Ψ(wk+1;µk) as in (5.35). The two outermost paths represent the neighborhood of C
defined by the forcing functions εC(µ) and εD(µ). The extrapolated step dEX

k+1 taken from wk+1

leaves the path C′ tangentially and leads to wEX
k+1. To that step is added the Newton step d

NW
k+1 that

would have been taken from wk+1, as represented on the picture. The step d
EX
k+1 + dNW

k+1 is the step

leading to wPD
k+1 as given by (5.31).

= wk+1 + (∇wΨ(wk+1;µk))
−1




 0
0
e


 (µk+1 − µk)−Ψ(wk+1;µk)




= wk+1 − (∇wΨ(wk+1;µk))
−1


 ∇xL(wk+1)

0
C(xk+1)zk+1 − µk+1e


 ,(5.38)

where we have used (2.2), (5.36), (5.37), and the definition of dNW

k+1. The step (5.38)
amounts to an extrapolation from the parameters (µk,Ψ(wk+1;µk)) to (µk+1, 0), in
the spirit of the predictor-corrector approach used in linear programming. Notice
that, since the Jacobian matrix ∇wΨ(w;µ) is independent of µ, the steps (5.31) and
(5.38) are identical. This is not true in the purely primal case, as the Jacobian matrix
∇wΨ(w;µ) is no longer independent of µ. An illustration of the decomposition of the
step (5.38) appears in Figure 5.2.

As µ↘ 0, the trajectory given by (5.35) and represented by ϕ(µ) obviously gets
closer and closer to the primal-dual central path C represented by w(µ), until both
coincide at w∗. Moreover, in this case, its derivative

ϕ′(µ) = − (∇wΨ(wk+1;µ))
−1∇µΨ(wk+1;µ)

converges to

− (∇wΨ(w
∗; 0))−1


 0

0
−e
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because of (2.11), which, in view of (3.6), equals ẇ(0). The two paths thus coincide
up to first order at w∗. This intuitively guarantees that expanding the function ϕ
asymptotically gives an accurate approximation of the primal-dual central path.

6. Local convergence analysis. Having proposed the point wPD

k+1 as a possible
starting point for the inner minimization, we now wish to analyze its properties from
the point of view of improving the local convergence rate of the algorithm. We will
prove that this particular choice is not only strictly feasible—in contrast with the
purely primal case [17]—but also dramatically improves on the bound (5.28). In fact,
we shall show that this point asymptotically satisfies the stopping criterion (4.5)–
(4.8), which means that the inner minimization algorithm is ultimately not needed.
In particular, this means that, asymptotically, only one linear system (5.31) need be
solved per update of the barrier parameter µ.

We start by verifying that this system is asymptotically well posed, at least along
the converging subsequence.

Lemma 6.1. Under the assumptions of Theorem 5.1, there exists a closed and
bounded neighborhood V of w∗ such that the matrix V (x, z) defined by (4.3) is positive
definite over the nullspace of A for all w ∈ V.

Proof. The result follows from the application of [16, Theorem 8(iii)] to the
reduced Hessian matrix NTV (x, z)N .

This result indicates that the systems (5.31) and (5.33) are asymptotically well
posed for k ∈ K sufficiently large.

In the next major stage of our analysis, we verify that the stopping conditions for
the inner minimization are all satisfied at wPD

k+1, provided we impose further conditions
on the barrier parameter updating rule. Furthermore, we also show that the bound
(5.28) can be improved in this context.

Theorem 6.2. Under AS1–AS6, assume that w∗ is a solution of NLP, that
the sequence {wk+1}K → w∗, where {wk+1} is a sequence of iterates generated by
Algorithm 4.1 with yk+1 defined by (4.9), and that the functions f and ci (i = 1, . . . , p)
are three times continuously differentiable over an open neighborhood of x∗. Assume
furthermore that (5.1)–(5.3) are satisfied, that 0 < ετ < 1/2 is a given constant, that
0 < γk ≤ (1− 2ετ )/(1 + 2ετ ), and that the barrier parameter updating rule satisfies

µk+1 = Ω(µ
τk
k ) 1 + ετ ≤ τk ≤ 2

1 + γk+1
− ετ .(6.1)

Then, we have that, for k ∈ K sufficiently large,

AxPD

k+1 = b,(6.2)

(c(xPD

k+1), z
PD

k+1) > 0,(6.3)

‖C(xPD

k+1)z
PD

k+1 − µk+1e‖ ≤ εC(µk+1),(6.4)

‖∇xf(x
PD

k+1)− JT (xPD

k+1)z
PD

k+1‖[k+2] ≤ εD(µk+1),(6.5)

and

‖Ψ(wPD

k+1;µk+1)‖ = o(µk+1).(6.6)

Proof. Observe first that (5.3) and (6.1) imply that

µ2
k = o(µk+1).(6.7)
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We start by proving (6.2). From (5.31), the direction dk+1 satisfies the equations

∇xxL(xk+1, zk+1)[dk+1]x +AT [dk+1]y − JT (xk+1)[dk+1]z = −∇xL(wk+1),(6.8)

A[dk+1]x = 0,(6.9)

and

Zk+1J(xk+1)[dk+1]x + C(xk+1)[dk+1]z = µk+1e− C(xk+1)zk+1,(6.10)

where ∇xxL(x, z) is defined in (4.4). It follows from (6.9) that xPD

k+1 satisfies the
equality constraints, which implies that (6.2) holds for all k ∈ K. Note that since the
right-hand side of (6.8)–(6.10), which is −((µk+1−µk)(0 0 − eT )T +Ψ(wk+1;µk)), is
O(µk) because of (4.7), (4.8) and (5.1)–(5.3), and as the Jacobian ∇wΨ(wk+1;µk+1)
remains uniformly nonsingular in the vicinity of w∗, we also obtain that

dk+1 = O(µk)(6.11)

for all sufficiently large k ∈ K. As a consequence, the sequence {wPD

k+1}k∈K also
converges to w∗ since µk converges to zero.

We next show that c(xPD

k+1) > 0, which is part of (6.3). If constraint i is inactive,
{ci(xk+1)}K → ci(x

∗) > 0 as µk ↘ 0. Taylor’s expansion of ci around xk+1, (5.4),
and (6.11) give that

ci(xk+1 + [dk+1]x) = ci(xk+1) +O(µk)
and thus, asymptotically,

0 < 1
2ci(xk+1) ≤ ci(x

PD

k+1) ≤ 2ci(xk+1),(6.12)

which shows that xPD

k+1 is strictly feasible with respect to the inactive constraints. Now

consider the active constraints, if any. Premultiplying (6.10) by Z−1
k+1 and rearranging,

we obtain that for all i = 1, . . . , p,

ci(xk+1) +∇xci(xk+1)
T [dk+1]x = µk+1[zk+1]

−1
i − [zk+1]

−1
i ci(xk+1)[[dk+1]z]i.(6.13)

For all active indices, (5.5), (5.6), and (6.11) show that the last term of the right-hand
side of (6.13) is O(µ2

k) so that we obtain

ci(xk+1) +∇xci(xk+1)
T [dk+1]x = µk+1[zk+1]

−1
i +O(µ2

k) (i ∈ A).(6.14)

Substituting this equation in the expansion

ci(xk+1 + [dk+1]x) = ci(xk+1) +∇xci(xk+1)
T [dk+1]x +O(‖[dk+1]x‖2),(6.15)

where we have used (5.4), and using (6.11) gives, for all i ∈ A,
ci(xk+1 + [dk+1]x) = µk+1[zk+1]

−1
i +O(µ2

k).(6.16)

If constraint i is active, {ci(xk+1)}K → ci(x
∗) = 0 as µk ↘ 0. Using now the bounds

(5.6), (6.16) yields

µk+1

κz
+O(µ2

k) ≤ ci(x
PD

k+1) ≤
µk+1

κz
+O(µ2

k).(6.17)
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Combining (6.7) and (6.17), we obtain

0 <
1

2κz
µk+1 ≤ ci(x

PD

k+1) ≤
2

κz
µk+1(6.18)

as soon as µk is sufficiently small. Relations (6.12) and (6.18) together show that
xPD

k+1 is asymptotically strictly feasible.
In order to complete our proof of (6.3), we now consider the feasibility of zPD

k+1.
Note that since the direction dk+1 is O(µk) because of (6.11), the same holds for
[dk+1]z. We then have that, for every i ∈ A,

[zk+1]i + [[dk+1]z]i = [zk+1]i +O(µk),(6.19)

which implies, by AS5 and for sufficiently large k ∈ K, that
0 < 1

2 [zk+1]i ≤ [zPD

k+1]i ≤ 2[zk+1]i,(6.20)

so that [zPD

k+1]i is asymptotically positive. For the inactive constraints, (6.11) indicates

that there exists κd > 0 such that ‖[dk+1]x‖ ≤ κdµk. From (6.10) and the Cauchy–
Schwarz inequality, we know that for all i = 1, . . . , p,

[zk+1]i + [[dk+1]z]i = c−1
i (xk+1)

(
µk+1 − [zk+1]i(∇xci(xk+1))

T [dk+1]x
)

(6.21)

≥ c−1
i (xk+1) (µk+1 − [zk+1]i‖∇xci(xk+1)‖‖[dk+1]x‖) .(6.22)

Using (5.4), (5.7), and (6.22), we have that, for i �∈ A and k ∈ K sufficiently large,

[zPD

k+1]i ≥ c−1
i (xk+1)

(
µk+1 − [zk+1]iκγκ

dµk
)

≥ c−1
i (xk+1)

(
µk+1 −

(1 + κC

µ)

κc

κγκ
dµ2

k

)
> 0,

where the last inequality follows from (6.7). Thus (6.3) holds for sufficiently large
k ∈ K.

We next prove (6.6). In view of (2.11), our differentiability assumptions, (5.6),
and (5.7) imply that the partial derivatives with respect to x, y, and z of each of the
elements of ∇wΨ(w;µ) clearly remain bounded in a neighborhood of w

∗ as µ goes to
zero by (5.4). Consequently, applying Taylor’s theorem to Ψ, we have

Ψ(wPD

k+1;µk+1) = Ψ(wk+1;µk+1) +∇wΨ(wk+1;µk+1)dk+1 +O(‖dk+1‖2).(6.23)

From the definition (5.31) of wPD

k+1, the first two terms of (6.23) vanish, and hence we
deduce

‖Ψ(wPD

k+1;µk+1)‖ = O(µ2
k)(6.24)

from (6.11). We finally deduce (6.6) from this bound and (6.7).
That (6.4) holds now immediately follows from (6.6) and (5.1). We next prove

(6.5). Using (4.17), we have that

‖∇xL(wPD

k+1)‖[k+2] ≤ ε
−1/2
M ‖∇xL(wPD

k+1)‖� ≤ ε
−1/2
M ‖∇xL(wPD

k+1)‖ = O(µ2
k),(6.25)

where the last equation follows from (6.24). Now, using (6.1) and (5.2), we have that

µ2
k = O

(
µ

2
τk

k+1

)
= o

(
µ

1+γk+1

k+1

)
= o(εD(µk+1)),
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which, with (6.25), implies that (6.5) holds for k ∈ K sufficiently large.
An important consequence of this result is that, once wPD

k+1 has been computed,
the inner minimization is ultimately unnecessary, since this “starting point” already
satisfies the stopping conditions for this minimization. Thus we choose, in what
follows,

xk+2
def
= xPD

k+1, zk+2
def
= zPD

k+1, and yk+2 according to (4.9).(6.26)

Observe that this makes the complete algorithm asymptotically independent of the
procedure chosen for the inner minimization, since this procedure is asymptotically
never used.

Observe also that, from (5.12) and (6.11),

‖wPD

k+1 − w(µk)‖ = O
(
µ
γk+ 1

2

k + µk

)
,

and from (3.3) we have ‖w(µk) − w(µk+1)‖ = O(µk − µk+1) = O(µk). Combining
these two observations, we obtain

‖wPD

k+1 − w(µk+1)‖ = O
(
µ
γk+ 1

2

k + µk

)
.(6.27)

In the primal-dual case, [1] and [15] show that the radius of the sphere of convergence
of Newton’s method for BS(µk+1) remains both finite and bounded away from zero
as µ decreases to zero. Hence, (6.27) shows that wPD

k+1 asymptotically lies inside that
sphere and thus that Newton’s method started from wPD

k+1 would generate points that
converge quadratically to w(µk+1), if an inner minimization were to be used. Also
note that (6.1) indicates that the rate of decrease of the barrier parameter must not
be too large.

Theorem 6.2 shows that, as soon as the barrier parameter is sufficiently small, the
point (5.31) lies strictly inside the feasible region. In a practical implementation, it
might be preferable to decide whether or not the algorithm is in a sufficiently advanced
stage to use (5.31) by checking its feasibility in conjunction with a test of the form

‖∇xL(wPD

k+1)‖[k+2] ≤ max
(
η, ν‖∇xL(wk+1)‖[k+2]

)
,

where the parameter η > 0 might be a small multiple of the machine precision and
0 < ν < 1, and to ignore the “improved” starting point if this test is violated.

If we now wish to pursue our rate of convergence analysis, we must be more
specific about the rule used to update the barrier parameter. So far, we have assumed
that µk+1 ≤ µk and (6.1); from now on, we will assume that

µk+1 = Θ(µ
τk
k ),(6.28)

where τk remains within the bounds specified in (6.1).
The rate of convergence of {µk} implied by the updating rule (6.28) directly

depends on the sequence {γk} chosen in (5.2). The rule implies

µk+1 = Ω

(
µ

2
1+γk+1

−ετ
k

)
,

from which we may retrieve the rule (5.29) if we choose γk ≥ (2− 3ετ )/(4 + 3ετ ) for
all k. If we choose ετ sufficiently small and impose limk→∞ γk = 0, then the rate at
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which the barrier parameter approaches zero can be made as close to quadratic as
one desires.

It is important to make a distinction between a rate of convergence in µ and a
rate of convergence in the variables w of the problem. In view of (3.4), if one is able
to compute the exact solution of BS(µ) for every µ, w(µ) converges to w∗ exactly as
fast as µ decreases to zero. Intuitively, when γk ≥ 1

2 , and because (5.12) and (5.13)
are always satisfied, one can reasonably expect the same rate of convergence in the
approximate solutions wk+1 as in µk, and we have observed this in practice. However,
it is not immediately clear that this may be made rigorous, since the bound (5.13) is
only one-sided. In the next results, we show that even in the case γk < 1

2 , not only can
we show that {wk+1}K converges R-superlinearly to w∗, but we obtain Q-superlinear
convergence of the whole sequence {wk+1} without restrictions on the sequence of
scalars {γk}. The following lemma parallels [10, Lemma 5.13].

Lemma 6.3. Under AS1–AS6, assume that w∗ is a solution of NLP, that {wk+1}K →
w∗, where {wk+1} is a sequence of iterates generated by Algorithm 4.1 with yk+1 de-
fined by (4.9), and that the functions f and ci (i = 1, . . . , p) are three times contin-
uously differentiable over an open neighborhood of x∗. Assume furthermore that the
barrier parameter µk is updated using (6.28) and that it is small enough to ensure that
wPD

k+1 defined by (5.31) is strictly feasible. Then we have the estimate

wk+2 = w(0) + µk+1ẇ(0) + o(µk+1)(6.29)

for all sufficiently large k ∈ K, where wk+2 is defined by (6.26) and ẇ(0) �= 0.
Proof. Proceeding as in the proof of Theorem 6.2, a second-order Taylor expansion

of Ψ(w;µ) about (w, µ) = (w∗, 0) and the optimality conditions (2.3) yield

Ψ(wk+2;µk+1) = ∇wΨ(w
∗; 0)(wk+2 − w∗) +∇µΨ(w

∗; 0)µk+1 + r(6.30)

= ∇wΨ(w
∗; 0)(wk+2 − w∗) +


 0

0
−µk+1e


+ r,(6.31)

where

‖r‖ = O(max(‖wk+2 − w∗‖2, µ2
k+1)).(6.32)

We may rewrite (6.31) as
 ∇xL(wk+2)

0
C(xk+2)zk+2


 = ∇wΨ(w

∗; 0)(wk+2 − w∗) + r.(6.33)

Since ∇xL(wk+2) lies in the nullspace of A because of (4.11) and (6.26), we have

‖∇xL(wk+2)‖ = ‖∇xL(wk+2)‖� = ‖∇xL(wPD

k+1)‖� = o(µk+1)(6.34)

and

C(xk+2)zk+2 = µk+1e+ o(µk+1),(6.35)

using (6.6). Consequently, substituting into (6.33) and using the nonsingularity of
∇wΨ(w

∗; 0), we obtain

wk+2 = w(0) + µk+1ẇ(0) + o(µk+1) + (∇wΨ(w
∗; 0))−1

r,(6.36)
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where we observed that w∗ = w(0) and (∇wΨ(w
∗; 0))−1

[0 0 eT ]T = ẇ(0) �= 0 because
of (3.6).

To complete the proof, it remains to show that ‖r‖ = o(µk+1). From (6.34) and
(6.35), for sufficiently large k ∈ K, ‖∇xL(wk+2)‖� + ‖C(xk+2)zk+2‖ is smaller than
the threshold ε given in Lemma 3.1, and thus, applying (3.3) with the parameters
(∇xL(wk+2), 0, C(xk+2)zk+2) and (0, 0, 0) yields

‖wk+2 − w∗‖ = Θ(‖∇xL(wk+2)‖� + ‖C(xk+2)zk+2‖)(6.37)

= O(µk+1),(6.38)

where the last equality is due to (6.34) and (6.35). We thus obtain that ‖wk+2−w∗‖2 =
O(µ2

k+1) = o(µk+1), and thus (6.32) clearly implies that ‖r‖ = o(µk+1) and proves
(6.29).

The result contained in Lemma 6.3 parallels the well-known expansion

w(µk+1) = w(0) + µk+1ẇ(0) + o(µk+1),

which holds for exact solutions of BS(µ). It also confirms the suggestion in Figure 5.2
that the trajectory C′ is close to the primal-dual central path. Moreover, it reinforces
the observation that the paths C and C′ coincide up to first order at w∗.

Considering the indentity (6.29) componentwise, we immediately have the follow-
ing corollary.

Corollary 6.4. Under the assumptions of Lemma 6.3, we have

[wk+2]i = [w
∗]i + µk+1[ẇ(0)]i + o(µk+1), i = 1, . . . , n+m+ p,(6.39)

for all sufficiently large k ∈ K, with wk+2 defined by (6.26).
Consequently, there exists a constant κw > 0 such that, for all k ∈ K sufficiently

large,

|[wk+2]i − [w∗]i| ≤ κwµk+1, i = 1, . . . , n+m+ p,(6.40)

which, unlike (5.13), is independent of the sequence {γk}.
So far, we have simply assumed that w∗ is a limit point of the sequence {wk+1}k∈K.

We are now in position to prove that the whole sequence of iterates wk+1 converges
Q-superlinearly to w∗. Moreover, upon defining

J def
= {i = 1, . . . , n+m+ p | [ẇ(0)]i �= 0},(6.41)

this convergence occurs componentwise for i ∈ J , showing that all errors |[wk+2]i −
[w∗]i| with i ∈ J are of comparable size, and thus that the corresponding variables
converge to their limit at a comparable rate. The following result is inspired by [10,
Theorem 5.14].

Theorem 6.5. Under AS1–AS6, assume that w∗ is a solution of NLP, that
the sequence {wk+1}K → w∗, where {wk+1} is a sequence of iterates generated by
Algorithm 4.1 with yk+1 defined by (4.9), and that the functions f and ci (i = 1, . . . , p)
are three times continuously differentiable over an open set containing F . Assume
furthermore that (5.1)–(5.3) are satisfied and that the barrier parameter µk is updated
using (6.28). Assume finally that (6.26) is used for all k ∈ K large enough to ensure
that Theorem 6.2 holds. Then the complete sequence {wk+1} converges to w∗ and∣∣∣∣ [wk+2]i − [w∗]i

[wk+1]i − [w∗]i

∣∣∣∣ = Θ(µτk−1
k ), i ∈ J ,(6.42)
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for k sufficiently large, which implies that the iterates wk+1 converge componentwise
Q-superlinearly to w∗, along all those components i for which [ẇ(0)]i �= 0.

Proof. First note that (6.40) and the convergence of µk+1 to zero imply that
{wk+2}k∈K also converges to w∗. If we set K+ = K ∪ {k + 1 | k ∈ K}, we thus have
that {wk+1}k∈K+ converges to w∗, and we may reapply (6.40) to this subsequence, to
conclude that {wk+2}k∈K+ also converges to w∗. Applying this argument inductively,
we obtain that the complete sequence {wk} converges to w∗ and therefore that K may
be identified with the set of all positive integers. Our assumptions then yield that
Theorem 6.2 holds and that (6.26) is used for all k sufficiently large. Moreover, the
estimate (6.39) also holds for all k sufficiently large, implying that |[wk+1]i− [w∗]i| =
Θ(µk) for all i ∈ J . This proves that∣∣∣∣ [wk+2]i − [w∗]i

[wk+1]i − [w∗]i

∣∣∣∣ = Θ
(
µk+1

µk

)
, i ∈ J ,

which then gives (6.42) because of (6.28). The componentwise Q-superlinear conver-
gence of the iterates to w∗ then follows from the convergence of µk to zero and the
inequality τk ≥ 1 + ετ .

Theorem 6.5 has the following consequence.
Corollary 6.6. Under the assumptions of Theorem 6.5, suppose that

τk =
2

1 + γk+1
− ετ ,(6.43)

where 0 < ετ < 1/2 is a given constant, with γk satisfying 0 < γk ≤ (1−2ετ )/(1+2ετ )
and

lim
k→∞

γk = 0.

Then, for any σ ∈ (1, 2− ετ ), there exists a constant qσ > 0 such that

|[wk+2]i − [w∗]i| ≤ qσ|[wk+1]i − [w∗]i|σ, i ∈ J ,

with J as defined in (6.41).
Proof. First recall that Corollary 6.4 and the fact that [ẇ(0)]i �= 0 for i ∈ J

implies that |[wk+1]i− [w∗]i| = Θ(µk) for all k sufficiently large. This and (6.28) yield
that

|[wk+2]i − [w∗]i|
|[wk+1]i − [w∗]i|σ = Θ(µ

τk−σ
k ), i ∈ J .

Our assumptions and the fact that, for any σ ∈ (1, 2− ετ ),

τk =
2

1 + γk+1
− ετ ≥ σ

for k sufficiently large then implies the desired result.
Strictly speaking, our componentwise convergence results hold for all components

only if all components of ẇ(0) are nonzero. A suitable change of coordinates can trans-
form any nonzero vector ẇ(0) into a vector parallel to the vector of all ones without
modifying the nature of problem NLP or the convergence of {wk} to w∗. For instance,
the (n + m + p) × (n + m + p) Householder reflection P = I − 2/‖v‖2 vvT , where
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v = ẇ(0)±e ‖ẇ(0)‖/√n+m+ p, is such a transformation. In the transformed space,
Theorem 6.5 and Corollary 6.6 therefore hold for all components i = 1, . . . , n+m+p.
We should, however, be cautious when transforming back for the same rate of conver-
gence might not apply to those components for which [ẇ(0)]i = 0. In other words, a
fast componentwise Q-rate of convergence in a particular coordinate system does not
necessarily imply that the same rate of convergence still applies to all the components
in a different coordinate system, although, of course, it does apply normwise.

Interior point methods of the type studied above are thus likely to achieve a
rate of convergence that is in practice as fast as that of exterior-penalty methods.
In addition, the rate of convergence implied by our theory is governed by ετ , and
Corollary 6.6 shows that this rate can be made as close to quadratic as we wish by
choosing ετ sufficiently close to zero in (6.43). Note that Corollary 6.4 also holds
for [10, Lemma 5.13] in connection with exterior penalty methods, and thus that
componentwise Q-superlinear convergence also occurs in that case.

Remark 6.1. Most of the qualitative observations made in this paper essentially
remain true in the purely primal case. When considering the primal approach, one
has to replace (2.2) with

Ψp(x, y;µ) =

[ ∇xLp(x, y;µ)
Ax− b

]
,

where ∇xLp(x, y;µ) = ∇xf(x) + AT y − µJT (x)C−1(x)e, since the left-hand side of
(4.7) is always identically zero. The primal case is analyzed both for interior and
exterior penalty functions by Dussault [5]. From the quantitative point of view, one
obtains two-step superlinear convergence in the primal case as opposed to one-step
superlinear convergence in the primal-dual case, using the same sort of Newton-like
extrapolation step. In the primal case, the extrapolation step itself is not enough to
satisfy the termination tolerances, and one has to perform an additional Newton step.
The result obtained in [5] is that the updating rule for the barrier parameter has to

satisfy µk+1 = Ω(µ
4/3
k ), thereby limiting the speed of convergence.

7. An application. We now show that the theoretical framework developed
above can be applied. In particular we first examine why it applies to the method
proposed in [2]. This algorithm consists of an inner iteration imbricated in an outer
one. We do not describe the inner minimization here, but refer the interested reader
to [2] for a discussion. Suffice it to say that it uses a trust-region algorithm with a
primal-dual model of the log-barrier function (1.3). The stopping conditions for this
inner iteration are exactly (4.5)–(4.8) augmented by the requirement that

λmin

Mk+1
[V (xk+1, zk+1)] ≥ −εE(µk)(7.1)

for some forcing function εE(µ). This additional condition is meant to enforce conver-
gence to a second-order critical point of the log-barrier function.

The global convergence of the resulting minimization procedure (inner and outer
minimizations together) to weak second-order critical points is guaranteed under stan-
dard assumptions [2, Theorem 4.12]. These assumptions are slightly different from
those used here: in particular, strict complementarity slackness is not required, and
approximate second-order derivatives of the objective function and constraints are
allowed, while we concentrate here on the case where they are exact. However, this
convergence result depends on three additional conditions, namely that

lim
k→∞

εD(µk)
√
µk

mini ci(xk+1)
= 0,(7.2)
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that the tolerance εC(µ) is asymptotically of the form O(µ), and that the barrier
function is bounded from below on F for all generated iterates and all small µ. Note
that (5.1) implies that εC(µk) is asymptotically of the order of µk and that (5.2)
implies that condition (7.2) is satisfied because of (5.5) and (5.8). As a consequence
we see that the global convergence theory for the particular implementation described
in [2] is not upset by our choice of stopping tolerances. Moreover, the boundedness
of the log-barrier function is guaranteed here, because of AS2, Theorem 5.1, and the
fact that our analysis only considers convergent subsequences.

In order to apply our rate of convergence results, we finally have to verify that
introducing condition (7.1) in the set of stopping criterion for the inner minimiza-
tion algorithm does not affect our conclusions. Fortunately, we may deduce from
Lemma 6.1 that the matrix V (x, z) is asymptotically second-order sufficient and thus
ultimately that condition (7.1) will automatically be satisfied at the iterates gener-
ated by Algorithm 4.1 that are sufficiently close to a local solution w∗. The wk+1

(k ∈ K) are such iterates. Consequently, Theorem 6.5 and Corollary 6.6 apply for the
algorithm proposed by [2].

It is tempting, although technically difficult, to attempt to apply our results to
other primal-dual methods for nonlinear optimization. In particular, the methods of
Gay, Overton, and Wright [7] and Byrd, Liu, and Nocedal [1] seem natural candidates.
However, a fully unified theory appears to require more work. In particular, besides
the fact that these methods handle the full nonlinear program, including nonlinear
equality constraints, and allow infeasible iterates with respect to those constraints,
they also differ from our framework in further respects. The method of Gay, Overton,
and Wright uses a watchdog technique to allow a possible nonmonotone behavior
of the sequence of values of a log-barrier based merit function, while our technique
does not impose any condition on this sequence. The method of Byrd, Liu, and
Nocedal uses slack variables to transform general inequalities into bound constraints.
Both methods impose the same accuracy requirement for (4.7) and (4.8) while our
approach differentiates between those two components of the optimality conditions
(see (5.1)–(5.3)). Moreover, the rules to update the barrier parameter differ in both
cases from those considered here.

8. Conclusion. In this paper, we have studied the local convergence properties
of primal-dual interior point algorithms for minimizing a general, nonconvex, objective
function subject to linear equality constraints and nonconvex inequality constraints,
of which the method proposed by Conn et al. [2] is a prime example. Our analysis
is inspired by those of [3, 5, 10, 21]. The theoretical results show a convergence rate
for barrier methods that is essentially as fast as that previously obtained for exterior
penalty methods [10]. These results rely on a suitable extrapolation of the central
path from the current iterate wk+1 which leads to an asymptotically acceptable wk+2,
i.e., a point which immediately satisfies the tolerance requirements corresponding to
the updated barrier parameter µk+1. This is shown to imply a componentwise Q-
superlinear convergence rate, and one asymptotically has to solve, in each outer iter-
ation, a single linear system whose coefficient matrix is that of the Newton equations
at wk+1. Nevertheless, fast convergence in a particular component depends crucially
upon the corresponding component of ẇ(0), the tangent to the central path at the
solution, being nonzero. It is worth emphasizing that the results presented here hold
independently of the exact inner minimization procedure used, provided it ensures
that (4.5)–(4.8) are satisfied. The componentwise Q-superlinear convergence of wk to
w∗ also holds independently of any particular updating rule for the variable γk used
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in (5.2), provided it satisfies (5.3). Moreover, if the sequence {γk} converges to zero,
then the rate of convergence can be made as close to quadratic as desired by choosing
ετ sufficiently small in (6.43). A consequence is that we may alternatively view the
results of the present paper as giving conditions on the stopping criterion of any bar-
rier subproblem solver that ensure componentwise Q-superlinear convergence of the
outer iterates. This parallels the results of [13] for linear complementarity problems.

Reasons why one should use extrapolated steps in barrier-type methods are de-
veloped in [3, 12, 17], and an analysis similar to that developed in the present paper is
developed in [1], where one-step superlinear convergence of an interior point primal-
dual trust-region algorithm is exhibited. As superlinear convergence has already been
observed in practice during tests on quadratic programs (see [2]), the authors believe
that it will be equally worthwhile to experiment with the strategy sketched in this
paper on highly nonlinear and high-dimensional optimization problems. It should be
mentioned, however, that the extrapolation strategy is only likely to be numerically
efficient in conjunction with a method that solves the Newton equations accurately,
without suffering from any ill-conditioning that is not already present in problem NLP
[5]. Furthermore, higher convergence rates analysis, achievable by taking a further
Newton step from the extrapolated point, will be analyzed in a companion paper.
In view of the analysis conducted in [21], one may reasonably hope that the results
exhibited in the present paper remain essentially true when the linear independence
constraint qualification is replaced by the weaker Mangasarian–Fromovitz constraint
qualification. One may also hope to obtain interesting, yet similar, results when the
strict complementarity condition is dropped. Relaxation of those assumptions and
further investigation on the componentwise convergence properties in different coor-
dinate systems are left for future work.

Acknowledgment. The authors are grateful to Jorge Nocedal for his helpful
comments on an earlier draft of this paper.
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Abstract. Given a Lipschitzian convex function f on a Banach space X, we consider a complete
metric space A of vector fields V on X with the topology of uniform convergence on bounded subsets.
With each such vector field we associate two iterative processes. We introduce the class of regular
vector fields V ∈ A and prove (under two mild assumptions on f) that the complement of the set
of regular vector fields is not only of the first category, but also σ-porous. We then show that for a
locally uniformly continuous regular vector field V and a coercive function f , the values of f tend to
its infimum for both processes.
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property, iterative process, porous set
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1. Introduction. Assume that (X, || · ||) is a Banach space with norm || · ||,
(X∗, || · ||∗) is its dual space with the norm || · ||∗, and f : X → R1 is a convex
continuous function which is bounded from below. Recall that for each pair of sets
A,B ⊂ X∗,

H(A,B) = max

{
sup
x∈A

inf
y∈B
||x− y||∗, sup

y∈B
inf
x∈A
||x− y||∗

}

is the Hausdorff distance between A and B.
For each x ∈ X, let

∂f(x) = {l ∈ X∗ : f(y)− f(x) ≥ l(y − x) for all y ∈ X}

be the subdifferential of f at x. It is well known that the set ∂f(x) is nonempty and
bounded (in the norm topology). Set

inf(f) = inf{f(x) : x ∈ X}.

Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X (i.e., for each K0 > 0 there is K1 > 0 such that ||V x|| ≤ K1

if ||x|| ≤ K0), and for each x ∈ X and each l ∈ ∂f(x), l(V x) ≤ 0. We denote by
Ac the set of all continuous V ∈ A, by Au the set of all V ∈ A which are uniformly
continuous on each bounded subset of X, and by Aau the set of all V ∈ A which are
uniformly continuous on the subsets

{x ∈ X : ||x|| ≤ n and f(x) ≥ inf(f) + 1/n}
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for each integer n ≥ 1. Finally, let Aauc = Aau ∩ Ac.
Next we endow the set A with a metric ρ: For each V1, V2 ∈ A and each integer

i ≥ 1, we first set

ρi(V1, V2) = sup{||V1x− V2x|| : x ∈ X and ||x|| ≤ i}(1.1)

and then define

ρ(V1, V2) =

∞∑
i=1

2−i[ρi(V1, V2)(1 + ρi(V1, V2))
−1].(1.2)

Clearly, (A, ρ) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N, ε) = {(V1, V2) ∈ A×A : ||V1x− V2x|| ≤ ε, x ∈ X, ||x|| ≤ N},(1.3)

where N, ε > 0, is a base for the uniformity generated by the metric ρ. Evidently Ac,
Au, Aau, and Aauc are closed subsets of the metric space (A, ρ). In what follows we
assign to all these spaces the same metric ρ.

To compute inf(f), we associate with each vector field W ∈ A two gradient-like
iterative processes (see (1.5) and (1.7) below).

The study of minimization methods for convex functions is a central topic in
optimization theory. See, for example, [1, 2, 4, 9, 10] and references therein. Note, in
particular, that the counterexample studied in section 2.2, Chapter VIII of [10] shows
that, even for two-dimensional problems, the simplest choice for a descent direction,
namely, the normalized steepest descent direction,

V (x) = argmin

{
max
l∈∂f(x)

< l, d >: ||d|| = 1

}
,

may produce sequences whose functional values fail to converge to the infimum of f .
This vector field V belongs to A and the Lipschitzian function f attains its infimum.
The steepest descent scheme (Algorithm 1.1.7 in section 1.1, Chapter VIII of [10])
corresponds to either of the two iterative processes we consider below.

In infinite dimensions the problem is even more difficult and less understood.
Moreover, positive results usually require special assumptions on the space and the
functions. However, as shown in our previous paper [15] (under certain assumptions
on the function f), for an arbitrary Banach space X and a generic vector field V ∈ A,
the values of f tend to its infimum for both processes. In that paper, instead of
considering a certain convergence property for a method generated by a single vector
field V , we investigated it for the whole space A and showed that this property held
for most of the vector fields in A. This approach has also been successfully applied
in the theory of dynamical systems [5, 13], approximation theory [6], optimization
[8, 11, 14, 16], as well as in optimal control [20, 21, 22].

In the present paper we introduce the class of regular vector fields V ∈ A. Our
first result, Theorem 1, shows (under the two mild assumptions A(i) and A(ii) on f
stated below) that the complement of the set of regular vector fields is not only of the
first category, but also σ-porous in each of the spaces A, Ac, Au, Aau, and Aauc. We
then show (Theorem 2) that for any regular vector field V ∈ Aau, if the constructed
sequence {xi}∞i=0 ⊂ X has a bounded subsequence (in the case of the first process)
or is bounded (in the case of the second one), then the values of the function f tend
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to its infimum for both processes. If, in addition to A(i) and A(ii), f also satisfies
the assumption A(iii), then this convergence result is valid for any regular V ∈ A.
Note that if the function f is coercive, then the constructed sequences will always
stay bounded. Thus we see, by Theorem 1, that for a coercive f the set of divergent
descent methods is σ-porous. Our last result, Theorem 3, shows that in this case we
obtain not only convergence, but also stability.

Before we continue we recall the concept of porosity [3, 6, 7, 17, 18, 19].
Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of

center y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous in (Y, d) if there
exist α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y there exists
z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous in (Y, d) if it is a countable union of porous
subsets in (Y, d).

Remark 1.1. It is known that in the above definition of porosity the point y can
be assumed to belong to E.

Other notions of porosity have been used in the literature [3, 17]. We use the
rather strong notion which appears in [6, 7].

Since porous sets are nowhere dense, all σ-porous sets are of the first category. If
Y is a finite-dimensional Euclidean space, then σ-porous sets are of Lebesgue measure
0. In fact, the class of σ-porous sets in such a space is much smaller than the class
of sets which have measure 0 and are of the first category. Also, every Banach space
contains a set of the first category which is not σ-porous [12, 17, 18]. Moreover, every
complete metric space without isolated points contains a closed nowhere dense set
which is not σ-porous [19].

To point out the difference between porous and nowhere dense sets note that if
E ⊂ Y is nowhere dense, y ∈ Y , and r > 0, then there is a point z ∈ Y and a number
s > 0 such that B(z, s) ⊂ B(y, r) \ E. If, however, E is also porous, then for small
enough r we can choose s = αr, where α ∈ (0, 1) is a constant which depends only
on E.

Our results will be established in any Banach space and for those convex functions
which satisfy the following two assumptions.

A(i) There exists a bounded (in the norm topology) set X0 ⊂ X such that

inf(f) = inf{f(x) : x ∈ X} = inf{f(x) : x ∈ X0};

A(ii) for each r > 0 the function f is Lipschitzian on the ball {x ∈ X : ||x|| ≤ r}.
Remark 1.2. We may assume that the set X0 in A(i) is closed and convex.
Remark 1.3. Clearly, assumption A(i) holds if lim||x||→∞ f(x) =∞.
We will say that a mapping V ∈ A is regular if for any natural number n there

exists a positive number δ(n) such that for each x ∈ X satisfying

||x|| ≤ n and f(x) ≥ inf(f) + 1/n,

and each l ∈ ∂f(x), we have

l(V x) ≤ −δ(n).

Denote by F the set of all regular vector fields V ∈ A.
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It is not difficult to verify the following property of regular vector fields. It means,
in particular, that G = A \ F is a face of the convex cone A in the sense that if a
nontrivial convex combination of two vector fields in A belongs to G, then both of
them must belong to G.

Proposition 1.1. Assume that V1, V2 ∈ A, V1 is regular, φ : X → [0, 1], and
that for each integer n ≥ 1,

inf{φ(x) : x ∈ X and ||x|| ≤ n} > 0.

Then the mapping x→ φ(x)V1x+ (1− φ(x))V2x, x ∈ X, also belongs to F .
Our first result shows that in a very strong sense most of the vector fields in A

are regular.
Theorem 1. Assume that both A(i) and A(ii) hold. Then A \ F (respectively,

Ac \ F , Aau \ F , and Aauc \ F) is a σ-porous subset of the space A (respectively, Ac,
Aau, and Aauc). Moreover, if f attains its infimum, then the set Au \ F is also a
σ-porous subset of the space Au.

Now let W ∈ A. We associate with W two iterative processes.
For x ∈ X we denote by PW (x) the set of all

y ∈ {x+ αWx : α ∈ [0, 1]}

such that

f(y) = inf{f(x+ βWx) : β ∈ [0, 1]}.(1.4)

Given any initial point x0 ∈ X, one can construct a sequence {xi}∞i=0 ⊂ X such that
for all i = 0, 1, . . . ,

xi+1 ∈ PW (xi).(1.5)

This is our first iterative process.
Next we describe the second iterative process.
Given a sequence a = {ai}∞i=0 ⊂ (0, 1] such that

lim
i→∞

ai = 0 and

∞∑
i=0

ai =∞,(1.6)

we construct for each initial point x0 ∈ X a sequence {xi}∞i=0 ⊂ X according to the
following rule:

xi+1 = xi + aiW (xi) if f(xi + aiW (xi)) < f(xi),(1.7)

xi+1 = xi otherwise,

where i = 0, 1, . . . .
In what follows we will also make use of the following assumption.
A(iii) For each integer n ≥ 1 there exists δ > 0 such that for each x1, x2 ∈ X

satisfying

||x1||, ||x2|| ≤ n, f(xi) ≥ inf(f) + 1/n, i = 1, 2, and ||x1 − x2|| ≤ δ,
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the following inequality holds:

H(∂f(x1), ∂f(x2)) ≤ 1/n.

This assumption is certainly satisfied if f is differentiable and its derivative is
uniformly continuous on those bounded subsets of X over which the infimum of f is
larger than inf(f).

Our next result is a convergence theorem for those iterative processes associated
with regular vector fields. It is of interest to note that we obtain convergence when
either the regular vector field W or the subdifferential ∂f enjoys a certain uniform
continuity property.

Theorem 2. Assume that W ∈ A is regular, A(i), A(ii) are valid, and that at
least one of the following conditions holds: 1. W ∈ Aau; 2. A(iii) is valid. Then the
following two assertions are true:

(i) Let the sequence {xi}∞i=0 ⊂ X satisfy (1.5) for all i = 0, 1, . . . . If

lim inf
i→∞

||xi|| <∞,

then limi→∞ f(xi) = inf(f).
(ii) Let a sequence a = {ai}∞i=0 ⊂ (0, 1] satisfy (1.6) and let the sequence {xi}∞i=0 ⊂

X satisfy (1.7) for all i = 0, 1, . . . . If {xi}∞i=0 is bounded, then

lim
i→∞

f(xi) = inf(f).

Finally, we impose an additional coercivity condition on f and establish the follow-
ing stability theorem. Note that this coercivity condition implies A(i) (Remark 1.3).

Theorem 3. Assume that f(x) → ∞ as ||x|| → ∞, V ∈ A is regular, A(ii) is
valid, and that at least one of the following conditions holds: 1. V ∈ Aau; 2. A(iii) is
valid.

Let K, ε > 0 be given. Then there exist a neighborhood U of V in A and a natural
number N0 such that the following two assertions are true:

(i) For each W ∈ U and each sequence {xi}N0
i=0 ⊂ X which satisfies ||x0|| ≤ K

and (1.5) for all i = 0, . . . , N0 − 1, the inequality f(xN0) ≤ inf(f) + ε holds.
(ii) For each sequence of numbers a = {ai}∞i=0 ⊂ (0, 1] satisfying (1.6), there exists

a natural number N such that for each W ∈ U and each sequence {xi}Ni=0 ⊂ X which
satisfies ||x0|| ≤ K and (1.7) for all i = 0, . . . , N−1, the inequality f(xN ) ≤ inf(f)+ε
holds.

Comparing the present paper with [15], we note the following significant
improvements.

In the present paper we show that the set of divergent descent methods in a
Banach space is not only of the first category, but also σ-porous.

We point out a simple property of vector fields (namely, regularity) which yields
convergence of the corresponding descent methods.

In contrast to [15], where the rather restrictive assumption A(iii) was used in all
our results, in the present paper we establish convergence results for regular vector
fields in Aau assuming only the mild assumptions A(i) and A(ii).

Our paper is organized as follows. The proof of Theorem 1 is given in section 3.
It is preceded by an auxiliary result in section 2. The proofs of Theorems 2 and 3
are given in section 5. They are preceded by a basic lemma which is presented in
section 4.
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2. An auxiliary result. Assume that K is a nonempty closed convex subset of
X. We consider the topological subspace K ⊂ X with the relative topology. For each
function h : K → R1 define inf(h) := inf{h(x) : x ∈ K}.

Proposition 2.1. Let g : K → R1 be a convex, bounded from below, function
which is uniformly continuous on bounded subsets of K. Assume that there exists a
bounded convex set K0 ⊂ K such that for each x ∈ K there exists y ∈ K0 for which
g(y) ≤ g(x).

Then there exists a continuous mapping Ag : K → K0 which satisfies g(Agx) ≤
g(x) for all x ∈ K and has the following two properties:

B(i) For each integer n ≥ 1, the mapping Ag is uniformly continuous on the set

{x ∈ K : ||x|| ≤ n and g(x) ≥ inf(g) + 1/n};
B(ii) if g(x) ≥ inf(g) + ε for some ε > 0 and x ∈ K, then

g(Agx) ≤ g(x)− ε/2.

Proof. If there exists x ∈ K for which g(x) = inf(g), then there exists x∗ ∈ K0

for which g(x∗) = inf(g) and we can set Ag(y) = x∗ for all y ∈ K. Therefore we may
assume that

{x ∈ K : g(x) = inf(g)} = ∅.
For each integer i ≥ 0, there exists yi ∈ K0 such that

g(yi) ≤ (4(i+ 1))−1 + inf(g).(2.1)

Consider now the linear segments which join y0, y1, . . . , yn, . . . (all contained in K0

by the convexity of K0), represented as a continuous curve γ : [0,∞) → K0, and
parametrized so that

γ(t) = yi + (t− i)(yi+1 − yi) if i ≤ t < i+ 1 (i = 0, 1, 2, . . . ).(2.2)

The curve γ is Lipschitzian because the set K0 is bounded. Define

Agx = γ(g(x)− (inf(g))−1), x ∈ K.(2.3)

It is easy to see that Agx ∈ K0 for all x ∈ K, the mapping Ag is continuous on K,
and that it is uniformly continuous on the subsets

{x ∈ K : ||x|| ≤ n and g(x) ≥ inf(g) + 1/n}
for each integer n ≥ 1.

Assume that

x ∈ K, ε > 0, and g(x) ≥ inf(g) + ε.(2.4)

There is an integer i ≥ 0 such that
g(x)− inf(g) ∈ ((i+ 1)−1, i−1](2.5)

(we assume that 0−1 =∞). Then
(g(x)− inf(g))−1 ∈ [i, i+ 1),(2.6)
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and, by (2.3), (2.2), and (2.6),

Agx = γ(g(x)− (inf(g))−1) = yi + ((g(x)− inf(g))−1 − i)(yi+1 − yi).

It follows from this relation, (2.1), (2.4), (2.5), and the convexity of g that

g(Agx) ≤ max{g(yi), g(yi+1)} ≤ inf(g) + (4(i+ 1))−1

≤ inf(g) + 4−1(g(x)− inf(g)) = g(x)− 3 · 4−1(g(x)− inf(g))

≤ g(x)− 3 · 4−1ε.

This completes the proof of Proposition 2.1.
Note that in [15] we constructed a mapping Ag satisfying B(ii). Here we con-

structed a mapping which possesses both properties B(i) and B(ii). This will allow
us to establish our results for the spaces Aau and Aauc.

3. Proof of Theorem 1. We first note the following simple lemma.
Lemma 3.1. Assume that V1, V2 ∈ A, φ : X → [0, 1], and that

V x = (1− φ(x))V1x+ φ(x)V2x, x ∈ X.

Then V ∈ A. If V1, V2 ∈ Ac and φ is continuous on X, then V ∈ Ac. If V1, V2 ∈ Au
(respectively, Aau, Aauc) and φ is uniformly continuous on bounded subsets of X,
then V ∈ Au (respectively, Aau, Aauc).

For each pair of integers m,n ≥ 1, denote by Ωmn the set of all V ∈ A such that

||V x|| ≤ m for all x ∈ X satisfying ||x|| ≤ n+ 1(3.1)

and

sup{l(V x) : x ∈ X, ||x|| ≤ n, f(x) ≥ inf(f) + 1/n, l ∈ ∂f(x)} = 0.(3.2)

Clearly,

∪∞m=1 ∪∞n=1 Ωmn = A \ F .(3.3)

Therefore, to prove Theorem 1 it is sufficient to show that for each pair of integers
m,n ≥ 1, the set Ωmn (respectively, Ωmn ∩ Ac, Ωmn ∩ Aau, Ωmn ∩ Aauc) is a porous
subset of A (respectively, Ac, Aau, Aauc) and, if f attains its minimum, then Ωmn∩Au
is a porous subset of Au.

By assumption A(i), there is a bounded convex set X0 ⊂ X with the following
property:

C(i) For each x ∈ X there is x0 ∈ X0 such that f(x0) ≤ f(x). If f attains its
minimum, then X0 is a singleton.

By Proposition 2.1, there is a continuous mapping Af : X → X such that

Af (X) ⊂ X0, f(Afx) ≤ f(x) for all x ∈ X(3.4)

and which has the following two properties:
C(ii) If x ∈ X, ε > 0, and f(x) ≥ inf(f) + ε, then f(Afx) ≤ f(x)− ε/2;
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C(iii) for any natural number n, the mapping Af is uniformly continuous on the
set

{x ∈ X : ||x|| ≤ n and f(x) ≥ inf(f) + 1/n}.
Let m,n ≥ 1 be integers. In what follows we will use the piecewise linear function

φ : R1 → R1 defined by

φ(x) = 1, x ∈ [−n, n], φ(x) = 0, |x| ≥ n+ 1(3.5)

and

φ(−n− 1 + t) = t, t ∈ [0, 1], φ(n+ t) = 1− t, t ∈ [0, 1].
By assumption A(ii), there is c0 > 1 such that

|f(x)− f(y)| ≤ c0||x− y||(3.6)

for all x, y ∈ X satisfying ||x||, ||y|| ≤ n+ 2. Choose α ∈ (0, 1) such that
αc02

n+2 < (2n)−12−1(1− α)(m+ n+ 2 + sup{||x|| : x ∈ X0})−1.(3.7)

Assume that V ∈ Ωmn and r ∈ (0, 1]. Let
γ = 2−1(1− α)r(m+ n+ 2 + sup{||x|| : x ∈ X0})−1(3.8)

and define Vγ : X → X by

Vγx = (1− γφ(||x||))V x+ γφ(||x||)(Afx− x), x ∈ X.(3.9)

By Lemma 3.1, Vγ ∈ A and, moreover, if V ∈ Ac (respectively, Aau, Aauc), then
Vγ ∈ Ac (respectively, Aau, Aauc) and, if V ∈ Au and f attains its minimum, then
Af is constant (see C(i)) and Vγ ∈ Au.

Next we estimate the distance ρ(Vγ , V ). It follows from (3.9) and the definition
of φ (see (3.5)) that Vγx = V x for all x ∈ X satisfying ||x|| ≥ n+ 1 and

ρi(Vγ , V ) = ρn+1(Vγ , V ) for all integers i ≥ n+ 1.

Since V ∈ Ωmn, the above equality, when combined with (1.2), (1.1), (3.9), (3.5), and
(3.4), yields

ρ(Vγ , V ) ≤
∞∑
i=1

2−iρi(V, Vγ) ≤ ρn+1(V, Vγ)(3.10)

= sup{||V x− Vγx|| : x ∈ X, ||x|| ≤ n+ 1}

≤ sup{γφ(||x||)(||V x||+ ||Afx− x||) : x ∈ X, ||x|| ≤ n+ 1}

≤ γ(m+ 1) + γ(n+ 1) + γ sup{||x|| : x ∈ X0}.
Assume that W ∈ A with

ρ(W,Vγ) ≤ αr.(3.11)
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By (3.11), (3.10), and (3.8),

ρ(W,V ) ≤ αr + γ(m+ n+ 2 + sup{||x|| : x ∈ X0}) ≤ 2−1(1 + α)r < r.(3.12)

Assume now that

x ∈ X, ||x|| ≤ n, f(x) ≥ inf(f) + 1/n, and l ∈ ∂f(x).(3.13)

The inequality (3.6) implies that

||l||∗ ≤ c0.

By (3.9), (3.13), the definition of φ (see (3.5)), and C(ii),

l(Vγx) = l((1− γφ(||x||))V x+ γφ(||x||)(Afx− x))(3.14)

≤ γφ(||x||)l(Afx− x) = γl(Afx− x) ≤ γ(f(Afx)− f(x)) ≤ −γ(2n)−1.

It follows from (3.13) and (1.1) that

||Wx− Vγx|| ≤ ρn(W,Vγ).(3.15)

By (3.11), (3.15), and the inequality ||l||∗ ≤ c0, we have

2−nρn(W,Vγ)(1 + ρn(W,Vγ))
−1 ≤ ρ(W,Vγ) ≤ αr,(3.16)

ρn(W,Vγ)(1 + ρn(W,Vγ))
−1 ≤ 2nαr,

ρn(W,Vγ)(1− 2nαr) ≤ 2nαr, ||Wx− Vγx|| ≤ 2nαr(1− 2nαr)−1,

and

|l(Wx)− l(Vγx)| ≤ c02
nαr(1− 2nαr)−1.(3.17)

By (3.17), (3.14), (3.8), and (3.7),

l(Wx) ≤ l(Vγx) + c02
nαr(1− 2nαr)−1

≤ −γ(2n)−1 + c02
nαr(1− 2nαr)−1 = c02

nαr(1− 2nαr)−1

−(2n)−12−1(1− α)r(m+ n+ 2 + sup{||x|| : x ∈ X0})−1

≤ −r[−c02nα · 2 + (2n)−12−1(1− α)(m+ n+ 2 + sup{||x|| : x ∈ X0})−1]

≤ −2rc02nα.
Thus

{W ∈ A : ρ(W,Vγ) ≤ αr} ∩ Ωmn = ∅.
In view of Remark 1.1 and (3.12), we can conclude that Ωmn is porous in A, Ωmn∩Ac
is porous in Ac, Ωmn ∩ Aau is porous in Aau, Ωmn ∩ Aauc is porous in Aauc, and if
f attains its minimum, then Ωmn ∩ Au is porous in Au. This completes the proof of
Theorem 1.
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4. Basic lemma. The following result is our key lemma. It improves upon [15,
Lemma 3.4] which is concerned only with condition 2 of the present lemma and with
regular mappings of a special type.

Lemma 4.1. Assume that V ∈ A is regular, A(i), A(ii) are valid, and that at
least one of the following conditions holds: 1. V ∈ Aau; 2. A(iii) is valid.

Let K̄ and ε̄ be positive. Then there exist a neighborhood U of V in A and positive
numbers ᾱ and γ such that for each W ∈ U , each x ∈ X satisfying

||x|| ≤ K̄, f(x) ≥ inf(f) + ε̄,(4.1)

and each β ∈ (0, ᾱ],
f(x)− f(x+ βWx) ≥ βγ.(4.2)

Proof. There exists K0 > K̄ + 1 such that

||V x|| ≤ K0 if x ∈ X and ||x|| ≤ K̄ + 2.(4.3)

By assumption A(ii), there exists a constant L0 > 4 such that

|f(x1)− f(x2)| ≤ L0||x1 − x2||(4.4)

for all x1, x2 ∈ X satisfying ||x1||, ||x2|| ≤ 2K0 + 4. Since V is regular, there exists a
positive number δ0 ∈ (0, 1) such that

ξ(V y) ≤ −δ0(4.5)

for each y ∈ X satisfying ||y|| ≤ K0 + 4, f(y) ≥ inf(f) + ε̄/4, and each ξ ∈ ∂f(y).
Choose δ1 ∈ (0, 1) such that

4δ1(K0 + L0) < δ0.(4.6)

There exists a positive number ᾱ such that the following conditions hold:

8ᾱ(L0 + 1)(K0 + 1) < min{1, ε̄};(4.7)

(a) if V ∈ Aau, then for each x1, x2 ∈ X satisfying

||x1||, ||x2|| ≤ K̄ + 4, min{f(x1), f(x2)} ≥ inf(f) + ε̄/4,(4.8)

and ||x1 − x2|| ≤ ᾱ(K0 + 1),

the following inequality is true:

||V x1 − V x2|| ≤ δ1;(4.9)

(b) if A(iii) is valid, then for each x1, x2 ∈ X satisfying (4.8) the following
inequality is true:

H(∂f(x1), ∂f(x2)) < δ1.(4.10)

Next choose a positive number δ2 such that

8δ2(L0 + 1) < δ1δ0.(4.11)
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Now choose a positive number γ such that

γ < δ0/8(4.12)

and define

U = {W ∈ A : ||Wx− V x|| ≤ δ2, x ∈ X, and ||x|| ≤ K̄}.(4.13)

Assume that W ∈ U , x ∈ X satisfies (4.1), and β ∈ (0, ᾱ]. We intend to show
that (4.2) holds. To this end, we first note that (4.1), (4.3), (4.7), (4.13), and (4.11)
yield

||x+ βV x|| ≤ K̄ + βK0 ≤ K̄ + ᾱK0 ≤ K̄ + 1

and

||x+ βWx|| ≤ δ2β + ||x+ βV x|| ≤ K̄ + 1 + ᾱδ2 ≤ K̄ + 2.

By these inequalities and the definition of L0 (see (4.4)) and (4.13),

|f(x+ βV x)− f(x+ βWx)| ≤ L0β||Wx− V x|| ≤ L0βδ2.(4.14)

Next we will estimate f(x)− f(x+ βV x). There exist θ ∈ [0, β] and l ∈ ∂f(x+ θV x)
such that

f(x+ βV x)− f(x) = l(V x)β.(4.15)

By (4.1), (4.3), and (4.7),

||x|| ≤ K̄, ||V x|| ≤ K0, ||θV x|| ≤ ᾱK0, and ||x+ θV x|| ≤ K̄ + 1.(4.16)

It follows from (4.16) and the definition of L0 (see (4.4)) that

||l||∗ ≤ L0.(4.17)

It follows from (4.16), the definition of L0 (see (4.4)), (4.7), and (4.1) that

f(x+ θV x) ≥ f(x)− L0||θV x||(4.18)

≥ f(x)− L0ᾱK0 ≥ f(x)− 8−1ε̄ ≥ inf(f) + ε̄/2.

Consider the case where V ∈ Aau. By (4.17), condition (a), (4.16), (4.1), and (4.18),
βl(V x) ≤ βl(V (x+ θV x)) + β||l||∗(||V (x+ θV x)− V x||)(4.19)

≤ βl(V (x+ θV x)) + βL0||V (x+ θV x)− V x||

≤ βl(V (x+ θV x)) + βL0δ1.

By (4.16), (4.18), and the definition of δ0 (see (4.5)),

l(V (x+ θV x)) ≤ −δ0.
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Combined with (4.19) and (4.6) this inequality implies that

βl(V x) ≤ −βδ0 + βL0δ1 ≤ −βδ0/2.
By these inequalities and (4.15),

f(x+ βV x)− f(x) ≤ −βδ0/2.(4.20)

Assume now that A(iii) is valid. It then follows from condition (b), (4.16), (4.1),
and (4.18) that

H(∂f(x), ∂f(x+ θV x)) < δ1.

Therefore, there exists l̄ ∈ ∂f(x) such that ||l̄ − l||∗ ≤ δ1. Combined with (4.15) and
(4.16) this fact implies that

f(x+ βV x)− f(x) = βl(V x) ≤ βl̄(V x)(4.21)

+ β||l̄ − l||∗||V x|| ≤ βl̄(V x) + βδ1K0.

It follows from the definition of δ0 (see (4.5)) and (4.1) that βl̄(V x) ≤ −βδ0. Com-
bining this inequality with (4.21) and (4.6), we see that

f(x+ βV x)− f(x) ≤ −βδ0 + βδ1K0 ≤ −βδ0/2.
Thus in both cases (4.20) is true. It now follows from (4.20), (4.14), (4.11), and (4.12)
that

f(x+ βWx)− f(x) ≤ f(x+ βV x)− f(x) + f(x+ βWx)− f(x+ βV x)

≤ −βδ0/2 + L0βδ2 ≤ −βδ0/4 ≤ −γβ.
Thus (4.2) holds. Lemma 4.1 is proved.

5. Proofs of Theorems 2 and 3. Parts of the following proofs are somewhat
similar to parts of the proofs of [15, Theorems 1.1 and 1.2]. However, in the present
paper we strongly rely on the new lemma, Lemma 4.1.

Proof of Theorem 2. To show that assertion (i) holds, suppose that

{xi}∞i=0 ⊂ X, xi+1 ∈ PWxi, i = 0, 1, . . . , and lim inf
i→∞

||xi|| <∞.(5.1)

We will show that

lim
i→∞

f(xi) = inf(f).(5.2)

Assume the contrary. Then there exists ε > 0 such that

f(xi) ≥ inf(f) + ε, i = 0, 1, . . . .(5.3)

There exists a number S > 0 and a strictly increasing sequence of natural numbers
{ik}∞k=1 such that

||xik || ≤ S, k = 1, 2, . . . .(5.4)
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By Lemma 4.1, there exist numbers α, γ ∈ (0, 1) such that for each x ∈ X satisfying

||x|| ≤ S, f(x) ≥ inf(f) + ε,(5.5)

and each β ∈ (0, α],
f(x)− f(x+ βWx) ≥ γβ.(5.6)

It follows from (5.1), (1.4), (1.5), the definitions of α and γ, (5.4), and (5.3) that for
each integer k ≥ 1,

f(xik)− f(xik+1) ≥ f(xik)− f(xik + αWxik) ≥ γα.

Since this inequality holds for all integers k ≥ 1, we conclude that
lim
n→∞(f(x0)− f(xn)) =∞.

This contradicts our assumption that f is bounded from below. Therefore, (5.2) and
assertion (i) are indeed true, as claimed.

We turn now to assertion (ii). Let a = {ai}∞i=0 ⊂ (0, 1] satisfy (1.6) and let a
bounded {xi}∞i=0 ⊂ X satisfy (1.7) for all integers i ≥ 0. We will show that (5.2)
holds. Indeed, assume that (5.2) is not true. Then there exists ε > 0 such that (5.3)
holds. Since the sequence {xi}∞1=0 is bounded, there exists a number S > 0 such that

S > ||xi||, i = 0, 1, . . . .(5.7)

By Lemma 4.1, there exist numbers α, γ ∈ (0, 1) such that for each x ∈ X satisfying
(5.5) and each β ∈ (0, α], the inequality (5.6) holds. Since ai → 0 as i → ∞, there
exists a natural number i0 such that

ai < α for all integers i ≥ i0.(5.8)

Let i ≥ i0 be an integer. Then it follows from (5.7), (5.3), the definitions of α
and γ, and (5.8) that

f(xi)− f(xi + aiWxi) ≥ γai, xi+1 = xi + aiWxi,

and

f(xi)− f(xi+1) ≥ γai.

Since
∑∞
i=0 ai =∞, we conclude that

lim
n→∞(f(x0)− f(xn)) =∞.

The contradiction we have reached shows that (5.2), assertion (ii), and Theorem 2
are all true.

Proof of Theorem 3. Let

K0 > sup{f(x) : x ∈ X, ||x|| ≤ K + 1}(5.9)

and set

E0 = {x ∈ X : f(x) ≤ K0 + 1}.(5.10)
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Clearly, E0 is bounded and closed. Choose

K1 > sup{||x|| : x ∈ E0}+ 1 +K.(5.11)

By Lemma 4.1, there exist a neighborhood U of V in A and numbers α, γ ∈ (0, 1)
such that for each W ∈ U , each x ∈ X satisfying

||x|| ≤ K1, f(x) ≥ inf(f) + ε,(5.12)

and each β ∈ (0, α],

f(x)− f(x+ βWx) ≥ γβ.(5.13)

Now choose a natural number N0 which satisfies

N0 > (αγ)−1(K0 + 4 + | inf(f)|).(5.14)

First we will show that assertion (i) is true. Assume that W ∈ U , {xi}N0
i=0 ⊂ X,

||x0|| ≤ K, and xi+1 ∈ PWxi, i = 0, . . . , N0 − 1.(5.15)

Our aim is to show that

f(xN0) ≤ inf(f) + ε.(5.16)

Assume that (5.16) is not true. Then

f(xi) > inf(f) + ε, i = 0, . . . , N0.(5.17)

By (5.15) and (5.9)–(5.11) we also have

||xi|| ≤ K1, i = 0, . . . , N0.(5.18)

Let i ∈ {0, . . . , N0−1}. It follows from (5.18), (5.17), and the definitions of U , α, and
γ (see (5.12) and (5.13)) that

f(xi)− f(xi+1) ≥ f(xi)− f(xi + αWxi) ≥ γα.

Summing up from i = 0 to N0 − 1 we conclude that

f(x0)− f(xN0) ≥ N0γα.

It follows from this inequality, (5.9), (5.14), and (5.15) that

inf(f) ≤ f(xN0
) ≤ f(x0)−N0γα ≤ K0 −N0γα ≤ −4− | inf(f)|.

Since we have reached a contradiction, we see that (5.16) must be true and assertion
(i) is proved.

Now we will show that assertion (ii) is also valid. To this end, let a sequence
a = {ai}∞i=0 ⊂ (0, 1] satisfy

lim
i→∞

ai = 0 and

∞∑
i=0

ai =∞.(5.19)
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Clearly, there exists a natural number N1 such that

ai ≤ α for all i ≥ N1.(5.20)

Choose a natural number N > N1 + 4 such that

γ
N−1∑
i=N1

ai > K0 + 4 + | inf(f)|.(5.21)

Now assume that W ∈ U , {xi}Ni=0 ⊂ X, ||x0|| ≤ K, and that (1.7) holds for all
i = 0, . . . , N − 1. We will show that

f(xN ) ≤ inf(f) + ε.(5.22)

Assume the contrary. Then

f(xi) > inf(f) + ε, i = 0, . . . , N.(5.23)

Since ||x0|| ≤ K, we see by (1.7) and (5.9)–(5.11) that

||xi|| ≤ K1, i = 0, . . . , N.(5.24)

Let i ∈ {N1, . . . , N − 1}. It follows from (5.24), (5.23), (5.20), and the definitions of
α and γ (see (5.12) and (5.13)) that

f(xi)− f(xi + aiWxi) ≥ γai.

This implies that

f(xN1)− f(xN ) ≥ γ

N−1∑
i=N1

ai.

By this inequality, (1.7), the inequality ||x0|| ≤ K, (5.9), and (5.21), we obtain

inf(f) ≤ f(xN ) ≤ f(xN1)− γ

N−1∑
i=N1

ai

≤ K0 − γ

N−1∑
i=N1

ai < −4− | inf(f)|.

The contradiction we have reached proves (5.22) and assertion (ii). This completes
the proof of Theorem 3.
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Abstract. We describe FATCOP, a new parallel mixed integer program solver written in PVM.
The implementation uses the Condor resource management system to provide a virtual machine
composed of otherwise idle computers. The solver differs from previous parallel branch-and-bound
codes by implementing a general purpose parallel mixed integer programming algorithm in an op-
portunistic multiple processor environment, as opposed to a conventional dedicated environment. It
shows how to make effective use of resources as they become available while ensuring the program
tolerates resource retreat. The solver performs well on test problems arising from real applications
and is particularly useful for solving long running hard mixed integer programming problems.
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1. Introduction. Mixed integer programming (MIP) problems are difficult and
commonplace. For many of these hard problems, only small instances can be solved
in a reasonable amount of time on sequential computers, resulting in mixed integer
programming being a frequently cited application of parallel computing. Most avail-
able general-purpose large-scale MIP codes use branch-and-bound to search for an
optimal integer solution by solving a sequence of related linear programming (LP)
relaxations that allow possible fractional values. This paper discusses a new par-
allel mixed integer program solver, written in PVM, that runs in the opportunistic
computing environment provided by the Condor resource management system.

Parallel branch-and-bound algorithms for MIP have attracted many researchers
(see [11, 15, 24] and references therein). Most parallel branch-and-bound programs
were developed for large centralized mainframes or supercomputers that are typically
very expensive. Users of these facilities usually have only a certain amount of time
allotted to them and have to wait their turn to run their jobs. Due to the decreasing
cost of lower-end workstations, large heterogeneous clusters of workstations connected
through fast local networks are becoming common in workplaces such as universities
and research institutions. In this paper we shall refer to the former resources as
dedicated resources and the latter as distributed ownership resources. The princi-
pal goal of the research outlined in this paper is to exploit distributed ownership
resources to solve extremely difficult mathematical programming problems. We be-
lieve that environments of this type are important for the future of certain numerical
computations, including computations for discrete optimization problems. In fact,
during the time that this paper was under review, several other authors had adapted
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the scheme first outlined in this work for other branch-and-bound applications, most
notably in [1, 16, 27].

A parallel virtual machine (PVM) is a programming environment that allows a
heterogeneous network of computers to appear as a single concurrent computational
resource [14]. It provides a unified framework within which parallel programs for a het-
erogeneous collection of machines can be developed in an efficient manner. However,
PVM is not sufficient to develop an efficient parallel branch-and-bound program in a
distributed ownership environment. The machines in such an environment are usually
dedicated to the exclusive use of individuals. The application programming interface
defined by PVM requires that users explicitly select machines on which to run their
programs. Therefore, they must have permission to access the selected machines and
cannot be expected to know the load on the machines in advance. Furthermore, when
a machine is claimed by a PVM program, the required resources in the machine will
be “occupied” during the life cycle of the program. This is not a desirable situation
when the machine is owned by a person different from the user of the MIP solver.

Condor [12, 20] is a distributed resource management system that can help to
overcome these problems. Condor manages large heterogeneous clusters of machines
in an attempt to use the idle cycles of some users’ machines to satisfy the needs
of others who have computing intensive jobs. It was first developed for long run-
ning sequential batch jobs. The current version of Condor provides a framework
(Condor-PVM) to run parallel programs written in PVM in a distributed ownership
environment. In such programs, Condor is used to dynamically construct a PVM out
of nondedicated desktop machines on the network. Condor allows users’ programs to
run on any machine in the pool of machines managed by Condor, regardless of whether
or not the user submitting the job has an account there, and guarantees that heavily
loaded machines will not be selected for an application. To protect ownership rights,
whenever a machine’s owner returns, Condor immediately interrupts any job that is
running on that machine, migrating the job to another idle machine. Since owners
and many other Condor users compete for resources managed by Condor we refer
to such resources as Condor’s opportunistic resources and the Condor-PVM parallel
programming environment as the Condor-PVM opportunistic environment.

FATCOP represents a first attempt to develop a general purpose parallel solver
for mixed integer programs in Condor’s opportunistic environment. It is hoped that
many of the lessons learned in developing FATCOP can be incorporated into more
general branch-and-bound codes for other applications. FATCOP is implemented on
top of both SOPLEX, a public available simplex object-oriented linear programming
solver [28], and the CPLEX LP solver [9]. FATCOP is written in the C++ pro-
gramming language with calls to the PVM library. It is designed to make best use
of participating resources managed by Condor while handling resource retreat care-
fully in order to ensure the eventual and correct completion of a FATCOP job. Key
features of FATCOP include

• parallel implementation under Condor-PVM framework;
• greedy utilization of Condor’s opportunistic resources;
• powerful MIP techniques including strong branching, pseudocost estimation

searching, preprocessing, and cutting plane generation;
• the ability to process both MPS [21] and GAMS [7] models;
• the use of both CPLEX and SOPLEX as its LP solver.

The remainder of this paper is organized as follows. Section 2 is a review of the
standard MIP algorithm components of FATCOP that are implemented to ensure
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that the branch-and-bound algorithm generates reasonable search trees. Section 3
introduces a Condor-PVM parallel programming framework and the parallel imple-
mentation of FATCOP. In section 4, we present some numerical results that exhibit
important features of FATCOP. A brief summary and future directions are given in
section 5.

2. Components of the sequential program. An MIP can be stated mathe-
matically as follows:

min cTx
s.t. Ax ≤ b,

l ≤ x ≤ u,
xj ∈ Z ∀j ∈ I.

Here Z denotes the integers, A is an m × n matrix, and I is a subset of the indices
identifying the integer variables.

Integer programming textbooks such as [22] describe the fundamental branch-
and-bound algorithm for the above MIP problem. Basically, the method explores a
binary tree of subproblems. Branching refers to the process of creating refinements
of the current relaxation, while bounding of the LP solution is used to eliminate
exploration of parts of the tree. The remainder of this section describes refinements
to this basic framework.

2.1. Preprocessing. Preprocessing refers to a set of reformulations performed
on a problem instance. In LP this typically leads to problem size reductions. FATCOP
identifies infeasibilities and redundancies, tightens bounds on variables, and improves
the coefficients of constraints [25]. At the root node, FATCOP analyzes every row of
the constraint matrix. If, after processing, some variables are fixed or some bounds
are improved, the process is repeated until no further model reduction occurs.

In contrast to LP, preprocessing may reduce the integrality gap, i.e., the difference
between the optimal solution value and its LP relaxation as well as the size of an MIP
problem. For example, for the model p0548 from MIPLIB [5], an electronically avail-
able library of both pure and mixed integer programs arising from real applications,
the FATCOP preprocessor can remove only 12 rows and 16 columns and modify 176
coefficients from the original model that has 176 rows, 548 columns, and 1711 nonzero
coefficients, but pushes the optimal value of the initial LP relaxation from 315.29 up
to 3125.92.

2.2. Cutting planes and reduced cost fixing. It is well known that cutting
planes can strengthen MIP formulations [4]. FATCOP generates knapsack cuts at
each subproblem as described in [18]. There are about 10 models in MIPLIB for
which knapsack cuts are useful. We again take p0548 as an example; the FATCOP
code can solve the model in 350 nodes with knapsack cuts applied at each node.
However, it is not able to solve the problem to optimality in 100,000 nodes without
knapsack cuts.

FATCOP also incorporates a standard reduced cost fixing procedure [11] that fixes
integer variables to their upper or lower bounds by comparing their reduced costs to
the gap between a linear programming solution value and the current problem best
upper bound.

2.3. Variable and node selection. Several reasonable criteria exist for select-
ing branching variables. FATCOP currently provides four variable selection options:
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pseudocost [19], strong branching [6], and maximum and minimum integer infeasibil-
ity [2]. Since the pseudocost method is widely used and known to be efficient, we set
it as the default branching strategy. FATCOP can also accept user defined priorities
on integer variables.

FATCOP provides five options for selecting a node from those remaining: depth-
first, best-bound, best-estimation [2], a mixed strategy of depth-first and best-bound
[11] (mixed strategy 1), and a mixed strategy of best-estimation and best-bound
(mixed strategy 2).

Mixed strategy 1 expands the subproblems in the best-first order, but with an
initial depth-first phase. FATCOP keeps track of the number of node evaluations
over which the best integer solution has not been updated. It then switches searching
strategy from depth-first to best-first after this number exceeds a prespecified fixed
number. Mixed strategy 2 is similar to mixed strategy 1, but starts the algorithm
with best-estimation search first. Since best-estimation often finds better solutions
than depth-first does, mixed strategy 2 is set as the default searching strategy for
FATCOP.

3. Condor-PVM parallel implementation of FATCOP. In this section we
first give a brief overview of Condor, PVM, and the Condor-PVM parallel program-
ming environment. Then we discuss the parallel scheme we selected for FATCOP and
the differences between normal PVM and Condor-PVM programming. At the end of
the section, we present a detailed implementation of FATCOP.

3.1. The Condor-PVM parallel programming environment. Heteroge-
neous clusters of workstations are becoming an important source of computing re-
sources. Two approaches have been proposed to make effective use of such resources.
One approach provides efficient resource management by allowing users to run their
jobs on idle machines that belong to somebody else. Condor, developed at the Uni-
versity of Wisconsin-Madison, is one such system. It monitors the activity on all
participating machines, placing idle machines in the Condor pool. Machines are then
allocated from the pool when users send job requests to Condor. Machines enter the
pool when they become idle, and leave when they get busy, e.g., the machine owner
returns. When an executing machine becomes busy, the job running on this machine
is initially suspended in case the executing machine becomes idle again within a short
timeout period. If the executing machine remains busy, then the job is migrated to
another idle workstation in the pool or returned to the job queue. For a job to be
restarted after migration to another machine, a checkpoint file is generated that al-
lows the exact state of the process to be re-created. This design feature ensures the
eventual completion of a job. There are various priority orderings used by Condor for
determining which jobs and machines are matched at any given instance. Based on
these orderings, running jobs may sometimes be preempted to allow higher priority
jobs to run. Condor is freely available and has been used in a wide range of production
environments for more than ten years.

Another approach to exploit the power of a workstation cluster is from the per-
spective of parallel programming. Research in this area has developed message passing
environments allowing people to solve a single problem in parallel using multiple re-
sources. One of the most widely used message passing environments is PVM, which
was developed at the Oak Ridge National Laboratory. PVM’s design centers around
the idea of a virtual machine, a very general notion that can encompass a nearly
arbitrary collection of computing resources, from desktop workstations to multipro-
cessors to massively parallel homogeneous supercomputers. The goal of PVM is to
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Fig. 3.1. Architecture of Condor-PVM.

make programming straightforward for a heterogeneous collection of machines. PVM
provides process control and resource management functions that allow spawning and
termination of arbitrary processes and the addition and deletion of hosts at run time.
The PVM system is composed of two parts. The first part is a daemon that resides
on all the computers comprising the virtual machine. The second part of the system
is the PVM library. It contains user-callable routines for message passing, process
spawning, virtual machine modification, and task coordination. PVM transparently
handles all message routing, data conversion, and task scheduling across a network of
incompatible computer architectures. A similar environment is the message-passing
interface (MPI) [17]. Both systems center around a message-passing model, providing
point-to-point as well as collective communication between distributed processes.

The development of resource management systems and message-passing environ-
ments have been independent of each other for many years. Researchers at the Uni-
versity of Wisconsin have recently developed a parallel programming framework that
interfaces Condor and PVM [23]. The reason to select PVM instead of MPI is that the
implementation of MPI has no concept of process control, and hence cannot handle
resource addition and retreat in an opportunistic environment. Figure 3.1 shows the
architecture of Condor-PVM. There are three processes on each machine running a
Condor-PVM application: the PVM daemon, the Condor process, and the user ap-
plication process. The Condor-PVM framework still relies on the PVM primitives for
application communication, but provides resource management in the opportunistic
environment through Condor. Each PVM daemon has a Condor process associated
with it, acting as the resource manager. The Condor process interacts with the PVM
daemon to start tasks, send signals to suspend, resume and kill tasks, and receive
process completion information. The Condor process running on the master machine
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is special. It communicates with Condor processes running on the other machines,
keeps information about the status of the machines, and forwards resource requests
to the Condor central manager. This Condor process is called the global resource
manager. When a Condor-PVM application asks for a host (we will use host and
machine interchangeably in what follows), the global resource manager communicates
with the Condor central manager to schedule a new machine. After Condor grants
a machine to the application, it starts a Condor process (resource manager) and a
PVM daemon on the new machine. If a machine needs to leave the pool, the resource
manager will send signals to the PVM daemon to suspend tasks. The master user
application is notified of that via normal PVM notification mechanisms.

Compared with a conventional dedicated environment, the Condor-PVM oppor-
tunistic environment has the following characteristics:

1. There is usually a large amount of heterogeneous resources available for an
application, but in each time instance, the amount of available resources is
random, dependent on the status of machines managed by Condor. Owners
and other Condor users compete for the resources.

2. Resources used by an application may disappear during the life cycle of the
application.

3. The execution order of components in a particular application is highly non-
deterministic, leading to different solution and execution times.

Therefore a good Condor-PVM application should be tolerant to loss of resources
(host suspension and deletion) and dynamically adaptive to the current status of the
Condor pool in order to make effective use of opportunistic resources.

3.2. The parallel scheme for FATCOP. FATCOP introduces parallelism
when building the branch-and-bound tree. It simultaneously performs bounding op-
erations on several subproblems. This approach may affect the order of subproblems
generated during the expansion of the branch-and-bound tree. Hence more or less
subproblems could be evaluated by the parallel program than with its sequential ver-
sion. Such phenomena are known as search anomalies and examples are given in
section 4.

FATCOP was designed in the master-worker paradigm. One host, called the mas-
ter, manages the work pool and sends subproblems out to other hosts, called workers,
that solve LPs and send the results back to the master. When using a large number
of workers, this centralized parallel scheme can become a bottleneck in processing the
returned information, thus keeping workers idle for large amounts of time. However,
this scheme can handle different kinds of resource failure well in Condor’s opportunis-
tic environment and thus achieve the best degree of fault tolerance. The basic idea is
that the master keeps track of which subproblem has been sent to each worker and
does not actually remove the subproblem from the work pool. All the subproblems
that are sent out are marked as “in progress by worker i.” If the master is then
informed that a worker has disappeared, it simply unmarks the subproblems assigned
to that worker.

The remaining design issue is how to use the opportunistic resources provided by
Condor to adapt to changes in the number of available resources. The changes include
newly available machines, machine suspension and resumption, and machine failure.
In a conventional dedicated environment, a parallel application usually is developed
for running with a fixed number of processors and the solution process will not be
started until the required number of processors is obtained and initialized. In Condor’s
opportunistic environment, doing so may cause a serious delay. In fact the time to
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obtain the required number of new hosts from the Condor pool can be unbounded.
Therefore we implement FATCOP in such a way that the solution process starts as
soon as it obtains a single host. The solver then attempts to acquire new hosts as often
as possible. At the beginning of the program, FATCOP places a number of requests
for new hosts from Condor. Whenever it gets a host, it then allocates work to this host
and immediately requests a new host. Thus, in each period between when Condor
assigns a machine to FATCOP and when the new host request is received by Condor,
there is at least one “new host” request from FATCOP waiting to be processed by
Condor. This greedy implementation makes it possible for a FATCOP job to collect
a significant amount of hosts during its life cycle.

3.3. Differences between PVM and Condor-PVM programming. PVM
and Condor-PVM are binary compatible with each other. However, there exist some
run time differences between PVM and Condor-PVM. The most important difference
is the concept of machine class. In a regular PVM application, the configuration
of hosts that PVM combines into a virtual machine usually is defined in a file in
which host names have to be explicitly given. Under the Condor-PVM framework,
Condor selects the machines on which a job will run, so the dependency on host
names must be removed from an application. Instead, the applications must use
class names. Machines of different architecture attributes belong to different machine
classes. Machine classes are numbered 0, 1, etc., and hosts are specified through
machine classes. A machine class is specified in the submit-description file submitted
to Condor that specifies the program name, input file name, requirement on machines’
architecture, operating system and memory, etc.

Another difference is that Condor-PVM has “host suspend” and “host resume”
notifications in addition to the “host add,” “host deletion,” and “task exit” notifica-
tions of PVM. When Condor detects activity of a workstation owner, it suspends all
Condor processes running there rather than killing them immediately. If the owner re-
mains for less than a prespecified cutoff time, the suspended processes will resume. To
help an application to deal with this situation, Condor-PVM makes some extensions
to PVM’s notification mechanism.

The last difference is that adding a host is nonblocking in Condor-PVM. When a
Condor-PVM application requests that a new host be added to the virtual machine,
the request is sent to Condor. Condor then attempts to schedule one from the pool of
idle machines. This process can take a significant amount of time if, for example, there
are no machines available in Condor’s pool. Therefore, Condor-PVM handles requests
for new hosts asynchronously. The application can start other work immediately after
it sends out a request for a new host. It then uses the PVM notification mechanism
to detect when the “host add” request was satisfied. This feature allows our greedy
host request scheme to work well in practice.

Documentation and examples about these differences can be found online at
http://www.cs.wisc.edu/condor/. FATCOP was first developed as a PVM applica-
tion, and modified to exploit Condor-PVM.

3.4. The parallel implementation of FATCOP. FATCOP consists of two
separate programs: the master program and the worker program. The master program
runs on the machine from which the job was submitted to Condor. This machine is
supposed to be stable for the life of the run, so it is generally the machine owned by
the user. The design of FATCOP makes the program tolerant to any type of failure for
workers, but if the machine running the master program crashes due to either system
reboot or power outage, the program will be terminated. To make FATCOP tolerant
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Fig. 3.2. Interactions among Condor, FATCOP, and GAMS.

even of these failures, the master program writes information about subproblems in
the work pool periodically to a log file on the disk. Each time a FATCOP job is started
by Condor, it reads in the MIP problem as well as the log file that stores subproblem
information. If the log file does not exist, the job starts from the root of the search
tree. Otherwise, it is warm started from some point in the search process. The work
pool maintained by the master program has copies for all the subproblems that were
sent to the workers, so the master program is able to write complete information
about the branch-and-bound process to the log file.

The worker program runs on the machines selected by Condor. The number of
running worker programs changes over time during the execution of a FATCOP job.

3.4.1. The master program. FATCOP can take both MPS format and general
algebraic modeling system (GAMS) models as input. The interactions among Condor,
FATCOP, and GAMS are as follows. A user starts to solve a GAMS model in the usual
way from the command line. After GAMS reads in the model, it generates an input
file containing a description of the MIP model to be solved. Control is then passed to
a PERL script. The script generates a Condor job description file and submits the job
to Condor. After submitting the job, the script reads a log file periodically until the
submitted job is finished. The log file is generated by Condor and records the status
of the finished and executing jobs. After completion, control is returned to GAMS,
which then reports the solution to the user. This process is depicted in Figure 3.2.
The process is similar for MPS file input.

The MIP model is stored globally as LP and integrality constraints. The master
program first solves the LP relaxation. If it is infeasible or the solution satisfies the
integrality constraints, the master program stops. Otherwise, it starts a sequential
MIP solve process until there are N solved LP subproblems in the work pool. N
is a predefined number that has a default value and can be modified by users. This
process is based on the observation that using parallelism as soon as a few subproblems
become available may not be a good policy, since doing so may expand more nodes
compared to a sequential algorithm. Associated with each subproblem in the work
pool is the LP relaxation solution and value, modified bound information for the
integer variables, pseudocosts used for searching, and an optimal basis that is used
for warm starting the simplex method. The subproblems in the work pool are multi-
indexed by bound, best-estimation, and the order in which they entered the pool.
The indices correspond to different searching rules: best-first, best-estimation, and
depth-first.
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Fig. 3.3. Message passing inside FATCOP.

Following the initial subproblem generation stage, the master program sends out
a number of requests for new hosts. It then sits in a loop that repeatedly does message
receiving. The master accepts several types of messages from workers. The messages
passing within FATCOP are depicted in Figure 3.3 and are explained further below.
After all workers have sent solutions back and the work pool becomes empty, the
master program kills all workers and exits itself.

Host add message: After the master is notified of getting a new host, it spawns a
child process on that host and sends an LP copy as well as a subproblem to the new
child process. The subproblem is marked in the work pool, but not actually removed
from it. Thus the master is capable of recovering from several types of failures. For
example, the spawn may fail. Recall that Condor takes the responsibility to find an
idle machine and starts a PVM daemon on it. During the time between when the
PVM daemon was started and the message is received by the master program, the
owner of the selected machine can reclaim it. If a “host add” message was queued
waiting for the master program to process other messages, a failure for spawn becomes
more likely.

The master program then sends out another request for a new host if the number
of remaining subproblems is at least twice as many as the number of workers. The
reason for not always asking for a new host is that the overhead associated with
spawning processes and initializing new workers is significant. Spawning a new process
is not handled asynchronously by Condor-PVM. While a spawn request is processed,
the master is blocked. The time to spawn a new process usually takes several seconds.
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Therefore if the number of subproblems in the work pool drops to a point close to
the number of workers, the master will not ask for more hosts. This implementation
guarantees that only the top 50% “promising” subproblems considered by the program
can be selected for evaluation. Furthermore, when the branch-and-bound algorithm
eventually converges, this implementation prevents the program from asking for excess
hosts. However, the program must be careful to ensure that when the ratio of the
number of remaining subproblems to the number of hosts becomes bigger than 2, the
master restarts requesting hosts.

Solution message: If a received message contains a solution returned by a worker,
the master will permanently remove the corresponding subproblem from the work
pool that was marked before. It then updates the work pool using the received LP
solutions. After that, the master selects one subproblem from the work pool and sends
it to the worker that sent the solution message. The subproblem is marked and stays
in the work pool for failure recovery. Some worker idle time is generated here, but
the above policy typically sends subproblems to workers that exploit the previously
generated solution.

Host suspend message: This type of message informs the master that a particular
machine has been reclaimed by its owner. If the owner leaves within 10 minutes, the
Condor processes running on this machine will resume. We have two choices to deal
with this situation. The master program can choose to wait for the solutions from this
host or send the subproblem currently being computed in this host to another worker.
Choosing to wait may save the overhead involved in solving the subproblem. However,
the waiting time can be as long as 10 minutes. If the execution time of a FATCOP
job is not significantly longer than 10 minutes, waiting for a suspended worker may
cause a serious delay for the program. Furthermore, the subproblems selected from
the work pool are usually considered “promising.” They should be exploited as soon
as possible. Therefore, if a “host suspend” message is received, we choose to recover
the corresponding subproblems in the work pool right away. This problem then has a
chance to be quickly sent to another worker. If the suspended worker resumes later,
the master program has to reject the solutions sent by it so that each subproblem is
considered exactly once.

Host resume message: After a host resumes, the master sends a new subproblem
to it. Note that the master should reject the first solution message from that worker.
The resumed worker picks up in the middle of the LP solve process that was frozen
when the host was suspended. After the worker finishes solving the LPs, it sends the
solutions back to the master. Since the associated subproblem had been recovered
when the host was suspended, these solutions are redundant and hence should be
ignored by the master.

Host delete/task exit message: If the master is informed that a host is removed
from the PVM or a process running on a host is killed, it recovers the corresponding
subproblem from the work pool and makes it available to other workers.

3.4.2. Worker program. The worker program first receives an LP model from
the master, then sits in an infinite loop to receive messages from the master. The
messages from the master consist of the modified bound information about the sub-
problem P , the optimal basis to speed up the bounding operation, and the branching
variable that is used to define the “up” and “down” children P+ and P−. The worker
performs two bounding operations on P+ and P− and sends the results back to the
master. The worker program is not responsible for exiting its PVM daemon. It will
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Fig. 4.1. Resource utilization for one run of FATCOP.

be killed by the master after the stopping criteria are met.

4. Computational experience. A major design goal of FATCOP is fault toler-
ance, that is, solving MIP problems correctly using opportunistic resources. Another
design goal is to make FATCOP adaptive to changes in available resources provided
by Condor in order to achieve maximum possible parallelism. Therefore the principal
measures we use when evaluating FATCOP are correctness of solutions, and adapt-
ability to changes in resources. Execution time is another important performance
measure, but it is affected by many random factors and heavily dependent on the
availability of Condor’s resources. For example, a FATCOP job that can be finished
in 1 hour at night may take 2 hours to finish during the day because of the high
competition for the resources. We first show how FATCOP uses as many resources as
it is able to capture, then show how reliable it is to failures in its environment, and
conclude this section with numerical results on a variety of test problems from the
literature.

4.1. Resource utilization. In Wisconsin’s Condor pool there are more than
100 machines in our desired architecture class. Such a large amount of resources
makes it possible to solve MIP problems with fairly large search trees. However, the
available resources provided by Condor change as the status of participating machines
changes. Figure 4.1 demonstrates how FATCOP is able to adapt to Condor’s dynamic
environment. We submitted a FATCOP job in the early morning. Each time a
machine was added or suspended, the program asked Condor for the number of idle
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Fig. 4.2. Daily log for a FATCOP job.

machines in our desired machine class. We plot the number of machines used by the
FATCOP job and the number of machines available to the job in Figure 4.1. In the
figure, time goes along the horizontal axis, and the number of machines is on the
vertical axis. The solid line is the number of working machines and the dotted line is
the number of available machines that includes idle machines and working machines
used by our FATCOP job. At the start, there were some idle machines in the Condor
pool. The job quickly harnessed about 20 machines and eventually collected more
than 40 machines with a speed of roughly one new resource every minute. At 8 a.m.
it became difficult to acquire new machines and machines were steadily lost during
the next four hours. There were some newly available resources at 8:30 and 10:00
(see the peaks of the dotted lines), but they became unavailable again quickly, either
reclaimed by owners or scheduled to other Condor users with higher priority. At noon,
another group of machines became available and stayed idle for a relatively long time.
The FATCOP job acquired some of these additional machines during that time. In
general, the number of idle machines in the Condor pool had been kept at a very
low level during the life cycle of the FATCOP job except during the start-up phase.
When the number of idle machines stayed high for some time, FATCOP was able to
quickly increase the size of its virtual machine. We believe these observations exhibit
that FATCOP can utilize opportunistic resources very well.

We show a FATCOP daily log in Figure 4.2. The darkly shaded area in the fore-
ground is the number of machines used and the lightly shaded area is the number of
outstanding resource requests to Condor from this FATCOP job. During the entire
day, the number of outstanding requests was always about 10, so Condor would con-
sider assigning machines to the job whenever there were idle machines in Condor’s
pool. At night, this job was able to use up to 85 machines (the horizontal line rep-
resents 75 machines, and the vertical line in the figure represents midnight). Note
that the Computer Sciences Department at the University of Wisconsin reboots all
instructional machines at 3 a.m. every day. This job lost almost all its machines at
that time, but it quickly got back the machines after the reboot.
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Table 4.1
Average number of machine and suspensions for 4 FATCOP runs.

Run Starting time Duration Eavg Number of suspensions
1 07:50 13.5 hrs 32 145
2 12:01 14.9 hrs 29 181
3 16:55 11.1 hrs 40 140
4 21:00 10.1 hrs 49 118

To gain more insight into utilization of opportunistic resources by FATCOP, we
define the average number of machines used by a FATCOP job Eavg as

Eavg =

Emax∑
k=1

kτk

T
,

where τk is the total time when the FATCOP job has k workers, T is the total
execution time for the job, and Emax is the number of available machines in the
desired class. We ran 4 replications of a MIP problem. The starting time of these runs
was distributed over a day. In Table 4.1 we record the average number of machines
the FATCOP job was able to use and the number of machines suspended during each
run. The first value shows how much parallelism the FATCOP job can achieve and
the second value indicates how much additional work had to be done. In general
the number of machines used by FATCOP is quite satisfactory. At run 4, this value
is as high as 49, implying that on average FATCOP used close to 50% of the total
machines in our desired class. However, the values vary greatly due to the different
status of the Condor pool during different runs. In working hours it is hard to acquire
machines because many of them are in use by owners. After working hours and
on the weekend, only other Condor users are our major competitors. As expected
FATCOP lost machines frequently during the daytime. However, during the runs at
night FATCOP also lost many machines. It is not surprising to see this, because the
more machines FATCOP was using, the more likely it would lose some of them to
other Condor users.

4.2. Fault tolerance. FATCOP has been tested on the problems from
MIPLIB3.0. There are 59 problems in the test set with different size and difficulty.
The FATCOP sequential and parallel solvers solved 41 and 44 problems, respectively,
with default options, accounting for 70% and 75% of the total test problems. Our
computational results show that problems that can be solved in minutes by the FAT-
COP sequential solver may take longer to solve via the parallel solver. In solving these
problems, FATCOP spent a large portion of the total solution time on spawning and
initializing workers. It suggests that it is only beneficial to use FATCOP to solve
MIPs with large search trees and/or complex LP bounding operations. In this section
we report the computational results for the problems that cannot be solved by the
FATCOP sequential solver in an hour, but are solvable by the parallel solver. The
size of these problems are shown in Table 4.2.

FATCOP was configured to use default branching and node selection strategies,
i.e., pseudocost branching and the best-estimation-based mixed searching strategy
(mixed strategy 2). We let FATCOP switch to best-bound search after the best
integer solution had remained unchanged for 10,000 node evaluations. MIPLIB files do
not provide branching priorities, so priority branching is irrelevant to problems from
MIPLIB. CPLEX was used as the primary LP solver. Due to licensing limitations,
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Table 4.2
Summary of test problems from MIPLIB3.0.

Name #rows #columns #nonzeros #integers
10TEAMS 230 2025 12150 1800
AIR04 823 8904 72965 8904
AIR05 426 7195 52121 7195
DANOINT 664 521 3232 56
FIBER 363 1298 2944 1254
L1521AV 97 1989 9922 1989
MODGLOB 291 422 968 98
PK1 45 86 915 55
PP08ACUTS 246 240 839 64
QIU 1192 840 3432 48
ROUT 291 556 2431 315
VPM2 234 378 917 168

Table 4.3
Results obtained by the FATCOP sequential solver.

Name Solution Proven Execution Nodes
gap(%) optimal? time

10TEAMS 0 yes 23.2 hrs 163,130
AIR04 0 yes 9.6 hrs 4,606
AIR05 0 yes 29.3 hrs 23,512
DANOINT 0 no 48.0 hrs 640,300
FIBER 0 yes 4.7 hrs 172,788
L1521AV 0 yes 1.9 hrs 17,846
MODGLOB 0 no 48.0 hrs 12,459,812
PK1 0 yes 1.6 hrs 475,976
PP08ACUTS 0 yes 6.4 hrs 3,469,870
QIU 0 yes 1.2 hrs 16,448
ROUT 3 no 48.0 hrs 2,582,441
VPM2 0 yes 2.4 hrs 926,740

when the maximum number of CPLEX copies was reached, SOPLEX was called to
perform bounding operations in the workers.

We first tried to solve the problems in Table 4.2 using the FATCOP sequential
solver on a SUN Sparc SOLARIS2.6 machine. Each run was limited to 48 hours.
We present the results in Table 4.3. The first column in the table shows the relative
difference between the best solution found by the FATCOP sequential solver and the
known optimal solution. If the optimal solution is found, column 2 shows whether or
not the solution is a proven optimal solution. Execution time in column 3 is clock
elapsed time. Tree size at the time when the program was terminated is given in
column 4.

The test problems were then solved by the FATCOP parallel Condor-PVM solver.
The number of problems N generated in the initial stage was set to 20. At the be-
ginning the master sends 10 requests for new hosts to Condor. FATCOP implements
an asynchronous algorithm; hence communication may occur at any time and is un-
predictable. Furthermore, the number of workers in the life cycle of a FATCOP job
keeps changing so that the branch-and-bound process may not follow the same path
for different executions. Our experiments show that the search trees were almost never
expanded in the same order for a given problem. This feature often leads FATCOP to
different execution times. We ran 3 replications for each problem. For all runs, FAT-
COP found provable optimal solutions for the test problems. We report the average
execution time, the number of evaluated nodes in the search tree, resource utilization,
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Table 4.4
Average results obtained by the FATCOP parallel Condor-PVM solver for 3 replications (all

instances were solved to optimality).

Name Average Average Eavg Average # Speedup
execution time tree size of suspensions

10TEAMS 1.9 hrs 201,553 20 256 12.2
AIR04 56.8 mins 5,464 11 94 10.1
AIR05 2.0 hrs 16,842 41 55 14.7
DANOINT 24.2 hrs 3,451,676 22 239 -
FIBER 1.1 hrs 174,489 42 25 4.3
L1521AV 24.6 mins 12,266 35 32 4.6
MODGLOB 44.8 hrs 704,056,478 18 512 -
PK1 14.5 mins 8554.886 28 12 6.6
PP08ACUTS 2.8 hrs 5,001,600 19 122 2.3
QIU 22.2 mins 16,376 27 9 3.2
ROUT 12.3 hrs 22,851,706 29 295 -
VPM2 46.7 mins 1,014,943 15 59 3.1

and resource losses in Table 4.4. During all runs, FATCOP lost some workers, but the
program returned correct solutions. Therefore FATCOP was tolerant to the resource
retreats in our experiments.

The FATCOP parallel solver found provable optimal solutions for all the test prob-
lems. However, the sequential solver failed to prove optimality on danoint, modglob,
and rout. For the problems solved by both, the parallel solver achieved reasonable
speedup over the sequential solver. Run times for these problems were reduced by
factors between 2.3 and 14.7.

We observed from Table 4.4 that many test problems exhibit strong search anoma-
lies. pp08aCUTS and pk1 have much larger search trees when solved by the parallel
solver. On the other hand, 10teams, air05, and l1521av have smaller search trees.
While such search anomalies are well known for parallel branch-and-bound, the highly
nondeterministic nature of the Condor opportunistic environment can lead to even
more varying search patterns.

A remarkable example in this test set is modglob. The FATCOP sequential solver
could not find a provable optimal solution for this problem in 48 hours, while it was
solved to optimality by the parallel solver in 44.8 hours. It ran over two Computer
Sciences Department daily reboot periods, used 18 machines on average, and had
512 machines suspended during the run. To test fault tolerance of the master, we let
FATCOP write the work pool information to disk every 100,000 node evaluations. We
interrupted the job once (to simulate a master failure) and resubmitted the problem
to Condor. FATCOP then started from where the work pool information was last
recorded. This indicates that FATCOP is tolerant to both worker and master failures.

4.3. Application test problems. FATCOP was used to solve two classes of
problems arising from marketing and electronic data delivery. One class of problems,
VOD, consists of applications to video-on-demand system design [10, 13]. The other
class of problems, PROD, consists of applications to product design [26]. Two prob-
lems from each application were formulated as GAMS models. The size of the problem
instances and results found by FATCOP are reported in Table 4.5. Execution time is
clock elapsed time and does not include GAMS compilation and solution report time.
User-defined priorities are provided in VOD2. It turns out that this information is
critical to solve this problem in a reasonable amount of time [13]. For PROD prob-
lems, good integer feasible solutions were found using a genetic algorithm (GA) [3]
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Table 4.5
Results for VOD and PROD problems.

Name #rows #columns #nonzeros #integers time Eavg
VOD1 107 306 1207 303 7.5 mins 11
VOD2 715 1513 7316 1510 5.2 mins 18
PROD1 208 251 5350 149 1.2 hrs 25
PROD2 211 301 10501 200 10.8 hrs 35

Table 4.6
Comparison with GA and without GA for PROD1.

Relative gap % Nodes with GA Nodes without GA
20 1,178 864,448
15 2,230 > 1,000,000
10 6,506 > 1,000,000
5 37,224 > 1,000,000
0 137,866 > 1,000,000

first, and these solutions were delivered to FATCOP as incumbent values. Provable
optimal solutions were found for all the problem instances in Table 4.5.

In practice many problem-specific heuristics are effective for quickly finding near-
optimal solutions. Marrying the branch-and-bound algorithm with such heuristics
can help both heuristic procedures and a branch-and-bound algorithm. For example,
heuristics may identify good integer feasible solutions for the early stage of the branch-
and-bound process, decreasing overall solution time. On the other hand, the quality
of solutions found by heuristic procedures may be measured by the (lower-bounding)
branch-and-bound algorithm. FATCOP can use problem-specific knowledge to in-
crease its performance. Based on interfaces defined by FATCOP, users can write
their own programs to round an integer infeasible solution, improve an integer fea-
sible solution, and perform operations such as identifying good solutions or adding
problem-specific cutting planes at the root node. These user-defined programs are
dynamically linked to the solver at run time and can be invoked by turning on ap-
propriate solver options. For product design problems, good solutions found by the
GA made the problems solvable. We performed a set of experiments on PROD1 by
turning the GA program on and off at the root node. We limited the number of node
evaluations to 1,000,000. The computational results are given in Table 4.6. Without
the GA, FATCOP cannot reduce the optimality gap below 15% in the given number
of node evaluations. However, with good solution found by the GA at the root node,
FATCOP is able to prove optimality for this problem in around 1.2 hours.

4.4. Set partitioning. An encouraging side benefit to the opportunistic envi-
ronment is the fact that the parallel machine becomes much more powerful as more
and newer machines are added to the pool. This is in sharp contrast to the case where
a standard supercomputer is obtained, unless a new machine is purchased every six
months. Thus, the computational results that we generated six months ago become
much easier to obtain today. As an example of this type of progress, we cite two new
set partitioning problems arising in transportation scheduling that were solved using
the FATCOP solver after the original paper was written.

The first problem, t0415, was started at 18:37 and finished proving optimality two
days later (around 31 hours later) at 01:11. The problem has 1518 constraints and
7254 binary variables. During this time, a maximum of 114 workers was used, and a
total of 1795 hours of worker CPU time. Note that many of the machines used in this
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run were claimed during the work day by their respective owners, but regardless of
this, each of the 114 workers was processing linear programs for around 16 hours of
the total run, processing 531,707 nodes in the tree in total. FATCOP used its default
strategy in this run. Many of the processors used in this run were not installed when
this paper was first released, but the same code was able to exploit them as soon as
they became part of the Condor pool.

The second problem, t0416, seems at first inspection very similar. It has 1771 con-
straints and 9345 binary variables. However, this problem proved substantially more
difficult to solve, being started on September 16 at 19:49 and finishing on Septem-
ber 26 at 22:48. In solving this problem, three checkpoints were utilized, each time
resetting FATCOP’s options to switch between best-bound branching and depth-first
search after each solve. Thus, the actual time the FATCOP program was running
was around 97 hours instead of the possible 242 hours between its start and finish
times. This was to control the size of the unexplored tree more carefully than our
default strategy allows. The maximum number of workers used was 118, the average
number of workers throughout the run was 78, with a total of 5409 hours of worker
CPU time (out of a total worker uptime of 7544 hours). In this run, 1,081,271 nodes
in the tree were processed in total. Clearly, the second run is less impressive in terms
of efficiency and the need for user intervention. However, it should also be noted
that we have been unable to solve either test problem using the currently available
commercial solvers for mixed integer linear programs.

5. Summary and future work. In this paper, we provide a parallel branch-
and-bound implementation for MIPs using distributed privately owned workstations.
The solver, FATCOP, is designed in the master-worker paradigm to deal with different
types of failures in an opportunistic environment with the help of Condor, a resource
management system. To harness the available computing power as much as possi-
ble, FATCOP uses a greedy strategy to acquire machines. FATCOP is built upon
Condor-PVM and SOPLEX, which are freely available for download from http://
www.cs.wisc.edu/condor/ and http://www.zib.de/Optimization/Software/Soplex/.

FATCOP has successfully solved real-life MIP problems such as in applications
to video-on-demand system and product design. It was also tested on a set of stan-
dard test problems from MIPLIB. Our computational results show that the solver
works correctly in the opportunistic environment and is able to utilize opportunistic
resources efficiently. A reasonable speedup was achieved on long running MIPs over
its sequential counterpart.

Our future work includes strengthening parallel branch-and-bound procedures
with more cutting planes such as flow cover cuts and disjunctive cuts and investigating
how much a worker processor should do before returning results to the master. Some
of these issues have already been addressed in subsequent work [8].
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Abstract. This paper deals with the so-called limiting average criteria for nonstationary Markov
decision processes with (possibly unbounded) rewards and Borel state space. A new set of conditions
is provided, under which the existence of both a solution to the optimality equations and the limiting
average ε(≥ 0)-optimal Markov policies is derived. Also, a rolling horizon algorithm for computing
limiting average ε(> 0)-optimal Markov policies is developed. Furthermore, the results in this paper
are illustrated by several examples such as the water regulation problem.
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1. Introduction. Infinite horizon Markov decision processes (MDPs) have been
extensively studied since the 1950s. One of the most commonly considered versions
is the so-called “limiting average reward” model. In this model, the criteria most
often used are average expected criterion V̄ (see (2.4) below), expected average crite-
rion Ū(see (2.5) below), and sample path average criterion Vs (see (2.6) below). The
three criteria are different for many nontrivial problems and have been studied by
many authors. First, we briefly describe the main results about these criteria for
the stationary MDPs, that is, the rewards and the transition probabilities are inde-
pendent of time. For the average expected criterion V̄ , it is well known that if the
state and action spaces are finite, then there exists an optimal stationary policy (see
Dynkin and Yushkevich [6]). But if the action space is compact or the state space
is countable, there may not exist an optimal policy (see Dynkin and Yushkevich [6,
p. 178] and Ross [22, p. 90]). For the existence of optimal stationary or ε-optimal
policies in MDPs with general state and possibly unbounded rewards, many sufficient
conditions have been investigated such as ergodic conditions (see Hernandez-Lerma
[12, p. 56] and Kurano [18, 17]), the mirror conditions (see Dynkin and Yushkevich
[6, p. 187]), the recurrence and Lyapunov conditions (see Arapostathis et al. [2]), and
the vanishing discounted factor conditions (see Hernandez-Lerma and Lasserre [13,
pp. 83–88], Puterman [20, pp. 415–416], and Arapostathis et al. [2] and the refer-
ences therein). The algorithms for computing optimal policies such as value iteration,
policy iteration, and linear programming are also provided (see [6, pp. 173–178], [20,
pp. 452; 462–468; 472–476]). For the expected average criterion Ū , the results in
Bierth [4] and Blackwell [5] together with the example in [6, p. 178] have shown that
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optimal stationary policies exist for the case of finite state and action spaces, but may
not exist for the case of a finite state model with arbitrary action sets. However, the
existence of ε-optimal Markov policies is established by Bierth [4] for the finite state
model. Feinberg and Park [7] discussed the existence of persistently nearly optimal
policies under some conditions such as finite state space. Filar, Krass, and Ross [8]
use the results about this criterion to discuss the percentile performance criterion for
limiting average MDPs with finite state and action spaces. For the sample path av-
erage criterion Vs, Ross and Varadarajian [23] established that there exist ε optimal
stationary policies for communicating MDPs with finite state and action spaces and
gave a parametric linear programming algorithm for constructing ε optimal station-
ary policies. Moreover, they [24] extended the results in [23] to the case of MDPs
without the communicating properties. For the case of denumerable state and pos-
sibly unbounded rewards, Cavazos-Cadena and Fernández-Gaucherand [21] showed
that, under the Lyapunov and continuity-compactness conditions, stationary policies
obtained from the average reward optimality equation are not only average expected
optimal, but also sample path average optimal. As is well known, most research on
the three criteria has focused on the case of stationary MDPs. However, in reality, the
rewards and the transition probabilities may be changed with time. Hence, it is more
natural to consider the case of both rewards and transition probabilities being time
dependent (i.e., nonstationary case). For the nonstationary MDPs, a great amount of
work has been done in the past. Now we summarize the main results for the average
expected criterion in nonstationary MDPs. For the case of finite state and action
spaces, under the ergodic condition, Hopp, Bean, and Smith [15] showed that an ac-
cumulation point of a sequence of finite horizon optimal policies is average optimal.
Also, Alden and Smith [1] provided an error bound in average expected cost between
a rolling horizon policy and an average expected optimal policy. Bean, Smith, and
Lasserre [3] extended the results for the above finite state model to a denumerable
state case under weak ergodicity. Park, Bean, and Smith [19] proved that, under an
ergodic condition, the optimal finite horizon average values converge to the infinite
horizon optimal average expected value in the denumerable state case. By using opti-
mality equations, Hou and Guo [16, 9] proved the existence of optimal Markov policies
under an ergodic condition. Recently, Guo [10, 11] discussed the properties of optimal
policies and the average variance criterion. It should be noted that all the rewards in
[15, 1, 3, 19, 16, 9, 10, 11] are assumed to be uniformly bounded. To the best of the
authors’ knowledge, the problems of the expected average and sample path average
criteria in nonstationary MDPs with possible unbounded rewards have not yet been
fully investigated.

This paper will deal with the above criteria for nonstationary MDPs with possibly
unbounded rewards and Borel state space. Our concern is the following question: To
what extent can the classical results about the above three criteria for stationary
MDPs be generalized into the nonstationary situation? In the spirit of [6, 12, 18, 17]
for general state stationary MDPs and of [1, 3, 19] for denumerable state nonstationary
MDPs, we propose a new set of conditions under which we not only establish the
existence of a solution to the optimality equations (OEs) for nonstationary MDPs
but also prove that the Markov policies obtained from the OEs are ε-optimal with
respect to all three criteria (i.e., limiting average ε-optimal) by using the martingale
theory. Also, a rolling horizon algorithm for computing limiting average ε(> 0)-
optimal Markov policies is developed. Moreover, two examples such as the water
regulation problem are given to illustrate our results and to show the potential of the
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proposed techniques in this paper.
In section 2 notation and definitions are introduced and the formal description of

the underlying problem is given. The OEs are built up in section 3 for nonstationary
MDPs with average optimality, and the existence of solutions to the OEs is also
verified. The existence of limiting average ε-optimal Markov policies is proved in
section 4. A rolling horizon algorithm is developed in section 5. An applied example
is given in Section 6.

2. Model, notation, and definitions. The model considered in this paper is
a six-element tuple {S,A, (An(i)|i ∈ S, n ≥ 0), (Pn), (rn), (V̄ , Ū , V̄s)} consisting of

(a) a standard Borel space S, the state space, with Borel σ-algebra B(S);
(b) a Borel space A, the action space, with Borel σ-algebra B(A);
(c) a family {An(i)|i ∈ S, n ≥ 0} of nonempty measurable subsets of A, where

An(i) denotes the set of feasible actions when the system is in state i ∈ S at
stage n, with the property that for each n ≥ 0 the set

Kn := {(i, a)|i ∈ S, a ∈ An(i)}

of feasible state-action pairs is a measurable subset of S×A and contains the
graph of a measurable function from S to A;

(d) the stochastic kernel Pn on S given Kn, that is, the transition probability of
the system from stage n to stage n + 1;

(e) the measurable function rn(n ≥ 0) : Kn → R, that is, the n stage reward
function;

(f) the limiting average reward criteria (V̄ , Ū , V̄s) (see (2.4), (2.5), and (2.6)
below).

For each n = 0, 1, . . ., we define the space Hn of admissible histories up to time n
as H0 := S and Hn := K0×K1×· · ·×Kn−1×S ∀n ≥ 1. A generic element hn ∈ Hn,
which is an admissible n-history, is a vector of the form hn = (i0, a0, . . . , in−1, an−1, in)
with (it, at) ∈ Kt ∀t = 0, 1, . . . , n− 1, and in ∈ S. Of course, for each n ≥ 0, Hn is a
subspace of (S ×A)

n × S.
A randomized policy π is a sequence (π0, . . . , πn, . . .), where stochastic kernel πn

on the action space A given Hn satisfies

πn(An(in)|hn) = 1 ∀hn ∈ Hn, n = 0, 1, . . . .(2.1)

The set of all randomized policies is denoted by Π. A randomized policy π :=
(π0, . . . , πn, . . .) ∈ Π is called a randomized Markov policy if πn(.|hn) = πn(.|in) ∀hn ∈
Hn and n ≥ 0. The set of all randomized Markov policies is denoted by Πm. A ran-
domized Markov policy π = (π0, . . . , πn, . . .) is called a Markov policy if for each n ≥ 0
there exists an fn ∈ Fn such that πn(·|i) is concentrated at fn(i) for all i ∈ S, where
Fn(n ≥ 0) denotes the nonempty set of all measurable functions fn : S → A satisfying
that fn(i) ∈ An(i) ∀i ∈ S. Clearly, a Markov policy π can be uniquely determined by
the sequence {fn} and then written as π := {fn}. The set of all Markov policies is
denoted by Πd

m. Obviously, Πd
m ⊂ Πm ⊂ Π.

For any π ∈ Π and i ∈ S, by the Theorem of Ionescu–Tulcea (see [13, pp. 179 and
16]), there exists a unique probability measure P iπ on ((S × A)

∞
, (B(S) × B(A))

∞
)

such that P iπ(H∞) = 1, and, ∀ B ∈ B(S), i ∈ S and n = 0, 1, . . . ,

P iπ(X0 = i) = 1,(2.2)

P iπ(Xn+1 ∈ B|X0,∆0, . . . , Xn,∆n) = Pn(B|Xn,∆n),(2.3)
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where Xn and ∆n are state and action variables at stage n, respectively. The expec-
tation operator with respect to P iπ is denoted by Eiπ. Since P iπ(H∞) = 1, the average
expected criterion V̄ , expected average criterion Ū , and average sample path criterion
Vs are well defined, respectively, as follows:

V̄ (π, i) := lim sup
N→∞

∑N−1
n=0 Eiπrn(Xn,∆n)

N
,(2.4)

Ū(π, i) := Eiπ

[
lim sup
N→∞

∑N−1
n=0 rn(Xn,∆n)

N

]
,(2.5)

Vs(π, i) := lim sup
N→∞

∑N−1
n=0 rn(Xn,∆n)

N
.(2.6)

For any i ∈ S , let V̄ ∗(i) := supπ∈Π V̄ (π, i), Ū∗(i) := supπ∈Π Ū(π, i).
Definition 2.1. For any ε ≥ 0, a policy π∗ ∈ Π is called V̄ -ε-optimal if

V̄ (π∗, i) ≥ V̄ ∗(i) − ε ∀i ∈ S. V̄ -0-optimal policies are called V̄ -optimal policies.
Similarly, we can define Ū -ε-optimal policies and Ū -optimal policies.
Definition 2.2. For any ε ≥ 0, a policy π∗ ∈ Π is called Vs-ε-optimal if there

exists a constant ρ such that for all i ∈ S and π ∈ Π,

Vs(π
∗, i) ≥ ρ− ε, a.e.-P iπ∗ , and(2.7)

Vs(π, i) ≤ ρ, a.e.-P iπ.(2.8)

A Vs-0-optimal policy is called Vs-optimal.
Definition 2.3. For any ε ≥ 0, a policy π∗ ∈ Π is called limiting average ε-

optimal if π∗ is w − ε-optimal for each w ∈ {V̄ , Ū , Vs}. A limiting average 0-optimal
policy is called limiting average optimal.

Obviously, limiting average optimality is stronger than each one of the average
expected optimality, expected average optimality, and sample path average optimality.

3. Optimality equations. In this section, we shall establish the OEs for non-
stationary MDPs with limiting average criteria and provide some conditions to
guarantee the existence of a solution to the OEs.

Let P(S) denote the set of all probability measures on B(S). We recall that a
function u on S is called universally measurable if for any P ∈ P(S), there exist a
measurable function v on S and a measurable set N ∈ B(S) such that P (N) = 1 and
u(x) = v(x) ∀x ∈ N . The set of all universally measurable functions on S is denoted
by M(S).
Definition 3.1. If there exist a real number sequence {gn} and a function

sequence {un} ⊂M(S) such that

(3.1)

gn + un(i) = sup
a∈An(i)

{
rn(i, a) +

∫
S

Pn(dy|i, a)un+1(y)

}
∀i ∈ S and n ≥ 0,

then we call the functional equations (3.2) the OEs for our model and both
sequences {gn} and {un} a solution to the OEs (3.2).

Obviously, if the sequences {gn} and {un} are a solution to the OEs (3.2), then,
for any constant c, the sequences {gn} and {un + c} are also a solution to the OEs
(3.2). Hence, in general, the solutions to the OEs (3.2) are not unique.
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In order to derive the existence of a solution to the OEs (3.2), we need the
following conditions.
Assumption 3.1. For each n ≥ 0, there exists a measure δn on B(S) such that

for all i ∈ S and a ∈ A(i),

(i) Pn(B|i, a) ≥ (or ≤)δn(B) ∀B ∈ B(S);(3.2)

(ii) rn(i) +

∞∑
t=0

∣∣∣∣(1− δn(S)) · · · (1− δn+t(S))

∣∣∣∣ ‖ rn+t+1 ‖:= Rn(i) <∞,(3.3)

where rn(i) := supa∈An(i) |rn(i, a)| and ‖rn‖ := supi∈Sa∈An(i) |rn(i, a)|.
Remark 3.1. The motivation to introduce Assumption 3.1(i) stems from the

ergodic conditions in [17, 18, 19, 3, 1] and in [12, p. 56] and the minorant condition
in [6, p. 186]. Assumption 3.1(ii) is for the purpose of convergence. Obviously,
Assumption 3.1 is the extension of the above ergodic and minorant conditions.

Since Assumption 3.1(ii) is based on Assumption 3.1(i), we will give some suffi-
cient conditions for Assumption 3.1(i). It should be noted that if the state space is de-
numerable, then the measure δn may be defined as δn(j) := supi∈S supa∈An(i) Pn(j|i, a)
or δn(j) := infi∈S infa∈An(i) Pn(j|i, a) ∀ j ∈ S and n ≥ 0. In general, we have the
following result.
Corollary 3.2. If any one of the following conditions holds, then Assumption

3.1(i) holds:
(i) for each n ≥ 0, the transition law Pn(dy|i, a) has a density qn(y|i, a) with

respect to a sigma-finite measure µn on S, and qn(y|i, a) ≥ q∗n(y) for all a ∈ An(i)
and i ∈ S, where q∗n is a nonnegative measurable function with

∫
S
q∗n(y)µn(dy) > 0;

(ii) for each n ≥ 0, the transition law Pn(dy|i, a) has a density qn(y|i, a) with
respect to a sigma-finite measure µn on S, and there exists a nonnegative measurable
function q∗n on S such that

∫
S
q∗n(y)µn(dy) <∞ and

qn(y|i, a) ≤ q∗n(y) ∀ y ∈ S, a ∈ An(i), and i ∈ S;

(iii) for each n ≥ 0, there exist a state x∗n ∈ S and a positive number αn such that
Pn({x∗n})|i, a) ≥ αn ∀ a ∈ An(i) and i ∈ S.

Proof. Under condition (i) (or (ii)), let δn(B) :=
∫
B
q∗n(y)µn(dy) ∀B ∈ B(S).

Then we can show that Assumption 3.1(i) holds. For all B ∈ B(S), let δn(B) := αn if
x∗n ∈ B and δn(B) := 0 if x∗n /∈ B; then Assumption 3.1(i) is satisfied under condition
(iii).

Now, we present our results on the solution to the OEs.
Theorem 3.3. If Assumption 3.1 holds, then
(i) there exist a real number sequence {gn} and a function sequence {un} ⊂M(S)

satisfying (3.2);
(ii)

(3.4)

gn =

∫
S

un+1(y)δn(dy), |un(i)| ≤ |Rn(i)|, and un(i) ≤ Rn(i) ∀i ∈ S and n ≥ 0;

(iii) if limk→∞ |(1 − δn(S)) · · · (1 − δn+k−1(S))|‖Rn+k‖ = 0 ∀ n ≥ 0, then the
solution to (3.2) satisfying (3.4) is unique.

Proof. For all i ∈ S, n ≥ 0, and k ≥ 1, let
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u1(i, n) := sup
a∈An(i)

rn(i, a),

u2(i, n) := sup
a∈An(i)

[
rn(i, a) +

∫
S

(Pn(dy|i, a)− δn(dy))u1(y, n + 1)

]
,

...
...

...

uk+1(i, n) := sup
a∈An(i)

[
rn(i, a) +

∫
S

(Pn(dy|i, a)− δn(dy))uk(y, n + 1)

]
.(3.5)

By Theorems 18.4 and 13.2 in [14], we have, for any fixed n ≥ 0 and k ≥ 1

uk(·, n) ∈M(S).(3.6)

From (3.5) and by induction, we can obtain, for any k ≥ 2,

|uk(i, n)− uk−1(i, n)| ≤ |(1− δn(S)) · · · (1− δn+k−2(S))| ‖ rn+k−1 ‖ .(3.7)

For any m > l > N0 ≥ 1, by induction and (3.7), one has

|um(i, n)− ul(i, n)| ≤
m∑

k=l+1

|uk(i, n)− uk−1(i, n)|

≤
m∑

k=l+1

|(1− δn(S)) · · · (1− δn+k−2(S))| ‖ rn+k−1 ‖

≤
∞∑

k=N0

|(1− δn(S)) · · · (1− δn+k−1(S))| ‖ rn+k ‖ .(3.8)

By condition (3.3), for any ε > 0, we can find N0 ≥ 1 such that

∞∑
k=N0

|(1− δn(S)) · · · (1− δn+k−1(S))| ‖ rn+k ‖< ε.(3.9)

By combining (3.8) with (3.9), we obtain |um(i, n) − ul(i, n)| < ε ∀ m > l > N0. So
{uk(i, n)} is a Cauchy sequence. Hence, there exists an u∗(i, n) such that

uk(i, n)→ u∗(i, n), as k →∞.(3.10)

From (3.6), we have u∗(·, n) ∈ M(S) for all n ≥ 0. By (3.5) and induction, for any
k ≥ 2, one has

uk(i, n) ≤ rn(i) +

k−2∑
t=0

|(1− δn(S)) · · · (1− δn+t(S))| ‖ rn+t+1 ‖,(3.11)

which yields

u∗(i, n) ≤ rn(i) +

∞∑
t=0

|(1− δn(S)) · · · (1− δn+t(S))| ‖ rn+t+1 ‖= Rn(i).(3.12)

From (3.8) and (3.10), for any l ≥ 1, it follows that

|u∗(i, n)− ul(i, n)| ≤
∞∑
k=l

|(1− δn(S)) · · · (1− δn+k−1(S))| ‖ rn+k ‖ .(3.13)
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Hence, as l→ +∞, one obtains

sup
i∈S
|u∗(i, n)− ul(i, n)| → 0 ∀n ≥ 0.(3.14)

From (3.10), together with (3.5) and (3.14), for any l ≥ 0, we have∣∣∣∣ sup
a∈An(i)

[
rn(i, a) +

∫
S

(Pn(dy|i, a)− δn(dy))u∗(y, n + 1)

]
− u∗(i, n)

∣∣∣∣
≤
∣∣∣∣ sup
a∈An(i)

[
rn(i, a) +

∫
S

(Pn(dy|i, a)− δn(dy))u∗(y, n + 1)

]
− u∗(i, n)

+ul+1(i, n)− ul+1(i, n)

∣∣∣∣

≤ |ul+1(i, n)− u∗(i, n)|+ (1− δn(S)) sup
j∈S
|u∗(j, n + 1)− ul(j, n + 1)|.(3.15)

Also, from (3.10), (3.14), and (3.15), let l→ +∞; it can be shown that

u∗(i, n) = sup
a∈An(i)

[
rn(i, a) +

∫
S

(Pn(dy|i, a)− δn(dy))u∗(y, n + 1)

]
.(3.16)

Let gn :=
∫
S
u∗(y, n+1)δn(dy) and un(i) := u∗(i, n) for all i ∈ S and n ≥ 0. Equation

(3.16) implies that (3.2) holds. This completes the proof of part (i).
From (3.12), we also have, for all n ≥ 0 and i ∈ S,

un(i) = u∗(i, n) ≤ Rn(i).(3.17)

Similarly, we can derive |un(i) ≤ |Rn(i)| ∀i ∈ S and n ≥ 0. Hence part (ii) is valid.
Now let us prove part (iii). Let {g′n} and {u′n} be a solution to (3.2) and satisfy

the conditions in (iii). By induction we have, for all i ∈ S and k ≥ 1,

|un(i)− u′n(i)| ≤ |(1− δn(S)) · · · (1− δn+k−1(S))| ‖ un+k − u′n+k ‖
≤ 2|(1− δn(S)) · · · (1− δn+k−1(S))| ‖ Rn+k ‖→ 0, as k →∞,

which ends the proof.
Remark 3.2. Suppose that δn(S) �= 1 ∀n ≥ 0. For any fixed n ≥ 0, considering

n as the starting time, let βnk := (1− δn(S)) · · · (1− δn+k(S)) ∀k ≥ 1 and βn0 := 1. Let
rnk (i, a) := βnk rn+k(i, a) ∀k ≥ 0. Then rnk (i, a) denotes a new discounted reward with
respect to the time-dependent discounted factor βnk at time n+k. For any k ≥ 0, let
P̄nk (·|i, a) := (Pn+k(·|i, a)− δn+k(·))/(1− δn+k(S)) denote a new transition probability
from stage n + k to stage n + k + 1. Then from (3.5), (3.10), and (3.17), we can see
that for each n ≥ 0 the meaning of un in the OEs is the optimal expected total reward
value with respect to the new discounted rewards and the new transition probabilities
from time period (n, ∞), and that the meaning of gn in the OEs is the expected value
of un+1 corresponding to measure δn.

For the existence of the maximum points of the right-hand side of (3.2), as usual
we need the continuity-compactness conditions.
Assumption 3.2. (i) For each n ≥ 0, Kn is a closed subset of S × A, and A is

compact.
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(ii) For each n ≥ 0, the reward function rn is upper semicontinuous on Kn.
(iii) The function vn(i, a) :=

∫
S
Pn(dy|i, a)v(y) on Kn satisfies that vn is upper

semicontinuous on Kn for every n ≥ 0 and every bounded super semicontinuous
function v on S.
Theorem 3.4. If Assumptions 3.1 and 3.2 hold, then we have the following.
(i) There exist a number sequence {gn} and a upper semicontinuous function

sequence {un} satisfying (3.2), |un(i)| ≤ |Rn(i)|, un(i) ≤ Rn(i) ∀i ∈ S and n ≥ 0.
(ii) There exists a Markov policy π∗ = {f∗

n} ∈ Πd
m such that for all i ∈ S and

n ≥ 0,

rn(i, f∗
n(i)) +

∫
S

Pn(dy|i, f∗
n(i))un+1(y) = gn + un(i).(3.18)

Proof. By Lemmas 17.11, 5.5, and 5.10 in [14], for any fixed k, n ≥ 0, we have
that uk(·, n) in the proof of Theorem 3.3 is an upper semicontinuous function on S.
Then, similar to the proof of Theorem 3.3, we can prove that part (i) is true. Part
(ii) follows from part (i) and Theorem 17.9 in [14].

4. Limiting average optimality. In this section we will prove the existence
of limiting average ε-optimal Markov policies from the OEs (3.2). The approach
employed here is rather different from those used in [15, 3, 19, 1]. The martingale
theory is adopted to develop our main results.
Theorem 4.1. If {gn} and {un} are a solution to the OEs (3.2) such that

limN→∞
Ei

πuN (XN )
N = 0 ∀i ∈ S and π ∈ Π, then

(i) for all i ∈ S,

V̄ ∗(i) ≤ lim sup
N→∞

g0 + g1 + · · ·+ gN−1

N
;(4.1)

(ii) for any ε ≥ 0, if a Markov policy π∗ = {f∗
n} satisfies

(4.2)

rn(i, f∗
n(i)) +

∫
S

Pn(dy|i, f∗
n(i))un+1(y) ≥ gn + un(i)− ε ∀ i ∈ S and n ≥ 0,

then V̄ (π∗, i) ≥ V̄ ∗(i)− ε ∀i ∈ S;
(iii) if for all i ∈ S and n ≥ 0, a Markov policy π∗ = {f∗

n} satisfies

rn(i, f∗
n(i)) +

∫
S

Pn(dy|i, f∗
n(i))un+1(y) = gn + un(i),(4.3)

then V̄ (π∗, i) = V̄ ∗(i) ∀i ∈ S;
(iv) if S is denumerable, and An(i) is finite for each n ≥ 0 and i ∈ S, then there

exists a V̄ -optimal Markov policy.

Proof. (i) For any fixed i ∈ S, π ∈ Π, and n ≥ 0, since limN→∞
Ei

πuN (XN )
N = 0,

we have |Eiπun(Xn)| <∞ ∀n ≥ 0. From (2.3) and (3.2), we obtain

Eiπ[un+1(Xn+1)|X0,∆0, . . . , Xn,∆n] =

∫
S

un+1(y)Pn(dy|Xn,∆n)

= rn(Xn,∆n) +

∫
S

un+1(y)Pn(dy|Xn,∆n)− rn(Xn,∆n)

≤ gn + un(Xn)− rn(Xn,∆n).(4.4)
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By taking expectation operator Eiπ on both sides of (4.4), we have

Eiπun+1(Xn+1) ≤ gn + Eiπun(Xn)− Eiπrn(Xn,∆n).(4.5)

By induction and (4.5), for every N ≥ 1, it gives

EiπuN+1(XN+1)− u0(i) +

N∑
n=0

Eiπrn(Xn,∆n) ≤
N∑
n=0

gn.(4.6)

Since limN→∞
Ei

πuN+1(XN+1)
N+1 = 0, from (4.6) and (2.4), for all i ∈ S and π ∈ Π, one

has

V̄ (π, i) ≤ lim sup
N→∞

g0 + g1 + · · ·+ gN
N + 1

.(4.7)

By (4.7) and the arbitrariness of π ∈ Π and i ∈ S, we can complete the proof of part
(i).

(ii) Similar to the proof of (4.5), under the condition of part (ii), for all n ≥ 0, we
have

Eiπ∗un+1(Xn+1) ≥ gn + Eiπ∗un(Xn)− ε− Eiπ∗rn(Xn,∆n).(4.8)

Along the same lines as the proof of (4.7), for all i ∈ S, we can obtain

V̄ (π∗, i) ≥ lim sup
N→∞

g0 + g1 + · · ·+ gN
N + 1

− ε.(4.9)

Combining part (i) and (4.9), part (ii) has been proved.
Part (iii) follows from parts (i) and (ii). Part (iv) comes from (iii).
Corollary 4.2. If Assumption 3.1 holds, and, for all π ∈ Π and i ∈ S,

limn→∞
Ei

π|Rn|
n = 0, then all the conclusions of Theorem 4.1 hold.

Proof. The proof can be worked out by Theorem 3.3, together with Theorem
4.1.
Remark 4.1. In [3] and [19], on the average expected criterion, the following

additional assumption is needed to obtain conclusion (iv) in Theorem 4.1: From each
state i, at stage n, under action a ∈ An(i), there exists a finite set {j|Pn(j|i, a) > 0}.
That is, only a finite set of states is reachable in one step transition from any state,
under any action. Furthermore, the reward functions rn, n ≥ 0 are required to be
uniformly bounded in n, i.e., supn≥0 ‖rn‖ <∞.
Theorem 4.3. If {gn} and {un} are a solution to the OEs (3.2) and satisfy

(i) limN→∞
uN (XN )

N = 0, a.e.-P iπ ∀ i ∈ S and π ∈ Π;

(ii) Eiπu
2
n(Xn) and

∑∞
n=1

Ei
π [Y 2

n |X0,∆0,...,Xn−1,∆n−1]
n2 are finite ∀ n ≥ 0, π ∈ Π, and

i ∈ S, where Yn := un(Xn)− ∫
S
un(Xn)Pn−1(dXn|Xn−1,∆n−1) ∀n ≥ 1,

then, for all i ∈ S and π ∈ Π, we have

(a) Ū∗(i) ≤ lim sup
N→∞

g0 + g1 + · · ·+ gN−1

N
∀i ∈ S;(4.10)

(b) Vs(π, i) ≤ lim sup
N→∞

g0 + g1 + · · ·+ gN−1

N
, a.e.-P iπ.(4.11)
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Proof. For any i ∈ S, a ∈ An(i), and n ≥ 0, let

Zn(i, a) := rn(i, a) +

∫
S

un+1(y)Pn(dy|i, a)− gn − un(i).

Since {gn} and {un} are a solution to the OEs (3.2), we have

Zn(i, a) ≤ 0 ∀i ∈ S, a ∈ An(i), and n ≥ 0.(4.12)

For all h = (i0, a0, . . . , in, an, . . .) ∈ (S ×A)
∞

and n ≥ 0, let

Mn(h) :=

{
rn(in, an) + un+1(in+1)− gn − un(in)− Zn(in, an) if hn ∈ Hn;
0 if hn �∈ Hn.

From (2.1), we can obtain that Mn = Yn+1, a.e.-P iπ ∀ i ∈ S, π ∈ Π, and n ≥ 0. For
any i ∈ S, π ∈ Π and n ≥ 0, by (2.3), we have

Eiπ[Mn|X0,∆0, . . . , Xn,∆n] = Eiπ[Yn+1|X0,∆0, . . . , Xn,∆n]

= Eiπ[un+1(Xn+1)|X0,∆0, . . . , Xn,∆n]−
∫
S

un+1(Xn+1)Pn(dXn+1|Xn,∆n) = 0.

Hence, we obtain that {∑N−1
n=0 Mn, σ(X0,∆0, . . . , XN−1,∆N−1)} is a martingale. By

Eiπu
2
n(Xn) < ∞ ∀n ≥ 0, we can also derive that {∑N−1

n=0 Mn} is square-integrable.
Obviously, {N,σ(X0,∆0, . . . , XN−1,∆N−1)} is predictable increasing. By Theorem
7.5.4 in [25], we have, for any i ∈ S and π ∈ Π,

lim
N→∞

∑N−1
n=0 Mn

N
= 0, a.e.-P iπ,(4.13)

which gives us

lim
N→∞

1

N

N−1∑
n=0

[
rn(Xn,∆n) + un+1(Xn+1)− un(Xn)− gn − Zn(Xn,∆n)

]
= 0, a.e.-P iπ.

(4.14)

Since −Zn(Xn,∆n) ≥ 0, a.e.-P iπ, and limN→∞ 1
N uN (XN ) = 0, a.e.-P iπ ∀ i ∈

S, π ∈ Π, and n ≥ 0, from (4.14) we have

0 ≥ lim sup
N→∞

[
1

N

N−1∑
n=0

rn(Xn,∆n)− 1

N

N−1∑
n=0

gn +
1

N
uN (XN )

]

≥ lim sup
N→∞

[
1

N

N−1∑
n=0

rn(Xn,∆n)

]
+ lim inf

N→∞

[
− 1

N

N−1∑
n=0

gn

]
, a.e.-P iπ,

which means

lim sup
N→∞

[
1

N

N−1∑
n=0

rn(Xn,∆n)

]
≤ lim sup

N→∞

[
1

N

N−1∑
n=0

gn

]
, a.e.-P iπ.(4.15)

Therefore, part (b) is valid.



AVERAGE CRITERIA FOR NONSTATIONARY MDPs 1047

To prove part (a), we take the expectation operator on both sides of (4.15); then

Ū(π, i) ≤ lim sup
N→∞

g0 + g1 + · · ·+ gN−1

N
.(4.16)

Note that π and i are arbitrary; the desired result can be obtained from (4.16).
Theorem 4.4. If {gn} and {un} are a solution to the OEs (3.2) and satisfy the

following:
(i) limN→∞ uN

N = 0, a.e.-P iπ∀i ∈ S and π ∈ Π, and {uN

N } is bounded;
(ii)

∑∞
N=1

Ei
π [Y 2

N |X0,∆0,...,XN−1,∆N−1]
N2 <∞ ∀i ∈ S and π ∈ Π,

then we have that
(i) for any ε ≥ 0, if a Markov policy π∗ = {f∗

n} satisfies

rn(i, f∗
n(i)) +

∫
S

Pn(dy|i, f∗
n(i))un+1(y) ≥ gn + un(i)− ε ∀i ∈ and n ≥ 0,(4.17)

then π∗ is ε-limiting average optimal;
(ii) if for all i ∈ S and n ≥ 0, a Markov policy π∗ = {f∗

n} satisfies

rn(i, f∗
n(i)) +

∫
S

Pn(dy|i, f∗
n(i))un+1(y) = gn + un(i),(4.18)

then

(a) Vs(π
∗, i)

a.e.-P i
π∗

= V̄ (π∗, i) = Ū(π∗, i) = lim supN→∞
g0+g1+···+gN−1

N ∀i ∈ S,
and

(b) the policy π∗ = {f∗
n} is limiting average optimal.

Proof. By replacing π in the proof of Theorem 4.3 with π∗ here, for all n ≥ 0, we
have

0 ≤ −Zn(Xn,∆N ) ≤ ε, a.e.-Pπ∗ .(4.19)

Hence, from (4.14) and (4.19), we have

0 = lim
N→∞

1

N

N−1∑
n=0

[
rn(Xn,∆n)− gn − Zn(Xn,∆n)

]

≤ lim inf
N→∞

1

N

N−1∑
n=0

[
rn(Xn,∆n)− 1

N

N−1∑
n=0

gn + ε

]

≤ lim sup
N→∞

1

N

N−1∑
n=0

[
rn(Xn,∆n)

]
+ lim inf

N→∞

[
− 1

N

N−1∑
n=0

gn

]
+ ε,

which yields

lim sup
N→∞

1

N

N−1∑
n=0

[
rn(Xn,∆n)

]
≥ lim sup

N→∞
1

N

N−1∑
n=0

gn − ε, a.e.-P ∗
π .(4.20)

Taking expectation operator Eiπ∗ on both sides of (4.20), one has

Ū(π∗, i) ≥ lim sup
N→∞

1

N

N−1∑
n=0

gn − ε.(4.21)
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Under condition (i), by the controlled convergence theorem, from limN→∞ uN

N = 0,

we can obtain that limN→∞
Ei

π∗uN

N = 0. By Theorems 4.1 and 4.3, together with
(4.20) and (4.21), we have that part (i) is valid.

We now prove part (ii). Since Zn(Xn,∆n) = 0, a.e-P iπ∗ ∀i ∈ S, from (4.14), we
have

lim
N→∞

1

N

N−1∑
n=0

[
rn(Xn,∆n)− gn

]
= 0, a.e.-P iπ∗ .(4.22)

Hence,

∣∣∣∣ lim sup
N→∞

1

N

N−1∑
n=0

rn(Xn,∆n)− lim sup
N→∞

1

N

N−1∑
n=0

gn

∣∣∣∣
≤ lim sup

N→∞

∣∣∣∣ 1

N

N−1∑
n=0

[rn(Xn,∆n)− gn]

∣∣∣∣
= lim
N→∞

∣∣∣∣ 1

N

N−1∑
n=0

[rn(Xn,∆n)− gn]

∣∣∣∣ = 0, a.e.-P iπ∗ .(4.23)

Therefore,

lim sup
N→∞

1

N

N−1∑
n=0

rn(Xn,∆n) = lim sup
N→∞

1

N

N−1∑
n=0

gn, a.e.-P iπ∗ ∀ i ∈ S.(4.24)

By the result of part (i) and Theorems 4.1 and 4.3, we complete the proof of
part (ii).
Theorem 4.5. If either one of the following conditions holds:
(i) Assumption 3.1 holds and S is denumerable;
(ii) Assumption 3.1 holds and there exists a probability measure sequence {µn} ⊂
P(S), such that Pn(·|i, a) is absolutely continuous with respect to µn ∀ i ∈ S,
a ∈ An(i), and n ≥ 0,

then, for any ε > 0, there exists a Markov policy πε = {f εn} such that for all i, k ∈ S
and n ≥ 0

rn(k, f εn(k)) +

∫
S

Pn(dy|k, f εn(k))un+1(y) ≥ gn + un(k)− ε, a.e.-P iπε .(4.25)

Proof. (i) Under the conditions of (i), by Theorem 3.3, let {gn} and {un} be a
solution to (3.2) and satisfy un(i) ≤ Rn(i) ∀n ≥ 0. Hence un(i) + gn <∞∀i ∈ S and
n ≥ 0. Then, for any fixed ε > 0, i ∈ S, and n ≥ 0, there exists an f εn(i) ∈ An(i) such
that

rn(i, f εn(i)) +

∫
S

Pn(dy|i, f εn(i))un+1(y) ≥ un(i) + gn − ε.(4.26)

Let πε = {f εn}. Since S is denumerable, πε ∈ Πd
m, the proof is complete.

(ii) Let

µ(·) =
∞∑
n=0

1

2n+1
µn(·).(4.27)
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Then µ ∈ P(S), and Pn(·|i, a) is absolutely continuous with respect to µ∀i ∈ S, a ∈
An(i), and n ≥ 0. By Theorem 3.3, there exist a number sequence {gn} and a univer-
sally measurable function sequence {un} satisfying (3.2), and un(i) ≤ Rn(i) ∀i ∈ S
and n ≥ 0. Hence, there exist a measurable function sequence {Vn} on S and a
measurable subset sequence {Bn} such that

un(x) = Vn(x) ∀x ∈ Bc
n := S −Bn, µ(Bn) = 0(4.28)

for all n ≥ 0. By the absolute continuity of Pn(·|i, a) corresponding to µ, we have

Pn(Bn+1|i, a) = 0 ∀i ∈ S, a ∈ An(i), and n ≥ 0.(4.29)

Then we have for all i ∈ S, a ∈ An(i), and n ≥ 0,∫
S

un+1(y)Pn(dy|i, a) =

∫
S

Vn+1(y)Pn(dy|i, a).(4.30)

Hence, for any i ∈ Bc
n and n ≥ 0,

gn + Vn(i) = sup
a∈An(i)

{rn(i, a) +

∫
S

Vn+1(y)Pn(dy|i, a)}.(4.31)

For any ε > 0 and n ≥ 0, let

Kn(ε) =

{
(i, a)|i ∈ Bc

n, a ∈ An(i), and

rn(i, a) +

∫
S

Pn(dy|i, a)Vn+1(y) ≥ gn + Vn(i)− ε

}
∪ (Bn ×A).(4.32)

Obviously, Kn(ε) ∈ B(S) × B(A). For any i ∈ S and n ≥ 0, because of gn +
Vn+1(i) < ∞, we have Kn(ε)(i) := {a ∈ An(i)|(i, a) ∈ Kn(ε)} �= ∅. Therefore, by
Lemma 12.12 in [14], there exist an f εn ∈ Fn and a measurable subset B̃n ⊂ S such
that

f εn(i) ∈ Kn(ε)(i) ∀i ∈ B̃c
n and µ(B̃n) = 0.

Let πε = {f εn} and B := ∪∞n=0(Bn ∪ B̃n); then we have B ∈ B(S) and µ(B) = 0.
Hence Pn(B|i, a) = 0 for all i ∈ S, a ∈ An(i), and n ≥ 0. Therefore, for k ∈ Bc and
n ≥ 0, we have

rn(k, f εn(k)) +

∫
S

Pn(dy|i, f εn(k))un+1(y) ≥ gn + un(k)− ε,(4.33)

and consequently, for all i, k ∈ S and n ≥ 0

rn(k, f εn(k)) +

∫
S

Pn(dy|i, f εn(k))un+1(y) ≥ gn + un(k)− ε, a.e.-P iπε ,(4.34)

which completes the proof.
To ensure the existence of limiting average ε-optimal Markov policies, from the

proofs of Theorems 4.4 and 4.5 we introduce the following conditions.

Assumption 4.1.
∑∞
N=1

‖RN‖2

N2 <∞.
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Assumption 4.2. Either one of the following conditions is true:
(i) S is denumerable;
(ii) there exists a probability measure sequence {µn} ⊂ P(S) such that Pn(·|i, a)

is absolutely continuous with respect to µn ∀ i ∈ S, a ∈ An(i), and n ≥ 0.
Now we provide the main results of this paper.
Theorem 4.6. (i) If Assumptions 3.1, 3.2, and 4.1 hold, then there exists a

limiting average optimal Markov policy.
(ii) If Assumptions 3.1, 4.1, and 4.2 hold, then for any ε > 0, there exists a

limiting average ε-optimal Markov policy.

Proof. Under Assumption 4.1, we are ready to show that limN→∞
‖RN‖
N = 0. By

Theorems 3.3, 3.4, and 4.4, we can complete the proof of part (i). By Theorems 3.3,
4.4, and 4.5, part (ii) can be carried out.
Corollary 4.7. If the following conditions hold:
(i) S is denumerable, every An(i)(i ∈ S, n ≥ 0) is finite;
(ii) β := supn(1−∑j∈S(infi∈S infa∈An(i))Pn(j|i, a)) < 1;
(iii) supn ‖rn‖ <∞,

then there exists a limiting average optimal Markov policy.
Proof. By Theorem 4.6, this corollary can be figured out.
Now we give an example for which Assumptions 3.1, 3.2, and 4.1 hold here,

whereas Assumption 4 in [3, 19] fails to hold.
Example 4.1. Let S := {1, 2, . . . , i, . . .} and An(i) be nonempty finite sets for

all n ≥ 0 and i ∈ S. Suppose that supn≥0 ‖rn‖ < ∞ and δ ∈ (0, 1). The transition
law Pn is partially defined by

Pn(i|1, a) :=
1− δ

2i−1
, n ≥ 0, a ∈ An(1), and i ≥ 2,(4.35)

Pn(1|i, a) := δ, i ∈ S, a ∈ An(i), and n ≥ 0.(4.36)

From (4.35), for each n ≥ 0 and a ∈ An(1), we have that the set

{j|Pn(j|1, a) > 0} = S(4.37)

is infinite. This implies that Assumption 4 in both [3] and [19] fails to hold.
Take δn(j) = infi∈S infa∈An(i) Pn(j|i, a) ∀j ∈ S and n ≥ 0. From (4.36), we have

β = sup
n≥0


1−

∑
j∈S

(
inf
i∈S

inf
a∈An(i)

Pn(j|i, a)

)
≤ sup
n≥0

(
1− inf

i∈S
inf

a∈An(i)
Pn(1|i, a)

)
= sup
n≥0

(1− δ) < 1.(4.38)

From β < 1 and supn≥0 ‖rn‖ <∞, we can easily verify that all assumptions made in
this paper are satisfied for this example.

5. A rolling horizon algorithm. In this section, a rolling horizon algorithm
for computing limiting average ε-optimal Markov policies is proposed.

In order to guarantee the feasibility of this algorithm, we need the following
conditions.
Assumption 5.1. (i) S is denumerable, and, for each n ≥ 0 the set {j|δn(j) >

0} ⊂ S is finite;
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(ii) β := supn≥0 |(1− δn(S))| < 1, and K := supn≥0 ‖rn‖ <∞;
(iii) every An(i) is finite, and from each state i ∈ S, at stage n, under action

a ∈ An(i), there exists a finite set {j|Pn(j|i, a) > 0}; that is, only a finite set of states
is reachable in one step transition from any state under any action.

Now, we are ready to develop the algorithm.
Under Assumptions 3.1 and 5.1, for any ε > 0, we can choose a positive integer

N0 such that βN0 K
1−β < ε

2 . By (3.13) and (3.17), we have

|un(i)− ul(i, n)| ≤
∞∑
k=l

(1− δn(S)) · · · (1− δn+k−1(S))||rn+k||

≤ K

∞∑
k=l

βl ≤ βN0
K

1− β
<

ε

2
∀l ≥ N0, i ∈ S, and n ≥ 0.(5.1)

For any n ≥ 0 and i ∈ S, let

Vn+N0+1(i) := max
a∈An+N0+1(i)

rn+N0+1(i, a),

Vn+N0(i) := max
a∈An+N0

(i)

[
rn+N0(i, a) +

∑
j∈S

(Pn+N0(j|i, a)− δn+N0(j))Vn+N0+1(j)

]
,

...
...

...

Vn(i) := max
a∈An(i)

[
rn(i, a) +

∑
j∈S

(Pn(j|i, a)− δn(j))Vn+1(j)

]
.(5.2)

From (3.5) we know that Vn(i) = uN0+1(i, n) and Vn+1(i) = uN0(i, n+ 1) ∀ i ∈ S and
n ≥ 0. For any i ∈ S and n ≥ 0, we may choose f∗

n(i) ∈ An(i) such that

Vn(i) = rn(i, f∗
n(i)) +

∑
j∈S

(Pn(j|i, f∗
n(i))− δn(j))Vn+1(j).(5.3)

From (5.1) and (5.3), for all i ∈ S and n ≥ 0, one has

rn(i, f∗
n(i)) +

∑
j∈S

Pn(j|i, f∗
n(i))un+1(j) ≥ un(i) + gn − ε.(5.4)

Let π∗ = {f∗
n}; by Theorem 4.4, π∗ is limiting average ε-optimal.

We may summarize the above discussion in the following result.
Theorem 5.1. Under Assumptions 3.1 and 5.1, for any fixed ε > 0, n ≥ 0, and

i ∈ S, the action f∗
n(i) can be calculated in finite steps and the corresponding Markov

policy π∗ := {f∗
n} is limiting average ε-optimal.

Finally, we can provide a rolling horizon algorithm (RHA) to find a limiting
average ε(> 0)-optimal Markov policy π∗ = {f∗

n} as follows.
Step 1. For ε > 0, choose a positive integer N0 such that βN0 K

1−β < ε
2 ;

Step 2. For a given n ≥ 0 and i ∈ S, by (5.2), calculate Vn(i);
Step 3. Select f∗

n(i) ∈ An(i) satisfying (5.3).
Remark 5.1. The above algorithm is similar to the one given by Alden and Smith

in [1]. However, the algorithm in [1] is restricted to the case of finite state space. In
addition, the proof of convergence of our algorithm is simpler and easier to follow.
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6. Application example. In this section we apply our results from previous
sections to the water regulation problem.
Example 6.1. Water is stored in a reservoir with the finite volume M and later

expended for irrigation in periods of drought. Suppose that sn is the yearly quantity of
water available to replenish the reservoir. The value of sn depends on the quantity of
rainfall, the character of flooding, the thawing of glaciers and so forth, and it is natural
to consider it as a random variable with distribution µn. Suppose that the random
influx of water sn is satisfied, that is, infn≥0 µn([M,∞)) > 0. At the beginning of the
period (n, n+1), having a stock in of water, we plan the quantity an of water to be used
during that period for irrigation. The control by expenditures of water seeks to achieve
the largest possible reward. We may suppose that the average harvest over the period n
is a function hn(i, a) of the amount i of the stock of water and of the amount a of water
released for irrigation. Then we obtain a model for nonstationary MDPs as follows:
The state space S here is the segment [0,M ]; the same segment serves as the action
space A; for each state i ∈ S the set of feasible actions An(i) consists of the points
a ∈ [0, i]; the reward function rn(i, a) is equal to hn(i, a); and the transition probability
Pn is defined as Pn(B|i, a) = µn({s ∈ S : min(i − a + s,M) ∈ B}) ∀B ∈ B(S) and
satisfies that for all i ∈ S and a ∈ An(i) and v ∈M(S),

Pn({M}|i, a) = µn({s ∈ S : s ≥M + a− i}) ≥ µn([M,∞));(6.1)

vn(i, a) :=

∫
S

v(y)Pn(dy|i, a) =

∫
S

v(h(i, a, s))µn(ds)

=

∫ M−i+a

0

v(i− a + s)µn(ds) + v(M)µn((M − i + a,∞)),(6.2)

where h(i, a, s) := min{i−a+s,M} ∀i ∈ S, a ∈ [0, i], and s ≥ 0. Suppose that hn(i, a)
is bounded upper semicontinuous on K := {(i, a) : i ∈ S, a ∈ A(i)}, and supn≥0 ‖rn‖ <
∞. Since h(i, a, s) is continuous in i and a, by [6, pp. 51–53], from (6.1) and (6.2) we
know that Assumption 3.2 holds for this model. Noticing that infn≥0 µn([M,∞)) > 0
and supn≥0 ‖rn‖ <∞, by Assumption 3.1 and (6.1) we can derive that Assumptions
4.1 and 4.2 are satisfied. Hence, by Theorem 4.6, it follows that a limiting average
optimal Markov policy exists for this water regulation problem.
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Abstract. This paper is concerned with the open problem of whether the BFGS method
with inexact line search converges globally when applied to nonconvex unconstrained optimization
problems. We propose a cautious BFGS update and prove that the method with either a Wolfe-
type or an Armijo-type line search converges globally if the function to be minimized has Lipschitz
continuous gradients.
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1. Introduction. The BFGS method is a well-known quasi-Newton method for
solving unconstrained optimization problems [5, 7]. Because of favorable numerical
experience and fast theoretical convergence, it has become a method of choice for
engineers and mathematicians who are interested in solving optimization problems.

Local convergence of the BFGS method has been well established [3, 4]. The
study on global convergence of the BFGS method has also made good progress. In
particular, for convex minimization problems, it has been shown that the iterates gen-
erated by the BFGS method are globally convergent if the exact line search or some
special inexact line search is used [1, 2, 6, 9, 16, 17, 18]. On the other hand, little is
known concerning global convergence of the BFGS method for nonconvex minimiza-
tion problems. Indeed, so far, no one has proved global convergence of the BFGS
method for nonconvex minimization problems or has given a counter example that
shows nonconvergence of the BFGS method. Whether the BFGS method converges
globally for a nonconvex function remains unanswered. This open problem has been
mentioned many times and is currently regarded as one of the most fundamental open
problems in the theory of quasi-Newton methods [8, 15].

Recently, the authors [12] proposed a modified BFGS method and established
its global convergence for nonconvex unconstrained optimization problems. The au-
thors [11] also proposed a globally convergent Gauss–Newton-based BFGS method
for symmetric nonlinear equations that contain unconstrained optimization problems
as a special case. The results obtained in [11] and [12] positively support the open
problem. However, the original question still remains unanswered.

The purpose of this paper is to study this problem further. We introduce a
cautious update in the BFGS method and prove that the method with a Wolfe-type
or an Armijo-type line search converges globally if the function to be minimized has
Lipschitz continuous gradients. Moreover, under appropriate conditions, we show that
the cautious update eventually reduces to the ordinary update.
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In the next section, we present the BFGS method with a cautious update. In
section 3, we prove global convergence and, under additional assumptions, superlinear
convergence of the algorithm. In section 4, we report some numerical results with the
algorithm.

We introduce some notation: For a real-valued function f : Rn → R, g(x) and
G(x) denote the gradient and Hessian matrix of f at x, respectively. For simplicity,
g(xk) and G(xk) are often denoted by gk and Gk, respectively. For a vector x ∈ Rn,
‖x‖ denotes its Euclidean norm.

2. Algorithm. Let f : Rn → R be continuously differentiable. Consider the
following unconstrained optimization problem:

min f(x), x ∈ Rn.(2.1)

The ordinary BFGS method for (2.1) generates a sequence {xk} by the iterative
scheme:

xk+1 = xk + λkpk, k = 0, 1, 2, . . . ,

where pk is the BFGS direction obtained by solving the linear equation

Bkp+ gk = 0.(2.2)

The matrix Bk is updated by the BFGS formula

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+
yky

T
k

yTk sk
,(2.3)

where sk = xk+1 − xk and yk = gk+1 − gk. A good property of formula (2.3) is that
Bk+1 inherits the positive definiteness of Bk as long as yTk sk > 0. The condition
yTk sk > 0 is guaranteed to hold if the stepsize λk is determined by the exact line
search

f(xk + λkpk) = min
λ>0

f(xk + λpk)(2.4)

or the Wolfe-type inexact line search{
f(xk + λkpk) ≤ f(xk) + σ1λkg(xk)

T pk,
g(xk + λkpk)

T pk ≥ σ2g(xk)
T pk,

(2.5)

where σ1 and σ2 are positive constants satisfying σ1 < σ2 < 1. In addition, if
λk = 1 satisfies (2.5), we take λk = 1. Global convergence of the BFGS method with
the line search (2.4) or (2.5) for convex minimization problems has been studied in
[1, 2, 6, 9, 16, 17, 18].

Another important inexact line search is the Armijo-type line search that finds a
λk that is the largest value in the set {ρi|i = 0, 1, . . .} such that the inequality

f(xk + λkpk) ≤ f(xk) + σλkg(xk)T pk(2.6)

is satisfied, where σ and ρ are constants such that σ, ρ ∈ (0, 1). The Armijo-type line
search does not ensure the condition yTk sk > 0 and hence Bk+1 is not necessarily posi-
tive definite even if Bk is positive definite. In order to ensure the positive definiteness
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of Bk+1, the condition yTk sk > 0 is sometimes used to decide whether or not Bk is
updated . More specifically, Bk+1 is determined by

Bk+1 =


 Bk − Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
if yTk sk > 0,

Bk otherwise.
(2.7)

Computationally, the condition yTk sk > 0 is often replaced by the condition yTk sk >
η, where η > 0 is a small constant. In this paper, we propose a cautious update
rule similar to the above and establish a global convergence theorem for nonconvex
problems. For the sake of motivation, we state a lemma due to Powell [17].

Lemma 2.1 (Powell [17]). If the BFGS method with the line search (2.5) is applied
to a continuously differentiable function f that is bounded below, and if there exists a
constant M > 0 such that the inequality

‖yk‖2
yTk sk

≤M(2.8)

holds for all k, then

lim inf
k→∞

‖g(xk)‖ = 0.(2.9)

Notice that if f is twice continuously differentiable and convex, then (2.8) always
holds whenever {xk} is bounded. Therefore, global convergence of the BFGS method
follows immediately from Lemma 2.1. However, in the case where f is nonconvex,
it seems difficult to guarantee (2.8). This is probably the main reason why global
convergence of the BFGS method has yet to be proved. In [12], the authors proposed
a modified BFGS method by using ỹk = C‖gk‖sk+(gk+1−gk) with a constant C > 0
instead of yk in the update formula (2.3). Global convergence of the modified BFGS
method in [12] is proved without the convexity assumption on f by means of Lemma
2.1 with a contradictory assumption that {‖gk‖} are bounded away from zero. We
further study global convergence of the BFGS method for (2.1). Instead of modifying
the method, we introduce a cautious update rule in the ordinary BFGS method. To
be precise, we determine Bk+1 by

Bk+1 =


 Bk − Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
if

yTk sk
‖sk‖2 ≥ ε‖gk‖

α,

Bk otherwise,
(2.10)

where ε and α are positive constants.
Now, we state the BFGS method with the cautious update.
Algorithm 1.

Step 0 Choose an initial point x0 ∈ Rn and an initial symmetric and positive definite
matrix B0 ∈ Rn×n. Choose constants 0 < σ1 < σ2 < 1, α > 0, and ε > 0. Let k := 0.
Step 1 Solve the linear equation (2.2) to get pk.
Step 2 Determine a stepsize λk > 0 by (2.5) or (2.6).
Step 3 Let the next iterate be xk+1 := xk + λkpk.
Step 4 Determine Bk+1 by (2.10).
Step 5 Let k := k + 1 and go to Step 1.

Remark. It is not difficult to see from (2.10) that the matrix Bk generated by
Algorithm 1 is symmetric and positive definite for all k, which in turn implies that
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{f(xk)} is a decreasing sequence whichever line search (2.5) or (2.6) is used. Moreover,
we have from (2.5) or (2.6)

−
∞∑
k=0

gTk sk <∞(2.11)

if f is bounded below. In particular, we have

− lim
k→∞

λkg
T
k pk = − lim

k→∞
gTk sk = 0.(2.12)

3. Global convergence. In this section, we prove global convergence of Algo-
rithm 1 under the following assumption, which we assume throughout this section.

Assumption A. The level set

Ω = {x ∈ Rn | f(x) ≤ f(x0)}
is bounded, the function f is continuously differentiable on Ω, and there exists a
constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Ω.(3.1)

Since {f(xk)} is a decreasing sequence, it is clear that the sequence {xk} generated
by Algorithm 1 is contained in Ω.

For the sake of convenience, we define the index set

K̄ =
{
i
∣∣∣ yTi si‖si‖2

≥ ε‖gi‖α
}
.(3.2)

By means of K̄, we may rewrite (2.10) as

Bk+1 =


 Bk − Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
if k ∈ K̄,

Bk otherwise.
(3.3)

Now we proceed to establishing global convergence of Algorithm 1. First, we show
the following convergence theorem.

Theorem 3.1. Let {xk} be generated by Algorithm 1. If there are positive con-
stants β1, β2, β3 > 0 such that the relations

‖Bksk‖ ≤ β1‖sk‖, β2‖sk‖2 ≤ sTkBksk ≤ β3‖sk‖2(3.4)

hold for infinitely many k, then we have

lim inf
k→∞

‖g(xk)‖ = 0.(3.5)

Proof. Since sk = λkpk, it is clear that (3.4) holds true if sk is replaced by pk.
Let K be the set of indices k such that (3.4) hold. It is not difficult to deduce from
(2.2) and (3.4) that for each k ∈ K

β2‖pk‖ ≤ ‖g(xk)‖ ≤ β1‖pk‖.(3.6)

Consider the case where the Armijo-type line search (2.6) is used with the back-
tracking parameter ρ. If λk = 1, then we have

f(xk + ρ
−1λkpk)− f(xk) > σρ−1λkg(xk)

T pk.(3.7)
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By the mean-value theorem, there is a θk ∈ (0, 1) such that

f(xk + ρ
−1λkpk)− f(xk)

= ρ−1λkg(xk + θkρ
−1λkpk)

T pk

= ρ−1λkg(xk)
T pk + ρ

−1λk(g(xk + θkρ
−1λkpk)− g(xk))T pk

≤ ρ−1λkg(xk)
T pk + Lρ

−2λ2
k‖pk‖2,(3.8)

where L > 0 is the Lipschitz constant of g. Substituting (3.8) into (3.7), we get for
any k ∈ K

λk ≥ −(1− σ)ρg(xk)
T pk

L‖pk‖2 =
(1− σ)ρpTkBkpk

L‖pk‖2 ≥ (1− σ)β2L
−1ρ.

This means that for each k ∈ K, we have

λk ≥ min{1, (1− σ)β2L
−1ρ} > 0.(3.9)

Consider the case where the Wolfe-type line search (2.5) is used. It follows from
the second inequality of (2.5) and the Lipschitz continuity of g that

Lλk‖pk‖2 ≥ (g(xk + λkpk)− g(xk))T pk ≥ −(1− σ2)g(xk)
T pk.

This implies

λk ≥ −(1− σ2)g(xk)
T pk

L‖pk‖2 =
(1− σ2)p

T
kBkpk

L‖pk‖2 ≥ (1− σ2)β2L
−1.(3.10)

The inequalities (3.10) together with (3.9) show that {λk}k∈K is bounded away from
zero whenever the line search (2.5) or (2.6) is used. It then follows from (2.2) and
(2.12) that pTkBkpk = −g(xk)T pk → 0 as k → ∞ with k ∈ K. This together with
(3.4) and (3.6) implies (3.5).

Theorem 3.1 indicates that to prove global convergence of Algorithm 1, it suffices
to show that there are positive constants β1, β2, β3 such that (3.4) holds for infinitely
many k. To this end, we quote the following useful result [1, Theorem 2.1].

Lemma 3.2. Let Bk be updated by the BFGS formula (2.3). Suppose B0 is
symmetric and positive definite and there are positive constants m ≤M such that for
all k ≥ 0, yk and sk satisfy

yTk sk
‖sk‖2 ≥ m,

‖yk‖2
yTk sk

≤M.(3.11)

Then there exist constants β1, β2, β3 > 0 such that, for any positive integer t, (3.4)
holds for at least �t/2� values of k ∈ {1, . . . , t}.

By using Lemma 3.2 and Theorem 3.1, we can establish the following global
convergence theorem for Algorithm 1.

Theorem 3.3. Let Assumption A hold and {xk} be generated by Algorithm 1.
Then (3.5) holds.

Proof. By Theorem 3.1, it suffices to show that there are infinitely many indices
k satisfying (3.4).

If K̄ is finite, then Bk remains constant after a finite number of iterations. Since
Bk is symmetric and positive definite for each k, it is obvious that there are constants
β1, β2, β2 > 0 such that (3.4) holds for all k sufficiently large.
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Consider the case where K̄ is infinite. For the sake of contradiction, we suppose
that (3.5) is not true. That is, there is a constant δ > 0 such that ‖gk‖ ≥ δ for all k.
It then follows from (3.2) that yTk sk ≥ εδα‖sk‖2 holds for all k ∈ K̄. This together
with (3.1) implies that for any k ∈ K̄, we have

‖yk‖2
yTk sk

≤ L2

εδα
.

Applying Lemma 3.2 to the matrix subsequence {Bk}k∈K̄ , it is clear that there are
constants β1, β2, β3 > 0 such that (3.4) holds for infinitely many k. The proof is then
complete.

Theorem 3.3 shows that there exists a subsequence of {xk} converging to a sta-
tionary point x∗ of (2.1). If f is convex, then x∗ is a global minimum of f . Since
the sequence {f(xk)} converges, it is clear that every accumulation point of {xk} is a
global optimal solution of (2.1). That is, we have the following corollary.

Corollary 3.4. Let Assumption A hold and {xk} be generated by Algorithm 1.
If f is convex, then the whole sequence {gk} converges to zero. Consequently, every
accumulation point of {xk} is a global optimal solution of (2.1).

In the case where f is nonconvex, Corollary 3.4 is not guaranteed. The follow-
ing theorem shows that if some additional conditions are assumed, then the whole
sequence {xk} converges to a local optimal solution of (2.1).

Theorem 3.5. Let f be twice continuously differentiable. Suppose that sk → 0.
If there exists an accumulation point x∗ of {xk} at which g(x∗) = 0 and G(x∗) is
positive definite, then the whole sequence {xk} converges to x∗. If in addition, G is
Hölder continuous and the parameters in the line searches satisfy σ, σ1 ∈ (0, 1/2),
then the convergence rate is superlinear.

Proof. The assumptions particularly imply that x∗ is a strict local optimal solution
of (2.1). Since {f(xk)} converges, it follows that x∗ is an isolated accumulation point
of {xk}. Then, by the assumption that {sk} converges to zero, the whole sequence
{xk} converges to x∗. Hence {gk} tends to zero and, by the positive definiteness of
G(x∗), the matrices

Ak
	
=

∫ 1

0

G(xk + τsk)dτ

are uniformly positive definite for all k large enough. Moreover, by the mean-value
theorem, we have yk = Aksk. Therefore, there is a constant m̄ > 0 such that yTk sk ≥
m̄‖sk‖2, which implies that when k is sufficiently large, the condition yTk sk/‖sk‖2 ≥
ε‖gk‖α is always satisfied. This means that Algorithm 1 reduces to the ordinary BFGS
method when k is sufficiently large. The superlinear convergence of Algorithm 1 then
follows from the related theory in [1, 2, 17].

4. Numerical experiments. This section reports some numerical experiments
with Algorithm 1. We tested the algorithm on some problems [14] taken from MAT-
LAB with given initial points. These problems can be obtained at the website
ftp://ftp.mathworks.com/pub/contrib/v4/optim/uncprobs/. We applied Algorithm
1, which will be called the CBFGS method (C stands for cautious), with the Armijo-
type or the Wolfe-type line search or polynomial search, to these problems and com-
pared it with the ordinary BFGS method. We used the condition ‖g(xk)‖ ≤ 10−6

as the stopping criterion. For each problem, we chose the initial matrix B0 = I,
i.e., the unit matrix. For each problem, the parameters common to the two methods
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were set identically. Specifically, we set σ1 = 0.1 and σ2 = 0.9 in the Wolfe-type line
search (2.5), and σ = 0.01 in the Armijo-type line search (2.6). We let ε = 10−6

in the cautious update (2.10). We let ρ = 0.5 in the Armijo-type line search. Due
to roundoff error, sometimes the directions generated by the algorithms may be not
descent. We then use the steepest descent direction instead of the related BFGS (or
CBFGS) direction if gkpk > −10−14.

As to the parameter α in the cautious update (2.10), we first let α = 0.01 if
‖gk‖ ≥ 1, and α = 3 if ‖gk‖ < 1. We call this choice Rule 1. Rule 1 is intended to
make the cautious update closer to the original BFGS update. It is not difficult to
see that the convergence theorems in section 3 remain true if we choose α according
to this rule. Indeed, even if α varies in an interval [µ1, µ2] with µ1 > 0, all the
theorems in section 3 hold true. More generally, as an anonymous referee pointed
out, the convergence theorems in section 3 remain true if ε‖gk‖α is replaced by a
general forcing function φ(‖gk‖), which is strictly monotone with φ(0) = 0. We also
tested the cautious update (2.10) with α = 1 always, which we call Rule 2.

Tables 1, 2, and 3 show the computational results, where the columns have the
following meanings:

Problem: the name of the test problem in MATLAB;
Dim: the dimension of the problem;
CBFGS1: the number of iterations for the cautious BFGS method with Rule 1;
CBFGS2: the number of iterations for the cautious BFGS method with Rule 2;
BFGS: the number of iterations for the BFGS method;
L-BFGS: the number of iterations for the L-BFGS method [13];
off: the number of k’s such that yTk sk/‖sk‖2 < ε‖gk‖α (CBFGS),

the number of k’s such that yTk sk/‖sk‖2 < ε (BFGS with Armijo search);
SD: the number of iterations for which the steepest descent direction used;
fnum: the number of function evaluations;
gnum: the number of gradient evaluations.

We first tested the CBFGS method and the BFGS method through a MATLAB
code we ourselves wrote. The results are given in Tables 1 and 2. Tables 1 and 2 show
the performance of the CBFGS method and the BFGS method with the Armijo-type
line search and the Wolfe-type line search, respectively. From the results, we see
that the CBFGS method is compatible with the ordinary BFGS method. Moreover,
for the problem “meyer,” the BFGS method did not terminate regularly, while the
CBFGS method did. However, this does not mean that the ordinary BFGS method
with the Wolfe search fails to converge when applied to solve this problem. If we
adjust the parameters appropriately, then starting from the same initial point, the
ordinary BFGS method with the Wolfe search also converges to a station point of this
“meyer.”

We then edited a MATLAB code for the CBFGS method with a polynomial line
search based on a standard low storage BFGS code called L-BFGS given by Kelley
[13] (http://www.siam.org/catalog/mcc12/fr18.htm). The test results are given in
Table 3. Table 3 shows that for the test problems, the CBFGS method converges to
a stationary point of the test problem if the L-BFGS method does.

We observed that the condition in the cautious update was usually satisfied, which
suggests that the ordinary BFGS method is generally “cautious,” and hence it seldom
fails in practice. The results also show that the choice of the parameter α affects
the performance of the method. Moreover, if we choose it appropriately, then the
condition in the cautious update is almost always satisfied and the CBFGS method
essentially reduces to the ordinary BFGS method. However, when it was violated too



ON THE GLOBAL CONVERGENCE OF THE BFGS METHOD 1061

Table 1
Test results for CBFGS/BFGS methods with Armijo search.

CBFGS1 CBFGS2 BFGS
Problem Dim Iter off SD fnum Iter off SD fnum Iter off SD fnum
badscb 2 42 0 1 91 - - - - 42 0 1 91
badscp 2 193 7 2 332 277 107 3 452 474 259 34 1335
band 10 - - - - - - - - - - - -
bard 3 23 0 0 34 23 0 0 34 26 5 0 40
bd 4 - - - - - - - - - - - -
beale 2 15 0 0 24 15 0 0 24 15 0 0 24
biggs 6 42 2 0 52 42 0 0 52 42 2 0 52
box 3 30 0 0 40 30 0 0 40 30 0 0 40
bv 10 18 0 0 39 18 0 0 39 18 0 0 38
froth 2 10 0 0 22 10 0 0 22 13 0 0 51
gauss 3 4 0 0 7 4 0 0 7 4 0 0 7
gulf 3 1 0 0 4 1 0 0 4 1 0 0 2
helix 3 27 0 0 54 27 0 0 54 31 0 0 59
ie 10 11 0 0 14 11 0 0 14 10 0 0 12
ie 100 12 0 0 15 12 0 0 15 12 0 0 14
jensam 2 12 0 0 24 12 0 0 24 12 0 0 24
kowosb 4 28 0 0 32 28 0 0 32 29 0 0 32
lin 10 1 0 0 3 1 0 0 3 1 0 0 3
lin 100 1 0 0 3 1 0 0 3 1 0 0 3
lin1 10 2 0 0 21 2 0 0 21 2 0 0 21
lin0 10 2 0 0 19 2 0 0 19 2 0 0 19
meyer 3 6 0 2 57 2 0 0 19 6 0 2 57
osb1 5 50 0 2 121 32 28 29 191 50 0 2 121
osb2 11 53 0 0 80 53 0 0 80 58 0 0 84
pen1 10 152 3 0 215 152 3 0 215 154 3 0 216
pen1 100 279 1 0 406 279 1 0 406 299 2 0 441
pen2 10 917 0 0 1338 917 0 0 1338 571 0 0 851
rose 2 34 0 0 54 34 0 0 54 34 0 0 54
rosex 100 407 0 1 1148 407 0 0 1148 405 0 1 1134
sing 4 29 0 0 52 29 0 0 52 29 0 0 52
singx 400 191 0 0 633 191 0 0 633 182 0 0 590
trid 10 19 0 0 74 19 0 0 74 42 1 0 94
trid 100 112 0 0 637 121 0 0 637 145 0 0 650
trig 10 26 0 0 27 26 0 0 27 26 0 0 27
trig 100 48 0 0 51 48 0 0 51 48 0 0 51
vardim 10 13 0 0 35 13 0 0 35 13 0 0 35
watson 12 58 0 0 87 58 0 0 87 58 0 0 87
watson 20 55 0 0 91 55 0 0 91 55 0 0 91
wood 4 52 0 0 97 52 0 0 97 28 0 1 73

often, the CBFGS method’s performance was worse than the BFGS method, even
failing to converge.

5. Conclusion. We have proposed a cautious BFGS update and shown that
the method converges globally with the Wolfe-type line search or the Armijo-type
line search. The method retains the scale-invariance property of the original BFGS
method, except for a minor scale dependence of the skipping condition in the cautious
update (2.10). Moreover, the cautious update makes Bk+1 inherit the positive defi-
niteness of Bk no matter what line search is used. The established global convergence
theorems do not rely on the convexity assumption on the objective function. The
reported numerical results show that the BFGS method with the proposed cautious
update is comparable to the ordinary BFGS method. Moreover, the conditions used
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Table 2
Test results for CBFGS/BFGS methods with Wolfe search.

CBFGS1 CBFGS2 BFGS
Problem Dim Iter(off, SD) fnum gnum Iter(off, SD) fnum gnum Iter(SD ) fnum gnum
badscb 2 5 (5, 0) 34 12 - - - 26(1) 114 175
badscp 2 319(199, 8) 1391 2196 180(20, 7) 782 1223 174(10) 587 827
band 10 - - - - - - - - -
bard 3 14(0, 0) 46 47 14(0, 0) 44 67 14(0) 46 47
bd 4 - - - - - - - - -
beale 2 14(0, 0) 38 55 14(0, 0) 38 55 14(0) 38 55
biggs 6 30(0, 0) 97 159 30(0, 0) 97 159 30(0) 97 159
box 3 16(1, 0) 68 111 20(0, 0) 75 123 20(0) 75 123
bv 10 15(0, 0) 42 54 15(0, 0) 42 54 15(0) 42 54
froth 2 11(2, 0) 27 34 8(0, 0) 24 31 8(0) 24 31
gauss 3 4(0, 0) 13 19 4(0, 0) 13 19 4(0) 13 19
gulf 3 1(0, 0) 2 2 1(0, 0) 2 2 1(0) 2 2
helix 3 30(2, 0) 103 147 28(0, 0) 94 137 28(0) 94 137
ie 10 11(0, 0) 17 20 11(0, 0) 17 20 11(0) 17 20
ie 100 13(0, 0) 19 22 13(0, 0) 19 22 13(0) 19 22
jensam 2 10(0, 0) 30 41 10(0, 0) 30 41 10(0) 30 41
kowosb 4 21(0, 0) 74 122 21(0, 0) 74 122 21(0) 74 122
lin 10 2(0, 0) 9 13 2(0, 0) 9 13 2(0) 9 13
lin 100 2(0, 0) 9 13 2(0, 0) 9 13 2(0) 9 13
lin1 10 5(3, 0) 46 38 2(0, 0) 13 11 2(0) 13 11
lin0 10 5(3, 0) 26 6 2(0, 0) 8 3 2(0) 8 3
meyer 3 11(9, 0) 72 76 - - - - - -
osb1 5 44(0,2) 157 221 44(0,2) 157 221 44(0,2) 157 221
osb2 11 52(0, 0) 153 231 52(0, 0) 153 231 52(0) 153 231
pen1 10 104(2, 0) 374 597 34(0, 0) 152 253 34(0) 152 253
pen1 100 36(4, 0) 135 185 70(0, 0) 333 553 70(0) 333 553
pen2 10 852(0, 0) 2594 4135 852(0, 0) 2594 4135 852(0) 2594 4135
rose 2 28(0, 0) 93 141 28(0, 0) 93 141 28(0) 93 141
rosex 100 322(1, 1) 1348 1843 333(0, 2) 1409 1934 333(2) 1409 1934
sing 4 35(0, 0) 134 216 35(0, 0) 134 216 35(0) 134 216
singx 400 186(4, 0) 674 833 196(0, 0) 671 817 196(0) 671 817
trid 10 20(0, 0) 57 57 20(0, 0) 57 57 20(0) 57 57
trid 100 95(0, 0) 546 622 95(0, 0) 546 622 95(0) 546 622
trig 10 24(0, 0) 58 91 24(0, 0) 58 91 24(0) 58 91
trig 100 46(0, 0) 117 185 46(0, 0) 177 185 46(0) 117 185
vardim 10 6(2, 0) 30 25 6(0, 0) 42 65 6(0) 42 65
watson 12 41(0, 0) 172 280 41(0, 0) 172 280 41(0) 172 280
watson 20 47 (0, 0) 210 348 47(0, 0) 210 348 47(0) 210 348
wood 4 48(1, 0) 156 225 49(0, 0) 149 220 49(0) 149 220

in the cautious rule are generally satisfied and hence the cautious update essentially
reduces to the ordinary update in most cases. This suggests that the ordinary BFGS
method is generally “cautious,” and hence the BFGS method seldom fails in practice.
We hope that the results established in this paper contribute toward resolving the
fundamental open problem of whether the BFGS method converges for nonconvex
unconstrained optimization problems.

Acknowledgments. The authors would like to thank two anonymous referees for
their helpful comments, which have made the paper clearer and more comprehensive
than the earlier version.
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Table 3
Test results for CBFGS/L-BFGS methods with polynomial search.

CBFGS1 CBFGS2 BFGS
Problem Dim Iter off fnum Iter off fnum Iter off fnum
badscb 2 - - - - - - - - -
badscp 2 - - - - - - - - -
band 10 - - - - - - - - -
bard 3 28 1 64 28 1 64 28 1 64
bd 4 491 3 1021 491 3 1021 - - -
beale 2 19 0 42 19 0 42 19 0 42
biggs 6 52 1 116 52 1 116 52 1 116
box 3 30 0 82 38 0 82 38 0 82
bv 10 17 0 42 17 0 42 17 0 42
froth 2 9 0 23 9 0 23 9 0 23
gauss 3 3 0 8 3 0 8 3 0 8
gulf 3 1 0 3 1 0 3 1 0 3
helix 3 37 0 83 37 0 83 37 0 83
ie 10 9 0 21 9 0 21 9 0 21
ie 100 10 0 23 10 0 23 10 0 23
jensam 2 12 0 31 12 0 31 12 0 31
kowosb 4 28 0 60 28 0 60 28 0 60
lin 10 1 0 4 1 0 4 1 0 4
lin 100 1 0 4 1 0 4 1 0 4
lin1 10 - - - - - - - - -
lin0 10 743 4 1501 743 4 1501 - - -
meyer 3 - - - - - - - - -
osb1 5 - - - - - - - - -
osb2 11 58 0 136 58 0 136 72 1 174
pen1 10 188 3 433 188 3 433 199 7 454
pen1 100 796 5 1639 796 5 1639 372 7 773
pen2 10 305 2 721 305 2 721 258 5 592
rose 2 39 0 91 39 0 91 39 0 91
rosex 100 39 0 91 39 0 91 39 0 91
sing 4 50 0 110 50 0 110 50 0 110
singx 400 55 0 116 55 0 116 69 1 148
trid 10 18 0 60 18 0 60 18 0 60
trid 100 127 0 467 127 0 467 131 2 526
trig 10 26 0 53 26 0 53 26 0 53
trig 100 49 0 103 49 0 103 49 0 103
vardim 10 407 2 833 407 2 833 176 3 377
watson 12 61 0 137 61 0 137 87 1 197
watson 20 58 0 133 58 0 133 89 1 204
wood 4 30 0 75 30 0 75 30 0 75
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AN ALTERNATIVE METHOD TO CROSSING MINIMIZATION
ON HIERARCHICAL GRAPHS∗
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Abstract. A common method for drawing directed graphs is, as a first step, to partition the
vertices into a set of k levels and then, as a second step, to permute the vertices within the levels
such that the number of crossings is minimized. We suggest an alternative method for the second
step, namely, removing the minimal number of edges such that the resulting graph is k-level planar.
For the final diagram the removed edges are reinserted into a k-level planar drawing. Hence, instead
of considering the k-level crossing minimization problem, we suggest solving the k-level planarization
problem. In this paper we address the case k = 2. First, we give a motivation for our approach.
Then, we address the problem of extracting a 2-level planar subgraph of maximum weight in a given
2-level graph. This problem is NP-hard. Based on a characterization of 2-level planar graphs, we
give an integer linear programming formulation for the 2-level planarization problem. Moreover, we
define and investigate the polytope 2LPS(G) associated with the set of all 2-level planar subgraphs
of a given 2-level graph G. We will see that this polytope has full dimension and that the inequalities
occurring in the integer linear description are facet-defining for 2LPS(G). The inequalities in the
integer linear programming formulation can be separated in polynomial time; hence they can be used
efficiently in a branch-and-cut method for solving practical instances of the 2-level planarization
problem. Furthermore, we derive new inequalities that substantially improve the quality of the
obtained solution. The separation problem for all the new classes of inequalities can be solved in
polynomial time. We report on extensive computational results.

Key words. 2-level graphs, 2-level planarization, graph drawing, integer linear programming,
polyhedral combinatorics, branch-and-cut

AMS subject classifications. 90C57, 68R10, 05C10, 05C85
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1. Introduction. Directed graphs are widely used to represent structures in
many fields such as economics, social sciences, and the mathematical and computer
sciences. A good visualization of structural information allows the reader to focus on
the informational content of the diagram.

A common method for drawing directed graphs was introduced by Sugiyama,
Tagawa, and Toda [32] and Carpano [1]. In the first step, the vertices are partitioned
into a set of k levels and, in the second step, the vertices within each level are permuted
in such a way that the number of crossings is small.

From now on let us assume that we are given a k-level graph (k-level hierarchy),
i.e., a graph G = (V,E) = (V1, V2, . . . , Vk, E) with vertex sets V1, . . . , Vk, V = V1 ∪
V2∪. . .∪Vk, Vi∩Vj = ∅ for i �= j, and an edge set E connecting vertices in levels Vi and
Vi+1 (1 ≤ i ≤ k− 1). Vi is called the ith level. A k-level graph is drawn in such a way
that the vertices in each level Vi are drawn on a horizontal line Li with y-coordinate
k − i, and the edges are drawn as straight lines. Contrary to the definitions of a
hierarchy in [32], [14], we consider undirected edges, since their direction is irrelevant

∗Received by the editors February 11, 1998; accepted for publication (in revised form) February
16, 1999; published electronically May 10, 2001. An extended abstract of this paper was published
in Proceedings of Graph Drawing ’96, Lecture Notes in Comput. Sci. 1190, Springer-Verlag, Berlin,
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by ESPRIT LTR Project 20244 – ALCOM-IT. This work was carried out while the author was at
the Max-Planck-Institut für Informatik, Saarbrücken, Germany.
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E186, A-1040 Wien, Austria (mutzel@ads.tuwien.ac.at).
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Fig. 1. A k-level graph arising in practice [9].

for the problem considered here. Essentially, a k-level hierarchy is a k-partite graph
that is drawn in a special way. Figure 1 shows a k-level graph.

Even for 2-level graphs the straight line crossing minimization problem is NP-
hard. Exact algorithms based on branch and bound have been suggested by various
authors (see, e.g., [35] and [21]). For k ≥ 2, a vast amount of heuristics has been
published in the literature (see, e.g., [37, 32, 4, 26, 7] and [3]).

We suggest an alternative approach to crossing minimization, namely, to remove
a minimal set of edges such that the remaining k-level graph can be drawn without
edge crossings. In the final drawing, the removed edges are reinserted. Since the
insertion of each edge may produce many crossings, the final drawing may be far from
an edge-crossing minimal drawing.

Figure 2(a) shows a drawing of a graph obtained by 2-level planarization, whereas
Figure 2(b) shows the same graph drawn with the minimal number of edge crossings
(using the exact algorithm given in [21]). Although the drawing in Figure 2(a) has 34
crossings, that is, 41% more crossings than the drawing in Figure 2(b) (24 crossings),
the reader will not recognize this fact. Indeed, anecdotal evidence suggests that the
great majority of computer scientists are fooled by Figure 2 and see more crossings in
Figure 2(b) than in Figure 2(a). This encourages us to study the k-level planarization
problem.

Another motivation for studying k-level planarization arises from the fact that
the k-level crossing minimization problem is a very hard problem that cannot be
solved exactly or approximately (with some reasonable solution guarantees) in short
computation time. Our experiments in [20, 21] showed that for sparse graphs, such as
they occur in graph drawing, the heuristic methods used in practice are far from the
optimum. We believe that the methods of polyhedral combinatorics that have been
successfully applied for the maximum planar subgraph problem [18, 19, 27]—and
for the straight line crossing minimization problem on two levels, where one level is
fixed [21]—may be helpful for obtaining better approximation algorithms in practice.
Recent work in this direction supports this conjecture [15, 13]. However, much more
effort is needed to obtain efficient algorithms that can approach the k-level crossing
minimization problem for practical instances.
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(a)

4 6 78 5 15 14 3 2 13

2321 29 28 25 26 27 20

1 1112 9

1722 30

(b)

4 6 73 5 8 14 2 12 15

2321 29 28 26 25 27 20

1 119 13

1722 30

Fig. 2. A graph (a) drawn using k-planarization and (b) drawn with the minimal number of
crossings computed by the algorithm in [21].

The k-level planarization problem, however, may be easier to attack. We build
our hope on the fact that there is a fast polynomial time algorithm for recognizing
k-level planar graphs (see [14, 16, 17] and [2]). Moreover, our computational results
on 2-level graphs addressed in this paper support our conjecture. Additionally, there
are many bipartite graphs out there, for which a nice 2-level drawing is useful.

In addition to the application in automatic graph drawing, the 2-level planariza-
tion problem comes up in computational biology. In DNA mapping, small fragments
of DNA have to be ordered according to the given overlap data and some additional
information. Waterman and Griggs [38] suggested combining the information derived
by a digest mapping experiment with the information on the overlap between the DNA
fragments. If the overlap data are correct, the maps can be represented as a 2-level
planar graph. But, in practice, the overlap data may contain errors. Hence, Water-
man and Griggs suggested solving the 2-level planarization problem (see also [36]).
Furthermore, the 2-level planarization problem arises in global routing for row-based
VLSI layout (see [25, 34]).

Section 2 reports on previously known results of the 2-level planarization problem.
One of the characterizations of 2-level planar graphs leads directly to an integer linear
programming formulation for the 2-level planarization problem. In section 3 we study
the polytope associated with the set of all possible 2-level planar subgraphs of a given
2-level graph. From this we obtain new classes of inequalities that tighten the associ-
ated LP-relaxation. In order to get practical use out of these inequalities, we have to
solve the “separation problem.” This problem will be addressed in section 4, where
we also discuss a branch-and-cut algorithm based on those results. Computational
results with a branch-and-cut algorithm are presented in section 5.

2. Characterizing 2-level planar graphs. A 2-level graph is a graph G =
(L,U,E) with vertex sets L and U , called lower and upper level, and an edge set E
connecting vertices in L with vertices in U . There are no edges between two vertices
in the same level. A 2-level planar graph G = (L,U,E) is a graph that can be drawn
in such a way that all the vertices in L appear on a line (the lower line), the vertices in
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(a) (b)

Fig. 3. (a) A planar bipartite graph that is (b) not 2-level planar.

(a) (b)

(c)

v1

v3v2
v4

v6v5

v7
v8

v1

v2

v3

v4

v5

v6

v7

v8

Fig. 4. (a) Double claw. (b) Caterpillar. (c) Caterpillars can be embedded on 2-levels without
any crossings.

U appear on the upper line, and the edges are drawn as straight lines without crossing
each other. The difference between a planar bipartite graph and a 2-level planar graph
is obvious. For example, the graph shown in Figure 3 is a planar bipartite graph, but
not a 2-level planar graph.

Given a 2-level graph G = (L,U,E) with weights we > 0 on the edges, the 2-level
planarization problem (or maximum 2-level planar subgraph problem) is to extract a
2-level planar subgraph G′ = (L,U, F ), F ⊆ E of maximum weight; i.e., the sum∑
e∈F we is maximum.
To our knowledge, only the unweighted (we = 1 for all e ∈ E) 2-level planariza-

tion problem has been considered in the literature so far. It was first independently
mentioned in [12, 33] and [5]. Two of these authors introduced the problem in the
context of graph drawing. All of them have given the following nice characterization
of 2-level planar graphs based on forbidden subgraphs.

We will call the graph shown in Figure 4(a) a double claw. A caterpillar is a
connected graph G = (V,E) having edges on its backbone (v1, v2, . . . , vl) and single
edges (vi, w), w ∈ V \ {v1, v2, . . . , vl} (see Figure 4(b)).

Theorem 2.1 (see [12, 33, 5]). A 2-level graph is 2-level planar if and only if it
contains no cycle and no double claw.

Proof. A graph without any cycles is a set of trees. A tree without any double
claws is a caterpillar. Caterpillars can be embedded on 2-levels without any crossings
(see Figure 4(c)). On the other hand, a 2-level planar graph can contain neither a
cycle nor a double claw.
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5 0 76 1 9 8 2 4 3

1218 14 19 16 17 10 15 11 13

Fig. 5. An acyclic 2-level graph for which the algorithm suggested in [33] leads to a nonoptimal
solution.

Note that this characterization is not correct for general nonbipartite graphs. For
example, a triangle contains a cycle and can be drawn crossing-free with its vertices
on two lines; however, it does not have a 2-level drawing, because vertices in the same
level are not allowed to be connected.

The following alternative characterization leading to a simple linear time algo-
rithm was given in [33]. It is useful in our branch-and-cut algorithm.

Theorem 2.2 (see [33]). A 2-level graph G is 2-level planar if and only if the
graph G∗, that is, the remainder of G after deleting all vertices of degree one, is acyclic
and contains no vertices of degree at least three.

However, the 2-level planarization problem is NP-hard even in the unweighted
case and when each vertex in U has degree three and each vertex in L has degree two
(by reduction from a Hamiltonian path problem) [6]. Therefore, Eades and Whitesides
[6] suggested a heuristic based on the search for a longest path which will be used as
a “backbone” of the caterpillar to be constructed.

Tomii, Kambayashi, and Shuzo [33] suggest an algorithm for acyclic 2-level graphs.
The algorithm can be seen as an adaptive greedy algorithm. In each step, the edges
are labeled according to some rule and the edge with the highest label is removed.
However, this algorithm does not lead to the optimal solution as shown in Figure 5.
The algorithm would remove the edge (0, 14) in a first step. The remaining graph still
contains two edge-disjoint double claws that have to be destroyed by removing two
more edges, whereas the optimal solution would be to remove the two edges (0, 11)
and (1, 14).

Recently, Shahrokhi et al. [31] presented a linear time algorithm for the 2-level
planarization problem on 2-level acyclic graphs. For double claw free graphs, the
2-level planarization problem is equivalent to the maximum forest subgraph problem
that can be solved via a simple greedy algorithm.

3. Polyhedral studies on the 2-level planarization problem. Based on
the characterization of 2-level planar graphs in terms of forbidden subgraphs (see
Theorem 2.1), it is straightforward to derive an integer linear programming formula-
tion for the maximum 2-level planar subgraph problem. We introduce variables xe for
all edges e ∈ E of the given 2-level graph G = (L,U,E). We use the following nota-
tion: vectors x are column vectors, and their transposed vectors xT are row vectors.
If wT = (w1, w2, . . . , wm) and xT = (x1, x2, . . . , xm), then wTx =

∑m
i=1 wixi. We use

the notation x(C) =
∑
e∈C xe for C ⊆ E.

For any set P ⊆ E of edges we define an incidence vector χP ∈ R|E| with the
ith component χP (ei) getting value 1 if ei ∈ P , and 0 otherwise. Any vector xT =
(xe1 , xe2 , . . . , xe|E|) that is the incidence vector of a 2-level planar graph satisfies the
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following inequalities:

0 ≤ xe ≤ 1 for all e ∈ E,(1)

x(C) ≤ |C| − 1 for all cycles C ⊆ E,(2)

x(T ) ≤ |T | − 1 for all double claws T ⊆ E,(3)

xe integral for all e ∈ E,(4)

and vice versa: any vector xT = (xe1 , xe2 , . . . , xe|E|) satisfying inequalities (1), (2),
(3), and (4) corresponds to a 2-level planar subgraph of G. Hence, solving the integer
linear system {max wTx| constraints (1)–(4) hold for x} will give us the solution of
the maximum 2-level planar subgraph problem for a given graph G = (L,U,E) with
weights we on the edges e ∈ E.

Since solving integer linear programs is, in general, NP-hard, we will have to
drop the integrality constraints (4), which gives us a relaxation of the original integer
linear programming formulation. In polyhedral combinatorics, we try to substitute the
missing integrality constraints with additional inequalities. An excellent introduction
to the theory of polyhedral combinatorics is given by Pulleyblank in [30].

We define the polytope 2LPS(G) for a given 2-level graph G = (L,U,E) as the
convex hull over all incidence vectors of 2-level planar subgraphs of G. The vertices of
this polytope correspond exactly to the 2-level planar subgraphs of G and vice versa.
If we can describe the polytope 2LPS(G) as the solution set of linear inequalities, we
can optimize any given cost function over the set of all 2-level planar subgraphs of G.
Of course, because of the NP-hardness of the problem we cannot expect to find such
a description, but in practice a partial description may also suffice.

In a nonredundant description only facet-defining inequalities are present. An
inequality is said to be facet-defining for a polytope P if it defines a face of maximal
dimension of P. An inequality cTx ≤ c0 is said to define a face of P if cT y ≤ c0 for
all points y ∈ P and if there is at least one point y′ in P with cT y′ = c0.

So, our task is to find facet-defining inequalities for the polytope 2LPS(G) for a
given 2-level graph G. We will first investigate the inequalities given in the integer
linear programming formulation. We will see that the linear inequalities (1) and (3)
are facet-defining, but only a part of the inequalities (2) is facet-defining. But first
we will determine the dimension of 2LPS(G).

Let us consider the set S of all 2-level planar subgraphs of G. The set S is
a monotone system (also called independence system), since the empty subgraph is
2-level planar and any subgraph of a 2-level planar graph is also 2-level planar. Hence,
we easily get the following theorem using the theory for monotone systems.

Theorem 3.1. Let G = (L,U,E) be a graph on two levels. The dimension of
2LPS(G), the convex hull of incidence vectors of 2-level planar subgraphs of G, is
|E|. The trivial inequalities xe ≥ 0 and xe ≤ 1 are facet-defining for 2LPS(G).

Proof. It is a well-known fact that for a monotone system (E,S) with ground
set E the dimension of the associated polyhedron PS is |E| − (|E − ∪S|) (a proof is
contained, e.g., in [11]). Moreover, xe ≥ 0 defines a facet of PS if and only if e ∈ ∪S.
Since every single edge is 2-level planar, we have ∪S = E. Hence the dimension of
the polyhedron 2LPS(G) is |E| and xe ≥ 0 is facet-defining for 2LPS(G).

Let Pi be the 2-level planar graphs induced by the edge sets {e ∪ ei} for a given
edge e ∈ E and ei ∈ E \ {e} for i = 1, . . . , |E| − 1. The incidence vectors of the
graph P induced by the edge e and the graphs Pi for i = 1, 2, . . . , |E| − 1 are affinely
independent and they satisfy xe = 1. Hence we have shown that xe ≤ 1 is facet-
defining for 2LPS(G).
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Next we will see that not all of the inequalities (2) are facet-defining for 2LPS(G).
Theorem 3.2. Let G = (L,U,E) be a 2-level graph. The cycle inequalities

x(C) ≤ |C| − 1,

where C ⊆ E induces a cycle in G, are facet-defining for 2LPS(G) if and only if C
induces a cycle without chords in G.

Proof. Let C ⊆ E be a cycle without chords in G. We will show that there are |E|
incidence vectors of 2-level planar subgraphs induced by the edge set F of G that are
linearly independent and that satisfy χF (C) = |C| − 1. Consider the graphs induced
by the edge sets Fi = C \ {ei} for ei ∈ C for i = 1, 2, . . . , |C|. Moreover, consider the
graphs induced by the edge sets Hj = F1 ∪ fj for fj ∈ E \ C, j = 1, 2, . . . , |E| − |C|.
Since the cycle C is chordless, adding any edge fj ∈ E \ C to F1 still gives a 2-level
planar graph, since neither a cycle nor a double claw destroying 2-level planarity can
occur. All the |E| incidence vectors of the 2-level planar graphs induced by Fi for
i = 1, 2, . . . , |C| and Hj for j = 1, 2, . . . , |E| − |C| are linearly independent and they
satisfy inequality (2) with equality. Hence the facet-defining property is shown.

Suppose now that C = (v1, v2, . . . , vk, v1) is a cycle with a chord d = (vh, vl) ∈ E,
d �∈ C, in G for some h, l ∈ {1, 2, . . . , k}. There exists no 2-level planar graph
containing the edge d and |C| − 1 edges of C. Hence, there exists no point x in
2LPS(G) with xd = 1 and x(C) = |C| − 1, which will prove our claim.

In the following we will see that all the double claws contained in G are present
in a nonredundant description of 2LPS(G) as linear inequalities.

Theorem 3.3. Let G = (L,U,E) be a 2-level graph. The double claw inequalities

x(T ) ≤ |T | − 1,

where T ⊆ E induces a double claw in G, are facet-defining for 2LPS(G).
Proof. Let T = {e1, . . . , e6} and let Fi = T \ ei for i = 1, . . . , 6. Obviously,

the graphs induced by Fi are 2-level planar graphs and satisfy inequality (3) with
equality. Moreover, consider the graphs induced by Hj = T ∪ fj for fj ∈ E \ T ,
j = 1, 2, . . . , |E| − |T |. If Hj contains a cycle C, we can remove any edge in C ∩ T
to get a 2-level planar graph induced by H ′

j . In all the other cases there is always
an edge we can remove from Hj ∩ T such that the remaining set H ′

j induces a set of
caterpillars. Clearly, the incidence vectors of the 2-level planar subgraphs induced by
Fi, i = 1, 2, . . . , 6, and H ′

j , j = 1, 2, . . . , |E| − |T | of G are linearly independent and
satisfy inequality (3) with equality.

We can tighten the LP-relaxation of (1)–(3) by introducing new inequalities that
are valid and tight in the sense that they are facet-defining for 2LPS(G). First, we
generalize the double claw inequalities to k-double claw inequalities. Considering a
double claw as a claw having three paths of length two, a generalized k-double claw
is a claw having k paths of length two (see Figure 6(a)). The only vertex contained
in all k paths is called the root node of the generalized k-double claw.

Theorem 3.4. Let G = (L,U,E) be a 2-level graph. The generalized k-double
claw inequalities

x(T ) ≤ k + 2,(5)

where T ⊆ E induces a k-double claw in G (k ≥ 3), are facet-defining for 2LPS(G).
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Fig. 6. (a) Generalized k-double claw. (b) Combined k-double claw. (c) Node-split k-double claw.

Proof. Obviously, the inequality is valid. We denote x(T ) ≤ k+2 by cTx ≤ c0. Let
us assume that there exists an inequality aTx ≤ a0 with {x|cTx = c0} ⊆ {x|aTx =
a0}. We show that ae = λce and a0 = λc0 for λ > 0. Let r be the root of the
k-double claw and P denote the subgraph of G = (V,E) induced by the edge set
F = {(r, w)|w ∈ N(r)∩V (T )}, where N(r) = {v|(r, v) ∈ E} is the neighborhood of r.
Adding any two edges e1 �= e2 in T \F to P gives a 2-level planar subgraph P ′ induced
by the edge set F ′ = {F ∪ e1 ∪ e2} satisfying cTχF

′
= c0; hence also aTχF

′
= a0.

Since we can substitute e1 and e2 with any of the edges in T \ F ′ we get ae = af for
all e, f ∈ T \ F . Inserting the edge e3 = (w3, u3) ∈ T \ F ′ with w3 ∈ N(r) ∩ V (T )
in P ′ while removing the edge e′3 = (r, w3) gives ae3 = ae′3 and finally ae = af for all
e, f ∈ T .

For any edge e ∈ E \T we can find a 2-level planar subgraph induced by the edge
set F ′′ with e ∈ F ′′ satisfying cTχF

′′
= c0. Hence ae = 0 for all e ∈ E \ T .

We can prove that the combined k-double claws give rise to a class of facet-defining
inequalities for our polytope. A combined k-double claw T = (T1, T2) consists of two
ki-double claws Ti, i = 1, 2, that share a single edge e0 = (l0, u0) not incident to the
root nodes of T1 and T2 (see Figure 6(b)).

Theorem 3.5. The combined k-double claw inequalities

x(T ) ≤ k1 + k2 + 3,(6)

where T = (T1, T2) ⊆ E induces a combined k-double claw in G with parameters
k1 ≥ 3 and k2 ≥ 3, are facet-defining for 2LPS(G) if and only if there exist no edges
(r1, w2) and (r2, w1) in G, where ri is the root of Ti and wi ∈ N(ri) \ {l0, u0} for
i = 1, 2.

Proof. Let e0 = (l0, u0) denote the edge contained in both ki-double claws
Gi = (Li, Ui, Ti) and let T = T1 ∪ {T2 \ {e0}}. We first show validity. Let us assume
that there is a 2-level planar subgraph induced by the edge set F violating inequality
(6). Let ri ∈ Ui, and ei = (ri, l0) for i = 1, 2. The set T2 ∩ F cannot contain more
than k2 + 2 edges. On the other hand, the set T1 \ {e0, e1} induces a (k1 − 1)-claw
and can contain at most k1−1+2 = k1 +1 edges. Since T = T1 \{e0, e1}∪T2∪{e1},
we have e1 ∈ F ; otherwise, (6) is not violated. Symmetrically, we also get e2 ∈ F .
Now, consider the k2-double claw T ′

2 = T2 \ {e0} ∪ {e1} ⊇ F . The set T ′
2 ∩ F cannot

contain more than k2 edges in addition to e1 and e2. We get a symmetrical argument
for F ∩ T ′

1, where T
′
1 = T1 \ {e0} ∪ {e2}. Altogether F cannot contain more than

k1 + k2 + 3 edges, since F ⊆ T ′
1 ∪ (T ′

2 \ {e1, e2}) ∪ e0.
Now, let us assume that there is an inequality aTx ≤ a0 with {x|cTx = c0} ⊆

{x|aTx = a0}, where cTx ≤ c0 denotes inequality (6). The set T ′′
1 = T1 \ {e0, e1}

induces a (k1−1)-double claw which is not connected with T2. Combining any 2-level
planar subgraph of size (k1 − 1) + 2 in T ′′

1 with any double claw free subgraph of
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size k2 + 2 of T2 gives a 2-level planar subgraph of size k1 + k2 + 3 in T . Because
of Theorem 3.4, we have that ae′′ = af ′′ for all e′′, f ′′ ∈ T ′′

1 , and ae = af for all
e, f ∈ T2. Symmetrical arguments for T ′′

2 = T2 \ {e0, e1} and T1 together with the
fact that e0 ∈ {T1 ∩ T2} lead to ae = af for all e, f ∈ T .

We have already seen that zero-lifting is possible within the ki-claws (i = 1, 2).
The critical edges to add are those connecting T1 and T2. Let e = (l2, u1) be such
a critical edge with l2 ∈ L2, u1 ∈ U1. If u1 �= r1, we can show that ae = 0. But in
the case that u1 = r1, there exists no 2-level planar subgraph induced by the edge set
F with cTχF = c0 containing the edge e. Hence, in this case, inequality (6) is not
facet-defining for 2LPS(G).

The node-splitting operation at vertex v in a graph G substitutes the subgraph
induced by the edge set {(v, w)|w ∈ N(v)} with a new subgraph induced by
{(v′, w′)|w′ ∈W ′}∪{(v′′, w′′)|w′′ ∈W ′′}∪{(v′, v′′)}, where N(v) is the set of adjacent
vertices of v in G, W ′,W ′′ ⊆ N(v) with W ′ ∪W ′′ = N(v) and W ′ ∩W ′′ = ∅. The
vertices v′ and v′′ are the duplicates of v. The resulting graph when splitting the root
node of a k-double claw is called a node-split k-double claw with parameters k1 and k2
(see Figure 6(c)). The inequalities derived for those graphs contain a coefficient of two.

Theorem 3.6. Let G = (L,U,E) be a 2-level graph. The node-split k-double
claw inequalities

x(T ) + 2x(r1,r2) ≤ k1 + k2 + 4,(7)

where T ⊆ E induces a node-split k-double claw G′ in G with parameters k1 ≥ 2 and
k2 ≥ 2, are facet-defining for 2LPS(G).

Proof. Let e0 = (r1, r2) and T = T1 ∪ T2 ∪ {e0}, where T1 and T2 are the edge
sets inducing the two components of T \ {e0}. We first show validity. Let us assume
that there exists a 2-level planar subgraph P induced by the edge set F violating the
inequality (7). We know that T1 ∩F and T2 ∩F cannot contain more than k1 +2 and
k2 + 2 edges. If e0 �∈ F , the inequality cannot be violated by P . But if e0 ∈ F , either
T1 contains at most k1 edges, T2 contains at most k2 edges, or T1 and T2 contain at
most k1 + 1 and k2 + 1 edges to ensure 2-level planarity of P . Hence, inequality (7)
cannot be violated with P and validity is shown.

Now let us assume that there is an inequality aTx ≤ a0 with {x|cTx = c0} ⊆
{x|aTx = a0}, where cTx ≤ c0 denotes inequality (7). Let P be the 2-level planar
subgraph induced by k1 +2 edges in T1 and k2 +2 edges in T2 (edge set F = F1 ∪F2,
Fi ∈ Ti for i = 1, 2) not containing e0. If ki ≥ 3, then any edge in Fi can be substituted
with an edge ei ∈ Ti \Fi maintaining the 2-level planarity. Hence, in this case we have
shown that ae = af for all e, f ∈ Ti. Otherwise, let us assume that ki = 2. It is not
hard to see that there is a 2-level planar subgraph P ′ containing e0 and ki+1 edges of
Ti, i = 1, 2 (induced by the edge set F ′). Any edge in F ′ ∩Ti can be substituted with
an edge f ∈ Ti, f �∈ F ′ without destroying 2-level planarity. Hence, ae = af for all

e, f ∈ Ti. Taking the difference of aTχF and aTχF
′
yields ae0 = ae1 + ae2 for ei ∈ Ti,

i = 1, 2. Moreover, there is a 2-level planar subgraph induced by e0, k1 + 2 edges in
T1 and k2 edges in T2. Hence, we have shown that ae1 = ae2 for all e1 ∈ T1, e2 ∈ T2

and ae0 = 2ae for all e ∈ T1 ∪ T2 if k1, k2 ≥ 2. Hence, inequality (7) is facet-defining
for 2LPS(G′).

It remains to show that ae = 0 for all edges e ∈ E \T if G′ = (V ′, T ) with T ⊆ E
and V ′ ⊆ V . Since zero-lifting is possible for double claw inequalities, we can restrict
our attention to edges e = (v, w) with v ∈ G1 and w ∈ G2, where G1 and G2 denote
the graphs induced by the edge sets T1 and T2. For the two possible cases, we can
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always find a 2-level planar graph containing the edge e0, an additional edge e �∈ T ,
and k1 + k2 + 4 edges of T in total.

In the case that the given 2-level graph contains no double claw, the 2-level
planarization problem is equivalent to the maximum forest problem. It is well known
that this problem can be solved in polynomial time by a simple greedy algorithm.
Moreover, the structure of the associated weighted forest polytope has been well
studied (see, e.g., [8]). The inequalities of the weighted forest polytope are still valid
for our polytope 2LPS(G), even if the graph G contains double claws. Also, as we
will see in our computational experiments, they are quite useful in practice.

Lemma 3.7. Let G = (L,U,E) be a 2-level graph. The forest inequalities

x(F ) ≤ V (F )− 1,(8)

where F ⊆ E and V (F ) is the number of vertices contained in the subgraph induced
by F , are valid for 2LPS(G).

The special case when F induces a complete bipartite subgraph of a 2-level graph
G leads to forest inequalities that are facet-defining for 2LPS(G). We will call them
crown inequalities. For |L′| = |U ′| = 2, the crown inequalities are equivalent to the
cycle inequalities for |C| = 4. Hence, the crown inequalities are a generalization of
this cycle inequality.

Theorem 3.8. Let G = (L,U,E) be a 2-level graph containing a complete
bipartite subgraph G′ = (L′, U ′, E′), E′ ⊆ E. The crown inequalities

x(E′) ≤ |L′|+ |U ′| − 1(9)

with |L′| ≥ 2 and |U ′| ≥ 3 are facet-defining for 2LPS(G).
Proof. The validity follows from Lemma 3.7. Let us assume that there is an

inequality aTx ≤ a0 with {x|cTx = c0} ⊆ {x|aTx = a0}, where cTx ≤ c0 denotes
inequality (9). Let U ′ = {u1, . . . , u|U ′|}, L′ = {l1, . . . , l|L′|}, u ∈ U ′, and l ∈ L′. The
edge set F = {(u, li)|li ∈ L′, i = 1, . . . , |L′|} ∪ {(l, ui)|ui ∈ U ′ \ {u}, i = 1, . . . , |L′|}
induces a 2-level planar subgraph satisfying cTχF = c0; hence also aTχF = c0. Re-
moving the edge (l, u) from F and adding the edge {ui, li}, where ui �= u, li �= l, ui ∈
U ′, and li ∈ L′, will still leave a 2-level planar graph. Hence, we have a(u,l) = a(ui,li),
and since we can choose u and l free among the vertices, we have ae = af for all
e ∈ E′. On the other hand, it is always possible to add an extra edge (li, v) ∈ E \E′

or (ui, v) ∈ E \ E′ to F without losing 2-level planarity. Hence, ae = 0 for all edges
in E \ E′, and the theorem is proved.

In the next section we show how the theoretical results obtained in this section
can be used in an algorithm for solving practical instances of the 2-level planarization
problem.

4. Separation problems and a branch-and-cut algorithm. According to
results of Grötschel, Lovász, and Schrijver [10], Karp and Papadimitriou [23], and
Padberg and Rao [28], we can optimize a linear objective function over a polytope
in polynomial time if and only if we can solve the separation problem in polynomial
time; i.e., given a vector x̄ ∈ Q|E|, decide whether x̄ ∈ P and, if x̄ �∈ P, find a vector
d ∈ Q|E| and a scalar d0 ∈ Q such that the inequality dT x̄ ≤ d0 is valid with respect
to P and dT x̄ > d0.

It is well known that the separation problem restricted to the class of inequalities
(2) can be solved in polynomial time.

Lemma 4.1. For the cycle inequalities (2) the separation problem can be solved
in polynomial time by computing at most |E| shortest path problems.
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Proof. Given a point x̄ ∈ Q|E|, we are searching for a cycle C ⊆ E with
x̄(C) > |C| − 1. Let us write the inequality in a different way: |C| − x̄(C) < 1
which corresponds to

∑
e∈C(1 − xe) < 1. For any fixed e0 ∈ E we solve a short-

est path problem on the graph given by G − {e0} with edge costs ze = 1 − xe for
e ∈ E \ {e0}. Let W be the weight of the shortest path. We only have to test if
W + ze0 is less than one. In this case we have found a cycle C violating inequality
x̄(C) > |C| − 1 of x̄. If a violated inequality is not found for any e0 ∈ E, we have a
proof that all the inequalities of type (2) are satisfied at x̄. Hence, we have solved the
separation problem for (2) in polynomial time.

The separation problem can also be solved for the double claw inequalities (3)
and their generalization to k-double claw inequalities. This is surprising, since it is
only obvious that the separation problem can be solved for fixed k.

Theorem 4.2. The separation problem for the double claw inequalities and the
generalized k-double claw inequalities can be solved in polynomial time by computing
a series of maximum bipartite matching problems on subgraphs of G = (V,E).

Proof. Obviously, all k-double claws for k = 3 can simply be enumerated in
polynomial time. Our task is more difficult for the class of generalized k-double claw
inequalities. Given a point x̄ ∈ Q|E|, we are searching for a k ∈ {3, . . . , �n2 �−1} and a
k-double claw T ⊆ E with x̄(T ) > k+2. For all vertices r ∈ V with δ(r) ≥ 3, we search
for a generalized k-double claw with root node r violating inequality (5) at point x̄ and
k ∈ {3, . . . , �n2 � − 1}. We define the set N(r) = {w1, . . . , wt} = {w|(r, w) ∈ E} and
the set F ⊆ E as F = {(wi, u) ∈ E|i = 1, . . . , t, and u �= r}. Note that for any edge
e = (wi, u) ∈ F belonging to a generalized double claw T rooted at r, the edge (r, wi)
must also belong to T . Furthermore, any matching M with |M | > 2 in the subgraph
of G induced by F gives a generalized |M |-double claw T with |M | ∈ {3, . . . , �n2 �−1}
by adding the edges (wi, r) to M if and only if the vertex wi is covered by a matching
edge in M . In order to violate the inequality, we must have

∑
e∈T x̄e > k + 2 which

is equivalent to ∑
(wi,u)∈M

(
x̄(wi,u) + x̄(wi,r) − 1

)
> 2,

where M ⊆ E induces a matching of size |M | = k in G.
We set z̄(wi,u) = x̄(wi,u) + x̄(wi,r) − 1 for all e = (wi, u) ∈ F and search for a

bipartite matching M∗ of maximum weight in the graph induced by F with weights
z̄e on the edges e ∈ F . If the weight z̄e of an edge e ∈ F is positive, it may be useful
to add it to T , since the violation will increase. Otherwise, if z̄e < 0, it is not useful
to add it to T , since the violation will decrease; also, the edge will not be contained
in the maximum weight matching M∗. We have the following: If the optimum value
of the maximum weight matching M∗ is more than two, we have found a generalized
k-double claw inequality violated at x̄ with k = |M∗| ∈ {3, . . . , �n2 � − 1}; otherwise,
no generalized k-double claw rooted at r and violating inequality (5) exists.

Surprisingly, the following separation problem also can be solved in polynomial
time.

Theorem 4.3. The separation problem for the classes of combined k-double claw
inequalities and the node-split k-double claw inequalities can be solved in polynomial
time by computing a series of maximum bipartite matching problems on subgraphs of
G = (V,E).

Proof. The proof is similar to the proof of Theorem 4.2. For the class of combined
k-double claw inequalities, we fix both root vertices r1 and r2 of the k-double claws
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T1 and T2, and the only edge e0 = (w0, u0) contained in T1 ∩ T2. We define w0 to
be the only vertex in N(r1) ∩ N(r2), N(r1) ∪ N(r2) = {w0, w1, . . . , wt} and the set
F = {(wi, u) ∈ E|i = 1, . . . , t, wi �= w0, and u �= r1, r2, u0}. Any matching M in the
subgraph of G induced by F extended by e0 defines a combined k-double claw T : for
every edge e = (wi, u) ∈M , we add the edge (wi, r) in the set {(wi, r1), (wi, r2)} with
highest x-value if wi is adjacent to both roots; otherwise, we add the unique edge
(wi, r) ∈ E with r ∈ {r1, r2}. Moreover, we add the edges e0, (w0, r1), (w0, r2) to get
a combined k-double claw containing e0 as special edge.

Let c = x̄e0 + x̄(w0,r1) + x̄(w0,r2). In order to violate the inequality, we must have∑
e∈T x̄e > k1 + k2 + 3, which is equivalent to

∑
(wi,u)∈M

(
x̄(wi,u) + x̄(wi,r) − 1

)
> 5− c,

where M ⊆ E induces a matching of size k1 + k2 − 2 in the graph induced by F . We
set z̄(wi,u) = x̄(wi,u) + x̄(wi,r) − 1 for all e = (wi, u) ∈ F and search for a bipartite
matching M∗ of maximum weight in the graph induced by F with weights z̄e on the
edges e ∈ F . If the optimum value of the maximum weight matchingM∗ is more than
5 − c, we have found a combined k-double claw inequality violated at x̄; otherwise,
no generalized k-double claw rooted at r1, r2, containing e0 as a special edge and
violating inequality (6), exists.

The separation problem for the node-split k-double claw inequalities can be solved
similarly after fixing the edge e0 = (r1, r2), where r1 and r2 denote the root nodes of
T1 and T2, respectively.

Padberg and Wolsey [29] have already shown that the separation problem for the
inequalities occurring in the weighted forest polytope can be solved in polynomial
time.

Theorem 4.4 (see [29]). The separation problem of the forest inequalities (8)
can be solved by computing a minimum cut in a capacitated network G∗ constructed
from G = (V,E). G∗ contains 2(|V |+ |E|) arcs and |V |+ 2 vertices.

We suggest a branch-and-cut algorithm for solving practical instances of the maxi-
mum 2-level planar subgraph problem. We will see that our branch-and-cut algorithm
is able to find nearly optimal solutions for moderately sized problem instances in
reasonable computation time.

We implemented a branch-and-cut algorithm based on the system ABACUS [22]
using the separation routines mentioned above. In our algorithm we start with the
linear system {maxwTx|xe ≥ 0, xe ≤ 1 for all e ∈ E}. Let x∗ denote the optimal
solution of the LP-system. We solve the separation problem for inequalities (2), (3),
(5), and (8) using Theorems 4.1–4.3. We add all the found inequalities to our system
and optimize again. The algorithm stops if no violated inequalities of the above
mentioned types are found. If x∗ is integer, we know that x∗ is the incidence vector
of a 2-level planar graph. In this case we have found the optimal solution of the
2-level planarization problem. Otherwise, x∗ gives us an upper bound to the value
of a maximum 2-level planar subgraph of the given instance G. In this case, we
branch by setting the value of a fractional variable to zero or one and try to solve the
subproblems such as the root node.

In addition, we try to find good solutions to the problem. After each optimization
process, we may find new solutions x∗ to the problem, most of which are fractional.
Fractional solutions x∗ may give us a hint about good solutions to the problem.
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Table 1
Computational results for graphs on 20 vertices per level.

|Vi| |E| Gar Time Cycles 2Claw kClaw Forest

20 20 0.00 0.01 0.18 0.52 0.00 0.00
20 25 0.00 0.03 0.81 1.65 0.15 0.00
20 30 0.00 0.17 2.36 4.60 0.87 0.05
20 35 0.00 0.52 5.04 16.08 4.52 0.16
20 40 0.00 5.81 11.39 55.69 22.20 1.09
20 45 0.03 25.56 19.38 116.73 92.80 3.93
20 50 0.67 100.38 32.62 185.72 234.21 9.13
20 55 0.53 81.17 25.14 194.21 297.81 8.11
20 60 0.37 56.04 23.69 167.63 277.66 5.78
20 65 0.32 54.25 23.22 188.07 320.39 5.66
20 70 0.13 25.97 18.47 103.06 159.25 1.79
20 75 0.13 21.69 18.33 76.45 139.69 0.92
20 80 0.03 12.37 17.01 61.09 67.38 0.11
20 85 0.10 20.28 18.16 75.91 111.53 0.34
20 90 0.02 7.47 13.46 29.05 34.66 0.09
20 95 0.00 3.94 11.66 15.81 16.77 0.12
20 100 0.00 4.08 10.83 13.90 15.72 0.02

Variables with value close to one will be in the optimal solution with high probability.
We try to use this information in our heuristics that we apply in each iteration.

5. Computational results. For our experiments we used the branch-and-cut
algorithm described above. The algorithm stops if either the optimal solution is found
or if no violated cycle, double claw, generalized double claw, or forest inequality can
be detected. Moreover, we put a time limit of five minutes (=300 seconds) on our
program. In any case, the program gives a 2-level planar subgraph together with
an upper bound of the optimal solution. The random bipartite graphs have been
generated using the Stanford GraphBase [24]. We used the separation procedures
described above to identify violated inequalities.

Table 1 shows computational results for 100 instances of 2-level graphs with 20
vertices at each level with increasing density. The columns show the number of vertices
per level, the number of edges, and the average guarantee of the solution value, i.e.,
if Sol denotes the number of edges remaining in a found 2-level planar subgraph and
UpBound denotes the value determined by the linear programming relaxation, then

the solution guarantee Gar is (UpBound−Sol
UpBound ) × 100%. Column 4 shows the time on

a SUN Ultra 2/2x200 in seconds. Columns 5–8 show the average number of found
violated cycle, double claw, generalized k-double claw, and forest inequalities.

The average quality of the solution value is visualized in Figure 7. The results are
surprisingly good. On the average, the solution we found is very close (below 0.7%
on average) to the optimal one. The results show that the problem is easy for very
sparse graphs, gets harder with increasing density, and is again easy for dense graphs.
This can be explained as follows: For very sparse graphs, the used inequalities for our
relaxation give very good bounds; hence in most of the cases a branching phase is not
necessary. However, for dense graphs there is a high probability that some solutions
of cardinality |V | − 1 exist; again, the bound given by the cutting planes is good.
Figure 8 shows the average running time in seconds averaged over 100 instances per
size.

Furthermore, we ran 100 instances on a series of sparse graphs. The results are
promising also for these cases (see Table 2). Our solution is at most 5% away from the
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Table 2
Computational results for sparse graphs.

|Vi| |E| Gar Time Cycles 2Claw kClaw Forest

20 40 0.00 5.97 11.39 55.69 22.20 1.09
30 60 0.13 49.41 15.17 136.79 83.24 2.25
40 80 0.55 149.85 17.46 227.30 137.60 2.99
50 100 1.45 252.81 20.26 309.59 178.53 3.51
60 120 1.86 279.38 22.63 395.82 230.21 1.81
70 140 2.35 293.73 25.65 441.42 222.76 1.64
80 160 2.90 300.37 28.68 534.30 248.17 1.02
90 180 3.48 300.97 31.18 589.81 241.98 0.33

100 200 4.67 300.39 35.26 687.14 237.27 0.31

optimal solution. Figures 7 and 8 visualize the average guarantee of the solution and
also the running times for sparse graphs. Many practical instances in graph drawing
have up to 30 vertices per layer. Hence, for these instances, regarding the running
times, our algorithm is competitive with the classical heuristics used for crossing
minimization in graph drawing.

Consider the graph shown in Figure 2. Our branch-and-cut algorithm solved
the 2-level planarization problem for the given instance provably optimal within 0.01
seconds. During the run, 5 violated cycle constraints were found, 10 double claw
inequalities, 1 generalized k-double claw inequality, and no forest inequality.
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[26] E. Mäkinen, Experiments on drawing 2-level hierarchical graphs, Int. J. Comput. Math., 37
(1990), pp. 129–135.

[27] P. Mutzel, The Maximum Planar Subgraph Problem, Dissertation, Universität zu Köln, Ger-
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Abstract. We present a Lagrangian decomposition algorithm which uses logarithmic potential
reduction to compute an ε-approximate solution of the general max-min resource sharing problem
with M nonnegative concave constraints on a convex set B. We show that this algorithm runs in
O(M(ε−2 + ln M)) iterations, a data independent bound which is optimal up to polylogarithmic
factors for any fixed relative accuracy ε ∈ (0, 1). In the block-angular case, B is the product of K
convex sets (blocks) and each constraint function is block separable. For such models, an iteration
of our method requires a Θ(ε)-approximate solution of K independent block maximization problems
which can be computed in parallel.

Key words. approximation algorithm, covering problem, Lagrangian decomposition, logarith-
mic potential, packing problem, resource sharing, structured optimization
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1. Introduction. We consider the approximate solution of concave max-min
resource sharing problems of the form

(P) λ∗ = max{ λ | f(x) ≥ λe, x ∈ B},
where f : B → R

M is a given vector of M nonnegative continuous concave functions
defined on a nonempty convex compact set B, called block, e is the vector of all ones
and, with no loss of generality, λ∗ > 0. We shall denote by R

M
+ (RM++) the nonnegative

(positive) orthants of R
M and denote λ(f)

.
= min1≤m≤M fm for any given f ∈ R

M
+ .

We shall be interested in computing an ε-approximate solution of this problem;
i.e., for a given relative tolerance ε ∈ (0, 1),

(Pε) compute x ∈ B that satisfies f(x) ≥ (1− ε)λ∗e.

Our approach is based on the well-known duality relation

λ∗ = max
x∈B

min
p∈P

pTf(x) = min
p∈P

max
x∈B

pTf(x),(1.1)

where P
.
= {p∈R

M
+ | eTp = 1}. It follows that

λ∗ = min{Λ(p) | p∈P}, (Lagrangian dual)(1.2)

where

Λ(p) = max{pTf(x) | x ∈ B}. (Block problem)(1.3)
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The exact optimality conditions for P can thus be stated as follows: A pair x ∈ B,
p ∈ P is optimal if and only if Λ(p) = λ(f(x)).

In its simplest form, Lagrangian or price-directive decomposition is an iterative
strategy that solves P via its Lagrangian dual by computing a sequence of pairs
p, x as follows. A coordinator uses the current x ∈ B to compute some weights
p = p(f(x)) ∈ P corresponding to the coupling constraints f(x) ≥ λe, calls a block
solver to compute a solution x̂ ∈ B of (1.3) for this p ∈ P , and then makes a move
from x to (1− τ)x + τ x̂ with an appropriate step length τ ∈ (0, 1]. We call each such
Lagrangian decomposition iteration a coordination step.

We shall only require an approximate block solver (ABS), one that solves (1.3) to
a given optimization tolerance t > 0, defined below:

ABS(p, t) : compute x̂ = x̂(p) ∈ B such that pTf(x̂) ≥ (1− t)Λ(p).

We shall eventually set t = Θ(ε) in our algorithm.
By analogy to Pε and based on the fact that λ∗ is the optimal value of the

Lagrangian dual (1.2), we define the ε-approximate dual problem as follows:

(Dε) compute p ∈ P that satisfies Λ(p) ≤ (1 + ε)λ∗.

The purpose of this paper is to present a simple approximation algorithm that,
for a given relative accuracy ε ∈ (0, 1), solves problems Pε and Dε in

N = O
(
M
(
ε−2 + lnM

))
(1.4)

coordination steps, each of which requires a call to ABS(p,Θ(ε)) and a coordination
overhead of O(M ln(M/ε)) arithmetic operations.

We note that our iteration bound (1.4) can be improved by using polynomial-time
methods of nondifferentiable optimization for minimizing Λ(p), such as the methods
of inscribed ellipsoids [13], [9], volumetric centers [14], and cutting plane methods
based on analytic centers, e.g., [1], [3], [4]. Specifically, problem Dε can be solved in
O(M ln(M/ε)) iterations by the inscribed ellipsoid method of [13] or by the method
of volumetric centers [14] and in O(M ln2(M/ε)) iterations by a cutting plane method
based on analytic centers [1]. (The primal solution can be recovered in a postpro-
cessing step by solving a linear program that maximizes λ over the convex hull of
those primal iterates generated along the way.) The coordination tasks for the above
methods, however, are much more complex, require all or a substantial part of the
history of iterates, as well as a more accurate block solver. In particular, the theo-
retically fastest of these methods (volumetric centers) requires O(M(M)) arithmetic
operations per coordination step, where M(M) is the cost of matrix multiplication
for M -order matrices. With the best currently known bound of M(M) = O(M2.38),
and disregarding the large hidden constant factors, this is still substantially higher
than the almost linear coordination overhead for the method suggested in this paper.

On the other hand, it is easy to see that for f(x) = x and B = P , any algorithm
that solves Pε for ε < 1 by a sequence of block optimizations (1.3) must perform at
least M coordination steps: no Lagrangian decomposition scheme for this instance can
bring in more than one new vertex of the standard simplex B per iteration, whereas all
the M vertices of B are needed to compute an approximate solution x with λ(x) > 0.
This is true even for methods that use arbitrarily powerful coordinators which can
compute p by taking into account previous iterates and block solutions, as well as
other data (see [7] for further discussion). It follows that, for a fixed ε ∈ (0, 1), the
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bound (1.4) on coordination steps is optimal to within a factor of lnM . A similar
lower bound of Ω(M) iterations holds for min-max problems [7], for which a more
recent data-dependent lower bound below Θ(M1/2) iterations is suggested in [10].
Information-theoretic lower bounds for matrix games can be found in [6].

The linear feasibility variant of P, i.e., find x ∈ B such that f(x) = Ax ≥ e,
often referred to as the fractional covering problem, is solved in [12] by Lagrangian
decomposition using exponential potential reduction. Up to polylogarithmic factors,
the number of iterations of that algorithm is proportional to M and ρ/ε2, where
the data-dependent quantity ρ = maxm maxx∈B fm(x) is the width of B relative to
Ax ≥ e. The problem is further decomposed in [12] in a way that reduces this linear
dependence on ρ down to log ρ. However, this introduces additional constraints on
the block problems which, in general, become NP-hard.

The logarithmic potential reduction algorithm for max-min optimization pre-
sented in this paper circumvents the issue of width altogether and uses the approxi-
mate block solvers ABS on the original blocks (cf. [5] and [7]). A width-independent
Lagrangian decomposition iteration bound for general min-max sharing based on
logarithmic potential function reduction was given in [7]. This bound was recently
matched in [2] using an exponential potential reduction technique. It would thus be
worthwhile to develop a width-independent exponential function reduction method
for the max-min case as well.

Although our iteration bound (1.4) is independent of the dimension and structure
of problem P , the overall running time of our algorithm will depend upon these
factors and can be significantly enhanced if the block B and coupling functions f
have special structures. A prevalent example is the block-angular structure for which
B = B1 × · · · × BK for K > 1 given nonempty convex compact sets (blocks) Bk,

k = 1, . . . ,K, and fm(x) =
∑K
k=1 fkm(xk), where x = (x1, x2, . . . , xK) and fkm(xk),

m = 1, . . . ,M , are given continuous nonnegative concave functions of xk ∈ Bk. For
such problems, Λ(p) =

∑K
k=1 Λk(p), where

Λk(p)
.
= max{pT fk(xk) | xk ∈ Bk}

andABS(p, t) decomposes into K independent block solversABSk(p, t), k = 1, . . . ,K,
each operating to the same accuracy t > 0. Further special structures for K = 1 or
within each Bk also arise in practice and can be exploited to facilitate this task. The
running time of implementations of the algorithm can thus be estimated by combining
(1.4), the coordination overhead, and the time complexity of the block solvers for
specific classes of models for P (see, e.g., [5], [12], [7], [8]), but we shall not pursue
such specializations here.

The paper is organized as follows. In section 2 we define the standard logarithmic
barrier function and examine some of its properties. In section 3 we develop our
algorithm for solving Pε and Dε and prove its correctness. Finally, we analyze the
coordination complexity of the algorithm in section 4. We will use the following
notational abbreviations: f

.
= f(x), f ′ .

= f(x′), f̂
.
= f(x̂), p

.
= p(f)

.
= p(f(x)), for

points x, x′, x̂ ∈ B, respectively. The symbol e denotes the vector of all ones while ei
represents the ith unit vector.

2. Logarithmic potential function. We shall associate with the coupling in-
equalities f ≥ λe the standard logarithmic potential function (see, e.g., Chapter 4 of
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[11]) of the form

Φt(θ, f) = ln θ +
t

M

M∑
m=1

ln(fm − θ),(2.1)

where θ ∈ R, f = (f1, f2, . . . , fM ) are variables and t is a fixed positive parameter,
identical to that used for ABS(p, t). The function Φt is well defined for 0 < θ <
λ(f) = min{f1, f2, . . . , fM}. This implies that f ∈ R

M
++, which will be the case for all

iterates of the algorithm we shall present in section 3.
Similar to [7], [15], we define the reduced potential function as the maximum of

Φt(θ, f) over θ ∈ (0, λ(f)) for a fixed f ∈ R
M
++, i.e.,

φt(f) = max
0<θ<λ(f)

Φt(θ, f).(2.2)

The maximizer θ(f) of Φt(θ, f) can be determined from the first-order optimality
condition

tθ

M

M∑
m=1

1

fm − θ
= 1,(2.3)

which has a unique root since its left side is a strictly increasing function of θ. We
can thus write the reduced potential function as

φt(f) = Φt(θ(f), f).

It is easy to see that the smooth function θ(f) approximates the piecewise nonlinear
concave function λ(f) as follows:

λ(f)

1 + t
≤ θ(f) ≤ λ(f)

1 + t/M
,(2.4)

a property which motivates our approach.
Next, we define the logarithmic dual vector p = p(f) for a fixed f ∈ R

M
++ to be

pm(f) =
t

M

θ(f)

fm − θ(f)
, m = 1, . . . ,M,(2.5)

where p(f) ∈ P by (2.3). A useful consequence of this definition is the following
identity.

Proposition 1. p(f)Tf = (1 + t)θ(f).
Proof. Denoting θ = θ(f), we write

pTf =
tθ

M

M∑
m=1

fm
fm − θ

=
tθ

M

M∑
m=1

(
1 +

θ

fm − θ

)

= tθ + θ
M∑
m=1

pm = (1 + t)θ.

A more important observation is that the accuracy with which the optimality
criteria Λ(p) = λ(f) are to be satisfied at a given point x ∈ B can be approximated
by the quantity

ν
.
= ν(x, x̂) =

pTf̂ − pTf

pTf̂ + pTf
,(2.6)
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where p ∈ P from (2.5), f = f(x), and f̂ = f(x̂) for an approximate block solution
x̂ ∈ B produced by ABS(p, t). The lemma below states that a pair x, p solves Pε and
Dε, respectively, whenever ν and t are of order ε.

Lemma 1. Suppose ε ∈ (0, 1) and t = ε/6. For a given point x ∈ B, let p ∈ P
be computed by (2.5) and x̂ computed by ABS(p, t). If ν(x, x̂) ≤ t, then the pair x, p
solves Pε and Dε, respectively.

Proof. Use (2.6) to rewrite the condition ν ≤ t as follows:

(1− t)pTf̂ ≤ (1 + t)pTf.

Since pTf̂ ≥ Λ(p)(1 − t), pTf = (1 + t)θ by Proposition 1 and θ = θ(f) < λ(f), we
obtain

Λ(p) ≤ 1 + t

(1− t)2
pTf ≤

(
1 + t

1− t

)2

λ(f) ≤ (1 + ε)λ(f),(2.7)

where the last inequality follows from the assumption t = ε/6 and ε ∈ (0, 1). Given
that Λ(p) ≥ λ∗, we have λ∗ ≤ (1 + ε)λ(f) ≤ λ(f)/(1 − ε), and thus x ∈ B solves
Pε. On the other hand, λ(f) ≤ λ∗, so that (2.7) implies Λ(p) ≤ (1 + ε)λ∗, and hence
p ∈ P solves Dε.

Remark 1. The bound of Lemma 1 is close to the best possible: for ε ∈ (0, 1/2]
we have ν ≤ 4ε for any pair x ∈ B, p ∈ P that solves Pε and Dε, respectively. To see
this, first consider that

Λ(p) ≤ (1 + ε)λ∗ ≤ 1 + ε

1− ε
λ(f),(2.8)

which simplifies to Λ(p) ≤ (1 + 4ε)λ(f) for ε ∈ (0, 1/2]. Then, use this inequality,
(2.6), and the fact that λ(f) ≤ pT f, to write

ν ≤ Λ(p)− pT f

pT f̂ + pT f
≤ 4εpT f

pT f̂ + pT f
≤ 4ε.

3. The approximation algorithm. We shall now state our Algorithm A to
compute solutions of both problems Pε and Dε, as a direct implementation of the
Lagrangian decomposition scheme stated in the introduction, section 1. The algorithm
accepts as input f,B, ε ∈ (0, 1) and an initial point x = x0 .

= 1
M

∑M
m=1 x̂(m) ∈ B,

computed by x̂(m) := ABS(em, 1/2).
Algorithm A(f,B, ε, x).
t := ε/6
repeat

Compute θ(f) from (2.3) and p ∈ P from (2.5).
x̂ := ABS(p, t).
Compute ν

.
= ν(x, x̂) from (2.6).

if ν ≤ t then return(x, p)
else x := (1− τ)x + τ x̂, for an appropriate step length τ ∈ (0, 1] end

end
Our subsequent analysis uses the step length

τ =
tθν

2M(pTf̂ + pTf)
,(3.1)
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which is strictly feasible, i.e., τ ∈ (0, 1). (To see this, substitute t = ε/6 in (3.1)

and use the inequality θ/(pTf̂ + pTf) ≤ 1, which is a straightforward consequence of
Proposition 1.) In practice, one usually computes τ by performing a line search to
maximize φt(x + τ(x̂− x)). Our analysis remains valid for such step lengths.

AlgorithmA is correct since τ ∈ (0, 1) as indicated above and since, by Lemma
1, the pair x ∈ B, p ∈ P solves Pε and Dε, respectively, when the algorithm halts.

4. Analysis of the approximation algorithm. Our next task is to derive
the iteration bound (1.4) for our algorithm as claimed in the introduction, section
1. We shall first establish several observations. In Lemma 2 we bound the error in
the initial approximation x0 ∈ B as defined in section 3. Lemma 3 shows that each
coordination step achieves a sizable guaranteed increase in the value of the reduced
potential function φt(f). In contrast, Lemma 4 bounds the sum of such increases
between any two, not necessarily consecutive, iterates. These observations ultimately
lead us to the iteration bound stated in Theorem 1, which is further improved by
employing a simple error-scaling technique akin to that used in [15] for structured
min-max problems.

Lemma 2. λ∗ ≤ Λ(p) ≤ 2MpTf(x0) for all p ∈ P .

Proof. The left inequality is from (1.2)–(1.3). To show the right inequality, note
that for any p ∈ P , (1.3) provides

Λ(p) = max{pTf(x) | x ∈ B} ≤
M∑
m=1

pm max{fm(x) | x ∈ B} =

M∑
m=1

pmΛ(em).

Now, Λ(em) ≤ 2fm(x̂(m)), where x̂(m) is the approximate block solution computed
by ABS(em, 1/2). Then, by using the concavity of the nonnegative functions fm, we
obtain

fm(x̂(m)) ≤
M∑
�=1

fm(x̂(�)) ≤Mfm

(
1

M

M∑
�=1

x̂(�)

)
= Mfm(x0).

Next, we prove that the increase in the reduced potential φt(f) is sufficiently large
at each iteration.

Lemma 3. For any two consecutive iterates x, x′ of Algorithm A:

φt(f
′)− φt(f) ≥ tν2/4M.

Proof. From AlgorithmA we have x′ = (1− τ)x + τ x̂. Denote Λ
.
= Λ(p(f)). By

the concavity of the fm and definition (2.5),

f ′
m − θ ≥ (1− τ)fm + τ f̂m − θ = (fm − θ)

(
1 + τ

f̂m − fm
fm − θ

)

= (fm − θ)

(
1 +

τM

tθ
pm(f̂m − fm)

)
.

(4.1)

In order to bound the last expression above, consider that by definition (3.1),∣∣∣∣τMtθ pm(f̂m − fm)

∣∣∣∣ ≤ τM

tθ
pm(f̂m + fm) ≤ τM

tθ
(pTf̂ + pTf) =

ν

2
≤ 1

2
.
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Accordingly, (4.1) gives f ′
m − θ > 0, m = 1, . . . ,M , so that λ(f ′) > θ. From the

definition (2.2) of φt(f
′),

φt(f
′) = max

0<ξ<λ(f ′)
Φt(ξ, f

′) ≥ Φt(θ, f
′) = ln θ +

t

M

M∑
m=1

ln(f ′
m − θ),(4.2)

where θ denotes the root θ(f) of (2.3). By combining inequalities (4.1) and (4.2) and
by using the definition of φt(f) ≡ Φ(θ(f), f), we obtain

φt(f
′) ≥ φt(f) +

t

M

M∑
m=1

ln

(
1 +

τM

tθ
pm(f̂m − fm)

)
.(4.3)

We now use the inequality ln(1 + z) ≥ z − z2 for all z ≥ −1/2 to write

φt(f
′)− φt(f) ≥ τ

pTf̂ − pTf

θ
− τ2M

θ2t

∥∥∥D(f − f̂)
∥∥∥2

,

where D =diag(p1, . . . , pm) and ‖ ·‖ denotes the 2-norm. Furthermore, ‖D(f − f̂)‖ ≤
‖D(f + f̂)‖1 = pTf + pTf̂ , which implies that

φt(f
′)− φt(f) ≥ τ

pTf̂ − pTf

θ
− τ2M

θ2t
(pTf + pTf̂)2.

This last inequality proves the claim for the value of τ given by (3.1).
In contrast to the previous lemma, our third observation provides that the increase

in the reduced potential φt(f) cannot be too large even after an arbitrary number of
iterations.

Lemma 4. For any two points x, x′ ∈ B such that λ(f) > 0 and λ(f ′) > 0,

φt(f
′)− φt(f) ≤ (1 + t) ln

Λ(p)

pTf
,

where p is defined by (2.5).
Proof. Denote θ

.
= θ(f), θ′ .

= θ(f ′), and Λ
.
= Λ(p) = max{pTf(x) | x ∈ B} as

defined in (1.3). Then we can write

φt(f
′)− φt(f) = ln

θ′

θ
+

t

M

M∑
m=1

ln

(
f ′
m − θ′

fm − θ

)

= ln
θ′

θ
+

t

M

M∑
m=1

ln

(
M

tθ
pm (f ′

m − θ′)
)

= ln
θ′

θ
+ t ln

M

tθ
+

t

M

M∑
m=1

ln (pm (f ′
m − θ′)) .

Next, using the concavity of ln(·) in the last expression we obtain

φt(f
′)− φt(f) ≤ ln

θ′

θ
+ t ln

M

tθ
+ t ln

(
1

M
pT (f ′ − θ′e)

)

≤ ln
θ′

θ
+ t ln

1

tθ
+ t ln (Λ− θ′) ,
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which is further simplified as follows:

φt(f
′)− φt(f) ≤ max

ξ∈(0,Λ)

{
ln

ξ

θ
+ t ln

1

tθ
+ t ln(Λ− ξ)

}

= (1 + t) ln (Λ/(1 + t)θ) = (1 + t) ln
(
Λ/pTf

)
.

We shall apply this lemma to any two, not necessarily consecutive, iterates
x, x′ ∈ B of AlgorithmA. Clearly, λ(f(x)) > 0 for the initial iterate, but also for
each subsequent x, since every step τ taken by the algorithm is strictly feasible.

We are now in a position to address the coordination complexity of Algorithm A
by combining the lower and upper bounds for the increase in φt(f) we have thus far
obtained.

Theorem 1. For any given relative accuracy ε ∈ (0, 1), Algorithm A solves
problems Pε and Dε in

N = O
(
M
(
ε−1 lnM + ε−2

))
coordination steps.

Proof. First, let N0 be the number of iterations of AlgorithmA required to obtain
an iterate x1 with a corresponding optimality error ν ≤ 1/2, starting from the initial
point x0. For as long as ν > 1/2, each iteration increases the reduced potential by at
least t/16M (Lemma 3). However, by Lemma 4, the total increase in the value of the
reduced potential can be bounded as follows:

φt(f
1)− φt(f

0) ≤ (1 + t) ln
(
Λ(p0)/p0T f0

)
.(4.4)

Since t = ε/6 and Λ(p0) ≤ 2Mp0T f0 by Lemma 2, it follows that N0 = O
(
ε−1M lnM

)
.

Next, suppose that the error is ν� ≤ 1/2� for some iterate x� ∈ B and let N� be
the number of iterations required to halve this error, for # = 1, 2, . . .. Again, Lemma 3
provides

φt(f
�+1)− φt(f

�) ≥ N� tν2
� /16M.(4.5)

To bound the left side of this inequality, consider that

(1− ν�)p
�T f̂ � = (1 + ν�)p

�T f �,

directly from the definition of ν� in (2.6). And since p�T f̂ � ≥ (1 − t)Λ(p�) for
ABS(p�, t), we have

Λ(p�)

p�T f �
≤ 1 + ν�

(1− t)(1− ν�)
.

This inequality, along with the fact that t ≤ ν� ≤ 1/2, implies

Λ(p�)

p�T f �
≤ 1 + ν�

(1− ν�)2
≤ 1 + 10ν�.

Now, Lemma 4 for x′ .
= x�+1 and x

.
= x� provides

φt(f
�+1)− φt(f

�) ≤ (1 + t) ln(1 + 10ν�) ≤ 10(1 + t)ν�,
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which, together with (4.5), results in the bound N� = O(M/tν�). The total num-
ber of coordination steps N in the claim is obtained by summing the N� over # =
0, 1, . . . , �lg(1/ε)�.

The coordination complexity of AlgorithmA given by Theorem 1 is for a fixed
value of the parameter t. The algorithm can be implemented and its coordination
complexity improved by embedding AlgorithmA within a sequence of scaling phases
that gradually reduce t to the desired accuracy, much like implementations of path-
following methods for convex programs. The sth scaling phase, s = 0, 1, . . ., sets
εs := εs−1/2, correspondingly ts := εs/6, and uses the current approximate point
xs−1 as its initial solution. For the initial scaling phase we invoke AlgorithmA of
section 3 (along with its own initialization step) to compute a pair of 1/4-approximate
solutions x, p of problems P and D, respectively. We then define x0 .

= x, p0 .
= p,

and ε0
.
= 1

4 to be the solution of the 0th scaling phase. The resulting coordination
complexity of the overall scheme is analyzed below.

Theorem 2. For any given relative accuracy ε ∈ (0, 1), the error scaling imple-
mentation of Algorithm A computes solutions x, p of problems Pε and Dε, respectively,
in

N = O
(
M
(
lnM + ε−2

))
coordination steps.

Proof. Denote by Ns the number of coordination steps in the s + 1st scaling
phase, s = 0, 1, . . . . By Theorem 1, N0 = O(M lnM). It remains to show that
Ns = O

(
M/ε2

s

)
for each subsequent scaling phase.

Our arguments are analogous to those used in the proof of Theorem 1. By
Lemma 3, each iteration of the sth scaling phase increases the (current) reduced
potential function by tsν

2
s/4M ≥ t3s/4M = Ω(ε3

s/M).
By invoking Lemma 4 with x

.
= xs and x′ .

= xs+1, the total increase of the
potential in the sth phase can be bounded by

φts(fs+1)− φts(fs) ≤ (1 + εs/6) ln
(
Λs
/
psT fs

)
.(4.6)

Furthermore, since xs, ps are 2εs-approximate solutions of problem P and D, respec-
tively,

Λs ≤ 1 + 2εs
1− 2εs

λ (fs) ≤ (1 + 8εs)p
sT fs.(4.7)

The bound Ns = O(M/ε2
s) is deduced from (4.7) and the fact that ln(1 + 8α) ≤ 8α

for all α > 0.
As before, the overall coordination complexity is obtained by adding the coordi-

nation bounds Ns for all scaling phases.
Remark 2. We implicitly assumed in the foregoing that p ∈ P was computed

exactly from (2.5) at each coordination step. In fact, this is impractical since (2.5)
requires the root θ(f) of (2.3), which can be computed only approximately. How
accurate then does this computation need to be so that the iteration bounds given by
Theorems 1 and 2 remain valid?

Let p̃ approximate the exactly computed p to a relative accuracy of δ ∈ (0, 1/2),
i.e., (1 − δ)p ≤ p̃ ≤ (1 + δ)p. Then it is easy to see that any solution provided by
ABS(p̃, t)) solves the block problem (1.3) to a relative accuracy of O(t + δ) = O(ε)
for δ = O(ε). It follows that (2.5) need only provide the pm’s to a relative accuracy
of δ = O(ε).
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To estimate the required accuracy of θ(f), first note that (2.3) is homogeneous:
θ(sf) = sθ(f) and p(sf) = p(f) for any positive scalar s. The M -vector f can thus
be locally prescaled (for the computation of θ(f)) so that λ(f) = 1. By (2.4) this
implies that θ(f) ∈ [1/(1 + t),M/(M + t)] and hence |θ(f) − 1| = O(ε). A simple
analysis then shows that an absolute error of O(ε2/M) in the computation of θ(f)
results in a relative error of δ = O(ε) in the value of each pm.

In practice, binary search on the interval θ ∈ [1/(1 + t),M/(M + t)] can be used
to compute θ(f) from (2.3) to the required accuracy in O(ln(M/ε)) steps. This would

require O(ln(M/ε)) computations of the sum
∑M
m=1 1/(fm− θ) per coordination step

of AlgorithmA, resulting in O(M ln(Mε)) arithmetic operations per iteration (or
O(lnM ln(M/ε)) parallel time on M/ lnM processors).

This bound can be improved by using Newton’s method to compute maxθ Φ(θ, f).
An analogous analysis for the min-max problem in [7] shows that the amortized num-
ber of all Newton iterations per iteration of AlgorithmA is O(ln ln(M/ε)). Since the
cost of each Newton iteration is of the same order as that for binary search, the coor-
dination task can be implemented to run in O(M ln ln(M/ε)) arithmetic operations
(or in O(lnM ln ln(M/ε)) parallel time on M/ lnM processors). We conclude that
the sequential running time of each coordination step is roughly linear in M .
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Abstract. A sequential quadratic programming (SQP) algorithm generating feasible iterates is
described and analyzed. What distinguishes this algorithm from previous feasible SQP algorithms
proposed by various authors is a reduction in the amount of computation required to generate a new
iterate while the proposed scheme still enjoys the same global and fast local convergence properties.
A preliminary implementation has been tested and some promising numerical results are reported.
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1. Introduction. Consider the inequality-constrained nonlinear programming
problem

(P)
min f(x)
s.t. gj(x) ≤ 0, j = 1, . . . ,m,

where f : R
n → R and gj : R

n → R, j = 1, . . . ,m, are continuously differentiable.
Sequential quadratic programming (SQP) algorithms are widely acknowledged to be
among the most successful algorithms available for solving (P). For an excellent recent
survey of SQP algorithms, and the theory behind them, see [2].

Denote the feasible set for (P) by

X
∆
= { x ∈ R

n | gj(x) ≤ 0, j = 1, . . . ,m }.
In [19, 8, 16, 17, 1], variations on the standard SQP iteration for solving (P) are pro-
posed which generate iterates lying withinX. Such methods are sometimes referred to
as “feasible SQP” (FSQP) algorithms. It was observed that requiring feasible iterates
has both algorithmic and application-oriented advantages. Algorithmically, feasible
iterates are desirable because

• the QP subproblems are always consistent, i.e., a feasible solution always
exists, and
• the objective function may be used directly as a merit function in the line
search.

In an engineering context, feasible iterates are important because
• often f(x) is undefined outside of the feasible region X,
• trade-offs between design alternatives (all requiring that “hard” constraints
be satisfied) may then be meaningfully explored, and
• the optimization process may be stopped after a few iterations, yielding a
feasible point.
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The last feature is critical for real-time applications, where a feasible point may be
required before the algorithm has had time to “converge” to a solution. On the flip
side, it can be argued that requiring an initial feasible point for (P) may be taxing; in
particular the objective function value may increase excessively in “phase I.” It has
been observed, however, that the “cost of feasibility” is typically small (see [17]).

An important function associated with the problem (P) is the Lagrangian
L: R

n × R
m → R, which is defined by

L(x, λ)
∆
= f(x) +

m∑
i=1

λigi(x).

Given a feasible estimate x of the solution of (P) and a symmetric matrix H that
approximates the Hessian of the Lagrangian L(x, λ), where λ is a vector of nonnegative
Lagrange multiplier estimates, the standard SQP search direction, denoted d 0(x,H),
or d 0 for short, solves the quadratic program (QP)

QP 0(x,H)
min 1

2 〈d 0, Hd 0〉+ 〈∇f(x), d 0〉
s.t. gj(x) + 〈∇gj(x), d 0〉 ≤ 0, j = 1, . . . ,m.

Positive definiteness of H is often assumed as it ensures existence and uniqueness
of such a solution. With appropriate merit function, line search procedure, Hessian
approximation rule, and (if necessary) Maratos effect [15] avoidance scheme, the SQP
iteration is known to be globally and locally superlinearly convergent (see, e.g., [2]).

A feasible direction at a point x ∈ X is defined as any vector d in R
n such that

x+ td belongs to X for all t in [0, t̄ ], for some positive t̄. Note that the SQP direction
d 0, a direction of descent for f , may not be a feasible direction at x, though it is
at worst tangent to the active constraint surface. Thus, in order to generate feasible
iterates in the SQP framework, it is necessary to “tilt” d 0 into the feasible set. A
number of approaches has been considered in the literature for generating feasible
directions and, specifically, tilting the SQP direction.

Early feasible direction algorithms (see, e.g., [29, 19]) were first-order methods,
i.e., only first derivatives were used and no attempt was made to accumulate and
use second-order information. Furthermore, search directions were often computed
via linear programs instead of QPs. As a consequence, such algorithms converged
linearly at best. Polak proposed several extensions to these algorithms (see [19],
section 4.4) which took second-order information into account when computing the
search direction. A few of the search directions proposed by Polak could be viewed as
tilted SQP directions (with proper choice of the matrices encapsulating the second-
order information in the defining equations). Even with second-order information,
though, it is not possible to guarantee superlinear convergence of these algorithms
because no mechanism was included for controlling the amount of tilting.

A straightforward way to tilt the SQP direction is, of course, to perturb the
right-hand side of the constraints in QP 0(x,H). Building on this observation, Her-
skovits and Carvalho [8] and Panier and Tits [16] independently developed similar
FSQP algorithms in which the size of the perturbation was a function of the norm of
d 0(x,H) at the current feasible point x. Thus, their algorithms required the solution
of QP 0(x,H) in order to define the perturbed QP. Both algorithms were shown to be
superlinearly convergent. On the other hand, as a by-product of the tilting scheme,
global convergence proved to be more elusive. In fact, the algorithm in [8] is not
globally convergent, while the algorithm in [16] has to resort to a first-order search
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direction far from a solution in order to guarantee global convergence. Such a hybrid
scheme could give slow convergence if a poor initial point is chosen.

The algorithm developed by Panier and Tits in [17], and analyzed under weaker
assumptions by Qi and Wei in [22], has enjoyed a great deal of success in practice
as implemented in the FFSQP/CFSQP [28, 13] software packages. We will refer to
their algorithm throughout this paper as FSQP. In [17], instead of directly perturbing
QP 0(x,H), tilting is accomplished by replacing d 0 with the convex combination (1−
ρ)d 0+ρd1, where d1 is an (essentially) arbitrary feasible descent direction. To preserve
the local convergence properties of the SQP iteration, ρ is selected as a function ρ(d 0)
of d 0 in such a way that d approaches d 0 fast enough (in particular, ρ(d 0) = O(‖d 0‖2))
as the solution is approached. Finally, in order to avoid the Maratos effect and
guarantee a superlinear rate of convergence, a second-order correction dC (denoted
d̃ in [17]) is used to “bend” the search direction. That is, an Armijo-type search is
performed along the arc x + td + t2dC, where d is the tilted direction. In [17], the
directions d1 and dC are both computed via QPs but it is pointed out that dC could
instead be taken as the solution of a linear least squares problem without affecting
the asymptotic convergence properties.

From the point of view of computational cost, the main drawback of algorithm
FSQP is the need to solve three QPs (or two QPs and a linear least squares problem)
at each iteration. Clearly, for many problems it would be desirable to reduce the
number of QPs at each iteration while preserving the generation of feasible iterates
as well as the global and local convergence properties. This is especially critical in
the context of those large-scale nonlinear programs for which the time spent solving
the QPs dominates that used to evaluate the functions.

With that goal in mind, consider the following perturbation of QP 0(x,H). Given
a point x in X, a symmetric positive definite matrix H, and a nonnegative scalar η,
let (d(x,H, η), γ(x,H, η)) solve the QP

QP (x,H, η)

min 1
2 〈d,Hd〉+ γ

s.t. 〈∇f(x), d〉 ≤ γ,

gj(x) + 〈∇gj(x), d〉 ≤ γ · η, j = 1, . . . ,m,

where γ is an additional, scalar variable.
The idea is that, away from KKT points of (P), γ(x,H, η) will be negative and

thus d(x,H, η) will be a descent direction for f (due to the first constraint) as well as,
if η is strictly positive, a feasible direction (due to the m other constraints). Note that
when η is set to one the search direction is a special case of those computed in Polak’s
second-order feasible direction algorithms (again, see section 4.4 of [19]). Further, it
is not difficult to show that when η is set to zero, we recover the SQP direction, i.e.,
d(x,H, 0) = d 0(x,H). Large values of the parameter η, which we will call the tilting
parameter, emphasize feasibility, while small values of η emphasize descent.

In [1], Birge, Qi, and Wei propose a feasible SQP algorithm based on QP (x,H, η).
Their motivation for introducing the right-hand side constraint perturbation and the
tilting parameters (they use a vector of parameters, one for each constraint) is, like
ours, to obtain a feasible search direction. Specifically, motivated by the high cost of
function evaluations in the application problems they are targeting, their goal is to
ensure that a full step of one is accepted in the line search as early on as is possible
(so that costly line searches are avoided for most iterations). To this end, their tilting
parameters start out positive and, if anything, increase when a step of one is not
accepted. A side effect of such an updating scheme is that the algorithm cannot
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achieve a superlinear rate of convergence, as the authors point out in Remark 5.1
of [1].

In the present paper, our goal is to compute a feasible descent direction which
approaches the true SQP direction fast enough so as to ensure superlinear convergence.
Furthermore, we would like to do this with as little computation per iteration as
possible. While computationally rather expensive, algorithm FSQP of [17] has the
convergence properties and practical performance we seek. We thus start by reviewing
its key features. For x in X, define

I(x)
∆
= { j | gj(x) = 0 },

the index set of active constraints at x. In FSQP, in order for the line-search (with
the objective function f used directly as the merit function) to be well defined, and in
order to preserve global and fast local convergence, the sequence of search directions
{dk} generated by algorithm FSQP is constructed so that the following properties
hold:

P1. dk = 0 if xk is a KKT point for (P),
P2. 〈∇f(xk), dk〉 < 0 if xk is not a KKT point,
P3. 〈∇gj(xk), dk〉 < 0 for all j ∈ I(xk) if xk is not a KKT point, and
P4. dk = d 0

k +O(‖d 0
k ‖2).

We will show in section 3 that given any symmetric positive definite matrix Hk and
nonnegative scalar ηk, d(xk, Hk, ηk) automatically satisfies P1 and P2. Furthermore,
it satisfies P3 if ηk is strictly positive. Ensuring that P4 holds requires a bit more
care.

In the algorithm proposed in this paper, at iteration k, the search direction is
computed via solving QP (xk, Hk, ηk) and the tilting parameter ηk is iteratively ad-
justed to ensure that the four properties are satisfied. The resulting algorithm will be
shown to be locally superlinearly convergent and globally convergent without resort-
ing to a first-order direction far from the solution. Further, the generation of a new
iterate requires only the solution of one QP and two closely related linear least squares
problems. In contrast with the algorithm presented in [1], our tilting parameter starts
out positive and asymptotically approaches zero.

There has been a great deal of interest recently in interior point algorithms for
nonconvex nonlinear programming (see, e.g., [5, 6, 26, 4, 18, 25]). Such algorithms
generate feasible iterates and typically require only the solution of linear systems of
equations in order to generate new iterates. SQP-type algorithms, however, are often
at an advantage over such methods in the context of applications where the num-
ber of variables is not too large but evaluations of objectives/constraint functions
and of their gradients are highly time consuming. Indeed, because these algorithms
use quadratic programs as successive models, away from a solution, progress between
(expensive) function evaluations is often significantly better than that achieved by
algorithms making use of mere linear systems of equations as models. On the other
hand, for problems with large numbers of variables and inexpensive function evalu-
ations, interior-point methods should be expected to perform more efficiently than
SQP-type methods.

In section 2, we present the details of our new FSQP algorithm. In section 3,
we show that under mild assumptions our iteration is globally convergent, as well
as locally superlinearly convergent. The algorithm has been implemented and tested
and we show in section 4 that the numerical results are quite promising. Finally,
in section 5, we offer some concluding remarks and discuss some extensions to the
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algorithm that are currently being explored.
Most of the ideas and results included in the present paper, in particular the

algorithm of section 2, already appeared in [14].

2. Algorithm. We begin by making a few assumptions that will be in force
throughout.

Assumption 1. The set X is nonempty.
Assumption 2. The functions f : R

n → R and gj : R
n → R, j = 1, . . . ,m, are

continuously differentiable.
Assumption 3. For all x ∈ X with I(x) �= ∅, the set {∇gj(x) | j ∈ I(x)} is linearly

independent.
A point x∗ ∈ R

n is said to be a KKT point for the problem (P) if there exist
scalars (KKT multipliers) λ∗,j , j = 1, . . . ,m, such that



∇f(x∗) +
m∑
j=1

λ∗,j∇gj(x∗) = 0,

gj(x
∗) ≤ 0, j = 1, . . . ,m,

λ∗,jgj(x∗) = 0 and λ∗,j ≥ 0, j = 1, . . . ,m.

(2.1)

It is well known that, under our assumptions, a necessary condition for optimality of
a point x∗ ∈ X is that it be a KKT point.

Note that, with x ∈ X, QP (x,H, η) is always consistent: (0, 0) satisfies the
constraints. Indeed, QP (x,H, η) always has a unique solution (d, γ) (see Lemma 1
below) which, by convexity, is its unique KKT point; i.e., there exist multipliers µ
and λj , j = 1, . . . ,m, which, together with (d, γ), satisfy



[
Hd
1

]
+ µ

[ ∇f(x)
−1

]
+

m∑
j=1

λj
[ ∇gj(x)
−η

]
= 0,

〈∇f(x), d〉 ≤ γ,

gj(x) + 〈∇gj(x), d〉 ≤ γ · η, j = 1, . . . ,m,

µ (〈∇f(x), d〉 − γ) = 0 and µ ≥ 0,

λj (gj(x) + 〈∇gj(x), d〉 − γ · η) = 0 and λj ≥ 0, j = 1, . . . ,m.

(2.2)

A simple consequence of the first equation in (2.2), which will be used throughout our
analysis, is an affine relationship amongst the multipliers, namely

µ+ η ·
m∑
j=1

λj = 1.(2.3)

Parameter η will be assigned a new value at each iteration, ηk at iteration k,
to ensure that d(xk, Hk, ηk) has the necessary properties. Strict positivity of ηk is
sufficient to guarantee that properties P1–P3 are satisfied. As it turns out, however,
this is not enough to ensure that, away from a solution, there is adequate tilting
into the feasible set. For this, we will force ηk to be bounded away from zero away
from KKT points of (P). Finally, P4 requires that ηk tend to zero sufficiently fast as
d 0(xk, Hk) tends to zero, i.e., as a solution is approached. In [16], a similar effect is
achieved by first computing d 0(xk, Hk) but, of course, we want to avoid that here.



A COMPUTATIONALLY EFFICIENT FEASIBLE SQP ALGORITHM 1097

Given an estimate IE
k of the active set I(xk), we can compute an estimate

dE(xk, Hk, I
E
k ) of d

0(xk, Hk) by solving the equality-constrained QP

LSE(xk, Hk, I
E
k )

min 1
2 〈dE, Hkd

E〉+ 〈∇f(xk), dE〉
s.t. gj(xk) + 〈∇gj(xk), dE〉 = 0, j ∈ IE

k ,

which is equivalent (after a change of variables) to solving a linear least squares
problem. Let Ik be the set of active constraints, not including the “objective descent”
constraint 〈∇f(xk), dk〉 ≤ γk, for QP (xk, Hk, ηk), i.e.,

Ik
∆
= { j | gj(xk) + 〈∇gj(xk), dk〉 = γk · ηk }.

We will show in section 3 that dE(xk, Hk, Ik−1) = d 0(xk, Hk) for all k sufficiently
large. Furthermore, we will prove that, when dk is small, choosing

ηk ∝ ‖dE(xk, Hk, Ik−1)‖2

is sufficient to guarantee global and local superlinear convergence. Proper choice of the
proportionality constant (Ck in the algorithm statement below), while not important
in the convergence analysis, is critical for satisfactory numerical performance. This
will be discussed in section 4.

In [17], given x, H, and a feasible descent direction d, the Maratos correction dC

(denoted d̃ in [17]) is taken as the solution of the QP

QPC(x, d,H)
min 1

2 〈d+ dC, H(d+ dC)〉+ 〈∇f(x), d+ dC〉
s.t. gj(x+ d) + 〈∇gj(x), d+ dC〉 ≤ −‖d‖τ , j = 1, . . . ,m,

if it exists and has norm less than min{‖d‖, C}, where τ is a given scalar satisfying
2 < τ < 3 and C a given large scalar. Otherwise, dC is set to zero. (Indeed, a large dC

is meaningless and may jeopardize global convergence.) In section 1, it was mentioned
that a linear least squares problem could be used instead of a QP to compute a version
of the Maratos correction dC with the same asymptotic convergence properties. Given
that our goal is to reduce the computational cost per iteration, it makes sense to use
such an approach here. Thus, at iteration k, we take the correction dC

k to be the
solution dC(xk, dk, Hk, Ik), if it exists and is not too large (specifically, if its norm
is no larger than that of dk), of the equality-constrained QP (equivalent to a least
squares problem after a change of variables)

LSC(xk, dk, Hk, Ik)
min 〈dk + dC, Hk(dk + dC)〉+ 〈∇f(xk), dk + dC〉
s.t. gj(xk + dk) + 〈∇gj(xk), dC〉 = −‖dk‖τ ∀j ∈ Ik,

where τ ∈ (2, 3), a direct extension of an alternative considered in [16]. In making
use of the best available metric, such an objective, as compared to the pure least
squares objective ‖dC‖2, should yield a somewhat better iterate without significantly
increasing computational requirements (or affecting the convergence analysis). An-
other advantage of using metric Hk is that, asymptotically, the matrix underlying
LSC(xk, dk, Hk, Ik) will be the same as that underlying LS

E(xk, Hk, Ik−1), resulting
in computational savings. In the case that LSC(xk, dk, Hk, Ik) is inconsistent, or the
computed solution dC

k is too large, we will simply set dC
k to zero.

The proposed algorithm is as follows. Parameters α, β are used in the Armijo-like
search, τ is the “bending” exponent in LSC, and ε�, C, C, and D are used in the
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update rule for ηk. The algorithm is dubbed RFSQP, where “R” reflects the reduced
amount of work per iteration.

Algorithm RFSQP.

Parameters: α ∈ (0, 1
2 ), β ∈ (0, 1), τ ∈ (2, 3), ε� > 0, 0 < C ≤ C, D̄ > 0.

Data: x0 ∈ X, H0 positive definite, η0 > 0.
Step 0 - Initialization. set k ← 0.
Step 1 - Computation of search arc.

(i) compute (dk, γk) = (d(xk, Hk, ηk), γ(xk, Hk, ηk)), the active set Ik,
and associated multipliers µk ∈ R, λk ∈ R

m.
if (dk = 0) then stop.
(ii) compute dC

k = dC(xk, dk, Hk, Ik) if it exists and satisfies ‖dC
k ‖ ≤

‖dk‖. Otherwise, set dC
k = 0.

Step 2 - Arc search. compute tk, the first value of t in the sequence
{1, β, β2, . . . } that satisfies

f(xk + tdk + t2dC
k ) ≤ f(xk) + αt〈∇f(xk), dk〉,

gj(xk + tdk + t2dC
k ) ≤ 0, j = 1, . . . ,m.

Step 3 - Updates.
(i) set xk+1 ← xk + tkdk + t2kd

C
k .

(ii) compute Hk+1, a new symmetric positive definite estimate to the
Hessian of the Lagrangian.
(iii) select Ck+1 ∈ [C,C].
∗ if (‖dk‖ < ε�) then if LSE(xk+1, Hk+1, Ik) has a unique solution and
unique associated multipiers, compute dE

k+1 = dE(xk+1, Hk+1, Ik),

and the associated multipliers λE
k+1 ∈ R

|Ik|. In such case,

· if (‖dE
k+1‖ ≤ D̄ and λE

k+1 ≥ 0) then set

ηk+1 ← Ck+1 · ‖dE
k+1‖2.

· else set ηk+1 ← Ck+1 · ‖dk‖2.
∗ else set ηk+1 ← Ck+1 · ε2� .

(iv) set k ← k + 1 and go to Step 1.

3. Convergence analysis. Much of our analysis, especially the local analysis,
will be devoted to establishing the relationship between d(x,H, η) and the SQP direc-
tion d 0(x,H). Given x in X and H symmetric positive definite, d 0 is a KKT point for
QP 0(x,H) (thus its unique solution d 0(x,H)) if and only if there exists a multiplier
vector λ0 such that



Hd 0 +∇f(x) +
m∑
j=1

λ0,j∇gj(x) = 0,

gj(x) + 〈∇gj(x), d 0〉 ≤ 0, j = 1, . . . ,m,

λ0,j · (gj(x) + 〈∇gj(x), d 0〉) = 0 and λ0,j ≥ 0, j = 1, . . . ,m.

(3.1)

Further, given I ⊆ {1, . . . ,m}, an estimate dE is a KKT point for LSE(x,H, I) (thus
its unique solution dE(x,H, I)) if and only if there exists a multiplier vector λE such
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that 


HdE +∇f(x) +
∑
j∈I

λE,j∇gj(x) = 0,

gj(x) + 〈∇gj(x), dE〉 = 0, j ∈ I.
(3.2)

Note that the components of λE for j �∈ I play no role in the optimality conditions.

3.1. Global convergence. In this section we establish that, under mild as-
sumptions, RFSQP generates a sequence of iterates {xk} with the property that all
accumulation points are KKT points for (P). We begin by establishing some properties
of the tilted SQP search direction d(x,H, η).

Lemma 1. Suppose Assumptions 1–3 hold. Then, given H symmetric positive
definite, x ∈ X, and η ≥ 0, d(x,H, η) is well defined and (d(x,H, η), γ(x,H, η)) is the
unique KKT point of QP (x,H, η). Furthermore, d(x,H, η) is bounded over compact
subsets of X×P×R

+, where P is the set of symmetric positive definite n×n matrices
and R

+ the set of nonnegative real numbers.
Proof. First note that the feasible set for QP (x,H, η) is nonempty, since (d, γ) =

(0, 0) is always feasible. Now consider the cases η = 0 and η > 0 separately. From
(2.2) and (3.1), it is clear that, if η = 0, (d, γ) is a solution to QP (x,H, 0) if and
only if d is a solution of QP 0(x,H) and γ = 〈∇f(x), d〉. It is well known that, under
our assumptions, d 0(x,H) is well defined, unique, and continuous. The claims follow.
Suppose now that η > 0. In that case, (d, γ) is a solution of QP (x,H, η) if and only
if d solves the unconstrained problem

min
1

2
〈d,Hd〉+max

{
〈∇f(x), d〉, 1

η
· max
j=1,... ,m

{gj(x) + 〈∇gj(x), d〉}
}

(3.3)

and

γ = max

{
〈∇f(x), d〉, 1

η
· max
j=1,... ,m

{gj(x) + 〈∇gj(x), d〉}
}
.

Since the function being minimized in (3.3) is strictly convex and radially unbounded,
it follows that (d(x,H, η), γ(x,H, η)) is well defined and unique as a global minimizer
for the convex problem QP (x,H, η) and thus unique as a KKT point for that problem.
Boundedness of d(x,H, η) over compact subsets of X ×P ×R

+ follows from the first
equation in (2.2), our regularity assumptions, and (2.3), which shows (since η > 0)
that the multipliers are bounded.

Lemma 2. Suppose Assumptions 1–3 hold. Then, given H symmetric positive
definite and η ≥ 0,

(i) γ(x,H, η) ≤ 0 for all x ∈ X, and moreover γ(x,H, η) = 0 if and only if
d(x,H, η) = 0;

(ii) d(x,H, η) = 0 if and only if x is a KKT point for (P), and moreover, if
either (thus both) of these conditions holds, then the multipliers λ and µ for
QP (x,H, η) and λ∗ for (P) are related by µ = (1+η

∑
j λ

∗,j)−1 and λ = µλ∗.
Proof. To prove (i), first note that since (d, γ) = (0, 0) is always feasible for

QP (x,H, η), the optimal value of the QP is nonpositive. Further, since H > 0, the
quadratic term in the objective is nonnegative, which implies γ(x,H, η) ≤ 0. Now
suppose that d(x,H, η) = 0; then feasibility of the first QP constraint implies that
γ(x,H, η) = 0. Finally, suppose that γ(x,H, η) = 0. Since x ∈ X, H > 0, and η ≥ 0,
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it is clear that d = 0 is feasible and achieves the minimum value of the objective.
Thus, uniqueness gives d(x,H, η) = 0 and part (i) is proved.

Suppose now that d(x,H, η) = 0. Then γ(x,H, η) = 0 and by (2.2) there exist a
multiplier vector λ and a scalar multiplier µ ≥ 0 such that



µ∇f(x) +
m∑
j=1

λj∇gj(x) = 0,

gj(x) ≤ 0 ∀j = 1, . . . ,m,

λjgj(x) = 0 and λj ≥ 0 ∀j = 1, . . . ,m.

(3.4)

We begin by showing that µ > 0. Proceeding by contradiction, suppose µ = 0; then
by (2.3) we have

m∑
j=1

λj > 0.(3.5)

Note that

I
∆
= { j | gj(x) + 〈∇gj(x), d(x,H, η)〉 = γ(x,H, η) · η }
= { j | gj(x) = 0 } = I(x).

Thus, by the complementary slackness condition of (2.2) and the optimality condi-
tions (3.4),

0 =

m∑
j=1

λj∇gj(x) =
∑
j∈I(x)

λj∇gj(x).

By Assumption 3, this sum vanishes only if λj = 0 for all j ∈ I(x), contradicting (3.5).
Thus µ > 0. It is now immediate that x is a KKT point for (P) with multipliers
λ∗,j = λj/µ, j = 1, . . . ,m.

Finally, to prove the necessity portion of part (ii) note that if x is a KKT point
for (P), then (2.1) shows that (d, γ) = (0, 0) is a KKT point for QP (x,H, η), with
µ = (1 + η

∑
j λ

∗,j)−1 and λj = λ∗,j(1 + η
∑
j λ

∗,j)−1, j = 1, . . . ,m. Uniqueness of
such points (Lemma 1) yields the result.

The next two lemmas establish that the line search in Step 2 of Algorithm
RFSQP is well defined.

Lemma 3. Suppose Assumptions 1–3 hold. Suppose x ∈ X is not a KKT point
for (P), H is symmetric positive definite, and η > 0. Then

(i) 〈∇f(x), d(x,H, η)〉 < 0, and
(ii) 〈∇gj(x), d(x,H, η)〉 < 0 for all j ∈ I(x).
Proof. Both follow immediately from Lemma 2 and the fact that d(x,H, η) and

γ(x,H, η) must satisfy the constraints in QP (x,H, η).
Lemma 4. Suppose Assumptions 1–3 hold. Then, if ηk = 0, xk is a KKT point

for (P) and the algorithm will stop in Step 1(i) at iteration k. On the other hand,
whenever the algorithm does not stop in Step 1(i), the line search is well defined; i.e.,
Step 2 yields a step tk equal to βjk for some finite jk.

Proof. Suppose that ηk = 0. Then k > 0 and, by Step 3(iii), either dE
k = 0 with

λE
k ≥ 0, or dk−1 = 0. The latter case cannot hold, as the stopping criterion in Step
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1(i) would have stopped the algorithm at iteration k−1. On the other hand, if dE
k = 0

with λE
k ≥ 0, then in view of the optimality conditions (3.2), and the fact that xk is

always feasible for (P), we see that xk is a KKT point for (P) with multipliers{
λE,j
k , j ∈ Ik−1,

0 otherwise.

Thus, by Lemma 2, dk = 0 and the algorithm will stop in Step 1(i). The first claim is
thus proved. Also, we have established that ηk > 0 whenever Step 2 is reached. The
second claim now follows immediately from Lemma 3 and Assumption 2.

The previous lemmas imply that the algorithm is well defined. In addition,
Lemma 2 shows that if Algorithm RFSQP generates a finite sequence terminating
at the point xN , then xN is a KKT point for the problem (P). We now concentrate
on the case in which an infinite sequence {xk} is generated, i.e., the algorithm never
satisfies the termination condition in Step 1(i). Note that, in view of Lemma 4, we
may assume throughout that

ηk > 0 ∀k.(3.6)

Before proceeding, we make an assumption concerning the estimates Hk of the
Hessian of the Lagrangian.

Assumption 4. There exist positive constants σ1 and σ2 such that, for all k,

σ1‖d‖2 ≤ 〈d,Hkd〉 ≤ σ2‖d‖2 ∀d ∈ R
n.

Lemma 5. Suppose Assumptions 1–4 hold. Then the sequence {ηk} generated by
Algorithm RFSQP is bounded. Further, the sequence {dk} is bounded on subsequences
on which {xk} is bounded.

Proof. The first claim follows from the update rule in Step 3(iii) of Algorithm
RFSQP. The second claim then follows from Lemma 1 and Assumption 4.

Given an infinite index set K, we will use the notation
xk

k∈K−→ x∗

to mean

xk → x∗ as k →∞, k ∈ K.
Lemma 6. Suppose Assumptions 1–3 hold. Suppose K is an infinite index set

such that xk
k∈K−→ x∗ ∈ X, {ηk} is bounded on K, and dk

k∈K−→ 0. Then Ik ⊆ I(x∗), for
all k ∈ K, k sufficiently large, and the QP multiplier sequences {µk} and {λk} are
bounded on K. Further, given any accumulation point η∗ ≥ 0 of {ηk}k∈K, (0, 0) is the
unique solution of QP (x∗, H∗, η∗).

Proof. In view of Assumption 2 {∇f(xk)}k∈K must be bounded. Lemma 2(i) and
the first constraint in QP (xk, Hk, ηk) give

〈∇f(xk), dk〉 ≤ γk ≤ 0 ∀k ∈ K.
Thus, γk

k∈K−→ 0. To prove the first claim, let j′ �∈ I(x∗). There exists δj′ > 0 such
that gj′(xk) ≤ −δj′ < 0, for all k ∈ K, k sufficiently large. In view of Assumption 2,

and since dk
k∈K−→ 0, γk

k∈K−→ 0, and {ηk} is bounded on K, it is clear that

gj′(xk) + 〈∇gj′(xk), dk〉 − γk · ηk ≤ −δj
′

2
< 0,
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i.e., j′ �∈ Ik for all k ∈ K, k sufficiently large, proving the first claim.
Boundedness of {µk}k∈K follows from nonnegativity and (2.3). To prove that of

{λk}k∈K, using complementary slackness and the first equation in (2.2), write

Hkdk + µk∇f(xk) +
∑

j∈I(x∗)

λjk∇gj(xk) = 0.(3.7)

Proceeding by contradiction, suppose that {λk}k∈K is unbounded. Without loss of
generality, assume that ‖λk‖∞ > 0 for all k ∈ K and define for all k ∈ K

νjk
∆
=

λjk
‖λk‖∞ ∈ [0, 1].

Note that, for all k ∈ K, ‖νk‖∞ = 1. Dividing (3.7) by ‖λk‖∞ and taking limits on an
appropriate subsequence of K, it follows from Assumptions 2 and 4 and boundedness
of {µk} that ∑

j∈I(x∗)

ν∗,j∇gj(x∗) = 0

for some ν∗,j , j ∈ I(x∗), where ‖ν∗‖∞ = 1. As this contradicts Assumption 3, it is
established that {λk}k∈K is bounded.

To complete the proof, let K′ ⊆ K be an infinite index set such that ηk
k∈K′−→ η∗

and assume without loss of generality that Hk
k∈K′−→ H∗, µk

k∈K′−→ µ∗, and λk
k∈K′−→ λ∗.

Taking limits in the optimality conditions (2.2) shows that, indeed, (d, γ) = (0, 0) is
a KKT point for QP (x∗, H∗, η∗) with multipliers µ∗ and λ∗. Finally, uniqueness of
such points (Lemma 1) proves the result.

Lemma 7. Suppose Assumptions 1–4 hold. Then, if K is an infinite index set

such that dk
k∈K−→ 0, all accumulation points of {xk}k∈K are KKT points for (P).

Proof. Suppose that K′ ⊆ K is an infinite index set on which xk
k∈K′−→ x∗ ∈ X. In

view of Assumption 4 and Lemma 5, assume without loss of generality that Hk
k∈K′−→

H∗, a positive definite matrix, and ηk
k∈K′−→ η∗ ≥ 0. In view of Lemma 6, (0, 0) is the

unique solution of QP (x∗, H∗, η∗). It follows from Lemma 2 that x∗ is a KKT point
for (P).

We now state and prove the main result of this subsection.
Theorem 1. Under Assumptions 1–4, Algorithm RFSQP generates a sequence

{xk} for which all accumulation points are KKT points for (P).

Proof. Suppose K is an infinite index set such that xk
k∈K−→ x∗. In view of

Lemma 5 and Assumption 4, we may assume without loss of generality that dk
k∈K−→ d∗,

ηk
k∈K−→ η∗ ≥ 0, and Hk

k∈K−→ H∗ > 0. The cases η∗ = 0 and η∗ > 0 are considered
separately.

Suppose first that η∗ = 0. Then, by Step 3(iii), there exists an infinite index set

K′ ⊆ K such that either dE
k

k∈K′−→ 0 with λE
k ≥ 0, for all k ∈ K′, or dk−1

k∈K′−→ 0. If the

latter case holds, it is then clear that xk−1
k∈K′−→ x∗, since ‖xk−xk−1‖ ≤ 2‖dk−1‖ k∈K′−→ 0.

Thus, by Lemma 7, x∗ is a KKT point for (P). Now suppose instead that dE
k

k∈K′−→ 0
with λE

k ≥ 0 for all k ∈ K′. From the second set of equations in (3.2), one can easily
see that Ik−1 ⊆ I(x∗) for all k ∈ K′, k sufficiently large, and using an argument very
similar to that used in Lemma 6, one can show that {λE

k }k∈K′ is a bounded sequence.
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Thus, taking limits in (3.2) on an appropriate subsequence of K′ shows that x∗ is a
KKT point for (P).

Now consider the case η∗ > 0. We show that dk
k∈K−→ 0. Proceeding by contra-

diction, without loss of generality suppose there exists d > 0 such that ‖dk‖ ≥ d
for all k ∈ K. From nonpositivity of the optimal value of the objective function in
QP (xk, Hk, ηk) (since (0, 0) is always feasible) and Assumption 4, we see that

γk ≤ −1
2
σ1d

2 < 0 ∀k ∈ K.

Further, in view of (3.6) and since η∗ > 0, there exists η > 0 such that

ηk > η ∀k ∈ K.
From the constraints of QP (xk, Hk, ηk), it follows that

〈∇f(xk), dk〉 ≤ −1
2
σ1d

2 < 0 ∀k ∈ K

and

gj(xk) + 〈∇gj(xk), dk〉 ≤ −1
2
σ1d

2η < 0 ∀k ∈ K,

j = 1, . . . ,m. Hence, using Assumption 2, it is easily shown that there exists δ > 0
such that for all k ∈ K, k large enough,

〈∇f(xk), dk〉 ≤ −δ,
〈∇gj(xk), dk〉 ≤ −δ ∀j ∈ I(x∗)

gj(xk) ≤ −δ ∀j ∈ {1, . . . ,m} \ I(x∗).

The rest of the contradiction argument establishing dk
k∈K−→ 0 follows exactly the proof

of Proposition 3.2 in [16]. Finally, it then follows from Lemma 7 that x∗ is a KKT
point for (P).

3.2. Local convergence. While the details are often quite different, overall the
analysis in this section is inspired by and occasionally follows that of Panier and Tits
in [16, 17]. The key result is Proposition 1 which states that, under appropriate as-
sumptions, the arc search eventually accepts the full step of one. With this and the
fact, to be established along the way, that tilted direction dk approaches the standard
SQP direction sufficiently fast, superlinear convergence follows from a classical anal-
ysis given by Powell [20, sections 2–3]. As a first step, we strengthen the regularity
assumptions.

Assumption 2′. The functions f : R
n → R and gj : R

n → R, j = 1, . . . ,m, are
three times continuously differentiable.

A point x∗ is said to satisfy the second-order sufficiency conditions with strict
complementary slackness for (P) if there exists a multiplier vector λ∗ ∈ R

m such that
• the pair (x∗, λ∗) satisfies (2.1), i.e., x∗ is a KKT point for (P),
• ∇2

xxL(x
∗, λ∗) is positive definite on the subspace

{h | 〈∇gj(x∗), h〉 = 0 ∀j ∈ I(x∗)},
• and λ∗,j > 0 for all j ∈ I(x∗) (strict complementary slackness).
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In order to guarantee that the entire sequence {xk} converges to a KKT point x∗,
we make the following assumption. (Recall that we have already established, under
weaker assumptions, that every accumulation point of {xk} is a KKT point for (P).)

Assumption 5. The sequence {xk} has an accumulation point x∗ which satisfies
the second-order sufficiency conditions with strict complementary slackness.

It is well known that Assumption 5 guarantees that the entire sequence converges.
For a proof see, e.g., Proposition 4.1 in [16].

Lemma 8. Suppose Assumptions 1, 2′, and 3–5 hold. Then the entire sequence
generated by Algorithm RFSQP converges to a point x∗ satisfying the second-order
sufficiency conditions with strict complementary slackness.

From this point forward, λ∗ will denote the (unique) multiplier vector associated
with KKT point x∗ for (P). It is readily checked that, for any symmetric positive
definite H, (0, λ∗) is the KKT pair for QP 0(x∗, H).

As announced, as a first main step, we show that our sequence of tilted SQP
directions approaches the true SQP direction sufficiently fast. (This is achieved in
Lemmas 9–18.) In order to do so, define d 0

k to be equal to d
0(xk, Hk), where xk andHk

are as computed by Algorithm RFSQP. Further, for each k, define λ0
k as a multiplier

vector such that (d 0
k , λ

0
k) satisfy (3.1) and let I0

k
∆
= { j | gj(xk) + 〈∇gj(xk), d 0

k 〉 =
0 }. The following lemma is proved in [17] (with reference to [16]) under identical
assumptions.

Lemma 9. Suppose Assumptions 1, 2′, and 3–5 hold. Then
(i) d 0

k → 0,
(ii) λ0

k → λ∗,
(iii) for all k sufficiently large, the following two equalities hold:

I0
k = { j | λ0,j

k > 0 } = I(x∗).

We next establish that the entire tilted SQP direction sequence converges to 0.
In order to do so, we establish that d(x,H, η) is continuous in a neighborhood of
(x∗, H∗, η∗), for any η∗ ≥ 0 and H∗ symmetric positive definite. Complicating the
analysis is the fact that we have yet to establish that the sequence {ηk} does, in fact,
converge. Given η∗ ≥ 0, define the set

N∗(η∗) ∆
=

{( ∇f(x∗)
−1

)
,

( ∇gj(x∗)
−η∗

)
, j ∈ I(x∗)

}
.

Lemma 10. Suppose Assumptions 1, 2′, and 3–5 hold. Then, given any η∗ ≥ 0,
the set N∗(η∗) is linearly independent.

Proof. Let H∗ be symmetric positive definite. Note that, in view of Lemma 2,
d(x∗, H∗, η∗) = 0. Now suppose the claim does not hold; i.e., suppose there exist
scalars λj , j ∈ {0} ∪ I(x∗), not all zero, such that

λ0

( ∇f(x∗)
−1

)
+

∑
j∈I(x∗)

λj
( ∇gj(x∗)

−η∗
)
= 0.(3.8)

In view of Assumption 3, λ0 �= 0 and the scalars λj are unique modulo a scaling factor.
This uniqueness, the fact that d(x∗, H∗, η∗) = 0, and the first n scalar equations in
the optimality conditions (2.2) imply that µ∗ = 1 and

λ∗,j =




λj

λ0
, j ∈ I(x∗),

0 else,
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j = 1, . . . ,m, are KKT multipliers for QP (x∗, H∗, η∗). Thus, in view of (2.3),

η∗ ·
∑

j∈I(x∗)

λj

λ0
= 0.

But this contradicts (3.8), which gives

η∗ ·
∑

j∈I(x∗)

λj

λ0
= −1;

hence N∗(η∗) is linearly independent.
Lemma 11. Suppose Assumptions 1, 2′, and 3–5 hold. Let η∗ ≥ 0 be an accumu-

lation point of {ηk}. Then, given any symmetric positive definite H, (d∗, γ∗) = (0, 0)
is the unique solution of QP (x∗, H, η∗) and the second-order sufficiency conditions
hold, with strict complementary slackness.

Proof. In view of Lemma 2, QP (x∗, H, η∗) has (d∗, γ∗) = (0, 0) as its unique
solution. Define the Lagrangian function L : R

n×R×R×R
m → R for QP (x∗, H, η∗)

as

L(d, γ, µ, λ) =
1

2
〈d,Hd〉+ γ + µ (〈∇f(x∗), d〉 − γ)

+
m∑
j=1

λj (gj(x
∗) + 〈∇gj(x∗), d〉 − γη∗) .

Suppose µ̂ ∈ R and λ̂ ∈ R
m are KKT multipliers such that (2.2) holds with d = 0,

γ = 0, µ = µ̂, and λ = λ̂. Let j = 0 be the index for the first constraint in
QP (x∗, H, η∗), i.e., 〈∇f(x∗), d〉 ≤ γ. Note that since (d∗, γ∗) = (0, 0), the active
constraint index set I∗ for QP (x∗, H, η∗) is equal to I(x∗)∪{0}. (Note that we define
I∗ as including 0, while Ik was defined as a subset of {1, . . . ,m}.) Thus the set of
active constraint gradients for QP (x∗, H, η∗) is N∗(η∗).

Now consider the Hessian of the Lagrangian for QP (x∗, H, η∗), i.e., the second
derivative with respect to the first two variables (d, γ),

∇2L(0, 0, λ̂, µ̂) =
[
H 0
0 0

]
,

and given an arbitrary h ∈ R
n+1, decompose it as h = (yT , α)T , where y ∈ R

n and
α ∈ R. Then clearly,

〈h,∇2L(0, 0, λ̂, µ̂)h〉 ≥ 0 ∀h

and for h �= 0, hT∇2L(0, 0, λ̂, µ̂)h = yTHy is zero if and only if y = 0 and α �= 0.
Since for such h ( ∇f(x∗)

−1
)T (

0
α

)
= −α �= 0,

it then follows that ∇2L(0, 0, λ̂, µ̂) is positive definite on N∗(η∗)⊥, the tangent space
to the active constraints for QP (x∗, H, η∗) at (0, 0). Thus, it is established that the
second-order sufficiency conditions hold.
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Finally, it follows from Lemma 2(ii) that µ̂ > 0 and λ̂ = µ̂λ∗ which, together with
Assumption 5, implies strict complementarity for QP (x∗, H, η∗) at (0, 0).

Lemma 12. Suppose Assumptions 1, 2′, and 3–5 hold. Then, if K is a subsequence

on which {ηk} converges, say, to η∗ ≥ 0, then µk
k∈K−→ µ̂ > 0 and λk

k∈K−→ µ̂λ∗, where
µ̂ = (1 + η∗

∑
j λ

∗,j)−1. Finally, dk → 0 and γk → 0.
Proof. First, proceed by contradiction to show that the first two claims hold and

that, in addition,

(dk, γk)
k∈K−→ (0, 0);(3.9)

i.e., suppose that on some infinite index set K′ ⊆ K either µk is bounded away from
µ̂, or λk is bounded away from µ̂λ∗, or (dk, γk) is bounded away from zero. In view

of Assumption 4, there is no loss of generality is assuming that Hk
k∈K′−→ H∗ for some

symmetric positive definite H∗. In view of Lemmas 10 and 11, we may thus invoke a
result due to Robinson (Theorem 2.1 in [23]) to conclude that, in view of Lemma 2(ii),

(dk, γk)
k∈K′−→ (0, 0), µk

k∈K′−→ µ̂, λk
k∈K′−→ µ̂λ∗,

a contradiction. Hence the first two claims hold, as does (3.9). Next, proceeding again
by contradiction, suppose that dk �→ 0. Then, since {Hk} and {ηk} are bounded, there
exists an infinite index set K on which {Hk} and {ηk} converge and dk is bounded
away from zero. This contradicts (3.9). Thus dk → 0. It immediately follows from
the first constraint in QP (xk, Hk, ηk) that γk → 0.

Lemma 13. Suppose Assumptions 1, 2′, and 3–5 hold. Then, for all k sufficiently
large, Ik = I(x∗).

Proof. Since {ηk} is bounded and, in view of Lemma 12, (dk, γk) → (0, 0),
Lemma 6 implies that Ik ⊆ I(x∗), for all k sufficiently large. Now suppose it does not
hold that Ik = I(x∗) for all k sufficiently large. Thus, there exists j′ ∈ I(x∗) and an
infinite index set K such that j′ �∈ Ik, for all k ∈ K. Now, in view of Lemma 5, there

exists an infinite index set K′ ⊆ K and η∗ ≥ 0 such that ηk
k∈K′−→ η∗. Since j′ ∈ I(x∗),

Assumption 5 guarantees λ∗,j
′
> 0. Further, Lemma 12 shows that λj

′
k

k∈K′−→ µ̂λ∗,j
′
> 0.

Therefore, λj
′
k > 0 for all k sufficiently large, k ∈ K′, which, by complementary slack-

ness, implies j′ ∈ Ik for all k ∈ K′ large enough. Since K′ ⊆ K, this is a contradiction,
and the claim is proved.

Now define

Rk
∆
= [ ∇gj(xk) : j ∈ I(x∗) ] ,

gk
∆
= [ gj(xk) : j ∈ I(x∗) ]T ,

and, given a vector λ ∈ R
m, define the notation

λ+ ∆
= [ λj : j ∈ I(x∗) ]T .

Note that, in view of Lemma 9(iii), for k large enough, the optimality conditions (3.1)
yield

[
Hk Rk
RTk 0

]( d 0
k

(λ0
k)

+

)
= −

( ∇f(xk)
gk

)
.(3.10)

The following well-known result will be used.
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Lemma 14. Suppose Assumptions 1, 2′, and 3–5 hold. Then the matrix[
Hk Rk
RTk 0

]

is invertible for all k large enough and its inverse remains bounded as k →∞.
Lemma 15. Suppose Assumptions 1, 2′, and 3–5 hold. For all k sufficiently large,

dE
k and λE

k are uniquely defined, and dE
k = d 0

k .
Proof. In view of Lemma 13, the optimality conditions (3.2), and Lemma 14, for

all k large enough, the estimate dE
k and its corresponding multiplier vector λE

k are well
defined as the unique solution of

[
Hk Rk
RTk 0

]( dE
k

(λE
k )

+

)
= −

( ∇f(xk)
gk

)
.(3.11)

The claim then follows from (3.10).
Lemma 16. Suppose Assumptions 1, 2′, and 3–5 hold. Then
(i) ηk → 0,
(ii) µk → 1 and λk → λ∗,
(iii) for all k sufficiently large, Ik = { j | λjk > 0 }.
Proof. Claim (i) follows from Step 3(iii) of Algorithm RFSQP, since in view of

Lemma 12, Lemma 15, and Lemma 9, {dk} and {dE
k } both converge to 0. In view

of (i), Lemma 12 establishes that µk → 1, and λk → λ∗; hence claim (ii) is proved.
Finally, claim (iii) follows from claim (ii), Lemma 13, and Assumption 5.

We now focus our attention on establishing relationships between dk, d
C
k , and the

true SQP direction d 0
k .

Lemma 17. Suppose Assumptions 1, 2′, and 3–5 hold. Then
(i) ηk = O(‖d 0

k ‖2),
(ii) dk = d 0

k +O(‖d 0
k ‖2),

(iii) γk = O(‖d 0
k ‖).

Proof. In view of Lemma 15, for all k sufficiently large, dE
k and λE

k exist and are
uniquely defined, and dE

k = d 0
k . Lemmas 12 and 9 ensure that Step 3(iii) of Algorithm

RFSQP chooses ηk = Ck · ‖dE
k ‖2 for all k sufficiently large; thus (i) follows. It is clear

from Lemma 13 and the optimality conditions (2.2) that dk and λk satisfy[
Hk Rk
RTk 0

](
dk
λ+
k

)
= −

(
µk · ∇f(xk)

gk − ηk · γk · 1|I(x∗)|

)

= −
( ∇f(xk)

gk

)
+ ηk ·




 ∑
j∈I(x∗)

λjk


 · ∇f(xk)

γk · 1|I(x∗)|


(3.12)

for all k sufficiently large, where 1|I(x∗)| is a vector of |I(x∗)| ones. It thus follows
from (3.10), Assumption 2, and Lemmas 12, 14, and 16 that

dk = d 0
k +O(ηk),

and in view of claim (i), claim (ii) follows. Finally, since (from the QP constraint and
Lemma 2) 〈∇f(xk), dk〉 ≤ γk < 0, it is clear that γk = O(‖dk‖) = O(‖d 0

k ‖).
Lemma 18. Suppose Assumptions 1, 2′, and 3–5 hold. Then dC

k = O(‖d 0
k ‖2).
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Proof. Let

ck
∆
= [−gj(xk + dk)− ‖dk‖τ : j ∈ I(x∗)]T .

Expanding gj(·), j ∈ I(x∗), about xk we see that, for some ξj ∈ (0, 1), j ∈ I(x∗),

ck =

[ =−ηk·γk︷ ︸︸ ︷
−gj(xk)− 〈∇gj(xk), dk〉

+
1

2
〈dk,∇2gj(xk + ξjdk)dk〉 − ‖dk‖τ : j ∈ I(x∗)

]T
.

Since τ > 2, from Lemma 17 and Assumption 2′ we conclude that ck = O(‖d 0
k ‖2).

Now, for all k sufficiently large, in view of Lemma 13, dC
k is well defined and satisfies

gj(xk + dk) + 〈∇gj(xk), dC
k 〉 = −‖dk‖τ , j ∈ I(x∗);(3.13)

thus

RTk d
C
k = ck.(3.14)

Now, the first-order KKT conditions for LSC(xk, dk, Hk, Ik) tell us there exists a
multiplier λC

k ∈ R
|I(x∗)| such that{

Hk(dk + dC
k ) +∇f(xk) +Rkλ

C
k = 0,

RTk d
C
k = ck.

Also, from the optimality conditions (3.12) we have

Hkdk +∇f(xk) = qk −Rkλ+
k ,

where

qk
∆
= ηk ·


 ∑
j∈I(x∗)

λjk


 · ∇f(xk).

In view of Lemma 17, qk = O(‖d 0
k ‖2). So, dC

k and λC
k satisfy[

Hk Rk
RTk 0

](
dC
k

λC
k

)
=

(
Rkλ

+
k − qk
ck

)

or equivalently, with λ′k = λC
k − λ+

k ,[
Hk Rk
RTk 0

](
dC
k

λ′k

)
=

( −qk
ck

)
= O(‖d 0

k ‖2).

The result then follows from Lemma 14.
In order to prove the key result that the full step of one is eventually accepted

by the line search, we now assume that the matrices {Hk} suitably approximate the
Hessian of the Lagrangian at the solution. Define the projection

Pk
∆
= I −Rk(RTkRk)−1RTk .
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Assumption 6.

lim
k→∞

‖Pk(Hk −∇2
xxL(x

∗, λ∗))Pkdk‖
‖dk‖ = 0.

The following technical lemma will be used.
Lemma 19. Suppose Assumptions 1, 2′, and 3–5 hold. Then there exist constants

ν1, ν2, ν3 > 0 such that
(i) 〈∇f(xk), dk〉 ≤ −ν1‖d 0

k ‖2,
(ii) for all k sufficiently large,∑

j∈I(x∗)

λjkgj(xk) ≤ −ν2‖gk‖,

(iii) dk = Pkdk + d1
k, where, for all k sufficiently large,

‖d1
k‖ ≤ ν3‖gk‖+O(‖d 0

k ‖3).

Proof. To show part (i), note that in view of the first QP constraint, negativity
of the optimal value of the QP objective, and Assumption 4,

〈∇f(xk), dk〉 ≤ γk

≤ − 1
2 〈dk, Hkdk〉

≤ −σ1

2 ‖dk‖2 = −σ1

2 ‖d 0
k ‖2 +O(‖d 0

k ‖4).

The proof of part (ii) is identical to that of Lemma 4.4 in [16]. To show (iii), note
that from (3.12) for all k sufficiently large, dk satisfies

RTk dk = −gk − γkηk · 1|I(x∗)|.

Thus, we can write dk = Pkdk + d1
k, where

d1
k = −Rk(RTkRk)−1(gk + γkηk · 1|I(x∗)|).

The result follows from Assumption 3 and Lemma 17(i),(iii).
Proposition 1. Suppose Assumptions 1, 2′, and 3–6 hold. Then, tk = 1 for all

k sufficiently large.
Proof. Following [16], consider an expansion of gj(·) about xk + dk for j ∈ I(x∗),

for all k sufficiently large,

gj(xk + dk + dC
k ) = gj(xk + dk) + 〈∇gj(xk + dk), d

C
k 〉+O(‖d 0

k ‖4)
= gj(xk + dk) + 〈∇gj(xk), dC

k 〉+O(‖d 0
k ‖3)

= −‖dk‖τ +O(‖d 0
k ‖3)

= −‖d 0
k ‖τ +O(‖d 0

k ‖3),

where we have used Assumption 2′, Lemmas 17 and 18, boundedness of all sequences,
and (3.13). As τ < 3, it follows that gj(xk + dk + dC

k ) ≤ 0, j ∈ I(x∗), for all k
sufficiently large. The same result trivially holds for j �∈ I(x∗). Thus, for k large
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enough, the full step of one satisfies the feasibility condition in the arc search test. It
remains to show that the “sufficient decrease” condition is satisfied as well.

First, in view of Assumption 2′ and Lemmas 17 and 18,

f(xk + dk + dC
k ) = f(xk) + 〈∇f(xk), dk〉+ 〈∇f(xk), dC

k 〉
+ 1

2 〈dk,∇2f(xk)dk〉+O(‖d 0
k ‖3).

(3.15)

From the top equation in optimality conditions (2.2), equation (2.3), Lemma 17(i),
and boundedness of all sequences, we obtain

Hkdk +∇f(xk) +
m∑
j=1

λjk∇gj(xk) = O(‖d 0
k ‖2).(3.16)

The last line in (2.2) and Lemma 17(i),(iii) yield

λjk〈∇gj(xk), dk〉 = −λjkgj(xk) +O(‖d 0
k ‖3).(3.17)

Taking the inner product of (3.16) with dk, then adding and subtracting the quantity∑
j λ

j
k〈∇gj(xk), dk〉, using (3.17), and finally multiplying the result by 1

2 gives

1
2 〈∇f(xk), dk〉 = −1

2
〈dk, Hkdk〉 −

m∑
j=1

λjk〈∇gj(xk), dk〉

− 1

2

m∑
j=1

λjkgj(xk) +O(‖d 0
k ‖3).

(3.18)

Further, Lemmas 17 and 18 and (3.16) give

〈∇f(xk), dC
k 〉 = −

m∑
j=1

λjk〈∇gj(xk), dC
k 〉+O(‖d 0

k ‖3).(3.19)

Combining (3.15), (3.18), and (3.19) and using the fact that, for k large enough,
λjk = 0 for all j �∈ I(x∗) (Lemma 9(iii)), we obtain

f(xk + dk + dC
k )− f(xk)

=
1

2
〈∇f(xk), dk〉 − 1

2
〈dk, Hkdk〉 − 1

2

∑
j∈I(x∗)

λjkgj(xk)

−
∑

j∈I(x∗)

λjk〈∇gj(xk), dk〉 −
∑

j∈I(x∗)

λjk〈∇gj(xk), dC
k 〉

+
1

2
〈dk,∇2f(xk)dk〉+O(‖d 0

k ‖3).

With this in hand, arguments identical to those used following (4.9) in [16] show that

f(xk + dk + dC
k )− f(xk)− α〈∇f(xk), dk〉 < 0
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for all k sufficiently large. Thus the “sufficient decrease” condition is satisfied.
A consequence of Lemmas 17 and 18 and Proposition 1 is that the algorithm

generates a convergent sequence of iterates satisfying

xk+1 − xk = d 0
k +O(‖d 0

k ‖2).

Two-step superlinear convergence follows.
Theorem 2. Suppose Assumptions 1, 2′, and 3–6 hold. Then Algorithm RFSQP

generates a sequence {xk} which converges 2-step superlinearly to x∗, i.e.,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖ = 0.

The proof is not given as it follows step by step, with minor modifications, that
of [20, sections 2–3].

Finally, note that Q-superlinear convergence would follow if Assumption 6 were
replaced with the stronger assumption

lim
k→∞

‖Pk(Hk −∇2
xxL(x

∗, λ∗))dk‖
‖dk‖ = 0.

(See, e.g., [2].)

4. Implementation and numerical results. Our implementation of RFSQP
(in C) differs in a number of ways from the algorithm stated in section 2. (It is readily
checked that none of the differences significantly affect the convergence analysis of
section 3.) Just like in the existing C implementation of FSQP (CFSQP: see [13])
the distinctive character of linear (affine) constraints and of simple bounds is exploited
(provided the nature of these constraints is made explicit). Thus the general form of
the problem description tackled by our implementation is

min f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,mn,

〈aj , x〉+ bj ≤ 0, j = 1, . . . ,ma,

x� ≤ x ≤ xu,

where aj ∈ R
n, bj ∈ R, j = 1, . . . ,ma, and x�, xu ∈ R

n with x� < xu (compo-
nentwise). The details of the implementation are spelled out below. Many of them,
including the update rule for Hk, are exactly as in CFSQP.

In the implementation of QP (xk, Hk, ηk), no “tilting” is performed in connection
with the linear constraints and simple bounds, since clearly the untilted SQP direction
is feasible for these constraints. In addition, each nonlinear constraint is assigned its
own tilting parameter ηjk, j = 1, . . . ,mn. Thus QP (xk, Hk, ηk) is replaced with

min 1
2 〈d,Hkd〉+ γ

s.t. 〈∇f(xk), d〉 ≤ γ,

gj(x) + 〈∇gj(x), d〉 ≤ γ · ηjk, j = 1, . . . ,mn,

〈aj , xk + d〉+ bj ≤ 0, j = 1, . . . ,ma,

x� − xk ≤ d ≤ xu − xk.
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The ηjk’s are updated independently, based on independently adjusted Cjk’s. In the
algorithm description and in the analysis, all that was required of Ck was that it
remain bounded and bounded away from zero. In practice, though, performance of
the algorithm is critically dependent upon the choice of Ck. In the implementation,
an adaptive scheme was chosen in which the new values Cjk+1 are selected in Step 3

based on their previous values Cjk, on the outcome of the arc search in Step 2, and on
a preselected parameter δc > 1. Specifically, (i) if the full step of one was accepted
(tk = 1), then all Cj are left unchanged; (ii) if the step of one was not accepted even
though all trial points were feasible, then, for all j, Cjk is decreased to min{δcCjk, C};
(iii) if some infeasibility was encountered in the arc search, then, for all j such that
gj caused a step reduction at some trial point, C

j
k is increased to max{Cjk/δc, C} and,

for all other j, Cjk is kept constant. Here, gj is said to cause a step reduction if, for
some trial point x, gj is violated (i.e., gj(x) > 0) but all constraints checked at x
before gj were found to be satisfied at that point. (See below for the order in which
constraints are checked in the arc search.)

It was stressed in section 2 that the Maratos correction can be computed using
an inequality-constrained QP such as QPC, instead of LSC. This was done in our
numerical experiments, in order to more meaningfully compare the new algorithm with
CFSQP, in which an inequality-constrained QP is indeed used. The implementation
of QPC and LSE involves index sets of “almost active” constraints and of binding
constraints. First we define

Ink = { j | gj(xk) + 〈∇gj(xk), dk〉 − γk · ηjk > −
√
εm },

Iak = { j | 〈aj , xk + dk〉+ bj > −√εm },

where εm is the machine precision. Next, the binding sets are defined as

Ib,nk = { j | λjk > 0 }, Ib,ak = { j | λa,jk > 0 },
Ib,lk = { j | ζl,jk > 0 }, Ib,uk = { j | ζu,jk > 0 },

where λk ∈ R
mn is now the QP multiplier corresponding to the nonlinear constraints

and where λak ∈ R
ma , ζuk ∈ R

n, and ζlk ∈ R
n are the QP multipliers corresponding

to the affine constraints, the upper bounds, and the lower bounds, respectively. Of
course, no bending is required from dC

k in connection with affine constraints and simple
bounds; hence if Ink = ∅, we simply set dC

k = 0. Otherwise the following modification
of QPC is used:

min 〈dk + dC, Hk(dk + dC)〉+ 〈∇f(xk), dk + dC〉
s.t. gj(xk + dk) + 〈∇gj(xk), dC〉 ≤ −min{10−2‖dk‖, ‖dk‖τ}, j ∈ Ink ,

〈aj , xk + dk + dC〉+ bj ≤ 0, j ∈ Iak ,
dC,j ≤ xu − xjk − djk, j ∈ Ib,uk ,

dC,j ≥ xl − xjk − djk, j ∈ Ib,lk .

Since not all simple bounds are included in the computation of dC
k , it is possible that

xk + dk + dC
k will not satisfy all bounds. To take care of this, we simply “clip” dC

k

so that the bounds are satisfied. Specifically, for the upper bounds, we perform the
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following:

for j �∈ Ib,uk do

if (dC,j
k ≥ xu − xjk − djk) then

dC,j
k ← xu − xjk − djk

end

The same procedure, mutatis mutandis, is executed for the lower bounds. We note
that such a procedure has no effect on the convergence analysis of section 3 since,
locally, the active set is correctly identified and a full step along dk + dC

k is always
accepted. The least squares problem LSE used to compute dE

k is modified similarly.
Specifically, in the implementation, dE

k is only computed if mn > 0, in which case we
use

min 1
2 〈dE, Hkd

E〉+ 〈∇f(xk), dE〉
s.t. gj(xk) + 〈∇gj(xk), dE〉 = 0, j ∈ Ib,nk−1,

〈aj , xk + dE〉+ bj = 0, j ∈ Ib,ak−1,

dE,j = xu − xjk, j ∈ Ib,uk−1,

dE,j = xl − xjk, j ∈ Ib,lk−1.

The implementation of the arc search (Step 2) is as in CFSQP. Specifically, fea-
sibility is checked before sufficient decrease, and testing at a trial point is aborted
as soon as infeasibility is detected. As in CFSQP, all linear and bound constraints
are checked first, then nonlinear constraints are checked in an order maintained as
follows: (i) at the start of the arc search from a given iterate xk, the order is reset to
be the natural numerical order; (ii) within an arc search, as a constraint is found to
be violated at a trial point, its index is moved to the beginning of the list, with the
order of the others left unchanged.

An aspect of the algorithm which was intentionally left vague in sections 2 and
3 was the updating scheme for the Hessian estimates Hk. In the implementation, we
use the BFGS update with Powell’s modification [21]. Specifically, define

δk+1
∆
= xk+1 − xk,

yk+1
∆
= ∇xL(xk+1, λk)−∇xL(xk, λk),

where, in an attempt to better approximate the true multipliers, if µk >
√
εm we

normalize as follows:

λjk ←
λjk
µk

, j = 1, . . . ,mn.

A scalar θk+1 ∈ (0, 1] is then defined by

θk+1
∆
=




1 if 〈δk+1, yk+1〉 ≥ 0.2 · 〈δk+1, Hkδk+1〉,
0.8 · 〈δk+1, Hkδk+1〉

〈δk+1, Hkδk+1〉 − 〈δk+1, yk+1〉 otherwise.

Defining ξk+1 ∈ R
n as

ξk+1
∆
= θk+1 · yk+1 + (1− θk+1) ·Hkδk+1,
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the rank two Hessian update is

Hk+1 = Hk −
Hkδk+1δ

T
k+1Hk

〈δk+1, Hkδk+1〉 +
ξk+1ξ

T
k+1

〈δk+1, ξk+1〉 .

Note that while it is not clear whether the resultant sequence {Hk} will, in fact, satisfy
Assumption 6, this update scheme is known to perform very well in practice.

All QPs and linear least squares subproblems were solved using QPOPT [7]. For
comparison’s sake, QPOPT was also used to solve the QP subproblems in CFSQP.
While the default QP solver for CFSQP is the public domain code QLD (see [24]), we
opted for QPOPT because it allows “warm starts” and thus is fairer to CFSQP in the
comparison with the implementation of RFSQP (since more QPs are solved with the
former). For all QPs in both codes, the active set in the solution at a given iteration
was used as initial guess for the active set for the same QP at the next iteration.

In order to guarantee that the algorithm terminates after a finite number of
iterations with an approximate solution, the stopping criterion of Step 1 is changed
to

if (‖dk‖ ≤ ε) stop,(4.1)

where ε > 0 is small. Finally, the following parameter values were selected:

α = 0.1, β = 0.5, τ = 2.5,
ε� =

√
ε, C = 1× 10−3, C = 1× 103,

δc = 2, D̄ = 10 · ε�.

Further, we always set H0 = I, and Cj0 = 1 and ηj0 = εCj0(= ε), j = 1, . . . ,mn. All
experiments were run on a Sun Microsystems Ultra 5 workstation.

For the first set of numerical tests, we selected a number of problems from [9] which
provided feasible initial points and contained no equality constraints. The results are
reported in Table 1, where the performance of our implementation of RFSQP is
compared with that of CFSQP (with QPOPT as QP solver). The column labeled #
lists the problem number as given in [9]; the column labeled ALGO is self-explanatory.
The next three columns give the size of the problem following the conventions of this
section. The columns labeled NF, NG, and IT give the number of objective function
evaluations, nonlinear constraint function evaluations, and iterations required to solve
the problem, respectively. Finally, f(x∗) is the objective function value at the final
iterate and ε is as above. The value of ε was chosen in order to obtain approximately
the same precision as reported in [9] for each problem.

The results reported in Table 1 are encouraging. The performance of our im-
plementation of Algorithm RFSQP in terms of number of iterations and function
evaluations is essentially identical to that of CFSQP (Algorithm FSQP). The ex-
pected payoff of using RFSQP instead of FSQP, however, is that on large problems
the CPU time expended in linear algebra, specifically in solving the QP and linear
least squares subproblems, should be much less. To assess this, we next carried out
comparative tests on the COPS suite of problems [3].

The first five problems from the COPS set [3] were considered, as these problems
either do not involve nonlinear equality constraints or are readily reformulated with-
out such constraints. (Specifically, in problem “Sphere” the equality constraint was
changed to a “≤” constraint; and in “Chain” the equality constraint (with L = 4) was
replaced with two inequalities, with the left-hand side constrained to be between the
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Table 1
Numerical results on Hock–Schittkowski problems.

# ALGO n ma mn NF NG IT f(x∗) ε
12 RFSQP 2 0 1 7 14 7 -3.0000000E+01 1.E–6

CFSQP 7 14 7 -3.0000000E+01
29 RFSQP 3 0 1 11 20 10 -2.2627417E+01 1.E–5

CFSQP 11 20 10 -2.2627417E+01
30 RFSQP 3 0 1 18 35 18 1.0000000E+00 1.E–7

CFSQP 18 35 18 1.0000000E+00
31 RFSQP 3 0 1 9 36 8 6.0000000E+00 1.E–5

CFSQP 9 19 7 6.0000000E+00
33 RFSQP 3 0 2 4 11 4 -4.0000000E+00 1.E–8

CFSQP 4 11 4 -4.0000000E+00
34 RFSQP 3 0 2 8 34 8 -8.3403245E–01 1.E–8

CFSQP 7 28 7 -8.3403244E–01
43 RFSQP 4 0 3 9 51 9 -4.4000000E+01 1.E–5

CFSQP 10 46 8 -4.4000000E+01
66 RFSQP 3 0 2 8 30 8 5.1816327E–01 1.E–8

CFSQP 8 30 8 5.1816327E–01
84 RFSQP 5 0 6 4 37 4 -5.2803351E+06 1.E–8

CFSQP 4 30 4 -5.2803351E+06
93 RFSQP 6 0 2 13 54 12 1.3507596E+02 1.E–5

CFSQP 16 62 13 1.3507596E+02
113 RFSQP 10 3 5 12 120 12 2.4306210E+01 1.E–3

CFSQP 12 108 12 2.4306377E+01
117 RFSQP 15 0 5 20 205 19 3.2348679E+01 1.E–4

CFSQP 20 219 19 3.2348679E+01

values L = 4 and L = 5; the solution was always at 5.) All these problems are noncon-
vex. “Sawpath” was discarded because it involves few variables and many constraints,
which is not the situation at which RFSQP is targeted. The results obtained with
various instances of the other four problems are presented in Table 2. The format
of that table is identical to that of Table 1 except for the additional column labeled
NQP. In that column we list the total number of QP iterations in the solution of the
two major QPs, as reported by QPOPT. (Note that QPOPT reports zero iteration
when the result of the first step onto the working set of linear constraints happens
to be optimal. To be “fair” to RFSQP we thus do not count the work involved in
solving LSE either. We also do not count the QP iterations in solving QPC, the
“correction” QP, because it is invoked identically in both algorithms.)

The results show a typical significantly lower number of QP iterations with
RFSQP and, as in the case of the Hock–Schittkowski problems, a roughly com-
parable behavior of the two algorithms in terms of number of function evaluations.
The abnormal terminations on Sphere-50 and Sphere-100 are both due to QPOPT’s
failure to solve a QP—the “tilting” QP in the case of CFSQP.

5. Conclusions. We have presented here a new SQP-type algorithm generating
feasible iterates. The main advantage of this algorithm is a reduction in the amount of
computation required in order to generate a new iterate. While this may not be very
important for applications where function evaluations dominate the actual amount of
work to compute a new iterate, it is very useful in many contexts. In any case, we
saw in the previous section that preliminary results seem to indicate that decreasing
the amount of computation per iteration did not come at the cost of increasing the
number of function evaluations required to find a solution.
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Table 2
Numerical results on COPS problems.

P ALGO n ma mn NF NG IT NQP f(x∗) ε
Polygon-10 RFSQP 18 8 36 17 798 18 51 .749137 1.E–4

CFSQP 16 740 18 91 .749137
Polygon-20 RFSQP 38 18 171 27 5552 28 142 .776859 1.E–4

CFSQP 42 8177 44 350 .776859
Polygon-40 RFSQP 78 38 741 267 208706 107 571 .783062 1.E–4

CFSQP 243 126592 106 1689 .783062
Polygon-50 RFSQP 98 48 1176 1023 1232889 273 938 .783062 1.E–4

CFSQP 591 345458 154 2771 .783873
Sphere-20 RFSQP 60 0 20 1462 35114 280 302 150.882 1.E–4

CFSQP 1812 20920 352 745 150.882
Sphere-30 RFSQP 90 0 30 8318 280532 1016 1065 359.604 1.E–4

CFSQP 6494 74797 837 1743 359.604
Sphere-40 RFSQP 120 0 40 1445 70960 311 406 660.675 1.E–4

CFSQP 795 28328 246 587 660.675
Sphere-50 RFSQP 150 0 50 failure 1.E–4

CFSQP 2300 80467 560 1568 1055.18
Sphere-100 RFSQP 300 0 50 516 119252 506 3589 4456.06 1.E–4

CFSQP failure
Chain-50 RFSQP 50 0 2 154 917 165 171 4.81198 1.E–4

CFSQP 247 1034 201 401 4.81198
Chain-100 RFSQP 100 0 2 822 3171 394 401 4.81190 1.E–4

CFSQP 837 2440 408 828 4.81190
Chain-150 RFSQP 150 0 2 868 4108 485 510 4.81189 1.E–4

CFSQP 1037 3486 541 1104 4.81189
Chain-200 RFSQP 200 0 2 1218 5805 645 739 4.81189 1.E–4

CFSQP 1534 5367 785 1648 4.81188
Cam-50 RFSQP 50 1 102 49 13109 75 287 -214.640 1.E–4

CFSQP 12 6288 39 604 -214.761
Cam-100 RFSQP 100 1 202 12 22436 58 621 -414.067 1.E–4

CFSQP 14 21558 61 1341 -428.415
Cam-200 RFSQP 200 1 402 9 70824 90 842 -827.255 1.E–4

CFSQP 16 73120 98 2859 -855.698
Cam-400 RFSQP 400 1 802 15 243905 155 3403 -1678.65 1.E–4

CFSQP 16 238373 156 6298 -1710.27

A number of significant extensions of Algorithm RFSQP is being examined.
It is not too difficult to extend the algorithm to handle mini-max problems. The
only real issue that arises is how to handle the mini-max objectives in the least
squares subproblems. Several possibilities, each with the desired global and local
convergence properties, are being examined. Another extension that is important for
engineering design is the incorporation of a scheme to efficiently handle very large
sets of constraints and/or objectives. We will examine schemes along the lines of
those developed in [12, 27]. Further, work remains to be done to exploit the close
relationship between the two least squares problems and the quadratic program. A
careful implementation should be able to use these relationships to great advantage
computationally. For starters, updating the Cholesky factors of Hk instead of Hk

itself at each iteration would save a factorization in each of the subproblems. Finally,
it is possible to extend the class of problems (P) which are handled by the algorithm
to include nonlinear equality constraints. Of course, we will not be able to generate
feasible iterates for such constraints, but a scheme such as that studied in [11] could
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be used in order to guarantee asymptotic feasibility while maintaining feasibility for
all inequality constraints.

While this paper was under final review, the authors became aware of [10], where a
related algorithm is proposed, for which similar properties are claimed. No numerical
results are reported in that paper.
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Abstract. In this paper we study nonlinear Lagrangian functions for constrained optimization
problems which are, in general, nonlinear with respect to the objective function. We establish an
equivalence between two types of zero duality gap properties, which are described using augmented
Lagrangian dual functions and nonlinear Lagrangian dual functions, respectively. Furthermore, we
show the existence of a path of optimal solutions generated by nonlinear Lagrangian problems and
show its convergence toward the optimal set of the original problem. We analyze the convergence of
several classes of nonlinear Lagrangian problems in terms of their first and second order necessary
optimality conditions.

Key words. augmented Lagrangian, nonlinear Lagrangian, zero duality gap, optimal path,
necessary optimality condition, smooth approximate variational principle

AMS subject classifications. 90C30, 49J52, 49M35

PII. S1052623400371806

1. Introduction. It is well known that unconstrained optimization methods,
such as the Lagrangian dual and penalty methods, have been extensively studied in
order to solve constrained optimization problems. A zero duality gap can be guaran-
teed if conventional Lagrangian functions are used to define the dual problem under
convexity or generalized convexity assumptions. Nevertheless, for a nonconvex con-
strained optimization problem, a nonzero duality gap may occur between the original
problem and the conventional Lagrangian dual problem. To overcome this drawback,
various approaches have been proposed in the literature. The convex conjugate frame-
work in [16] was extended in [3, 13] for nonconvex optimization problems. In [17], a
general augmented Lagrangian function was introduced, and it was shown that the
general augmented dual problem constructed with an appropriately selected pertur-
bation function yields a zero duality gap result. Recently, nonlinear Lagrangian func-
tions were introduced using increasing functions for solving constrained optimization
problems. A zero duality gap result is established between a nonconvex constrained
optimization problem and the dual problem defined by using a nonlinear Lagrangian
function in [10, 14, 18, 19]. In passing, we mention that exact penalization-type
results were established for the augmented Lagrangian function in [17], for nonlinear
Lagrangian functions under generalized calmness-type conditions for scalar optimiza-
tion problems in [19], and for vector optimization problems in [12].

Noting the fact that, for nonconvex constrained optimization problems, both zero
duality gap results in terms of augmented Lagrangian dual functions in [17] and
nonlinear Lagrangian dual functions in [19] were established under very mild condi-
tions, it is interesting to investigate whether there is a connection between these two
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results. Therefore, the first goal of this paper is to establish an equivalence between
zero duality gap properties, which are described using a class of augmented Lagrangian
functions with specially structured perturbation functions, and nonlinear Lagrangian
functions, respectively.

Recently, a wide class of penalty and barrier methods was studied in [2], including
a number of specific functions in the literature (see [5, 9]). For convex programming
problems, the existence of a path of optimal solutions generated by these penalty
methods was established and its convergence toward the optimal set of the original
problem was given. Hence, the second goal of this paper is to show, for noncon-
vex inequality constrained optimization problems, the existence of a path of optimal
solutions generated by a general nonlinear Lagrangian function and to show its con-
vergence toward the optimal set of the original problem. Moreover, we illustrate that
this result can be specialized to convex programming problems, and thus a parallel
result to that in [2] is obtained.

We then investigate the convergence analysis of nonlinear Lagrangian methods in
terms of first and second order necessary optimality conditions, where the multipliers
are independent of vectors in the tangential subspace of the active constraints. This
follows the usual method, as in [1, 22]. Thus we need to derive, for example, corre-
sponding second order necessary conditions for nonlinear Lagrangian problems. How-
ever, for cases where nonlinear Lagrangian functions are not twice differentiable, the
derivation of this type of second order optimality condition of nonlinear Lagrangian
problems is by no means an easy task. For example, one of the nonlinear Lagrangian
functions to be considered is of the minimax type. Thus, the resulting problem is an
unconstrained minimax optimization problem or, more generally, a convex composite
optimization problem. Second order necessary conditions for convex composite op-
timization problems were established in [4, 7, 13, 23]. However, in these conditions
the multipliers depend on the choice of the vector in the tangential subspace of the
active constraints. These second order conditions are not applicable in our cases.
Nevertheless, we are able to derive the required first and second order necessary con-
ditions for these nonlinear Lagrangian problems by means of a higher order smooth
approximation and the smooth approximate variational principle in [6, 8].

The outline of the paper is as follows. In section 2, we review the zero duality
gap properties, which are obtained using augmented Lagrangian functions and non-
linear Lagrangian functions. In section 3, we show that if the dual problem which is
constructed with an augmented Lagrangian and a specially structured perturbation
function yields a zero duality gap, then the dual problem defined by nonlinear La-
grangian dual functions also yields a zero duality gap, and vice versa. In section 4, we
show the existence of a path of optimal solutions generated by nonlinear Lagrangian
problems and show its convergence to the optimal set of the original problem. In sec-
tion 5, we carry out convergence analysis of this method for several classes of nonlinear
Lagrangians in terms of first and second order necessary optimality conditions.

2. Zero duality gaps. In this section, we introduce some definitions and re-
call the zero duality gap properties, which are described by augmented Lagrangian
functions and nonlinear Lagrangian functions, respectively. Consider the following
inequality constrained optimization problem (P):

inf f(x)
s.t. x ∈ X, gj(x) ≤ 0, j = 1, . . . , q,
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where X ⊂ Rp is a nonempty and closed set, and f, gj : X → R1 (j = 1, . . . , q) are
real-valued functions. Denote by MP the infimum of (P) and by X0 the feasible set
of (P):

X0 = {x ∈ X : gj(x) ≤ 0 ∀j = 1, . . . , q}.

In this paper, we assume that X0 �= ∅.
Throughout this paper, we also assume that

f(x) ≥ 0 ∀x ∈ X.

Note that this assumption is not very restrictive. Otherwise, we may replace the
objective function f(x) with 1+ef(x), which satisfies the assumption; infx∈X f(x) > 0
also holds; and the resulting constrained optimization problem has the same set of
(local) solutions as that of (P).

Let c : R1
+ × Rq → R1 be a real-valued function. c is said to be increasing on

R1
+ × Rq if, for any y1, y2 ∈ R1

+ × Rq, y2 − y1 ∈ Rq+1
+ implies that c(y1) ≤ c(y2).

We will consider increasing and lower semicontinuous (l.s.c.) functions c defined on
R1

+ ×Rq, which enjoy the following properties:
(A) There exist positive real numbers aj , j = 1, . . . , q, such that, for any y =

(y0, y1, . . . , yq) ∈ R1
+ ×Rq, we have

c(y) ≥ max{y0, a1y1, . . . , aqyq}.

(B) For any y0 ∈ R1
+,

c(y0, 0, . . . , 0) = y0.

Let y+ = max{y, 0} for y ∈ R. The following are some examples of function c
(see [18]):

c(y) = max{y0, y1, . . . , yq},

c(y) =


yk0 +

q∑
j=1

y+
j

k




1/k

, k ∈ (0,+∞).

The convergence analysis of optimality conditions for nonlinear Lagrangian dual prob-
lems defined by these functions (see below) will be given in section 5.

Let c be an increasing function defined as above, and

F (x, d) = (f(x), d1g1(x), . . . , dqgq(x)) ∀x ∈ X, d = (d1, . . . , dq) ∈ Rq+.

The function defined by

L(x, d) = c(F (x, d))

is called a nonlinear Lagrangian corresponding to c.
The nonlinear Lagrangian dual function for (P) corresponding to c is defined by

φ(d) = inf
x∈X

L(x, d), d ∈ Rq+.
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The nonlinear Lagrangian dual problem (DN ) for (P) corresponding to c is
defined by

sup
d∈Rq

+

φ(d).

Denote by MN the supremum of problem (DN ). It can be easily verified [18, 19] that
the following weak duality result holds:

MN ≤MP .(1)

Definition 2.1. Let c be an increasing function satisfying properties (A) and
(B). The zero duality gap property with respect to c between (P) and (DN ) is said to
hold if MN =MP .

Definition 2.2 (see [2]). Let X ⊂ Rp be unbounded. The function h : X → R1

is said to be 0-coercive on X if

lim
x∈X,‖x‖→+∞

h(x) = +∞.

Let

G(x) = max{g1(x), . . . , gq(x)}, x ∈ X,
h(x) = max{f(x), G(x)}, x ∈ X.(2)

Theorem 2.3. Suppose that h, defined by (2), is 0-coercive if X is unbounded.
If the functions f, g1, . . . , gq are l.s.c., then the zero duality gap property with respect
to c between (P) and (DN ) holds.

Proof. It is clear that L(x, d) is an increasing function of d. The result follows
from Theorem 4.2 in section 4.

Let us recall the definition of the augmented Lagrangian function for (P) (for
details, see Chapter 11, section K∗ in [17]). Let ϕ : Rp → R1

⋃{+∞}:
ϕ(x) =

{
f(x) if x ∈ X0;
+∞ otherwise.

Let f : Rp × Rq → R1
⋃{+∞} be a perturbation function [17, p. 519] such that

f(x, 0) = ϕ(x), x ∈ Rp. Let σ be an augmenting function, namely, a proper, l.s.c.,
and convex function with the unique minimum at 0 and σ(0) = 0. The corresponding
augmented Lagrangian l : Rp × Rq × (0,+∞) → R1

⋃{+∞,−∞} with parameter
r > 0 is defined by

l(x, y, r) = inf{f(x, u) + rσ(u)− 〈y, u〉 : u ∈ Rq},

where 〈y, u〉 denotes the inner product of y and u.
The corresponding augmented Lagrangian dual function is

ψ(y, r) = inf{l(x, y, r) : x ∈ Rp},

and the augmented Lagrangian dual problem (DA) is

sup
(y,r)∈Rq×(0,+∞)

ψ(y, r).
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Let MA denote the supremum of the dual problem (DA). The following weak duality
for (P) and (DA) holds (see [17]):

MA ≤MP .(3)

Definition 2.4. Let f : Rp × Rq → R1
⋃{+∞} be a perturbation function and

σ be an augmenting function. The zero duality gap property with respect to f and σ
between (P) and (DA) is said to hold if MA =MP .

Definition 2.5 (see [17]). A function h : Rp × Rq → R1
⋃{+∞,−∞} with

values h(x, u) is said to be level-bounded in x and locally uniform in u if, for each
u ∈ Rq and α ∈ R1, there exists a neighborhood V (u) of u, along with a bounded set
D ⊂ Rp, such that {x ∈ Rp : h(x, v) ≤ α} ⊂ D ∀v ∈ V (u).

Theorem 2.6 (see [17]). Assume that the perturbation function f : Rp × Rq →
R1

⋃{+∞} is proper and l.s.c., and that f(x, u) is level-bounded in x and locally
uniform in u. Let σ be an augmenting function. Suppose further that there exist
y ∈ Rq and r > 0 such that

inf{f(x, u) + rσ(u)− 〈y, u〉 : x ∈ Rp, u ∈ Rq} > −∞.(4)

Then MA =MP .

3. Equivalence of zero duality gaps. In this section, we establish an equiv-
alence of zero duality gap properties between a class of augmented Lagrangian dual
problems and the nonlinear Lagrangian dual problem.

Denote the indicator function of a set D ⊂ Rq by

δD(y) =
{
0 if y ∈ D;
+∞ otherwise.

It is easy to check that (P) is equivalent to the following problem:

inf
x∈X

f(x) + δRq
−
(g1(x), . . . , gq(x))

in the sense that the two problems have the same sets of (locally) optimal solutions
and optimal values. Let

H(x) = (g1(x), . . . , gq(x)),

f(x, u) = f(x) + δRq
−
(H(x) + u) + δX(x).(5)

Then, for x ∈ Rp, f(x, 0) = ϕ(x). Thus, f(x, u) is a perturbation function.

Lemma 3.1. Let the perturbation function be defined by (5), σ an augmenting
function, and v = (v1, . . . , vq). Then

l(x, y, r) =


f(x) +

q∑
j=1

yjgj(x) + inf
v≥0




q∑
j=1

yjvj + rσ(−g1(x)− v1, . . . ,−gq(x)− vq)


 if x ∈ X,

+∞ otherwise.
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Proof. Let x ∈ X.
l(x, y, r) = inf{f(x, u) + rσ(u)− 〈y, u〉 : u ∈ Rq}

= inf
v≥0


f(x) +

q∑
j=1

yj(gj(x) + vj) + rσ(−g1(x)− v1, . . . ,−gq(x)− vq)




= f(x) +

q∑
j=1

yjgj(x) + inf
v≥0




q∑
j=1

yjvj + rσ(−g1(x)− v1, . . . ,−gq(x)− vq)


 .

Let x �∈ X. It is clear that f(x, u) = +∞. Thus l(x, y, r) = +∞.
The following proposition summarizes some properties of augmented Lagrangian

l, where f is defined by (5), and the nonlinear Lagrangian L.
Lemma 3.2. Let the perturbation function f(x, u) be defined by (5). Then, the

following properties of augmented Lagrangian function l hold:
(I) l(x, y, r) ≤ f(x) ∀x ∈ X0, y ∈ Rq, r > 0, and l(x, 0, r) = f(x) ∀x ∈ X0,

r > 0.
(II) l(x, 0, r) ≥ f(x) ∀x ∈ X.
(III) For any x ∈ X\X0, y ∈ Rq, l(x, y, r)→ +∞ as r → +∞,

and the following properties of nonlinear Lagrangian function L hold:
(I′) L(x, d) = f(x) ∀x ∈ X0.
(II′) L(x, d) ≥ f(x) ∀x ∈ X.
(III′) For any x ∈ X\X0, L(x, d)→ +∞ as d→ +∞.

Here the notation d = (d1, . . . , dq) → +∞ means that dj → +∞ for each j ∈
{1, . . . , q}.

It follows from Lemma 3.2 that l(x, 0, r) behaves very similarly to L(x, re), where
e = (1, . . . , 1) ∈ Rq+. For any x ∈ Rp, let

J+(x) = {j ∈ {1, . . . , q} : gj(x) > 0}, J(x) = {j ∈ {1, . . . , q} : gj(x) = 0}.
Proposition 3.3. Let augmenting function σ be a finite and l.s.c. function which

attains its minimum 0 at 0 ∈ Rq. Let the perturbation function f(x, u) defining the
augmented Lagrangian be selected as (5). If MA =MP , then MN =MP .

Proof. IfMN =MP fails to hold by weak duality (1) of the nonlinear Lagrangian,
then there exists ε0 > 0 such that MN ≤MP − ε0.

By the assumption, we get

MA = sup
(y,r)∈Rq×(0,+∞)

inf
x∈X

l(x, y, r) =MP .

Then, for ε04 > 0, there exist ȳ ∈ Rq and r̄ > 0 such that l(x, ȳ, r̄) ≥MP − ε0
4 ∀x ∈ X.

That is, for any x ∈ X,
(6)

f(x) +

q∑
j=1

ȳjgj(x) + inf
v≥0




q∑
j=1

ȳjvj + r̄σ(−g1(x)− v1, . . . ,−gq(x)− vq)


 ≥MP − ε0

4
.

Let dn = (d1,n, . . . , dq,n)→ +∞. Thus,
inf
x∈X

L(x, dn) = q(dn) ≤MP − ε0.
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There then exists xn ∈ X, such that

0 ≤ f(xn) ≤ L(xn, dn) ≤MP − ε0
2

(7)

and

0 < max {a1d1,ng1(xn), . . . , aqdq,ngq(xn)} ≤ L(xn, dn) ≤MP − ε0
2
.(8)

Equation (7) implies

f(x) +

q∑
j=1

ȳjgj(x) +

q∑
j=1

ȳjvj + r̄σ(−g1(x)− v1, . . . ,−gq(x)− vq)(9)

≥MP − ε0
4
∀v ≥ 0.

Let x = xn in (9), vj,n = −gj(xn) if gj(xn) ≤ 0, and vj,n = 0 if gj(xn) > 0,
j = 1, . . . , q. We get

f(xn) +
∑

j∈J+(xn)

ȳjgj(xn) + r̄σ(−v∗1,n, . . . ,−v∗q,n) ≥MP − ε0
4
,(10)

where v∗j,n = gj(xn), j ∈ J+(xn), and v
∗
j,n = 0 otherwise.

By the assumption on σ, we know that σ is locally Lipschitz around 0 ∈ Rq.
Equation (8) and dn → +∞ yield that 0 < maxj∈J+(xn){gj(xn)} → 0 as n→ +∞.
Therefore, there exist β > 0 and n0 > 0 such that for n ≥ n0,

σ(−v∗1,n, . . . ,−v∗q,n) ≤ β

q∑
j=1

|v∗j |.

Consequently, the facts above and (10) jointly yield

f(xn) +


 ∑
j∈J+(xn)

(|ȳj |+ r̄β)


 max
j∈J+(xn)

gj(xn)

≥ f(xn) +
∑

j∈J+(xn)

(ȳj + r̄β)gj(xn)

= f(xn) +
∑

j∈J+(xn)

ȳjgj(xn) + r̄β

m∑
j=1

|v∗j |

≥ f(xn) +
∑

j∈J+(xn)

ȳjgj(xn) + r̄σ(−v∗1,n, . . . ,−v∗q,n)

≥MP − ε0
4
.

Let γ =
∑q
j=1 |ȳj |+ qr̄β. Then

f(xn) + γ max
j∈J+(xn)

{gj(xn)} ≥MP − ε0
4
.(11)

On the other hand, let λn = min1≤j≤q{ajdj,n}. It follows from (8) that

λn max {g1(xn), . . . , gq(xn)} ≤ L(xn, dn) ≤MP − ε0/2.
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Thus,

max
j∈J+(xn)

{gj(xn)} ≤ MP − ε0/2

λn
.

By (11), we have

MP − ε0
4
≤ f(xn) +

γ

λn

(
MP − ε0

2

)
≤MP − ε0

2
+

γ

λn

(
MP − ε0

2

)
,

where the last inequality follows from (7).
Noticing that λn → +∞ as n→∞ and letting n→∞, we obtain

MP − ε0
4
≤MP − ε0

2
,

which is a contradiction.
Proposition 3.4. Let function c defining the nonlinear Lagrangian L be contin-

uous. If MP =MN , then MP =MA.
Proof. By the weak duality (3) of the augmented Lagrangian,MA ≤MP . Suppose

to the contrary that there exists ε0 > 0 such that

MA = sup
(y,r)∈Rq×(0,+∞)

inf
x∈X

l(x, y, r) ≤MP − ε0.

Thus,

inf
x∈X

l(x, y, r) ≤MP − ε0 ∀(y, r) ∈ Rq × (0,+∞).

In particular,

inf
x∈X

l(x, 0, r) ≤MP − ε0 ∀r ∈ (0,+∞).

Let rn → +∞. There then exists n0 > 0 such that, for n ≥ n0 and some xn ∈ X,
l(xn, 0, rn) ≤MP − ε0

2 . Thus,

f(xn) + inf
v∈Rq

+

{rnσ(−g1(xn)− v1, . . . ,−gq(xn)− vq)} ≤MP − ε0
2
.

Furthermore, there exists vn = (v1,n, . . . , vq,n) ∈ Rq+ such that

f(xn) + rnσ(−g1(xn)− v1,n, . . . ,−gq(xn)− vq,n) ≤MP − ε0
4
, n ≥ n0.(12)

Noticing that f(xn) ≥ 0 ∀n, we deduce from (12) that

σ(−g1(xn)− v1,n, . . . ,−gq(xn)− vq,n) ≤ MP − ε0/4

rn
.

Thus

lim sup
n→+∞

σ(−g1(xn)− v1,n, . . . ,−gq(xn)− vq,n) = 0.
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Since σ is a convex function with a unique minimum at 0 with σ(0) = 0, it follows
that

gj(xn) + vj,n → 0 as n→ +∞, (j = 1, . . . , q).

Let εn = max1≤j≤q gj(xn). Then εn > 0 and εn → 0 as n→ +∞. It follows from (12)
and f(xn) ≥ 0 that

0 ≤ f(xn) ≤MP − ε0
4
, n ≥ n0.(13)

Without loss of generality, we assume that

f(xn)→ t0 ≥ 0 as n→ +∞.(14)

The combination of (13) and (14) yields 0 ≤ t0 ≤MP − ε0
4 . Let d = (d1, . . . , dq) ∈ Rq+.

Then, by the monotonicity of c,

c(f(xn), d1g1(xn), . . . , dqgq(xn)) ≤ c(f(xn), dεn, . . . , dεn).

Taking the upper limit as n→ +∞ and applying the continuity of c, we obtain

lim sup
n→+∞

c(f(xn), d1g1(xn), . . . , dqgq(xn)) ≤ c(t0, 0, . . . , 0) = t0 ≤MP − ε0
4
.

Hence, for each d ∈ Rq+, ∃n(d) > 0 such that

c(f(xn(d)), d1g1(xn(d)), . . . , dqgq(xn(d))) ≤MP − ε0
8
.

It follows that

inf
x∈X

c(f(x), d1g1(x), . . . , dqgq(x)) ≤MP − ε0
8
.

As d ∈ Rq+ is arbitrary, we conclude that MN ≤ MP − ε0
8 , which contradicts the

assumption MN =MP . The proof is complete.
The relationships are summarized below between the zero duality properties of

the augmented Lagrangian dual problem (DA), with the perturbation function f(x, u)
selected as (5), and the nonlinear Lagrangian dual problem (DN ).

Theorem 3.5. Consider the problem (P), the nonlinear Lagrangian dual problem
(DN ), and the augmented Lagrangian dual problem (DA). If the function c defining the
nonlinear Lagrangian L is continuous, the perturbation function f(x, u) defining the
augmented Lagrangian is selected as (5), and the augmenting function σ is finite, l.s.c.,
and convex, attaining its minimum 0 at 0 ∈ Rq, then the following two statements are
equivalent:

(i) MA =MP ;
(ii) MN =MP .
The following example verifies Theorem 3.5.
Example 3.1. Consider the problem

inf f(x)
s.t. x ∈ X, g(x) ≤ 0,

where X = [0,+∞), f(x) = 1/(x + 1) ∀x ∈ X; g(x) = x − 1 if 0 ≤ x ≤ 1; g(x) =
1/
√
x− 1/x if 1 < x < +∞. Then MP = 1/2.
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Let c(y1, y2) = max{y1, y2} ∀y1 ≥ 0, y2 ∈ R1. It is easy to check that MN = 0.
Hence MN < MP .

Let

f(x, u) = f(x) + δR1
−
(g(x) + u) + δX(x)

be defined as in (5). Let σ(u) = 1/2u2, u ∈ R1. ThenMA = 0. Indeed, by Lemma 3.1,

l̄(x, y, r) = f(x) + yg(x) + inf
v≥0
{yv + r/2(g(x) + v)2} ∀x ∈ X, y ∈ R1, r > 0.(15)

By the definition of MA, for any ε > 0, there exist ȳ ∈ R1 and r̄ > 0 such that

MA < l̄(x, ȳ, r̄) + ε ∀x ∈ X.(16)

The combination of (15) and (16) yields

MA < f(x) + ȳ(g(x) + v) + r̄/2(g(x) + v)2 + ε ∀x ∈ X, v ≥ 0.(17)

Setting v = 0 in (17) gives us

MA < f(x) + ȳg(x) + r̄/2g2(x) + ε ∀x ∈ X.(18)

Note that, for any x ∈ (1,+∞), (18) becomes

MA <
1

x+ 1
+

(
1√
x
− 1
x

)
ȳ + r̄/2

(
1√
x
− 1
x

)2

+ ε.(19)

Taking the limit in (19) as x → +∞, we obtain MA ≤ ε. By the arbitrariness of
ε > 0, we deduce that MA ≤ 0. However, it is obvious that MA ≥ 0. Hence MA = 0.
Consequently, MA < MP . Thus, Theorem 3.5 is verified.

It is worth noting that the following conditions in Theorems 2.3 and 2.6 are not
satisfied:

(i) The condition limx∈X,‖x‖→+∞max{f(x), g(x)} → +∞ in Theorem 2.3 does
not hold.

(ii) f(x, u) is not level-bounded in x and locally uniform in u. In fact, for any
sufficiently small ε > 0, we cannot find a bounded set D0 ⊂ R1 such that {x ∈ X :
f(x, u) ≤ 1} ⊂ D0 holds for all u satisfying |u| < ε.

The following examples show that, if the perturbation function is not defined by
(5), then Theorem 3.5 may not hold.

Example 3.2. Consider the same problem as in Example 3.1. Then MN <
MP . But if we let ϕ(x) = f(x), if x ∈ X0, and ϕ(x) = +∞ otherwise. Define
f(x, u) = ϕ(x); if x ∈ X0 and u = 0, f(x, u) = +∞ otherwise. It is then easy to
check that f(x, u) is a perturbation function, but is different from (5). On the other
hand, the augmented Lagrangian l(x, y, r) = f(x) ∀x ∈ X0, y ∈ R1, r > 0, and
l(x, y, r) = +∞, x /∈ X0. Thus MA =MP .

Example 3.3. Let p = q = 1. Let X = [0,+∞), f(x) = x, x ∈ X, and g(x) =
x− 1, x ∈ X. Then we have

σ(u) = |u| ∀u ∈ R1,

f(x, u) =

{
f(x)− u2 if g(x) ≤ u, x ∈ X;
+∞ otherwise.
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It is easy to verify that

f(x, 0) =

{
f(x) if x ∈ X0 = [0, 1];
+∞ otherwise.

Let us look at the augmented Lagrangian function

l(x, y, r) = inf{f(x)− (v + g1(x))
2 + r|v + g1(x)| − y(g1(x) + v) : v ≥ 0} ≡ −∞.

Thus, (4) does not hold andMA = −∞. However,MP = 0. It follows thatMA < MP .
On the other hand, MN = 0. Hence MN =MP .

4. A nonlinear Lagrangian method. Let d ∈ Rq+. Consider the following
unconstrained optimization problem (Qd):

inf
x∈X

L(x, d),

where L(x, d) is a nonlinear Lagrangian function. Under certain conditions, we show
the existence of a path of optimal solutions generated by unconstrained optimiza-
tion problems (Qdk) (where {dk} ⊂ Rq+ and dk → +∞ as k → +∞) and show its
convergence to the optimal set of (P).

Let S denote the optimal solution set of (P), Sd the optimal solution set of (Qd),
and vd the optimal value of (Qd).

Lemma 4.1 (see [12]). Let d ∈ Rq+. If the functions defining (P) are l.s.c., then
L(·, d) is l.s.c. on X.

Theorem 4.2. Consider the problem (P). Let h(x) defined by (2) be 0-coercive
on X if X is unbounded. Then S is nonempty and compact. For each d ∈ Rq+ + e,
Sd is nonempty and compact. Furthermore, for each selection xd ∈ Sd as d → +∞,
{xd} is bounded, its limit points belong to S, and limd→+∞ vd =MP .

Proof. Let x ∈ X0. By the 0-coercivity and l.s.c. of h,

X1 = {x ∈ X0 : f(x) ≤ f(x)} = {x ∈ X : h(x) ≤ f(x)} ∩X0

is nonempty and compact. It follows that S is nonempty. In addition, S ⊂ X1;
therefore, S is bounded. As S =

⋂
x∈X0

[{x∗ ∈ X : f(x∗) ≤ f(x)}⋂X0] is closed by
the lower semicontinuity of f , S is nonempty and compact.

Let h1(x) = max{f(x), [min1≤j≤q aj ]g(x)}. Then
L(x, d) ≥ max{f(x), a1d1g1(x), . . . , aqdqgq(x)} ≥ h1(x) ∀x ∈ X, d ∈ Rq+ + e.

It is easy to see that h1(x) is l.s.c. and 0-coercive. Let X2 = {x ∈ X : h1(x) ≤
f(x)}. Then X2 is nonempty and compact. For each d ∈ Rq+ + e, let Xd = {x ∈
X : L(x, d) ≤ L(x, d)}. By Lemma 3.2(I′), we have Xd = {x ∈ X : L(x, d) ≤ f(x)}.
Moreover, since L(x, d) ≥ h1(x) ∀x ∈ X, it follows that Xd ⊆ X2 is nonempty and
compact. Hence, Sd is nonempty and bounded. It follows from Lemma 4.1 that L(·, d)
is l.s.c. on X. Thus, Sd is closed. So Sd is nonempty and compact for any d ∈ Rq++e.
Moreover,

Sd ⊆ Xd ⊆ X2 ∀d ∈ Rq+ + e.

It follows that, for each selection xd ∈ Sd, {xd} is bounded. Suppose that x∗ is a
limit point of {xd}, namely, ∃dk = (dk1 , . . . , d

k
m) → +∞ and xdk → x∗ as k → +∞.

Arbitrarily fix an x ∈ X0. Then we have

max{f(xdk), a1d
k
1g1(xdk), . . . , aqd

k
qgq(xdk)} ≤ L(xdk , d

k) ≤ L(x, dk) = f(x).(20)
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Thus,

f(xdk) ≤ f(x)(21)

and [
min

1≤j≤q
aj

]
·
[
min

1≤j≤q
dkj

]
· g(xdk) ≤ f(x).(22)

Equation (22) implies

g(xdk) ≤
f(x)[

min
1≤j≤q

aj

]
·
[
min

1≤j≤q
dkj

] .

Taking the lower limit and using the lower semicontinuity of g, we have g(x) ≤ 0, i.e.,
x ∈ X0. Taking the lower limit in (21) and applying the lower semicontinuity of f , we
obtain f(x∗) ≤ f(x). By the arbitrariness of x ∈ X0, we conclude that x

∗ ∈ S.
Furthermore, arbitrarily taking {dk} ⊂ Rq+ + e with dk → +∞ as k → +∞,

suppose that xdk → x∗ ∈ S. It follows from (20) (setting x = x∗) that f(xdk) ≤ vdk ≤
f(x∗). Therefore,

v = f(x∗) ≤ lim inf
k→+∞

f(xdk) ≤ lim inf
k→+∞

vdk

and lim supk→+∞ vdk ≤ f(x∗) = MP . Consequently, limk→+∞ vdk = MP . Thus
limd→+∞ vd =MP .

Remark 4.1. It is clear that if f is 0-coercive on X, then h is also 0-coercive.
Theorem 4.2 holds if the 0-coercivity of h is replaced with the 0-coercivity of f .

As a byproduct, we apply Theorem 4.2 to obtain a corollary for the case that
(P) is a convex programming problem, which is parallel to [2, Theorem 2.2]. In the
following, we assume that f , gj are finite, l.s.c., and convex functions defined on a
nonempty, closed, and convex set X ⊆ Rp. Let F : Rp → R1

⋃{+∞} be an extended
real-valued convex function. The recession function F∞ of F is defined by

epi(F∞) = [epi(F )]∞,

where epi(F ) = {(x, r) ∈ Rp × R1 : F (x) ≤ r} is the epigraph of F . It is known [2]
that

F∞(y) = inf
{
lim inf
k→+∞

F (tkxk)

tk
: tk → +∞, xk → y

}
,

where {tk} and {xk} are sequences in R1 and Rp, respectively.
Lemma 4.3. Let f , gj be finite, l.s.c., and convex functions defined on a nonempty,

closed, and convex set X. If the optimal solution set S of (P) is nonempty and com-
pact, then h(x) is a finite, l.s.c., convex, and 0-coercive function on X.

Proof. Let us set

f̂(x) =

{
f(x) if x ∈ X;
+∞ otherwise,

ĝj(x) =

{
gj(x) if x ∈ X;
+∞ otherwise.
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Then (P) is equivalent to the following convex programming problem (P ′):

min{f̂(x) : x ∈ C},
where C = {x ∈ Rp : ĝj(x) ≤ 0, j = 1, . . . , q}.

It follows from the assumptions and [2] that S is nonempty and compact if and
only if

f̂∞(w) ≤ 0, (ĝj)∞(w) ≤ 0, j = 1, . . . , q, w ∈ Rp ⇒ w = 0.(23)

Since S is nonempty and compact, (23) holds.
Now we show by contradiction that h is 0-coercive. Suppose that there exists

{xk} ⊂ X such that ‖xk‖ → +∞ and h(xk) ≤ M for some M > 0. Then f(xk) ≤
M ∀k and gj(xk) ≤ M ∀j, k. Since { xk

‖xk‖} is bounded, without loss of generality we
assume that wk =

xk

‖xk‖ → w as k → +∞. Clearly, w �= 0 since ‖w‖ = 1. It follows

from the definition of a recession function that

f̂∞(w) ≤ lim inf
k→+∞

f(‖xk‖wk)
‖xk‖ ≤ lim

k→+∞
M

‖xk‖ = 0,(24)

(ĝj)∞(w) ≤ lim inf
k→+∞

gj(‖xk‖wk)
‖xk‖ ≤ lim

k→+∞
M

‖xk‖ = 0.(25)

Thus, w �= 0, and (24) and (25) contradict (23).
Remark 4.2. Let f, gj , X be as in Lemma 4.3. If X is unbounded, then S is

nonempty and compact if and only if h is 0-coercive. This can be regarded as a
characterization of the nonemptiness and compactness of the optimal solution set S
of the constrained convex programming problem (P).

Corollary 4.4. Let X be a nonempty, closed, and convex subset of Rp. Let f ,
gj be finite, l.s.c., and convex functions on X. If S is nonempty and compact, then
for each d ∈ Rq+ + e, Sd is nonempty and compact. Furthermore, for each selection
xd ∈ Sd, {xd} is bounded and its limit points belong to S and limd→+∞ vd =MP .

Proof. The proof follows from Theorem 4.2 and Lemma 4.3.
Next we apply Theorem 4.2 to develop a method to seek a so-called ε-quasi-

solution of (P) when (P) may not have an optimal solution.
Let ε > 0. The following various definitions of approximate solutions are cited

from [15].
Definition 4.5. x∗ ∈ X0 is called an ε-solution of (P) if

f(x∗) ≤ f(x) + ε ∀x ∈ X0.

Definition 4.6. x∗ ∈ X0 is called an ε-quasi-solution of (P) if

f(x∗) ≤ f(x) + ε‖x− x∗‖ ∀x ∈ X0.

Remark 4.3. An ε-quasi-solution is also a local ε-solution. In fact, x∗ is an
ε-solution of f on {x ∈ X0 : ‖x− x∗‖ ≤ 1}.

Definition 4.7. Let ε > 0. If x∗ ∈ X0 is both an ε-solution and an ε-quasi-
solution of (P), we say that x∗ is a regular ε-solution of (P).

Vavasis [20] gave an algorithm for seeking a local approximate solution via the
Ekeland variational principle to a problem that contains only box constraints. Specif-
ically, the following optimization problem (P ′′) is considered:

min f(x)
s.t. αi ≤ xi ≤ βi, i = 1, . . . , p,
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where αi, βi, i = 1, . . . , p, are real numbers and x = (x1, . . . , xp). The algorithm in [20]
attempted to find a feasible solution x∗, such that ‖�f(x∗)‖ ≤ ε, which is a necessary
condition for x∗ to be an ε-quasi-solution of (P ′′), where ε > 0 is a given precision
value.

In the following, we give a model algorithm to find an ε-quasi-solution by using a
nonlinear Lagrangian. Let ε > 0 and x0 ∈ X. Define

f1(x) = f(x) + ε‖x− x0‖, x ∈ X.

Consider the following optimization problem (Pε):

min f1(x)
s.t. x ∈ X, gj(x) ≤ 0, j = 1, . . . , q,

and the following unconstrained optimization problem (Qεd):

minL(x, d) s.t. x ∈ X,

where L(x, d) = c(f1(x), d1g1(x), . . . , dqgq(x)) ∀x ∈ X, d = (d1, . . . , dq) ∈ Rq+, and c
is defined as in section 2.

Let Sε and S
ε

d denote the optimal solution sets of (Pε) and (Q
ε
d), respectively.

Let vε and v
ε
d denote the optimal values of (Pε) and (Q

ε
d), respectively.

Theorem 4.8. Let f(x) be 0-coercive on X if X is unbounded. We have the
following:

(i) Sε is a nonempty and compact set and, for each d ∈ Rq++e, S
ε

d is a nonempty
and compact set.

(ii) Let xd ∈ Sεd, d ∈ Rq+. Then {xd} is bounded, every limit point belongs to Sε,
and limd→+∞ vεd = vε.

(iii) Furthermore, any x∗ ∈ Sε is an ε-quasi-solution of (P).
(iv) If x0 ∈ X0, then

f(x∗) ≤ f(x0)− ε‖x0 − x∗‖.(26)

Proof. It is clear that f1 is 0-coercive on X if X is unbounded. Applying Theo-
rem 4.2 by replacing f with f1, (P) with (Pε), and (Qd) with (Q

ε
d), we conclude that

Sε is nonempty and compact; that for each d ∈ Rq++e, S
ε

d is nonempty and compact;

that for each selection xd ∈ S
ε

d, {xd} is bounded; and that each limit point of {xd}
belongs to Sε and limd→+∞ vεd = vε. Thus (i) and (ii) hold.

Furthermore, for x∗ ∈ Sε, we have

f(x∗) + ε‖x∗ − x0‖ ≤ f(x) + ε‖x− x0‖ ∀x ∈ X0.(27)

It follows that

f(x∗) ≤ f(x) + ε(‖x− x0‖ − ‖x∗ − x0‖) ≤ f(x) + ε‖x− x∗‖ ∀x ∈ X0.

That is, x∗ is an ε-quasi-solution of (P). Thus, (iii) holds. Moreover, if x0 ∈ X0, then
by (27) (taking x = x0), we get (26). The proof is complete.

Remark 4.4. The last assertion (26) tells us that even if we already obtained an
ε-quasi-solution x0 of (P), it is still possible to apply Theorem 4.8 to seek a “better”
ε-quasi-solution x∗ of (P) (if the resulting x∗ �= x0).
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5. Convergence analysis of the nonlinear Lagrangian method in terms
of necessary optimality conditions. In this section, we investigate the conver-
gence of first and second order necessary optimality conditions that are obtained from
nonlinear Lagrangian problems. Specifically, we shall consider the following classes of
nonlinear Lagrangians:

(i) L∞(x, d) = max{f(x), d1g1(x), . . . , dqgq(x)}, x ∈ X;
(ii) Lk(x, d) = (f(x)k +

∑q
j=1 d

k
j g

+
j (x)

k
)1/k, x ∈ X, where 2 ≤ k <∞;

(iii) Lk(x, d) is as in (ii) with 0 < k < 2,
where properties (A) and (B) are satisfied with aj = 1, j = 1, . . . , q.

Throughout this section, we further assume
(A1) X = Rp;
(A2) β = infx∈Rp f(x) > 0;
(A3) f, gj , j = 1, . . . , q, are C1,1, namely, they are differentiable and their

gradients are locally Lipschitz; and
(A4) max{f(x), g1(x), . . . , gq(x)} → +∞ as ‖x‖ → +∞.
Let f be a C1,1 function. We denote by ∂2f(x) the generalized Hessian of f

at x; see [11, 23]. It is noted that the set-valued mapping x → ∂2f(x) is upper
semicontinuous.

We consider the following type of optimality conditions which were derived in
[11, 21]. It is worth noting that in these conditions the multipliers do not depend on
the choice of vectors in the tangential subspace of the active constraints.

Definition 5.1. Let x∗ ∈ X0. The first order necessary condition of (P) is said
to hold at x∗ if there exist λ, µj ≥ 0, j ∈ J(x∗), such that

λ� f(x∗) +
∑

j∈J(x∗)

µj � gj(x
∗) = 0.(28)

The second order necessary condition of (P) is said to hold at x∗ if (28) holds and,
for any u∗ ∈ Rp satisfying

�gj(x∗)�u∗ = 0, j ∈ J(x∗),(29)

there exist F ∈ ∂2f(x∗), Gj ∈ ∂2gj(x
∗), j ∈ J(x∗), such that

u∗T


λF +

∑
j∈J(x∗)

µjGj


u∗ ≥ 0.(30)

We need the following lemma.
Lemma 5.2. Let k ∈ (0,+∞], z ∈ X0, and dn = (d1,n, . . . , dq,n)(∈ Rq+) → +∞

as n → +∞. If the sequence {xn} ⊂ X satisfies Lk(xn, dn) ≤ f(z) ∀n, then {xn} is
bounded and its limit points belong to X0.

Proof. It is known that max{f(xn), d1,ng1(xn), . . . , dq,ngq(xn)} ≤ Lk(xn, dn).
Thus,

max{f(xn), d1,ng1(xn), . . . , dq,ngq(xn)} ≤ f(z).(31)

Suppose that {xn} is unbounded. Without loss of generality, assume that ‖xn‖ →
+∞. By assumption (A4), we get

max{f(xn), g1(xn), . . . , gq(xn)} → +∞ as n→ +∞.(32)
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Since dj,n → +∞ as n→ +∞ (j = 1, . . . , q), we see that dj,n > 1 (j = 1, . . . , q) when
n is sufficiently large. Hence, for sufficiently large n,

max{f(xn), g1(xn), . . . , gq(xn)} ≤ max{f(xn), d1,ng1(xn), . . . , dq,ngq(xn)}.

This fact, combined with (32), contradicts (31). So the sequence {xn} is bounded.
Now we show that any limit point of {xn} belongs to X0. Without loss of gener-

ality, we assume that xn → x∗. Suppose that x∗ �∈ X0. There exists γ0 > 0 such that
max{g1(x∗), . . . , gq(x∗)} ≥ γ0 > 0. It follows that max{g1(xn), . . . , gq(xn)} ≥ γ0/2
for sufficiently large n. Moreover, it follows from (31) that

f(z) ≥ Lk(xn, dn) ≥ max{d1,ng1(xn), . . . , dq,ngq(xn)}
≥ min

1≤j≤q
{dj,n}max{g1(xn), . . . , gq(xn)} ≥ γ0

2
min

1≤j≤q
{dj,n},

which is impossible, as n→ +∞.

Define

J∗(x) =




J+(x) ∪ J(x) if k ∈ (0, 2),
J(x) if k ∈ [2,∞),
J+(x) if k =∞.

Lemma 5.3 (see [22]). Suppose that {∇gj(x)}j∈J∗(x) is linearly independent for
any x ∈ X0 and that xn → x∗ as n → +∞ and x∗ ∈ X0. Then, for u∗ ∈ Rp

satisfying (29), there exists a sequence {un} ⊂ Rp such that �gj(xn)�un = 0, j ∈
J∗(x∗), and un → u∗.

As shown in [1, 22], if x ∈ X0 and xn → x, then, for sufficiently large n,

J(xn) ⊆ J(x), J+(xn) ⊆ J(x).(33)

We shall carry out the convergence analysis by considering the following two cases.

Case 1. 2 ≤ k < +∞.
Case 2. k = +∞ or k ∈ (0, 2).
5.1. Case 1. 2 ≤ k < +∞. When 2 ≤ k < +∞, the nonlinear Lagrangian

function Lk(x, d) is C1,1. Thus, the first and second order necessary optimality con-
ditions of (Qdn) can be easily derived.

Let dn = (d1,n, . . . , dq,n)(∈ Rq+)→ +∞ as n→ +∞.

Let xn be a local minimum of (Qdn). Thus, the first order necessary condition
for xn to be a local minimum of (Qdn) can be written as ∇Lk(xn, dn) = 0, or

a
1
k−1
n


fk−1(xn)� f(xn) +

∑
j∈J+(xn)

dkj,n(g
+
j (xn))

k−1 � gj(xn)


 = 0,(34)

where an = [L
k(xn, dn)]

k.

The second order necessary condition is that, for every u ∈ Rp, u�Mu ≥ 0 for
some M ∈ ∂2Lk(xn, dn); thus there exist Fn ∈ ∂2f(xn), Gj,n ∈ ∂2gj(xn), j ∈ J+(xn),
such that



NONLINEAR LAGRANGIAN AND CONSTRAINED OPTIMIZATION 1135

(
1

k
− 1

)
a

1
k−2
n


α(n)(�f(xn)�u)2 + ∑

j∈J+(xn)

βj,1(n)(�gj(xn)�u)2

+
∑

j∈J+(xn)

βj,2(n)(�f(xn)�u)(�gj(xn)�u)

+
∑

i∈J+(xn)

∑
j∈J+(xn)

βj,3(n)(�gi(xn)�u)(�gj(xn)�u)



+ a
1
k−1
n (k − 1)


ξ(n)(�f(xn)�u)2 + ∑

j∈J(xn)

ηj,1(n)[(�gj(xn)�u)+]2

+
∑

j∈J+(xn)

ηj,2(n)(�gj(xn)�u)2



+ a
1
k−1
n uT


fk−1(xn)Fn +

∑
j∈J+(xn)

dkj,n(g
+
j (xn))

k−1Gj,n


u ≥ 0,(35)

where α(n), βi,1(n), βi,2(n), βi,3(n), ξ(n), ηi,1(n), and ηi,2(n) are real numbers.
We have the following convergence result.
Theorem 5.4. Suppose that {∇gj(x)}j∈J(x) is linearly independent for any x ∈

X0. Let 2 ≤ k < +∞ and dn ∈ Rq+ be such that dn → +∞. Let xn be generated by
some descent method for (Qdn) starting from a point z ∈ X0 and xn satisfy first order
necessary condition (34) and second order necessary condition (35). Then {xn} is
bounded and every limit point of {xn} is a point of X0 satisfying first order necessary
optimality condition (28) and second order necessary optimality condition (30) of (P).

Proof. It follows from Lemma 5.2 that {xn} is bounded and every limit point of
{xn} belongs to X0. Without loss of generality, we assume that xn → x∗. Let

an = [L
k(xn, dn)]

k > 0; bn = a
1
k−1
n


fk−1(xn) +

∑
j∈J+(xn)

dkj,ng
+
j (xn)

k−1


 > 0.

Thus,

a
1
k−1
n fk−1(xn)

bn
+

∑
j∈J+(xn)

a
1
k−1
n dkj,n(g

+
j (xn))

k−1

bn
= 1.

Without loss of generality, we assume that

a
1
k−1
n fk−1(xn)

bn
→ λ,(36)

a
1
k−1
n dkj,n(g

+
j (xn))

k−1

bn
→ µj , j ∈ J(x∗).(37)

Then by (33),

λ ≥ 0, µj ≥ 0, j ∈ J(x∗), and λ+
∑

j∈J(x∗)

µj = 1.(38)
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Dividing (34) by bn and taking the limit, we obtain

λ� f(x∗) +
∑

j∈J(x∗)

µj � gj(x
∗) = 0.

Since {�gj(x∗)}j∈J(x∗) is linearly independent, it follows that λ > 0.
By Lemma 5.3, we deduce that, for any u∗ ∈ Rp satisfying (29), we can find

un ∈ Rp such that
�gj(xn)�un = 0, j ∈ J(x∗)(39)

and

un → u∗.(40)

Furthermore, for every un satisfying (39) and (40), we can find Fn ∈ ∂2f(xn), Gj,n ∈
∂2gj(xn), j ∈ J+(xn), such that (35) holds with u replaced by un.

Substituting (39) into (34), we get

�f(xn)�un = 0.(41)

Substituting (39)–(41) into (35), we have

a
1
k−1
n u�n


fk−1(xn)Fn +

∑
j∈J+(xn)

dkj,n(g
+
j (xn))

k−1Gj,n


un ≥ 0.(42)

Since xn → x∗ as n → ∞, ∂2f(·), ∂2gj(·) are upper semicontinuous at x∗ and
∂2f(x∗), ∂2gj(x

∗) are compact, without loss of generality we can assume that

Fn → F ∈ ∂2f(x∗), Gj,n → Gj ∈ ∂2gj(x
∗), j ∈ J(x∗).(43)

Dividing (42) by bn and taking the limit, applying (36), (37), (40), and (43), we obtain

u∗T


λF +

∑
j∈J(x∗)

µjGj


u∗ ≥ 0 and λ > 0.

5.2. Case 2. k = +∞ or k ∈ (0, 2). When k = +∞, problem (Qdn) is a
minimax optimization problem and thus a convex composite optimization problem.
However, the second order necessary conditions for a convex composite optimization
problem given in [4, 23] are not applicable, as the multipliers depend on the choice of
the vector in the tangential subspace of the active constraints. When k ∈ (0, 2), func-
tion g+

j (x)
k and thus Lk(x, d) is not C1,1. Thus, the existing optimality conditions in

the literature are not applicable. However, we are able to derive optimality conditions
for (Qdn) by applying the smooth approximate variational principle, which is due to
Borwein and Preiss [6] (see also [8, Theorem 5.2]).

Lemma 5.5 (approximate smooth variational principle [8, Theorem 5.2]). Let
X be a Hilbert space. Let g : X → (−∞,+∞] be l.s.c. and bounded below with
dom(g) �= ∅. Let x be a point such that g(x) < infx∈X g(x)+ ε, where ε > 0. Then, for
any λ > 0, there exist yε, zε with ‖yε − zε‖ < λ, ‖zε − x‖ < λ, g(yε) < infx∈X g(x) + ε,
and having the property that the function y → g(y) + (ε/λ2)‖y − zε‖2 has a unique
minimum over X at y = yε.
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Remark 5.1. If the Hilbert space X in Lemma 5.5 is replaced with a nonempty
and closed subset X1, then the conclusion also holds. As a matter of fact, if g : X1 →
(−∞,+∞] is l.s.c. and bounded below on X1, we can define a function g : X →
(−∞,+∞] as follows: g(x) = g(x) if x ∈ X1 and g(x) = +∞ otherwise. It is easy
to verify that g is l.s.c. and bounded below on X. Applying Lemma 5.3 to g, the
conclusion for g follows.

Next we present first and second order necessary conditions for x to be a local
minimum of Lk(x, d) under the linear independence assumption. The proof is given
in the appendix.

Proposition 5.6. Let k ∈ (0, 2) or k = +∞. Let x be a local minimum of
Lk(x, d) and {�gj(x)}j∈J∗(x) be linearly independent. Then there exist λ > 0, µj ≥
0, j ∈ J∗(x), with λ+

∑
j∈J∗(x) µj = 1 such that

λ� f(x) +
∑

j∈J∗(x)

µj � gj(x) = 0.

Furthermore, for each u ∈ Rp satisfying

�gj(x)�u = 0, j ∈ J∗(x),(44)

there exist F ∈ ∂2f(x), Gj ∈ ∂2gj(x), j ∈ J∗(x), such that

uT


λF +

∑
j∈J∗(x)

µjGj


u ≥ 0.

Theorem 5.7. Suppose that {∇gj(x)}j∈J∗(x) is linearly independent for any
x ∈ X0. Let k ∈ (0, 2) or k = +∞. Let dn(∈ Rq+) → +∞ as n → +∞. Let xn be
generated by some descent method for (Qdn) starting from a point z ∈ X0. Then {xn}
is bounded and every limit point of {xn} is a point of X0 satisfying first order necessary
condition (28) and second order necessary condition (30) of (P), respectively.

Proof. It follows from Lemma 5.2 that {xn} is bounded and every limit point
of {xn} belongs to X0. Without loss of generality, suppose that xn → x∗ ∈ X0

and that J+(xn) ∪ J(xn) ⊂ J(x∗) for sufficiently large n. That {�gj(x∗)}j∈J(x∗) is
linearly independent implies that {�gj(xn)}j∈J+(xn)∪J(xn) is linearly independent
when n is sufficiently large. In other words, the assumptions in Proposition 5.6
hold (with x replaced by xn) when n is sufficiently large. Thus, we assume that
{�gj(xn)}j∈J+(xn)∪J(xn) is linearly independent for all n.

The first order necessary optimality conditions in Proposition 5.6 can be written
as

λn � f(xn) +
∑

j∈J(x∗)

µj,n � gj(xn) = 0,(45)

where λn > 0, µj,n ≥ 0, j ∈ J(x∗), with µj,n = 0 ∀j ∈ J(x∗)\J(xn) and λn +∑
j∈J(x∗) µj = 1. Without loss of generality, we assume that λn → λ, µj,n → µj , j ∈

J(x∗), as n→ +∞. Taking the limit in (45) gives us

λ� f(x∗) +
∑

j∈J(x∗)

µj � gj(x
∗) = 0.

By the linear independence of {�gj(x∗)}j∈J(x∗), we see that λ > 0. That is, (28)
holds.
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Let u∗ ∈ Rp satisfy (29). Since {�gj(x∗)}j∈J(x∗) is linearly independent and
xn → x∗, by Lemma 5.3, we obtain un ∈ Rp such that

�gj(xn)Tun = 0, j ∈ J(x∗),(46)

and un → u∗.
Thus, if xn satisfies any one of the second order necessary conditions in Propo-

sition 5.6, then, for every un satisfying (46), there exist Fn ∈ ∂2f(xn), Gj,n ∈
∂2gj(xn), j ∈ J(x∗),

un
T


λnFn +

∑
j∈J(x∗)

µj,nGj,n


un ≥ 0,(47)

where λn, µj,n are as in (45).
By the upper semicontinuity of ∂2f(·), ∂2gj(·) and the nonemptiness and com-

pactness of ∂2f(x∗), ∂2gj(x
∗)(j = 1, . . . , q), without loss of generality we assume that

Fn → F ∈ ∂2f(x∗), Gj,n → Gj ∈ ∂2gj(x
∗), j ∈ J(x∗),

as n→ +∞. Taking the limit in (47), we get

u∗T


λF +

∑
j∈J(x∗)

µjGj


u∗ ≥ 0,

where λ > 0. Thus, (30) follows. The proof is complete.

Appendix. Proof of Proposition 5.6. We consider the following two cases.
Case 1. k = ∞. In this case, J∗(x) = J+(x). Since x ∈ X, f(x) > 0. Thus,

it follows that L∞(x, d) = max{f(x), djgj(x)}j∈J+(x). Since x is a local minimum of
L∞(x, d), there exists δ > 0 such that

L∞(x, d) ≤ L∞(x, d) = max{f(x), djgj(x)}j∈J+(x) ∀x ∈ Uδ,

where Uδ = {x ∈ Rp : ‖x− x‖ ≤ δ} (X = Rp).
Let m > 0 be an integer and

sm(x) =


fm(x) + ∑

j∈J+(x)

dmj g
m
j (x)




1
m

, x ∈ Uδ,

εm =
[
(q + 1)

1
m − 1

]
L∞(x, d).

Then 0 ≤ sm(x)− L∞(x, d) ∀x ∈ Uδ and sm(x) ≤ [(q + 1) 1
m ]L∞(x, d). Thus,

sm(x) ≤ L∞(x, d) + [(q + 1)
1
m − 1]L∞(x, d)

≤ L∞(x, d) + [(q + 1)
1
m − 1]L∞(x, d)

≤ sm(x) + [(q + 1)
1
m − 1]L∞(x, d)

= sm(x) + εm ∀x ∈ Uδ.
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Note that εm ↓ 0 as m → +∞. Without loss of generality, we assume that 2ε
1/4
m <

δ ∀m. Applying Lemma 5.5 by setting λ = ε
1/4
m , we obtain x′m, x

′′
m ∈ Uδ such that

‖x′m − x′′m‖ < ε1/4m and ‖x′′m − x‖ < ε1/4m

and x′m is a unique minimum of the problem

min vm(x) = sm(x) + ε1/2m ‖x− x′′m‖2 s.t. x ∈ Uδ.(48)

Note that ‖x′m − x‖ ≤ ‖x′m − x′′m‖ + ‖x′′m − x‖ ≤ 2ε1/4m < δ. It follows that x′m ∈
intUδ. Applying the first order necessary optimality condition to problem (48), we get
�vm(x′m) = 0. That is,
(49)

a
1
m−1
m


fm−1(x′m)� f(x′m) +

∑
j∈J+(x)

dmj g
m−1
j (x′m)� gj(x

′
m)


+ 2ε1/2m (x′m − x′′m) = 0,

where am = [sm(x
′
m)]

m.
Let

bm = a
1
m−1
m


fm−1(x′m) +

∑
j∈J+(x)

dmj g
m−1
j (x′m)


 .

It is clear that there exists α > 0 such that bm ≥ α > 0 ∀m. Without loss of
generality, we can assume that

a
1
m−1
m fm−1(x′m)

bm
→ λ,

a
1
m−1
m dmj g

m−1
j (x′m)

bm
→ µj , j ∈ J+(x).(50)

Thus

λ ≥ 0, µj ≥ 0, j ∈ J+(x), and λ+
∑

j∈J+(x)

µj = 1.

Dividing (50) by bm and taking the limit as m→ +∞, it follows from (50) that

λ� f(x) +
∑

j∈J+(x)

µj � gj(x) = 0.

Since {�gj(x)}j∈J+(x) is linearly independent, it follows that λ > 0.
Now we apply the second order necessary optimality condition to (48). For any

u ∈ Rp, there exists Vm ∈ ∂2vm(x
′
m) such that u

�Vmu ≥ 0. That is, there exist
Fm ∈ ∂2f(x′m) and Gj,m ∈ ∂2gj(x

′
m), j ∈ J+(x), such that

(
1

m
− 1

)
a

1
m−2
m


fm−1(x′m)� f(x′m)

�u+
∑

j∈J+(x)

dmj g
m−1
j (x′m)� gj(x

′
m)

�u




2

+(m− 1)a 1
m−1
m


fm−2(x′m)(�f(x′m)�u)2 +

∑
j∈J+(x)

dmj g
m−2
j (x′m)(�gj(x′m)�u)2




+a
1
m−1
m u�


fm−1(x′m)Fm +

∑
j∈J+(x)

dmj (g
+
j (x

′
m))

m−1Gj,m


u+ 2ε1/2m uTu ≥ 0.

(51)
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Since {�gj(x)}j∈J+(x) is linearly independent and x
′
m → x, from Lemma 5.3, for any

u ∈ Rp satisfying (44), there exists a sequence {um}, such that
�gj(x′m)�um = 0, j ∈ J+(x),(52)

and um → u.
The combination of (51) (setting u = um) and (52) yields(

1

m
− 1

)
a

1
m−2
m

(
fm−1(x′m)� f(x′m)

�um
)2
+ (m− 1)a 1

m−1
m fm−2(x′m)(�f(x′m)�um)2

+a
1
m−1
m uTm


fm−1(x′m)Fm +

∑
j∈J+(x)

dmj g
m−1
j (x′m)Gj,m


um + 2ε1/2m uTmum ≥ 0.

(53)

From (50) (setting u = um) and (52), we have∣∣∣∣
(
1

m
− 1

)
a

1
m−2
m

(
fm−1(x′m)� f(x′m)

�um
)2
/bm

∣∣∣∣
= 4εm[(x

′
m − x′′m)

�um]2
(
1− 1

m

)
/(a1/m

m bm) ≤ 4ε
3
2
m

(αβ)
‖um‖2.

Therefore,(
1

m
− 1

)
a1/m−2
m

(
fm−1(x′m)� f(x′m)

�um
)2
/bm → 0 as m→∞.

The first formula in (50) guarantees that, when m is sufficiently large,

a
1
m−1
m fm−1(x′m)/bm > λ/2 > 0.

Thus, the combination of (50) (letting u = um) and (52) also yields

(m− 1)a 1
m−1
m fm−2(x′m)

(�f(x′m)�um)2
/bm

=
1

f(x′m)
(m− 1)4εm[(x′m − x′′m)

�um]2/[(a
1
m−1
m fm−1(x′m)/bm)b

2
m]

≤ 1

βα2
‖um‖24(m− 1)ε3/2m /(λ/2).

Noting that

4(m− 1)ε3/2m ≤ 4(m− 1)
(
(q + 1)1/m − 1

)3/2

[L∞(x, d)]3/2,

we deduce that

(m− 1)a 1
m−1
m fm−2(x′m)

(�f(x′m)�um)2
/bm → 0 as m→∞.

Since ∂2f(·), ∂2gj(·) are upper semicontinuous at x and ∂2f(x), ∂2gj(x) are
nonempty and compact, we obtain F ∈ ∂2f(x), Gj ∈ ∂2gj(x), j ∈ J+(x), such
that

Fm → F, Gm → G, j ∈ J+(x) as m→∞.
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Thus, dividing (53) by bm and taking the limit, we have

uT


λF +

∑
j∈J+(x)

µjGj


u ≥ 0 and λ > 0.

Case 2. k ∈ (0, 2). In this case, J∗(x) = J+(x)
⋃
J(x). Since x is a local minimum

of Lk(x, d), there exists δ > 0 such that Lk(x, d) ≤ Lk(x, d) ∀x ∈ Uδ. Then

fk(x) +

∑
j∈J+(x)∪J(x)

dkj g
+
j

k
(x)




1/k

≤

fk(x) +

∑
j∈J+(x)∪J(x)

dkj g
+
j

k
(x)




1/k

.

Let

tm(x) =


fk(x) +

1

2k

∑
j∈J+(x)∪J(x)

(
djgj(x) +

√
d2
jg

2
j (x) + 1/m

)k
1/k

.

It is not hard to prove that 0 ≤ tm(x)−Lk(x, d) ≤ εm and L
k(x, d) ≤ tm(x) ∀x ∈ Uδ,

where

εm =

{
q
kL

k(x, d)
1
k−1 1

mk/2 if k ∈ (0, 1];
1

2
√
m
q1/k if k ∈ (1, 2).

Thus,

tm(x) ≤ Lk(x, d) + εm ≤ Lk(x, d) + εm ≤ tm(x) + εm ∀x ∈ Uδ.

Since εm ↓ 0 asm→ +∞, without loss of generality we assume that 2ε1/4m < δ ∀m.

Applying Lemma 5.5 by setting λ = ε
1/4
m , there exist x′m, x

′′
m ∈ Um with ‖x′m−x′′m‖ <

ε
1/4
m , and ‖x′′m − x‖ < ε

1/4
m , such that x′m is the unique minimum of the optimization

problem

min wm(x) = tm(x) + ε1/2m ‖x− x′′m‖2 s.t. x ∈ Uδ.(54)

Applying the first order necessary optimality condition to wm(x) and noticing that
x′m ∈ intUδ, we have �wm(x′m) = 0. That is,

a
1
k−1
m

(
fk−1(x′m)� f(x′m)

+
1

2k

∑
j∈J+(x)∪J(x)

djc
k−1
m (1 + djgj(x

′
m)(d

2
jg

2
j (x

′
m) + 1/m)

−1/2)� gj(x
′
m)

)

+ε1/2m (x′m − x′′m) = 0,(55)

where

am = (tm(x
′
m))

k; cm = djgj(x
′
m) +

√
d2
jg

2
j (x

′
m) + 1/m.
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Let

bm = a
1
k−1
m


fk−1(x′m) +

1

2k

∑
j∈J+(x)∪J(x)

djc
k−1
m

(
1 + djgj(x

′
m)

(
d2
jg

2
j (x

′
m) +

1

m

)−1/2
).

Without loss of generality, we assume that

a
1
k−1
m fk−1(x′m)

bm
→ λ,

cj,m/bm → µj , j ∈ J+(x) ∪ J(x),(56)

where, for j ∈ J+(x) ∪ J(x),

cj,m =
a

1
k−1
m

2k
djc

k−1
m

(
1 + djgj(x

′
m)

(
d2
jg

2
j (x

′
m) +

1

m

)−1/2
)
.

It is easy to see that µj = 0, j ∈ J(x), if k > 1. Thus we obtain λ ≥ 0, µj ≥ 0 with
λ+

∑
j∈J∗(x) µj = 1.

Dividing (55) by bm and taking the limit, we get

λ� f(x) +
∑

j∈J+(x)∪J(x)

µj � gj(x) = 0.

Applying the second order necessary optimality condition to (54), we know that,
for every u ∈ Rp, there exist Fm ∈ ∂2f(x′m), Gj,m ∈ ∂2gj(x

′
m), j ∈ J+(x) ∪ J(x) such

that

(
1

k
− 1

)
a

1
k−2
m


fk−1(x′m)� f(x′m)

�u+
∑

j∈J+(x)∪J(x)

αj(m)� gj(x
′
m)

�u




2

+a
1
k−1
m


(k − 1)fk−2(x′m)(�f(x′m)�u)2 +

∑
j∈J+(x)∪J(x)

θj(m)(�gj(x′m)�u)2



+a
1
k−1
m u�


fk−1(x′m)Fm +

1

2k

∑
j∈J+(x)∪J(x)

dj

[
djgj(x

′
m) +

√
d2
jg

2
j (x

′
m) +

1

m

]k−1

(
1 + djgj(x

′
m)

√
d2
i g

2
j (x

′
m) +

1

m

)
Gj,m

)
u ≥ 0,(57)

where αj(n), θj(n) are real numbers. Since {�gj(x)}j∈J∗(x) is linearly independent,
i.e., {�gj(x)}j∈J+(x)∪J(x) is linearly independent, and x′m → x, by Lemma 5.3, we
conclude that, for every u ∈ Rp satisfying (44), there exists um ∈ Rp, such that

�gj(x′m)�um = 0, j ∈ J∗(x),(58)

and um → u.
Furthermore, for every um satisfying (58), we obtain Fm ∈ ∂2f(x′m), Gj,m ∈

∂2gj(x
′
m), j ∈ J+(x)

⋃
J(x), such that (57) holds (with u replaced by um).
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The combination of (58) and (55) gives us

a
1
k−1
m fk−1(x′m)� f(x′m)

�um = −ε
1
2
m(x

′
m − x′′m)

�um.

Thus ∣∣∣∣
(
1

k
− 1

)
a

1
k−2
m

(
fk−1(x′m)� f(x′m)

�um
)2
∣∣∣∣ ≤ 1

q∗
ε

3
4
m‖um‖2

and ∣∣∣(k − 1)a 1
k−1
m fk−2(x′m)(�f(x′m)�um)2

∣∣∣ ≤ 1− k

q∗
ε

3
4
m‖um‖2.

Noting that bm ≥ 1, we obtain, as m→ +∞,
1

bm

(
1

k
− 1

)
a

1
k−2
m

(
fk−1(x′m)� f(x′m)

�um
)2 → 0,(59)

1

bm
(k − 1)a 1

k−1
m fk−2(x′m)(�f(x′m)�um)2 → 0.(60)

By the upper semicontinuity of x → ∂2f(x), x → ∂2gj(x)(j = 1, . . . , q) and the
nonemptiness and compactness of ∂2f(x) and ∂2gj(x), without loss of generality we
can assume that Fm → F ∈ ∂2f(x), Gj,m → Gj ∈ ∂2gj(x), j ∈ J+(x) ∪ J(x).

Letting u = um in (57) and substituting (58) into it, dividing (57) by bm and
taking the limit, and applying (56), (59), and (60), we obtain

uT


λF +

∑
j∈J+(x)∪J(x)

µjGj


u ≥ 0,

where λ > 0.
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CORRIGENDUM: ON THE CONSTANT POSITIVE LINEAR
DEPENDENCE CONDITION AND ITS APPLICATION TO

SQP METHODS∗
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Abstract. We correct an assertion in the quoted paper [Qi and Wei, SIAM J. Optim., 10 (2000),
pp. 963–981].

Key words. feasible SQP method, superlinear convergence, strict complementarity

AMS subject classifications. 90C30, 60K05

PII. S1052623401383327

In section 6.2 of [3], after hypotheses (H7)–(H9), an additional hypothesis (H10)
needs to be added as follows:

(H10) strict complementarity holds at x∗.
The reason this hypothesis is needed is that the end of the proof of Proposition 6.1
of [3] claims to follow, step by step, the proof of Proposition 3.6 of [2]. The proof of
Proposition 3.6 of [2] refers to that of Proposition 4.8 of [1], which invokes Lemma 4.4
of [1]. Lemma 4.4 of [1], however, is proved under a strict complementarity condition,
which requires all components of u∗Ii to be strictly positive. This cannot be guaranteed
in [3] without the additional hypothesis (H10).

Because of this correction, the last sentence of the abstract of [3] should be
changed as follows: “We establish its global convergence under the SSOSC and a
condition slightly weaker than the Mangasarian–Fromovitz constraint qualification,
and we prove superlinear convergence of a modified version of this algorithm under
the SSOSC, strict complementarity, and a condition slightly weaker than the linear
independence constraint qualification.” Corresponding changes should also be made
in the introduction and section 6.1.

The following changes to clarify notation should be made in the proof of Propo-
sition 6.1:

1. In line 8, “u∗̄
Ii
” is replaced by “u∗̄

Ii
(i)”;

2. Line 9 should begin, “Let u∗j (i) = 0 if j �∈ Īi. Then u∗(i) ∈M(x∗).”
3. In line 13, “u∗(i)” replaces “u∗.”
It might be possible to remove (H10) if the proof of Proposition 6.1 is further

modified. At this time, we have not explored such an alternative approach.
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